Properties

Label 2527.1.y.d.1833.1
Level $2527$
Weight $1$
Character 2527.1833
Analytic conductor $1.261$
Analytic rank $0$
Dimension $12$
Projective image $A_{4}$
CM/RM no
Inner twists $12$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2527,1,Mod(62,2527)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2527, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([9, 16]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2527.62");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2527 = 7 \cdot 19^{2} \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 2527.y (of order \(18\), degree \(6\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.26113728692\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(2\) over \(\Q(\zeta_{18})\)
Coefficient field: \(\Q(\zeta_{36})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - x^{6} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 133)
Projective image: \(A_{4}\)
Projective field: Galois closure of 4.0.17689.1

Embedding invariants

Embedding label 1833.1
Root \(0.642788 + 0.766044i\) of defining polynomial
Character \(\chi\) \(=\) 2527.1833
Dual form 2527.1.y.d.2050.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.173648 - 0.984808i) q^{2} +(-0.642788 - 0.766044i) q^{3} +(-0.342020 + 0.939693i) q^{5} +(-0.642788 + 0.766044i) q^{6} +(-0.866025 - 0.500000i) q^{7} +(-0.500000 - 0.866025i) q^{8} +O(q^{10})\) \(q+(-0.173648 - 0.984808i) q^{2} +(-0.642788 - 0.766044i) q^{3} +(-0.342020 + 0.939693i) q^{5} +(-0.642788 + 0.766044i) q^{6} +(-0.866025 - 0.500000i) q^{7} +(-0.500000 - 0.866025i) q^{8} +(0.984808 + 0.173648i) q^{10} +(0.642788 - 0.766044i) q^{13} +(-0.342020 + 0.939693i) q^{14} +(0.939693 - 0.342020i) q^{15} +(-0.766044 + 0.642788i) q^{16} +(-0.984808 + 0.173648i) q^{17} +(0.173648 + 0.984808i) q^{21} +(-0.939693 + 0.342020i) q^{23} +(-0.342020 + 0.939693i) q^{24} +(-0.866025 - 0.500000i) q^{26} +(-0.866025 + 0.500000i) q^{27} +(0.173648 - 0.984808i) q^{29} +(-0.500000 - 0.866025i) q^{30} +(0.342020 + 0.939693i) q^{34} +(0.766044 - 0.642788i) q^{35} -1.00000 q^{39} +(0.984808 - 0.173648i) q^{40} +(-0.642788 - 0.766044i) q^{41} +(0.939693 - 0.342020i) q^{42} +(-0.939693 - 0.342020i) q^{43} +(0.500000 + 0.866025i) q^{46} +(0.984808 + 0.173648i) q^{47} +(0.984808 + 0.173648i) q^{48} +(0.500000 + 0.866025i) q^{49} +(0.766044 + 0.642788i) q^{51} +(-0.939693 + 0.342020i) q^{53} +(0.642788 + 0.766044i) q^{54} +1.00000i q^{56} -1.00000 q^{58} +(-0.984808 + 0.173648i) q^{59} +(0.342020 + 0.939693i) q^{61} +(-0.500000 + 0.866025i) q^{64} +(0.500000 + 0.866025i) q^{65} +(-0.173648 + 0.984808i) q^{67} +(0.866025 + 0.500000i) q^{69} +(-0.766044 - 0.642788i) q^{70} +(-0.939693 - 0.342020i) q^{71} +(-0.642788 - 0.766044i) q^{73} +(0.173648 + 0.984808i) q^{78} +(-0.766044 + 0.642788i) q^{79} +(-0.342020 - 0.939693i) q^{80} +(0.939693 + 0.342020i) q^{81} +(-0.642788 + 0.766044i) q^{82} +(0.173648 - 0.984808i) q^{85} +(-0.173648 + 0.984808i) q^{86} +(-0.866025 + 0.500000i) q^{87} +(-0.642788 + 0.766044i) q^{89} +(-0.939693 + 0.342020i) q^{91} -1.00000i q^{94} +(0.984808 - 0.173648i) q^{97} +(0.766044 - 0.642788i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 6 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 12 q - 6 q^{8} - 6 q^{30} - 12 q^{39} + 6 q^{46} + 6 q^{49} - 12 q^{58} - 6 q^{64} + 6 q^{65}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2527\mathbb{Z}\right)^\times\).

\(n\) \(1445\) \(1807\)
\(\chi(n)\) \(-1\) \(e\left(\frac{4}{9}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.173648 0.984808i −0.173648 0.984808i −0.939693 0.342020i \(-0.888889\pi\)
0.766044 0.642788i \(-0.222222\pi\)
\(3\) −0.642788 0.766044i −0.642788 0.766044i 0.342020 0.939693i \(-0.388889\pi\)
−0.984808 + 0.173648i \(0.944444\pi\)
\(4\) 0 0
\(5\) −0.342020 + 0.939693i −0.342020 + 0.939693i 0.642788 + 0.766044i \(0.277778\pi\)
−0.984808 + 0.173648i \(0.944444\pi\)
\(6\) −0.642788 + 0.766044i −0.642788 + 0.766044i
\(7\) −0.866025 0.500000i −0.866025 0.500000i
\(8\) −0.500000 0.866025i −0.500000 0.866025i
\(9\) 0 0
\(10\) 0.984808 + 0.173648i 0.984808 + 0.173648i
\(11\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(12\) 0 0
\(13\) 0.642788 0.766044i 0.642788 0.766044i −0.342020 0.939693i \(-0.611111\pi\)
0.984808 + 0.173648i \(0.0555556\pi\)
\(14\) −0.342020 + 0.939693i −0.342020 + 0.939693i
\(15\) 0.939693 0.342020i 0.939693 0.342020i
\(16\) −0.766044 + 0.642788i −0.766044 + 0.642788i
\(17\) −0.984808 + 0.173648i −0.984808 + 0.173648i −0.642788 0.766044i \(-0.722222\pi\)
−0.342020 + 0.939693i \(0.611111\pi\)
\(18\) 0 0
\(19\) 0 0
\(20\) 0 0
\(21\) 0.173648 + 0.984808i 0.173648 + 0.984808i
\(22\) 0 0
\(23\) −0.939693 + 0.342020i −0.939693 + 0.342020i −0.766044 0.642788i \(-0.777778\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(24\) −0.342020 + 0.939693i −0.342020 + 0.939693i
\(25\) 0 0
\(26\) −0.866025 0.500000i −0.866025 0.500000i
\(27\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(28\) 0 0
\(29\) 0.173648 0.984808i 0.173648 0.984808i −0.766044 0.642788i \(-0.777778\pi\)
0.939693 0.342020i \(-0.111111\pi\)
\(30\) −0.500000 0.866025i −0.500000 0.866025i
\(31\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0.342020 + 0.939693i 0.342020 + 0.939693i
\(35\) 0.766044 0.642788i 0.766044 0.642788i
\(36\) 0 0
\(37\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(38\) 0 0
\(39\) −1.00000 −1.00000
\(40\) 0.984808 0.173648i 0.984808 0.173648i
\(41\) −0.642788 0.766044i −0.642788 0.766044i 0.342020 0.939693i \(-0.388889\pi\)
−0.984808 + 0.173648i \(0.944444\pi\)
\(42\) 0.939693 0.342020i 0.939693 0.342020i
\(43\) −0.939693 0.342020i −0.939693 0.342020i −0.173648 0.984808i \(-0.555556\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(47\) 0.984808 + 0.173648i 0.984808 + 0.173648i 0.642788 0.766044i \(-0.277778\pi\)
0.342020 + 0.939693i \(0.388889\pi\)
\(48\) 0.984808 + 0.173648i 0.984808 + 0.173648i
\(49\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(50\) 0 0
\(51\) 0.766044 + 0.642788i 0.766044 + 0.642788i
\(52\) 0 0
