Properties

Label 2527.1.d.f.1084.3
Level $2527$
Weight $1$
Character 2527.1084
Self dual yes
Analytic conductor $1.261$
Analytic rank $0$
Dimension $4$
Projective image $D_{10}$
CM discriminant -7
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2527,1,Mod(1084,2527)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2527, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2527.1084");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2527 = 7 \cdot 19^{2} \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 2527.d (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(1.26113728692\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{20})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 5x^{2} + 5 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{10}\)
Projective field: Galois closure of 10.0.774773162367379.1

Embedding invariants

Embedding label 1084.3
Root \(-1.17557\) of defining polynomial
Character \(\chi\) \(=\) 2527.1084

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.17557 q^{2} +0.381966 q^{4} -1.00000 q^{7} -0.726543 q^{8} +1.00000 q^{9} +O(q^{10})\) \(q+1.17557 q^{2} +0.381966 q^{4} -1.00000 q^{7} -0.726543 q^{8} +1.00000 q^{9} +1.61803 q^{11} -1.17557 q^{14} -1.23607 q^{16} +1.17557 q^{18} +1.90211 q^{22} +0.618034 q^{23} +1.00000 q^{25} -0.381966 q^{28} +1.90211 q^{29} -0.726543 q^{32} +0.381966 q^{36} -1.61803 q^{43} +0.618034 q^{44} +0.726543 q^{46} +1.00000 q^{49} +1.17557 q^{50} -1.17557 q^{53} +0.726543 q^{56} +2.23607 q^{58} -1.00000 q^{63} +0.381966 q^{64} -1.17557 q^{67} -0.726543 q^{72} -1.61803 q^{77} -1.90211 q^{79} +1.00000 q^{81} -1.90211 q^{86} -1.17557 q^{88} +0.236068 q^{92} +1.17557 q^{98} +1.61803 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 6 q^{4} - 4 q^{7} + 4 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 4 q + 6 q^{4} - 4 q^{7} + 4 q^{9} + 2 q^{11} + 4 q^{16} - 2 q^{23} + 4 q^{25} - 6 q^{28} + 6 q^{36} - 2 q^{43} - 2 q^{44} + 4 q^{49} - 4 q^{63} + 6 q^{64} - 2 q^{77} + 4 q^{81} - 8 q^{92} + 2 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2527\mathbb{Z}\right)^\times\).

\(n\) \(1445\) \(1807\)
\(\chi(n)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.17557 1.17557 0.587785 0.809017i \(-0.300000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(3\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(4\) 0.381966 0.381966
\(5\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(6\) 0 0
\(7\) −1.00000 −1.00000
\(8\) −0.726543 −0.726543
\(9\) 1.00000 1.00000
\(10\) 0 0
\(11\) 1.61803 1.61803 0.809017 0.587785i \(-0.200000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(12\) 0 0
\(13\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(14\) −1.17557 −1.17557
\(15\) 0 0
\(16\) −1.23607 −1.23607
\(17\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(18\) 1.17557 1.17557
\(19\) 0 0
\(20\) 0 0
\(21\) 0 0
\(22\) 1.90211 1.90211
\(23\) 0.618034 0.618034 0.309017 0.951057i \(-0.400000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(24\) 0 0
\(25\) 1.00000 1.00000
\(26\) 0 0
\(27\) 0 0
\(28\) −0.381966 −0.381966
\(29\) 1.90211 1.90211 0.951057 0.309017i \(-0.100000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(30\) 0 0
\(31\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(32\) −0.726543 −0.726543
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0.381966 0.381966
\(37\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(42\) 0 0
\(43\) −1.61803 −1.61803 −0.809017 0.587785i \(-0.800000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(44\) 0.618034 0.618034
\(45\) 0 0
\(46\) 0.726543 0.726543
\(47\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(48\) 0 0
\(49\) 1.00000 1.00000
\(50\) 1.17557 1.17557
\(51\) 0 0
\(52\) 0 0
\(53\) −1.17557 −1.17557 −0.587785 0.809017i \(-0.700000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0.726543 0.726543
\(57\) 0 0
\(58\) 2.23607 2.23607
\(59\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(60\) 0 0
\(61\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(62\) 0 0
\(63\) −1.00000 −1.00000
\(64\) 0.381966 0.381966
\(65\) 0 0
\(66\) 0 0
\(67\) −1.17557 −1.17557 −0.587785 0.809017i \(-0.700000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(72\) −0.726543 −0.726543
\(73\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −1.61803 −1.61803
\(78\) 0 0
\(79\) −1.90211 −1.90211 −0.951057 0.309017i \(-0.900000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(80\) 0 0
\(81\) 1.00000 1.00000
\(82\) 0 0
\(83\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) −1.90211 −1.90211
\(87\) 0 0
\(88\) −1.17557 −1.17557
\(89\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0.236068 0.236068
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(98\) 1.17557 1.17557
\(99\) 1.61803 1.61803
\(100\) 0.381966 0.381966
\(101\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(102\) 0 0
\(103\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) −1.38197 −1.38197
\(107\) 1.90211 1.90211 0.951057 0.309017i \(-0.100000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(108\) 0 0
\(109\) −1.90211 −1.90211 −0.951057 0.309017i \(-0.900000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 1.23607 1.23607
\(113\) −1.90211 −1.90211 −0.951057 0.309017i \(-0.900000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0.726543 0.726543
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 1.61803 1.61803
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 0 0
\(126\) −1.17557 −1.17557
\(127\) 1.90211 1.90211 0.951057 0.309017i \(-0.100000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(128\) 1.17557 1.17557
\(129\) 0 0
\(130\) 0 0
\(131\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) −1.38197 −1.38197
\(135\) 0 0
\(136\) 0 0
\(137\) −1.61803 −1.61803 −0.809017 0.587785i \(-0.800000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(138\) 0 0
\(139\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) −1.23607 −1.23607
\(145\) 0 0
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 0.618034 0.618034 0.309017 0.951057i \(-0.400000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(150\) 0 0
\(151\) −1.17557 −1.17557 −0.587785 0.809017i \(-0.700000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) −1.90211 −1.90211
\(155\) 0 0
\(156\) 0 0
\(157\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(158\) −2.23607 −2.23607
\(159\) 0 0
\(160\) 0 0
\(161\) −0.618034 −0.618034
\(162\) 1.17557 1.17557
\(163\) −0.618034 −0.618034 −0.309017 0.951057i \(-0.600000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(168\) 0 0
\(169\) 1.00000 1.00000
\(170\) 0 0
\(171\) 0 0
\(172\) −0.618034 −0.618034
\(173\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(174\) 0 0
\(175\) −1.00000 −1.00000
\(176\) −2.00000 −2.00000
\(177\) 0 0
\(178\) 0 0
\(179\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(180\) 0 0
\(181\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) −0.449028 −0.449028
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −0.618034 −0.618034 −0.309017 0.951057i \(-0.600000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(192\) 0 0
\(193\) −1.17557 −1.17557 −0.587785 0.809017i \(-0.700000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0.381966 0.381966
\(197\) −0.618034 −0.618034 −0.309017 0.951057i \(-0.600000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(198\) 1.90211 1.90211
\(199\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(200\) −0.726543 −0.726543
\(201\) 0 0
\(202\) 0 0
\(203\) −1.90211 −1.90211
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 0.618034 0.618034
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) −1.90211 −1.90211 −0.951057 0.309017i \(-0.900000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(212\) −0.449028 −0.449028
\(213\) 0 0
\(214\) 2.23607 2.23607
\(215\) 0 0
\(216\) 0 0
\(217\) 0 0
\(218\) −2.23607 −2.23607
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(224\) 0.726543 0.726543
\(225\) 1.00000 1.00000
\(226\) −2.23607 −2.23607
\(227\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(228\) 0 0
\(229\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) −1.38197 −1.38197
\(233\) 1.61803 1.61803 0.809017 0.587785i \(-0.200000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −1.61803 −1.61803 −0.809017 0.587785i \(-0.800000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(240\) 0 0
\(241\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(242\) 1.90211 1.90211
\(243\) 0 0
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(252\) −0.381966 −0.381966
\(253\) 1.00000 1.00000
\(254\) 2.23607 2.23607
\(255\) 0 0