\(53\) −0.939693 + 0.342020i −0.939693 + 0.342020i −0.766044 0.642788i \(-0.777778\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(54\) 0.642788 + 0.766044i 0.642788 + 0.766044i
\(55\) 0 0
\(56\) 1.00000i 1.00000i
\(57\) 0 0
\(58\) −1.00000 −1.00000
\(59\) −0.984808 + 0.173648i −0.984808 + 0.173648i −0.642788 0.766044i \(-0.722222\pi\)
−0.342020 + 0.939693i \(0.611111\pi\)
\(60\) 0 0
\(61\) 0.342020 + 0.939693i 0.342020 + 0.939693i 0.984808 + 0.173648i \(0.0555556\pi\)
−0.642788 + 0.766044i \(0.722222\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(65\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(66\) 0 0
\(67\) −0.173648 + 0.984808i −0.173648 + 0.984808i 0.766044 + 0.642788i \(0.222222\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(68\) 0 0
\(69\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(70\) −0.766044 0.642788i −0.766044 0.642788i
\(71\) −0.939693 0.342020i −0.939693 0.342020i −0.173648 0.984808i \(-0.555556\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(72\) 0 0
\(73\) −0.642788 0.766044i −0.642788 0.766044i 0.342020 0.939693i \(-0.388889\pi\)
−0.984808 + 0.173648i \(0.944444\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 0 0
\(78\) 0.173648 + 0.984808i 0.173648 + 0.984808i
\(79\) −0.766044 + 0.642788i −0.766044 + 0.642788i −0.939693 0.342020i \(-0.888889\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(80\) −0.342020 0.939693i −0.342020 0.939693i
\(81\) 0.939693 + 0.342020i 0.939693 + 0.342020i
\(82\) −0.642788 + 0.766044i −0.642788 + 0.766044i
\(83\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(84\) 0 0
\(85\) 0.173648 0.984808i 0.173648 0.984808i
\(86\) −0.173648 + 0.984808i −0.173648 + 0.984808i
\(87\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(88\) 0 0
\(89\) −0.642788 + 0.766044i −0.642788 + 0.766044i −0.984808 0.173648i \(-0.944444\pi\)
0.342020 + 0.939693i \(0.388889\pi\)
\(90\) 0 0
\(91\) −0.939693 + 0.342020i −0.939693 + 0.342020i
\(92\) 0 0
\(93\) 0 0
\(94\) 1.00000i 1.00000i
\(95\) 0 0
\(96\) 0 0
\(97\) 0.984808 0.173648i 0.984808 0.173648i 0.342020 0.939693i \(-0.388889\pi\)
0.642788 + 0.766044i \(0.277778\pi\)
\(98\) 0.766044 0.642788i 0.766044 0.642788i
\(99\) 0 0
\(100\) 0 0
\(101\) 0.642788 0.766044i 0.642788 0.766044i −0.342020 0.939693i \(-0.611111\pi\)
0.984808 + 0.173648i \(0.0555556\pi\)
\(102\) 0.500000 0.866025i 0.500000 0.866025i
\(103\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(104\) −0.984808 0.173648i −0.984808 0.173648i
\(105\) −0.984808 0.173648i −0.984808 0.173648i
\(106\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(107\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(108\) 0 0
\(109\) 0.939693 + 0.342020i 0.939693 + 0.342020i 0.766044 0.642788i \(-0.222222\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0.984808 0.173648i 0.984808 0.173648i
\(113\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(114\) 0 0
\(115\) 1.00000i 1.00000i
\(116\) 0 0
\(117\) 0 0
\(118\) 0.342020 + 0.939693i 0.342020 + 0.939693i
\(119\) 0.939693 + 0.342020i 0.939693 + 0.342020i
\(120\) −0.766044 0.642788i −0.766044 0.642788i
\(121\) 0.500000 0.866025i 0.500000 0.866025i
\(122\) 0.866025 0.500000i 0.866025 0.500000i
\(123\) −0.173648 + 0.984808i −0.173648 + 0.984808i
\(124\) 0 0
\(125\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(126\) 0 0
\(127\) −0.766044 0.642788i −0.766044 0.642788i 0.173648 0.984808i \(-0.444444\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(128\) 0.939693 + 0.342020i 0.939693 + 0.342020i
\(129\) 0.342020 + 0.939693i 0.342020 + 0.939693i
\(130\) 0.766044 0.642788i 0.766044 0.642788i
\(131\) 0.984808 0.173648i 0.984808 0.173648i 0.342020 0.939693i \(-0.388889\pi\)
0.642788 + 0.766044i \(0.277778\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 1.00000 1.00000
\(135\) −0.173648 0.984808i −0.173648 0.984808i
\(136\) 0.642788 + 0.766044i 0.642788 + 0.766044i
\(137\) 0.939693 0.342020i 0.939693 0.342020i 0.173648 0.984808i \(-0.444444\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(138\) 0.342020 0.939693i 0.342020 0.939693i
\(139\) 0.642788 0.766044i 0.642788 0.766044i −0.342020 0.939693i \(-0.611111\pi\)
0.984808 + 0.173648i \(0.0555556\pi\)
\(140\) 0 0
\(141\) −0.500000 0.866025i −0.500000 0.866025i
\(142\) −0.173648 + 0.984808i −0.173648 + 0.984808i
\(143\) 0 0
\(144\) 0 0
\(145\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(146\) −0.642788 + 0.766044i −0.642788 + 0.766044i
\(147\) 0.342020 0.939693i 0.342020 0.939693i
\(148\) 0 0
\(149\) −0.766044 + 0.642788i −0.766044 + 0.642788i −0.939693 0.342020i \(-0.888889\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(150\) 0 0
\(151\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 0.342020 0.939693i 0.342020 0.939693i −0.642788 0.766044i \(-0.722222\pi\)
0.984808 0.173648i \(-0.0555556\pi\)
\(158\) 0.766044 + 0.642788i 0.766044 + 0.642788i
\(159\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(160\) 0 0
\(161\) 0.984808 + 0.173648i 0.984808 + 0.173648i
\(162\) 0.173648 0.984808i 0.173648 0.984808i
\(163\) −1.00000 1.73205i −1.00000 1.73205i −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 0.866025i \(-0.666667\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −0.342020 0.939693i −0.342020 0.939693i −0.984808 0.173648i \(-0.944444\pi\)
0.642788 0.766044i \(-0.277778\pi\)
\(168\) 0.766044 0.642788i 0.766044 0.642788i
\(169\) 0 0
\(170\) −1.00000 −1.00000
\(171\) 0 0
\(172\) 0 0
\(173\) −0.984808 + 0.173648i −0.984808 + 0.173648i −0.642788 0.766044i \(-0.722222\pi\)
−0.342020 + 0.939693i \(0.611111\pi\)
\(174\) 0.642788 + 0.766044i 0.642788 + 0.766044i
\(175\) 0 0
\(176\) 0 0
\(177\) 0.766044 + 0.642788i 0.766044 + 0.642788i
\(178\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(179\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(180\) 0 0
\(181\) −0.984808 0.173648i −0.984808 0.173648i −0.342020 0.939693i \(-0.611111\pi\)
−0.642788 + 0.766044i \(0.722222\pi\)
\(182\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(183\) 0.500000 0.866025i 0.500000 0.866025i
\(184\) 0.766044 + 0.642788i 0.766044 + 0.642788i
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 1.00000 1.00000