\(256\) 1.00000 1.00000
\(257\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 1.90211 1.90211
\(262\) 0 0
\(263\) −0.618034 −0.618034 −0.309017 0.951057i \(-0.600000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) −0.449028 −0.449028
\(269\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(270\) 0 0
\(271\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) −1.90211 −1.90211
\(275\) 1.61803 1.61803
\(276\) 0 0
\(277\) 0.618034 0.618034 0.309017 0.951057i \(-0.400000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(282\) 0 0
\(283\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) −0.726543 −0.726543
\(289\) 1.00000 1.00000
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0.726543 0.726543
\(299\) 0 0
\(300\) 0 0
\(301\) 1.61803 1.61803
\(302\) −1.38197 −1.38197
\(303\) 0 0
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(308\) −0.618034 −0.618034
\(309\) 0 0
\(310\) 0 0
\(311\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(312\) 0 0
\(313\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) −0.726543 −0.726543
\(317\) 1.17557 1.17557 0.587785 0.809017i \(-0.300000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(318\) 0 0
\(319\) 3.07768 3.07768
\(320\) 0 0
\(321\) 0 0
\(322\) −0.726543 −0.726543
\(323\) 0 0
\(324\) 0.381966 0.381966
\(325\) 0 0
\(326\) −0.726543 −0.726543
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 1.17557 1.17557 0.587785 0.809017i \(-0.300000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 1.17557 1.17557 0.587785 0.809017i \(-0.300000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(338\) 1.17557 1.17557
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) −1.00000 −1.00000
\(344\) 1.17557 1.17557
\(345\) 0 0
\(346\) 0 0
\(347\) −0.618034 −0.618034 −0.309017 0.951057i \(-0.600000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(348\) 0 0
\(349\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(350\) −1.17557 −1.17557
\(351\) 0 0
\(352\) −1.17557 −1.17557
\(353\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −1.61803 −1.61803 −0.809017 0.587785i \(-0.800000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(360\) 0 0
\(361\) 0 0
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(368\) −0.763932 −0.763932
\(369\) 0 0
\(370\) 0 0
\(371\) 1.17557 1.17557
\(372\) 0 0
\(373\) −1.90211 −1.90211 −0.951057 0.309017i \(-0.900000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 1.90211 1.90211 0.951057 0.309017i \(-0.100000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) −0.726543 −0.726543
\(383\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −1.38197 −1.38197
\(387\) −1.61803 −1.61803
\(388\) 0 0
\(389\) −2.00000 −2.00000 −1.00000 \(\pi\)
−1.00000 \(\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) −0.726543 −0.726543
\(393\) 0 0
\(394\) −0.726543 −0.726543
\(395\) 0 0
\(396\) 0.618034 0.618034
\(397\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) −1.23607 −1.23607
\(401\) 1.90211 1.90211 0.951057 0.309017i \(-0.100000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 0 0
\(406\) −2.23607 −2.23607
\(407\) 0 0
\(408\) 0 0
\(409\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 0.726543 0.726543
\(415\) 0 0
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(420\) 0 0
\(421\) 1.17557 1.17557 0.587785 0.809017i \(-0.300000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(422\) −2.23607 −2.23607
\(423\) 0 0
\(424\) 0.854102 0.854102
\(425\) 0 0
\(426\) 0 0
\(427\) 0 0
\(428\) 0.726543 0.726543
\(429\) 0 0
\(430\) 0 0
\(431\) −1.17557 −1.17557 −0.587785 0.809017i \(-0.700000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(432\) 0 0
\(433\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) −0.726543 −0.726543
\(437\) 0 0
\(438\) 0 0
\(439\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(440\) 0 0
\(441\) 1.00000 1.00000
\(442\) 0 0
\(443\) 0.618034 0.618034 0.309017 0.951057i \(-0.400000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) −0.381966 −0.381966
\(449\) −1.17557 −1.17557 −0.587785 0.809017i \(-0.700000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(450\) 1.17557 1.17557
\(451\) 0 0
\(452\) −0.726543 −0.726543
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 1.61803 1.61803 0.809017 0.587785i \(-0.200000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(462\) 0 0