\(190\) 0 0
\(191\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(192\) 0.984808 0.173648i 0.984808 0.173648i
\(193\) 0.766044 0.642788i 0.766044 0.642788i −0.173648 0.984808i \(-0.555556\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(194\) −0.342020 0.939693i −0.342020 0.939693i
\(195\) 0.342020 0.939693i 0.342020 0.939693i
\(196\) 0 0
\(197\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(198\) 0 0
\(199\) −0.984808 0.173648i −0.984808 0.173648i −0.342020 0.939693i \(-0.611111\pi\)
−0.642788 + 0.766044i \(0.722222\pi\)
\(200\) 0 0
\(201\) 0.866025 0.500000i 0.866025 0.500000i
\(202\) −0.866025 0.500000i −0.866025 0.500000i
\(203\) −0.642788 + 0.766044i −0.642788 + 0.766044i
\(204\) 0 0
\(205\) 0.939693 0.342020i 0.939693 0.342020i
\(206\) 0 0
\(207\) 0 0
\(208\) 1.00000i 1.00000i
\(209\) 0 0
\(210\) 1.00000i 1.00000i
\(211\) −0.173648 0.984808i −0.173648 0.984808i −0.939693 0.342020i \(-0.888889\pi\)
0.766044 0.642788i \(-0.222222\pi\)
\(212\) 0 0
\(213\) 0.342020 + 0.939693i 0.342020 + 0.939693i
\(214\) 0 0
\(215\) 0.642788 0.766044i 0.642788 0.766044i
\(216\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(217\) 0 0
\(218\) 0.173648 0.984808i 0.173648 0.984808i
\(219\) −0.173648 + 0.984808i −0.173648 + 0.984808i
\(220\) 0 0
\(221\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(222\) 0 0
\(223\) 0.342020 0.939693i 0.342020 0.939693i −0.642788 0.766044i \(-0.722222\pi\)
0.984808 0.173648i \(-0.0555556\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(228\) 0 0
\(229\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(230\) −0.984808 + 0.173648i −0.984808 + 0.173648i
\(231\) 0 0
\(232\) −0.939693 + 0.342020i −0.939693 + 0.342020i
\(233\) −0.939693 0.342020i −0.939693 0.342020i −0.173648 0.984808i \(-0.555556\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(234\) 0 0
\(235\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(236\) 0 0
\(237\) 0.984808 + 0.173648i 0.984808 + 0.173648i
\(238\) 0.173648 0.984808i 0.173648 0.984808i
\(239\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(240\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(241\) 0.642788 0.766044i 0.642788 0.766044i −0.342020 0.939693i \(-0.611111\pi\)
0.984808 + 0.173648i \(0.0555556\pi\)
\(242\) −0.939693 0.342020i −0.939693 0.342020i
\(243\) 0 0
\(244\) 0 0
\(245\) −0.984808 + 0.173648i −0.984808 + 0.173648i
\(246\) 1.00000 1.00000
\(247\) 0 0
\(248\) 0 0
\(249\) 0 0
\(250\) 0.642788 + 0.766044i 0.642788 + 0.766044i
\(251\) −0.342020 0.939693i −0.342020 0.939693i −0.984808 0.173648i \(-0.944444\pi\)
0.642788 0.766044i \(-0.277778\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(255\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(256\) 0 0
\(257\) −0.984808 0.173648i −0.984808 0.173648i −0.342020 0.939693i \(-0.611111\pi\)
−0.642788 + 0.766044i \(0.722222\pi\)
\(258\) 0.866025 0.500000i 0.866025 0.500000i
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) −0.342020 0.939693i −0.342020 0.939693i
\(263\) −0.766044 + 0.642788i −0.766044 + 0.642788i −0.939693 0.342020i \(-0.888889\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(264\) 0 0
\(265\) 1.00000i 1.00000i
\(266\) 0 0
\(267\) 1.00000 1.00000
\(268\) 0 0
\(269\) 0.642788 + 0.766044i 0.642788 + 0.766044i 0.984808 0.173648i \(-0.0555556\pi\)
−0.342020 + 0.939693i \(0.611111\pi\)
\(270\) −0.939693 + 0.342020i −0.939693 + 0.342020i
\(271\) 0.342020 0.939693i 0.342020 0.939693i −0.642788 0.766044i \(-0.722222\pi\)
0.984808 0.173648i \(-0.0555556\pi\)
\(272\) 0.642788 0.766044i 0.642788 0.766044i
\(273\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(274\) −0.500000 0.866025i −0.500000 0.866025i
\(275\) 0 0
\(276\) 0 0
\(277\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(278\) −0.866025 0.500000i −0.866025 0.500000i
\(279\) 0 0
\(280\) −0.939693 0.342020i −0.939693 0.342020i
\(281\) 0.939693 0.342020i 0.939693 0.342020i 0.173648 0.984808i \(-0.444444\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(282\) −0.766044 + 0.642788i −0.766044 + 0.642788i
\(283\) 0.984808 0.173648i 0.984808 0.173648i 0.342020 0.939693i \(-0.388889\pi\)
0.642788 + 0.766044i \(0.277778\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0.173648 + 0.984808i 0.173648 + 0.984808i
\(288\) 0 0
\(289\) 0 0
\(290\) 0.342020 0.939693i 0.342020 0.939693i
\(291\) −0.766044 0.642788i −0.766044 0.642788i
\(292\) 0 0
\(293\) 1.73205 1.00000i 1.73205 1.00000i 0.866025 0.500000i \(-0.166667\pi\)
0.866025 0.500000i \(-0.166667\pi\)
\(294\) −0.984808 0.173648i −0.984808 0.173648i
\(295\) 0.173648 0.984808i 0.173648 0.984808i
\(296\) 0 0
\(297\) 0 0
\(298\) 0.766044 + 0.642788i 0.766044 + 0.642788i
\(299\) −0.342020 + 0.939693i −0.342020 + 0.939693i
\(300\) 0 0
\(301\) 0.642788 + 0.766044i 0.642788 + 0.766044i
\(302\) 0 0
\(303\) −1.00000 −1.00000
\(304\) 0 0
\(305\) −1.00000 −1.00000
\(306\) 0 0
\(307\) 0.642788 + 0.766044i 0.642788 + 0.766044i 0.984808 0.173648i \(-0.0555556\pi\)
−0.342020 + 0.939693i \(0.611111\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(312\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(313\) −0.984808 0.173648i −0.984808 0.173648i −0.342020 0.939693i \(-0.611111\pi\)
−0.642788 + 0.766044i \(0.722222\pi\)
\(314\) −0.984808 0.173648i −0.984808 0.173648i
\(315\) 0 0
\(316\) 0 0
\(317\) 0.766044 + 0.642788i 0.766044 + 0.642788i 0.939693 0.342020i \(-0.111111\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(318\) 0.342020 0.939693i 0.342020 0.939693i
\(319\) 0 0
\(320\) −0.642788 0.766044i −0.642788 0.766044i
\(321\) 0 0
\(322\) 1.00000i 1.00000i
\(323\) 0 0
\(324\) 0 0
\(325\) 0 0
\(326\) −1.53209 + 1.28558i −1.53209 + 1.28558i
\(327\) −0.342020 0.939693i −0.342020 0.939693i
\(328\) −0.342020 + 0.939693i −0.342020 + 0.939693i
\(329\) −0.766044 0.642788i −0.766044 0.642788i
\(330\) 0 0
\(331\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(335\) −0.866025 0.500000i −0.866025 0.500000i
\(336\) −0.766044 0.642788i −0.766044 0.642788i
\(337\) −0.939693 0.342020i −0.939693 0.342020i −0.173648 0.984808i \(-0.555556\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 1.00000i 1.00000i