\(463\) −1.61803 −1.61803 −0.809017 0.587785i \(-0.800000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(464\) −2.35114 −2.35114
\(465\) 0 0
\(466\) 1.90211 1.90211
\(467\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(468\) 0 0
\(469\) 1.17557 1.17557
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −2.61803 −2.61803
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) −1.17557 −1.17557
\(478\) −1.90211 −1.90211
\(479\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 0 0
\(484\) 0.618034 0.618034
\(485\) 0 0
\(486\) 0 0
\(487\) 1.17557 1.17557 0.587785 0.809017i \(-0.300000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −0.618034 −0.618034 −0.309017 0.951057i \(-0.600000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 0.618034 0.618034 0.309017 0.951057i \(-0.400000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(504\) 0.726543 0.726543
\(505\) 0 0
\(506\) 1.17557 1.17557
\(507\) 0 0
\(508\) 0.726543 0.726543
\(509\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(522\) 2.23607 2.23607
\(523\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) −0.726543 −0.726543
\(527\) 0 0
\(528\) 0 0
\(529\) −0.618034 −0.618034
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 0 0
\(536\) 0.854102 0.854102
\(537\) 0 0
\(538\) 0 0
\(539\) 1.61803 1.61803
\(540\) 0 0
\(541\) −1.61803 −1.61803 −0.809017 0.587785i \(-0.800000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 1.17557 1.17557 0.587785 0.809017i \(-0.300000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(548\) −0.618034 −0.618034
\(549\) 0 0
\(550\) 1.90211 1.90211
\(551\) 0 0
\(552\) 0 0
\(553\) 1.90211 1.90211
\(554\) 0.726543 0.726543
\(555\) 0 0
\(556\) 0 0
\(557\) 1.61803 1.61803 0.809017 0.587785i \(-0.200000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) −1.00000 −1.00000
\(568\) 0 0
\(569\) 1.17557 1.17557 0.587785 0.809017i \(-0.300000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(570\) 0 0
\(571\) 0.618034 0.618034 0.309017 0.951057i \(-0.400000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0.618034 0.618034
\(576\) 0.381966 0.381966
\(577\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(578\) 1.17557 1.17557
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) −1.90211 −1.90211
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0.236068 0.236068
\(597\) 0 0
\(598\) 0 0
\(599\) −1.90211 −1.90211 −0.951057 0.309017i \(-0.900000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(600\) 0 0
\(601\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(602\) 1.90211 1.90211
\(603\) −1.17557 −1.17557
\(604\) −0.449028 −0.449028
\(605\) 0 0
\(606\) 0 0
\(607\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) −2.00000 −2.00000 −1.00000 \(\pi\)
−1.00000 \(\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 1.17557 1.17557
\(617\) 0.618034 0.618034 0.309017 0.951057i \(-0.400000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(618\) 0 0
\(619\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 1.00000 1.00000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) −0.618034 −0.618034 −0.309017 0.951057i \(-0.600000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(632\) 1.38197 1.38197
\(633\) 0 0
\(634\) 1.38197 1.38197
\(635\) 0 0
\(636\) 0 0
\(637\) 0 0
\(638\) 3.61803 3.61803
\(639\) 0 0
\(640\) 0 0
\(641\) 1.17557 1.17557 0.587785 0.809017i \(-0.300000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(642\) 0 0
\(643\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(644\) −0.236068 −0.236068
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(648\) −0.726543 −0.726543
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) −0.236068 −0.236068
\(653\) −0.618034 −0.618034 −0.309017 0.951057i \(-0.600000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −1.17557 −1.17557 −0.587785 0.809017i \(-0.700000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(660\) 0 0
\(661\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(662\) 1.38197 1.38197
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 1.17557 1.17557
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 1.90211 1.90211 0.951057 0.309017i \(-0.100000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(674\) 1.38197 1.38197
\(675\) 0 0
\(676\) 0.381966 0.381966