\(344\) 0.173648 + 0.984808i 0.173648 + 0.984808i
\(345\) −0.766044 + 0.642788i −0.766044 + 0.642788i
\(346\) 0.342020 + 0.939693i 0.342020 + 0.939693i
\(347\) −0.939693 0.342020i −0.939693 0.342020i −0.173648 0.984808i \(-0.555556\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(348\) 0 0
\(349\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(350\) 0 0
\(351\) −0.173648 + 0.984808i −0.173648 + 0.984808i
\(352\) 0 0
\(353\) 1.73205 1.00000i 1.73205 1.00000i 0.866025 0.500000i \(-0.166667\pi\)
0.866025 0.500000i \(-0.166667\pi\)
\(354\) 0.500000 0.866025i 0.500000 0.866025i
\(355\) 0.642788 0.766044i 0.642788 0.766044i
\(356\) 0 0
\(357\) −0.342020 0.939693i −0.342020 0.939693i
\(358\) 0 0
\(359\) 0.173648 + 0.984808i 0.173648 + 0.984808i 0.939693 + 0.342020i \(0.111111\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(360\) 0 0
\(361\) 0 0
\(362\) 1.00000i 1.00000i
\(363\) −0.984808 + 0.173648i −0.984808 + 0.173648i
\(364\) 0 0
\(365\) 0.939693 0.342020i 0.939693 0.342020i
\(366\) −0.939693 0.342020i −0.939693 0.342020i
\(367\) −0.642788 + 0.766044i −0.642788 + 0.766044i −0.984808 0.173648i \(-0.944444\pi\)
0.342020 + 0.939693i \(0.388889\pi\)
\(368\) 0.500000 0.866025i 0.500000 0.866025i
\(369\) 0 0
\(370\) 0 0
\(371\) 0.984808 + 0.173648i 0.984808 + 0.173648i
\(372\) 0 0
\(373\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(374\) 0 0
\(375\) 0.939693 + 0.342020i 0.939693 + 0.342020i
\(376\) −0.342020 0.939693i −0.342020 0.939693i
\(377\) −0.642788 0.766044i −0.642788 0.766044i
\(378\) −0.173648 0.984808i −0.173648 0.984808i
\(379\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(380\) 0 0
\(381\) 1.00000i 1.00000i
\(382\) 0 0
\(383\) −0.642788 0.766044i −0.642788 0.766044i 0.342020 0.939693i \(-0.388889\pi\)
−0.984808 + 0.173648i \(0.944444\pi\)
\(384\) −0.342020 0.939693i −0.342020 0.939693i
\(385\) 0 0
\(386\) −0.766044 0.642788i −0.766044 0.642788i
\(387\) 0 0
\(388\) 0 0
\(389\) 0.173648 0.984808i 0.173648 0.984808i −0.766044 0.642788i \(-0.777778\pi\)
0.939693 0.342020i \(-0.111111\pi\)
\(390\) −0.984808 0.173648i −0.984808 0.173648i
\(391\) 0.866025 0.500000i 0.866025 0.500000i
\(392\) 0.500000 0.866025i 0.500000 0.866025i
\(393\) −0.766044 0.642788i −0.766044 0.642788i
\(394\) 0 0
\(395\) −0.342020 0.939693i −0.342020 0.939693i
\(396\) 0 0
\(397\) −0.984808 + 0.173648i −0.984808 + 0.173648i −0.642788 0.766044i \(-0.722222\pi\)
−0.342020 + 0.939693i \(0.611111\pi\)
\(398\) 1.00000i 1.00000i
\(399\) 0 0
\(400\) 0 0
\(401\) −0.173648 0.984808i −0.173648 0.984808i −0.939693 0.342020i \(-0.888889\pi\)
0.766044 0.642788i \(-0.222222\pi\)
\(402\) −0.642788 0.766044i −0.642788 0.766044i
\(403\) 0 0
\(404\) 0 0
\(405\) −0.642788 + 0.766044i −0.642788 + 0.766044i
\(406\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(407\) 0 0
\(408\) 0.173648 0.984808i 0.173648 0.984808i
\(409\) −0.984808 0.173648i −0.984808 0.173648i −0.342020 0.939693i \(-0.611111\pi\)
−0.642788 + 0.766044i \(0.722222\pi\)
\(410\) −0.500000 0.866025i −0.500000 0.866025i
\(411\) −0.866025 0.500000i −0.866025 0.500000i
\(412\) 0 0
\(413\) 0.939693 + 0.342020i 0.939693 + 0.342020i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) −1.00000 −1.00000
\(418\) 0 0
\(419\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(420\) 0 0
\(421\) 0.766044 0.642788i 0.766044 0.642788i −0.173648 0.984808i \(-0.555556\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(422\) −0.939693 + 0.342020i −0.939693 + 0.342020i
\(423\) 0 0
\(424\) 0.766044 + 0.642788i 0.766044 + 0.642788i
\(425\) 0 0
\(426\) 0.866025 0.500000i 0.866025 0.500000i
\(427\) 0.173648 0.984808i 0.173648 0.984808i
\(428\) 0 0
\(429\) 0 0
\(430\) −0.866025 0.500000i −0.866025 0.500000i
\(431\) −0.766044 0.642788i −0.766044 0.642788i 0.173648 0.984808i \(-0.444444\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(432\) 0.342020 0.939693i 0.342020 0.939693i
\(433\) −0.342020 0.939693i −0.342020 0.939693i −0.984808 0.173648i \(-0.944444\pi\)
0.642788 0.766044i \(-0.277778\pi\)
\(434\) 0 0
\(435\) −0.173648 0.984808i −0.173648 0.984808i
\(436\) 0 0
\(437\) 0 0
\(438\) 1.00000 1.00000
\(439\) −0.984808 + 0.173648i −0.984808 + 0.173648i −0.642788 0.766044i \(-0.722222\pi\)
−0.342020 + 0.939693i \(0.611111\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0.939693 + 0.342020i 0.939693 + 0.342020i
\(443\) 0.766044 + 0.642788i 0.766044 + 0.642788i 0.939693 0.342020i \(-0.111111\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(444\) 0 0
\(445\) −0.500000 0.866025i −0.500000 0.866025i
\(446\) −0.984808 0.173648i −0.984808 0.173648i
\(447\) 0.984808 + 0.173648i 0.984808 + 0.173648i
\(448\) 0.866025 0.500000i 0.866025 0.500000i
\(449\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 1.00000i 1.00000i
\(456\) 0 0
\(457\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(458\) 0 0
\(459\) 0.766044 0.642788i 0.766044 0.642788i
\(460\) 0 0
\(461\) −0.342020 + 0.939693i −0.342020 + 0.939693i 0.642788 + 0.766044i \(0.277778\pi\)
−0.984808 + 0.173648i \(0.944444\pi\)
\(462\) 0 0
\(463\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(464\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(465\) 0 0
\(466\) −0.173648 + 0.984808i −0.173648 + 0.984808i
\(467\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(468\) 0 0
\(469\) 0.642788 0.766044i 0.642788 0.766044i
\(470\) 0.939693 + 0.342020i 0.939693 + 0.342020i
\(471\) −0.939693 + 0.342020i −0.939693 + 0.342020i
\(472\) 0.642788 + 0.766044i 0.642788 + 0.766044i
\(473\) 0 0
\(474\) 1.00000i 1.00000i
\(475\) 0 0
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −0.342020 0.939693i −0.342020 0.939693i −0.984808 0.173648i \(-0.944444\pi\)
0.642788 0.766044i \(-0.277778\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) −0.866025 0.500000i −0.866025 0.500000i
\(483\) −0.500000 0.866025i −0.500000 0.866025i
\(484\) 0 0
\(485\) −0.173648 + 0.984808i −0.173648 + 0.984808i
\(486\) 0 0
\(487\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(488\) 0.642788 0.766044i 0.642788 0.766044i
\(489\) −0.684040 + 1.87939i −0.684040 + 1.87939i