\(677\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −1.17557 −1.17557 −0.587785 0.809017i \(-0.700000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) −1.17557 −1.17557
\(687\) 0 0
\(688\) 2.00000 2.00000
\(689\) 0 0
\(690\) 0 0
\(691\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(692\) 0 0
\(693\) −1.61803 −1.61803
\(694\) −0.726543 −0.726543
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) −0.381966 −0.381966
\(701\) 1.61803 1.61803 0.809017 0.587785i \(-0.200000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0.618034 0.618034
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) −1.61803 −1.61803 −0.809017 0.587785i \(-0.800000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(710\) 0 0
\(711\) −1.90211 −1.90211
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) −1.90211 −1.90211
\(719\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 1.90211 1.90211
\(726\) 0 0
\(727\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(728\) 0 0
\(729\) 1.00000 1.00000
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) −0.449028 −0.449028
\(737\) −1.90211 −1.90211
\(738\) 0 0
\(739\) 0.618034 0.618034 0.309017 0.951057i \(-0.400000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 1.38197 1.38197
\(743\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) −2.23607 −2.23607
\(747\) 0 0
\(748\) 0 0
\(749\) −1.90211 −1.90211
\(750\) 0 0
\(751\) 1.17557 1.17557 0.587785 0.809017i \(-0.300000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 0.618034 0.618034 0.309017 0.951057i \(-0.400000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(758\) 2.23607 2.23607
\(759\) 0 0
\(760\) 0 0
\(761\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(762\) 0 0
\(763\) 1.90211 1.90211
\(764\) −0.236068 −0.236068
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −0.449028 −0.449028
\(773\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(774\) −1.90211 −1.90211
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) −2.35114 −2.35114
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) −1.23607 −1.23607
\(785\) 0 0
\(786\) 0 0
\(787\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(788\) −0.236068 −0.236068
\(789\) 0 0
\(790\) 0 0
\(791\) 1.90211 1.90211
\(792\) −1.17557 −1.17557
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) −0.726543 −0.726543
\(801\) 0 0
\(802\) 2.23607 2.23607
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −2.00000 −2.00000 −1.00000 \(\pi\)
−1.00000 \(\pi\)
\(810\) 0 0
\(811\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(812\) −0.726543 −0.726543
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −0.618034 −0.618034 −0.309017 0.951057i \(-0.600000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(822\) 0 0
\(823\) −1.61803 −1.61803 −0.809017 0.587785i \(-0.800000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −1.90211 −1.90211 −0.951057 0.309017i \(-0.900000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(828\) 0.236068 0.236068
\(829\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(840\) 0 0
\(841\) 2.61803 2.61803
\(842\) 1.38197 1.38197
\(843\) 0 0
\(844\) −0.726543 −0.726543
\(845\) 0 0
\(846\) 0 0
\(847\) −1.61803 −1.61803
\(848\) 1.45309 1.45309
\(849\) 0 0
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) −1.38197 −1.38197
\(857\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(858\) 0 0
\(859\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) −1.38197 −1.38197
\(863\) 1.90211 1.90211 0.951057 0.309017i \(-0.100000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −3.07768 −3.07768
\(870\) 0 0
\(871\) 0 0
\(872\) 1.38197 1.38197
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 1.17557 1.17557 0.587785 0.809017i \(-0.300000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(882\) 1.17557 1.17557
\(883\) 0.618034 0.618034 0.309017 0.951057i \(-0.400000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0.726543 0.726543
\(887\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(888\) 0 0
\(889\) −1.90211 −1.90211
\(890\) 0 0
\(891\) 1.61803 1.61803
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) −1.17557 −1.17557
\(897\) 0 0
\(898\) −1.38197 −1.38197
\(899\) 0 0
\(900\) 0.381966 0.381966
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) 1.38197 1.38197