\(490\) 0.342020 + 0.939693i 0.342020 + 0.939693i
\(491\) 0.766044 0.642788i 0.766044 0.642788i −0.173648 0.984808i \(-0.555556\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(492\) 0 0
\(493\) 1.00000i 1.00000i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0.642788 + 0.766044i 0.642788 + 0.766044i
\(498\) 0 0
\(499\) 0.939693 + 0.342020i 0.939693 + 0.342020i 0.766044 0.642788i \(-0.222222\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(500\) 0 0
\(501\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(502\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(503\) 0.984808 + 0.173648i 0.984808 + 0.173648i 0.642788 0.766044i \(-0.277778\pi\)
0.342020 + 0.939693i \(0.388889\pi\)
\(504\) 0 0
\(505\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 0.342020 + 0.939693i 0.342020 + 0.939693i 0.984808 + 0.173648i \(0.0555556\pi\)
−0.642788 + 0.766044i \(0.722222\pi\)
\(510\) 0.642788 + 0.766044i 0.642788 + 0.766044i
\(511\) 0.173648 + 0.984808i 0.173648 + 0.984808i
\(512\) 1.00000 1.00000
\(513\) 0 0
\(514\) 1.00000i 1.00000i
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0.766044 + 0.642788i 0.766044 + 0.642788i
\(520\) 0.500000 0.866025i 0.500000 0.866025i
\(521\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(522\) 0 0
\(523\) 0.984808 + 0.173648i 0.984808 + 0.173648i 0.642788 0.766044i \(-0.277778\pi\)
0.342020 + 0.939693i \(0.388889\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0.766044 + 0.642788i 0.766044 + 0.642788i
\(527\) 0 0
\(528\) 0 0
\(529\) 0 0
\(530\) −0.984808 + 0.173648i −0.984808 + 0.173648i
\(531\) 0 0
\(532\) 0 0
\(533\) −1.00000 −1.00000
\(534\) −0.173648 0.984808i −0.173648 0.984808i
\(535\) 0 0
\(536\) 0.939693 0.342020i 0.939693 0.342020i
\(537\) 0 0
\(538\) 0.642788 0.766044i 0.642788 0.766044i
\(539\) 0 0
\(540\) 0 0
\(541\) −0.173648 + 0.984808i −0.173648 + 0.984808i 0.766044 + 0.642788i \(0.222222\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(542\) −0.984808 0.173648i −0.984808 0.173648i
\(543\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(544\) 0 0
\(545\) −0.642788 + 0.766044i −0.642788 + 0.766044i
\(546\) 0.342020 0.939693i 0.342020 0.939693i
\(547\) −0.939693 + 0.342020i −0.939693 + 0.342020i −0.766044 0.642788i \(-0.777778\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 0 0
\(552\) 1.00000i 1.00000i
\(553\) 0.984808 0.173648i 0.984808 0.173648i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −0.766044 0.642788i −0.766044 0.642788i 0.173648 0.984808i \(-0.444444\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(558\) 0 0
\(559\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(560\) −0.173648 + 0.984808i −0.173648 + 0.984808i
\(561\) 0 0
\(562\) −0.500000 0.866025i −0.500000 0.866025i
\(563\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) −0.342020 0.939693i −0.342020 0.939693i
\(567\) −0.642788 0.766044i −0.642788 0.766044i
\(568\) 0.173648 + 0.984808i 0.173648 + 0.984808i
\(569\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(570\) 0 0
\(571\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0.939693 0.342020i 0.939693 0.342020i
\(575\) 0 0
\(576\) 0 0
\(577\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(578\) 0 0
\(579\) −0.984808 0.173648i −0.984808 0.173648i
\(580\) 0 0
\(581\) 0 0
\(582\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(583\) 0 0
\(584\) −0.342020 + 0.939693i −0.342020 + 0.939693i
\(585\) 0 0
\(586\) −1.28558 1.53209i −1.28558 1.53209i
\(587\) −0.984808 + 0.173648i −0.984808 + 0.173648i −0.642788 0.766044i \(-0.722222\pi\)
−0.342020 + 0.939693i \(0.611111\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) −1.00000 −1.00000
\(591\) 0 0
\(592\) 0 0
\(593\) 0.342020 + 0.939693i 0.342020 + 0.939693i 0.984808 + 0.173648i \(0.0555556\pi\)
−0.642788 + 0.766044i \(0.722222\pi\)
\(594\) 0 0
\(595\) −0.642788 + 0.766044i −0.642788 + 0.766044i
\(596\) 0 0
\(597\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(598\) 0.984808 + 0.173648i 0.984808 + 0.173648i
\(599\) 0.173648 0.984808i 0.173648 0.984808i −0.766044 0.642788i \(-0.777778\pi\)
0.939693 0.342020i \(-0.111111\pi\)
\(600\) 0 0
\(601\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(602\) 0.642788 0.766044i 0.642788 0.766044i
\(603\) 0 0
\(604\) 0 0
\(605\) 0.642788 + 0.766044i 0.642788 + 0.766044i
\(606\) 0.173648 + 0.984808i 0.173648 + 0.984808i
\(607\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(608\) 0 0
\(609\) 1.00000 1.00000
\(610\) 0.173648 + 0.984808i 0.173648 + 0.984808i
\(611\) 0.766044 0.642788i 0.766044 0.642788i
\(612\) 0 0
\(613\) 0.939693 + 0.342020i 0.939693 + 0.342020i 0.766044 0.642788i \(-0.222222\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(614\) 0.642788 0.766044i 0.642788 0.766044i
\(615\) −0.866025 0.500000i −0.866025 0.500000i
\(616\) 0 0
\(617\) −0.173648 + 0.984808i −0.173648 + 0.984808i 0.766044 + 0.642788i \(0.222222\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(618\) 0 0
\(619\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(620\) 0 0
\(621\) 0.642788 0.766044i 0.642788 0.766044i
\(622\) 0 0
\(623\) 0.939693 0.342020i 0.939693 0.342020i
\(624\) 0.766044 0.642788i 0.766044 0.642788i
\(625\) −0.173648 0.984808i −0.173648 0.984808i
\(626\) 1.00000i 1.00000i
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) 0.939693 0.342020i 0.939693 0.342020i 0.173648 0.984808i \(-0.444444\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(632\) 0.939693 + 0.342020i 0.939693 + 0.342020i
\(633\) −0.642788 + 0.766044i −0.642788 + 0.766044i
\(634\) 0.500000 0.866025i 0.500000 0.866025i
\(635\) 0.866025 0.500000i 0.866025 0.500000i
\(636\) 0 0
\(637\) 0.984808 + 0.173648i 0.984808 + 0.173648i
\(638\) 0 0
\(639\) 0 0
\(640\) −0.642788 + 0.766044i −0.642788 + 0.766044i
\(641\) −0.939693 0.342020i −0.939693 0.342020i −0.173648 0.984808i \(-0.555556\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(642\) 0 0
\(643\) 0.642788 + 0.766044i 0.642788 + 0.766044i 0.984808 0.173648i \(-0.0555556\pi\)
−0.342020 + 0.939693i \(0.611111\pi\)
\(644\) 0 0
\(645\) −1.00000 −1.00000
\(646\) 0 0