\(905\) 0 0
\(906\) 0 0
\(907\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 1.17557 1.17557 0.587785 0.809017i \(-0.300000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 1.90211 1.90211
\(915\) 0 0
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 1.61803 1.61803 0.809017 0.587785i \(-0.200000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 0 0
\(926\) −1.90211 −1.90211
\(927\) 0 0
\(928\) −1.38197 −1.38197
\(929\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0.618034 0.618034
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(938\) 1.38197 1.38197
\(939\) 0 0
\(940\) 0 0
\(941\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) −3.07768 −3.07768
\(947\) −1.61803 −1.61803 −0.809017 0.587785i \(-0.800000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −1.17557 −1.17557 −0.587785 0.809017i \(-0.700000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(954\) −1.38197 −1.38197
\(955\) 0 0
\(956\) −0.618034 −0.618034
\(957\) 0 0
\(958\) 0 0
\(959\) 1.61803 1.61803
\(960\) 0 0
\(961\) 1.00000 1.00000
\(962\) 0 0
\(963\) 1.90211 1.90211
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 1.61803 1.61803 0.809017 0.587785i \(-0.200000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(968\) −1.17557 −1.17557
\(969\) 0 0
\(970\) 0 0
\(971\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 1.38197 1.38197
\(975\) 0 0
\(976\) 0 0
\(977\) 1.90211 1.90211 0.951057 0.309017i \(-0.100000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) −1.90211 −1.90211
\(982\) −0.726543 −0.726543
\(983\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −1.00000 −1.00000
\(990\) 0 0
\(991\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(998\) 0.726543 0.726543
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2527.1.d.f.1084.3 yes 4
7.6 odd 2 CM 2527.1.d.f.1084.3 yes 4
19.2 odd 18 2527.1.y.f.1182.3 24
19.3 odd 18 2527.1.y.f.1833.2 24
19.4 even 9 2527.1.y.f.776.3 24
19.5 even 9 2527.1.y.f.2400.3 24
19.6 even 9 2527.1.y.f.2050.3 24
19.7 even 3 2527.1.m.e.790.2 8
19.8 odd 6 2527.1.m.e.1014.3 8
19.9 even 9 2527.1.y.f.62.2 24
19.10 odd 18 2527.1.y.f.62.3 24
19.11 even 3 2527.1.m.e.1014.2 8
19.12 odd 6 2527.1.m.e.790.3 8
19.13 odd 18 2527.1.y.f.2050.2 24
19.14 odd 18 2527.1.y.f.2400.2 24
19.15 odd 18 2527.1.y.f.776.2 24
19.16 even 9 2527.1.y.f.1833.3 24
19.17 even 9 2527.1.y.f.1182.2 24
19.18 odd 2 inner 2527.1.d.f.1084.2 4
133.6 odd 18 2527.1.y.f.2050.3 24
133.13 even 18 2527.1.y.f.2050.2 24
133.27 even 6 2527.1.m.e.1014.3 8
133.34 even 18 2527.1.y.f.776.2 24
133.41 even 18 2527.1.y.f.1833.2 24
133.48 even 18 2527.1.y.f.62.3 24
133.55 odd 18 2527.1.y.f.1182.2 24
133.62 odd 18 2527.1.y.f.2400.3 24
133.69 even 6 2527.1.m.e.790.3 8
133.83 odd 6 2527.1.m.e.790.2 8
133.90 even 18 2527.1.y.f.2400.2 24
133.97 even 18 2527.1.y.f.1182.3 24
133.104 odd 18 2527.1.y.f.62.2 24
133.111 odd 18 2527.1.y.f.1833.3 24
133.118 odd 18 2527.1.y.f.776.3 24
133.125 odd 6 2527.1.m.e.1014.2 8
133.132 even 2 inner 2527.1.d.f.1084.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2527.1.d.f.1084.2 4 19.18 odd 2 inner
2527.1.d.f.1084.2 4 133.132 even 2 inner
2527.1.d.f.1084.3 yes 4 1.1 even 1 trivial
2527.1.d.f.1084.3 yes 4 7.6 odd 2 CM
2527.1.m.e.790.2 8 19.7 even 3
2527.1.m.e.790.2 8 133.83 odd 6
2527.1.m.e.790.3 8 19.12 odd 6
2527.1.m.e.790.3 8 133.69 even 6
2527.1.m.e.1014.2 8 19.11 even 3
2527.1.m.e.1014.2 8 133.125 odd 6
2527.1.m.e.1014.3 8 19.8 odd 6
2527.1.m.e.1014.3 8 133.27 even 6
2527.1.y.f.62.2 24 19.9 even 9
2527.1.y.f.62.2 24 133.104 odd 18
2527.1.y.f.62.3 24 19.10 odd 18
2527.1.y.f.62.3 24 133.48 even 18
2527.1.y.f.776.2 24 19.15 odd 18
2527.1.y.f.776.2 24 133.34 even 18
2527.1.y.f.776.3 24 19.4 even 9
2527.1.y.f.776.3 24 133.118 odd 18
2527.1.y.f.1182.2 24 19.17 even 9
2527.1.y.f.1182.2 24 133.55 odd 18
2527.1.y.f.1182.3 24 19.2 odd 18
2527.1.y.f.1182.3 24 133.97 even 18
2527.1.y.f.1833.2 24 19.3 odd 18
2527.1.y.f.1833.2 24 133.41 even 18
2527.1.y.f.1833.3 24 19.16 even 9
2527.1.y.f.1833.3 24 133.111 odd 18
2527.1.y.f.2050.2 24 19.13 odd 18
2527.1.y.f.2050.2 24 133.13 even 18
2527.1.y.f.2050.3 24 19.6 even 9
2527.1.y.f.2050.3 24 133.6 odd 18
2527.1.y.f.2400.2 24 19.14 odd 18
2527.1.y.f.2400.2 24 133.90 even 18
2527.1.y.f.2400.3 24 19.5 even 9
2527.1.y.f.2400.3 24 133.62 odd 18