\(647\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(648\) −0.173648 0.984808i −0.173648 0.984808i
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(654\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(655\) −0.173648 + 0.984808i −0.173648 + 0.984808i
\(656\) 0.984808 + 0.173648i 0.984808 + 0.173648i
\(657\) 0 0
\(658\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(659\) −0.766044 0.642788i −0.766044 0.642788i 0.173648 0.984808i \(-0.444444\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(660\) 0 0
\(661\) 0.342020 + 0.939693i 0.342020 + 0.939693i 0.984808 + 0.173648i \(0.0555556\pi\)
−0.642788 + 0.766044i \(0.722222\pi\)
\(662\) 0 0
\(663\) 0.984808 0.173648i 0.984808 0.173648i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 0.173648 + 0.984808i 0.173648 + 0.984808i
\(668\) 0 0
\(669\) −0.939693 + 0.342020i −0.939693 + 0.342020i
\(670\) −0.342020 + 0.939693i −0.342020 + 0.939693i
\(671\) 0 0
\(672\) 0 0
\(673\) 1.00000 + 1.73205i 1.00000 + 1.73205i 0.500000 + 0.866025i \(0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(674\) −0.173648 + 0.984808i −0.173648 + 0.984808i
\(675\) 0 0
\(676\) 0 0
\(677\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(678\) 0 0
\(679\) −0.939693 0.342020i −0.939693 0.342020i
\(680\) −0.939693 + 0.342020i −0.939693 + 0.342020i
\(681\) 0 0
\(682\) 0 0
\(683\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(684\) 0 0
\(685\) 1.00000i 1.00000i
\(686\) −0.984808 + 0.173648i −0.984808 + 0.173648i
\(687\) 0 0
\(688\) 0.939693 0.342020i 0.939693 0.342020i
\(689\) −0.342020 + 0.939693i −0.342020 + 0.939693i
\(690\) 0.766044 + 0.642788i 0.766044 + 0.642788i
\(691\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) −0.173648 + 0.984808i −0.173648 + 0.984808i
\(695\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(696\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(697\) 0.766044 + 0.642788i 0.766044 + 0.642788i
\(698\) 0 0
\(699\) 0.342020 + 0.939693i 0.342020 + 0.939693i
\(700\) 0 0
\(701\) −0.173648 0.984808i −0.173648 0.984808i −0.939693 0.342020i \(-0.888889\pi\)
0.766044 0.642788i \(-0.222222\pi\)
\(702\) 1.00000 1.00000
\(703\) 0 0
\(704\) 0 0
\(705\) 0.984808 0.173648i 0.984808 0.173648i
\(706\) −1.28558 1.53209i −1.28558 1.53209i
\(707\) −0.939693 + 0.342020i −0.939693 + 0.342020i
\(708\) 0 0
\(709\) −0.766044 0.642788i −0.766044 0.642788i 0.173648 0.984808i \(-0.444444\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(710\) −0.866025 0.500000i −0.866025 0.500000i
\(711\) 0 0
\(712\) 0.984808 + 0.173648i 0.984808 + 0.173648i
\(713\) 0 0
\(714\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0.939693 0.342020i 0.939693 0.342020i
\(719\) 0.642788 + 0.766044i 0.642788 + 0.766044i 0.984808 0.173648i \(-0.0555556\pi\)
−0.342020 + 0.939693i \(0.611111\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) −1.00000 −1.00000
\(724\) 0 0
\(725\) 0 0
\(726\) 0.342020 + 0.939693i 0.342020 + 0.939693i
\(727\) 0.342020 0.939693i 0.342020 0.939693i −0.642788 0.766044i \(-0.722222\pi\)
0.984808 0.173648i \(-0.0555556\pi\)
\(728\) 0.766044 + 0.642788i 0.766044 + 0.642788i
\(729\) 0.500000 0.866025i 0.500000 0.866025i
\(730\) −0.500000 0.866025i −0.500000 0.866025i
\(731\) 0.984808 + 0.173648i 0.984808 + 0.173648i
\(732\) 0 0
\(733\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(734\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(735\) 0.766044 + 0.642788i 0.766044 + 0.642788i
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) −0.173648 0.984808i −0.173648 0.984808i −0.939693 0.342020i \(-0.888889\pi\)
0.766044 0.642788i \(-0.222222\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 1.00000i 1.00000i
\(743\) 0.173648 + 0.984808i 0.173648 + 0.984808i 0.939693 + 0.342020i \(0.111111\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(744\) 0 0
\(745\) −0.342020 0.939693i −0.342020 0.939693i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0.173648 0.984808i 0.173648 0.984808i
\(751\) 0.173648 0.984808i 0.173648 0.984808i −0.766044 0.642788i \(-0.777778\pi\)
0.939693 0.342020i \(-0.111111\pi\)
\(752\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(753\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(754\) −0.642788 + 0.766044i −0.642788 + 0.766044i
\(755\) 0 0
\(756\) 0 0
\(757\) 0.766044 0.642788i 0.766044 0.642788i −0.173648 0.984808i \(-0.555556\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 2.00000i 2.00000i 1.00000i \(-0.5\pi\)
1.00000i \(-0.5\pi\)
\(762\) 0.984808 0.173648i 0.984808 0.173648i
\(763\) −0.642788 0.766044i −0.642788 0.766044i
\(764\) 0 0
\(765\) 0 0
\(766\) −0.642788 + 0.766044i −0.642788 + 0.766044i
\(767\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(768\) 0 0
\(769\) −0.984808 0.173648i −0.984808 0.173648i −0.342020 0.939693i \(-0.611111\pi\)
−0.642788 + 0.766044i \(0.722222\pi\)
\(770\) 0 0
\(771\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(772\) 0 0
\(773\) −0.642788 + 0.766044i −0.642788 + 0.766044i −0.984808 0.173648i \(-0.944444\pi\)
0.342020 + 0.939693i \(0.388889\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) −0.642788 0.766044i −0.642788 0.766044i
\(777\) 0 0
\(778\) −1.00000 −1.00000
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) −0.642788 0.766044i −0.642788 0.766044i
\(783\) 0.342020 + 0.939693i 0.342020 + 0.939693i
\(784\) −0.939693 0.342020i −0.939693 0.342020i
\(785\) 0.766044 + 0.642788i 0.766044 + 0.642788i
\(786\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(787\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(788\) 0 0
\(789\) 0.984808 + 0.173648i 0.984808 + 0.173648i
\(790\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(791\) 0 0
\(792\) 0 0
\(793\) 0.939693 + 0.342020i 0.939693 + 0.342020i
\(794\) 0.342020 + 0.939693i 0.342020 + 0.939693i
\(795\) −0.766044 + 0.642788i −0.766044 + 0.642788i
\(796\) 0 0
\(797\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(798\) 0 0
\(799\) −1.00000 −1.00000
\(800\) 0 0
\(801\) 0 0
\(802\) −0.939693 + 0.342020i −0.939693 + 0.342020i
\(803\) 0 0
\(804\) 0 0
\(805\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(806\) 0 0
\(807\) 0.173648 0.984808i 0.173648 0.984808i
\(808\) −0.984808 0.173648i −0.984808 0.173648i
\(809\) −1.00000 1.73205i −1.00000 1.73205i −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 0.866025i \(-0.666667\pi\)
\(810\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(811\) −0.642788 + 0.766044i −0.642788 + 0.766044i −0.984808 0.173648i \(-0.944444\pi\)
0.342020 + 0.939693i \(0.388889\pi\)
\(812\) 0 0
\(813\) −0.939693 + 0.342020i −0.939693 + 0.342020i
\(814\) 0 0
\(815\) 1.96962 0.347296i 1.96962 0.347296i
\(816\) −1.00000 −1.00000
\(817\) 0 0
\(818\) 1.00000i 1.00000i
\(819\) 0 0
\(820\) 0 0
\(821\) −0.939693 + 0.342020i −0.939693 + 0.342020i −0.766044 0.642788i \(-0.777778\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(822\) −0.342020 + 0.939693i −0.342020 + 0.939693i
\(823\) −0.766044 0.642788i −0.766044 0.642788i 0.173648 0.984808i \(-0.444444\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0.173648 0.984808i 0.173648 0.984808i
\(827\) −0.173648 + 0.984808i −0.173648 + 0.984808i 0.766044 + 0.642788i \(0.222222\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(828\) 0 0
\(829\) 1.73205 + 1.00000i 1.73205 + 1.00000i 0.866025 + 0.500000i \(0.166667\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0.342020 + 0.939693i 0.342020 + 0.939693i
\(833\) −0.642788 0.766044i −0.642788 0.766044i
\(834\) 0.173648 + 0.984808i 0.173648 + 0.984808i
\(835\) 1.00000 1.00000
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 0.642788 + 0.766044i 0.642788 + 0.766044i 0.984808 0.173648i \(-0.0555556\pi\)
−0.342020 + 0.939693i \(0.611111\pi\)
\(840\) 0.342020 + 0.939693i 0.342020 + 0.939693i
\(841\) 0 0
\(842\) −0.766044 0.642788i −0.766044 0.642788i
\(843\) −0.866025 0.500000i −0.866025 0.500000i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(848\) 0.500000 0.866025i 0.500000 0.866025i
\(849\) −0.766044 0.642788i −0.766044 0.642788i
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) 0.984808 0.173648i 0.984808 0.173648i 0.342020 0.939693i \(-0.388889\pi\)
0.642788 + 0.766044i \(0.277778\pi\)
\(854\) −1.00000 −1.00000
\(855\) 0 0
\(856\) 0 0
\(857\) 0.984808 0.173648i 0.984808 0.173648i 0.342020 0.939693i \(-0.388889\pi\)
0.642788 + 0.766044i \(0.277778\pi\)
\(858\) 0 0
\(859\) −0.342020 0.939693i −0.342020 0.939693i −0.984808 0.173648i \(-0.944444\pi\)
0.642788 0.766044i \(-0.277778\pi\)
\(860\) 0 0
\(861\) 0.642788 0.766044i 0.642788 0.766044i
\(862\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(863\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(864\) 0 0
\(865\) 0.173648 0.984808i 0.173648 0.984808i
\(866\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(867\) 0 0
\(868\) 0 0
\(869\) 0 0
\(870\) −0.939693 + 0.342020i −0.939693 + 0.342020i
\(871\) 0.642788 + 0.766044i 0.642788 + 0.766044i
\(872\) −0.173648 0.984808i −0.173648 0.984808i
\(873\) 0 0
\(874\) 0 0
\(875\) 1.00000 1.00000
\(876\) 0 0
\(877\) −0.766044 + 0.642788i −0.766044 + 0.642788i −0.939693 0.342020i \(-0.888889\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(878\) 0.342020 + 0.939693i 0.342020 + 0.939693i
\(879\) −1.87939 0.684040i −1.87939 0.684040i
\(880\) 0 0
\(881\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(882\) 0 0
\(883\) 0.173648 0.984808i 0.173648 0.984808i −0.766044 0.642788i \(-0.777778\pi\)
0.939693 0.342020i \(-0.111111\pi\)
\(884\) 0 0
\(885\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(886\) 0.500000 0.866025i 0.500000 0.866025i
\(887\) −0.642788 + 0.766044i −0.642788 + 0.766044i −0.984808 0.173648i \(-0.944444\pi\)
0.342020 + 0.939693i \(0.388889\pi\)
\(888\) 0 0
\(889\) 0.342020 + 0.939693i 0.342020 + 0.939693i
\(890\) −0.766044 + 0.642788i −0.766044 + 0.642788i
\(891\) 0 0
\(892\) 0 0
\(893\) 0 0
\(894\) 1.00000i 1.00000i
\(895\) 0 0
\(896\) −0.642788 0.766044i −0.642788 0.766044i
\(897\) 0.939693 0.342020i 0.939693 0.342020i
\(898\) 0 0
\(899\) 0 0
\(900\) 0 0
\(901\) 0.866025 0.500000i 0.866025 0.500000i
\(902\) 0 0
\(903\) 0.173648 0.984808i 0.173648 0.984808i
\(904\) 0 0
\(905\) 0.500000 0.866025i 0.500000 0.866025i
\(906\) 0 0
\(907\) 0.939693 + 0.342020i 0.939693 + 0.342020i 0.766044 0.642788i \(-0.222222\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) −0.984808 + 0.173648i −0.984808 + 0.173648i
\(911\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) 0.642788 + 0.766044i 0.642788 + 0.766044i
\(916\) 0 0
\(917\) −0.939693 0.342020i −0.939693 0.342020i
\(918\) −0.766044 0.642788i −0.766044 0.642788i
\(919\) 1.00000 1.73205i 1.00000 1.73205i 0.500000 0.866025i \(-0.333333\pi\)
0.500000 0.866025i \(-0.333333\pi\)
\(920\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(921\) 0.173648 0.984808i 0.173648 0.984808i
\(922\) 0.984808 + 0.173648i 0.984808 + 0.173648i
\(923\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −0.984808 + 0.173648i −0.984808 + 0.173648i −0.642788 0.766044i \(-0.722222\pi\)
−0.342020 + 0.939693i \(0.611111\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −0.642788 + 0.766044i −0.642788 + 0.766044i −0.984808 0.173648i \(-0.944444\pi\)
0.342020 + 0.939693i \(0.388889\pi\)
\(938\) −0.866025 0.500000i −0.866025 0.500000i
\(939\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(940\) 0 0
\(941\) 0.984808 + 0.173648i 0.984808 + 0.173648i 0.642788 0.766044i \(-0.277778\pi\)
0.342020 + 0.939693i \(0.388889\pi\)
\(942\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(943\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(944\) 0.642788 0.766044i 0.642788 0.766044i
\(945\) −0.342020 + 0.939693i −0.342020 + 0.939693i
\(946\) 0 0
\(947\) 0.766044 0.642788i 0.766044 0.642788i −0.173648 0.984808i \(-0.555556\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(948\) 0 0
\(949\) −1.00000 −1.00000
\(950\) 0 0
\(951\) 1.00000i 1.00000i
\(952\) −0.173648 0.984808i −0.173648 0.984808i
\(953\) −0.766044 + 0.642788i −0.766044 + 0.642788i −0.939693 0.342020i \(-0.888889\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(959\) −0.984808 0.173648i −0.984808 0.173648i
\(960\) −0.173648 + 0.984808i −0.173648 + 0.984808i
\(961\) −0.500000 0.866025i −0.500000 0.866025i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 0.342020 + 0.939693i 0.342020 + 0.939693i
\(966\) −0.766044 + 0.642788i −0.766044 + 0.642788i
\(967\) 0.173648 + 0.984808i 0.173648 + 0.984808i 0.939693 + 0.342020i \(0.111111\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(968\) −1.00000 −1.00000
\(969\) 0 0
\(970\) 1.00000 1.00000
\(971\) 0.984808 0.173648i 0.984808 0.173648i 0.342020 0.939693i \(-0.388889\pi\)
0.642788 + 0.766044i \(0.277778\pi\)
\(972\) 0 0
\(973\) −0.939693 + 0.342020i −0.939693 + 0.342020i
\(974\) 0 0
\(975\) 0 0
\(976\) −0.866025 0.500000i −0.866025 0.500000i
\(977\) −1.00000 1.73205i −1.00000 1.73205i −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 0.866025i \(-0.666667\pi\)
\(978\) 1.96962 + 0.347296i 1.96962 + 0.347296i
\(979\) 0 0
\(980\) 0 0
\(981\) 0 0
\(982\) −0.766044 0.642788i −0.766044 0.642788i
\(983\) −0.342020 + 0.939693i −0.342020 + 0.939693i 0.642788 + 0.766044i \(0.277778\pi\)
−0.984808 + 0.173648i \(0.944444\pi\)
\(984\) 0.939693 0.342020i 0.939693 0.342020i
\(985\) 0 0
\(986\) 0.984808 0.173648i 0.984808 0.173648i
\(987\) 1.00000i 1.00000i
\(988\) 0 0
\(989\) 1.00000 1.00000
\(990\) 0 0
\(991\) −0.766044 + 0.642788i −0.766044 + 0.642788i −0.939693 0.342020i \(-0.888889\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0.642788 0.766044i 0.642788 0.766044i
\(995\) 0.500000 0.866025i 0.500000 0.866025i
\(996\) 0 0
\(997\) 0.984808 + 0.173648i 0.984808 + 0.173648i 0.642788 0.766044i \(-0.277778\pi\)
0.342020 + 0.939693i \(0.388889\pi\)
\(998\) 0.173648 0.984808i 0.173648 0.984808i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2527.1.y.d.1833.1 12
7.6 odd 2 inner 2527.1.y.d.1833.2 12
19.2 odd 18 2527.1.y.e.2050.1 12
19.3 odd 18 2527.1.y.e.62.2 12
19.4 even 9 2527.1.m.d.790.2 4
19.5 even 9 inner 2527.1.y.d.776.2 12
19.6 even 9 2527.1.d.b.1084.1 2
19.7 even 3 inner 2527.1.y.d.1182.2 12
19.8 odd 6 2527.1.y.e.2400.2 12
19.9 even 9 2527.1.m.d.1014.1 4
19.10 odd 18 133.1.m.a.83.2 yes 4
19.11 even 3 inner 2527.1.y.d.2400.1 12
19.12 odd 6 2527.1.y.e.1182.1 12
19.13 odd 18 2527.1.d.e.1084.2 2
19.14 odd 18 2527.1.y.e.776.1 12
19.15 odd 18 133.1.m.a.125.1 yes 4
19.16 even 9 inner 2527.1.y.d.62.1 12
19.17 even 9 inner 2527.1.y.d.2050.2 12
19.18 odd 2 2527.1.y.e.1833.2 12
57.29 even 18 1197.1.ci.c.748.2 4
57.53 even 18 1197.1.ci.c.1189.1 4
76.15 even 18 2128.1.cy.a.657.2 4
76.67 even 18 2128.1.cy.a.881.1 4
95.29 odd 18 3325.1.bc.a.2876.1 4
95.34 odd 18 3325.1.bc.a.3051.2 4
95.48 even 36 3325.1.bi.b.349.1 4
95.53 even 36 3325.1.bi.b.524.2 4
95.67 even 36 3325.1.bi.a.349.2 4
95.72 even 36 3325.1.bi.a.524.1 4
133.6 odd 18 2527.1.d.b.1084.2 2
133.10 even 18 931.1.t.a.558.2 4
133.13 even 18 2527.1.d.e.1084.1 2
133.27 even 6 2527.1.y.e.2400.1 12
133.34 even 18 133.1.m.a.125.2 yes 4
133.41 even 18 2527.1.y.e.62.1 12
133.48 even 18 133.1.m.a.83.1 4
133.53 odd 18 931.1.k.a.68.2 4
133.55 odd 18 inner 2527.1.y.d.2050.1 12
133.62 odd 18 inner 2527.1.y.d.776.1 12
133.67 odd 18 931.1.t.a.558.1 4
133.69 even 6 2527.1.y.e.1182.2 12
133.72 odd 18 931.1.t.a.619.2 4
133.83 odd 6 inner 2527.1.y.d.1182.1 12
133.86 odd 18 931.1.k.a.178.2 4
133.90 even 18 2527.1.y.e.776.2 12
133.97 even 18 2527.1.y.e.2050.2 12
133.104 odd 18 2527.1.m.d.1014.2 4
133.110 even 18 931.1.t.a.619.1 4
133.111 odd 18 inner 2527.1.y.d.62.2 12
133.118 odd 18 2527.1.m.d.790.1 4
133.124 even 18 931.1.k.a.178.1 4
133.125 odd 6 inner 2527.1.y.d.2400.2 12
133.129 even 18 931.1.k.a.68.1 4
133.132 even 2 2527.1.y.e.1833.1 12
399.167 odd 18 1197.1.ci.c.1189.2 4
399.314 odd 18 1197.1.ci.c.748.1 4
532.167 odd 18 2128.1.cy.a.657.1 4
532.447 odd 18 2128.1.cy.a.881.2 4
665.34 even 18 3325.1.bc.a.3051.1 4
665.48 odd 36 3325.1.bi.a.349.1 4
665.167 odd 36 3325.1.bi.b.524.1 4
665.314 even 18 3325.1.bc.a.2876.2 4
665.433 odd 36 3325.1.bi.a.524.2 4
665.447 odd 36 3325.1.bi.b.349.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
133.1.m.a.83.1 4 133.48 even 18
133.1.m.a.83.2 yes 4 19.10 odd 18
133.1.m.a.125.1 yes 4 19.15 odd 18
133.1.m.a.125.2 yes 4 133.34 even 18
931.1.k.a.68.1 4 133.129 even 18
931.1.k.a.68.2 4 133.53 odd 18
931.1.k.a.178.1 4 133.124 even 18
931.1.k.a.178.2 4 133.86 odd 18
931.1.t.a.558.1 4 133.67 odd 18
931.1.t.a.558.2 4 133.10 even 18
931.1.t.a.619.1 4 133.110 even 18
931.1.t.a.619.2 4 133.72 odd 18
1197.1.ci.c.748.1 4 399.314 odd 18
1197.1.ci.c.748.2 4 57.29 even 18
1197.1.ci.c.1189.1 4 57.53 even 18
1197.1.ci.c.1189.2 4 399.167 odd 18
2128.1.cy.a.657.1 4 532.167 odd 18
2128.1.cy.a.657.2 4 76.15 even 18
2128.1.cy.a.881.1 4 76.67 even 18
2128.1.cy.a.881.2 4 532.447 odd 18
2527.1.d.b.1084.1 2 19.6 even 9
2527.1.d.b.1084.2 2 133.6 odd 18
2527.1.d.e.1084.1 2 133.13 even 18
2527.1.d.e.1084.2 2 19.13 odd 18
2527.1.m.d.790.1 4 133.118 odd 18
2527.1.m.d.790.2 4 19.4 even 9
2527.1.m.d.1014.1 4 19.9 even 9
2527.1.m.d.1014.2 4 133.104 odd 18
2527.1.y.d.62.1 12 19.16 even 9 inner
2527.1.y.d.62.2 12 133.111 odd 18 inner
2527.1.y.d.776.1 12 133.62 odd 18 inner
2527.1.y.d.776.2 12 19.5 even 9 inner
2527.1.y.d.1182.1 12 133.83 odd 6 inner
2527.1.y.d.1182.2 12 19.7 even 3 inner
2527.1.y.d.1833.1 12 1.1 even 1 trivial
2527.1.y.d.1833.2 12 7.6 odd 2 inner
2527.1.y.d.2050.1 12 133.55 odd 18 inner
2527.1.y.d.2050.2 12 19.17 even 9 inner
2527.1.y.d.2400.1 12 19.11 even 3 inner
2527.1.y.d.2400.2 12 133.125 odd 6 inner
2527.1.y.e.62.1 12 133.41 even 18
2527.1.y.e.62.2 12 19.3 odd 18
2527.1.y.e.776.1 12 19.14 odd 18
2527.1.y.e.776.2 12 133.90 even 18
2527.1.y.e.1182.1 12 19.12 odd 6
2527.1.y.e.1182.2 12 133.69 even 6
2527.1.y.e.1833.1 12 133.132 even 2
2527.1.y.e.1833.2 12 19.18 odd 2
2527.1.y.e.2050.1 12 19.2 odd 18
2527.1.y.e.2050.2 12 133.97 even 18
2527.1.y.e.2400.1 12 133.27 even 6
2527.1.y.e.2400.2 12 19.8 odd 6
3325.1.bc.a.2876.1 4 95.29 odd 18
3325.1.bc.a.2876.2 4 665.314 even 18
3325.1.bc.a.3051.1 4 665.34 even 18
3325.1.bc.a.3051.2 4 95.34 odd 18
3325.1.bi.a.349.1 4 665.48 odd 36
3325.1.bi.a.349.2 4 95.67 even 36
3325.1.bi.a.524.1 4 95.72 even 36
3325.1.bi.a.524.2 4 665.433 odd 36
3325.1.bi.b.349.1 4 95.48 even 36
3325.1.bi.b.349.2 4 665.447 odd 36
3325.1.bi.b.524.1 4 665.167 odd 36
3325.1.bi.b.524.2 4 95.53 even 36