Properties

Label 931.1.t.a.619.1
Level 931931
Weight 11
Character 931.619
Analytic conductor 0.4650.465
Analytic rank 00
Dimension 44
Projective image A4A_{4}
CM/RM no
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [931,1,Mod(558,931)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(931, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([5, 2]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("931.558");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: N N == 931=7219 931 = 7^{2} \cdot 19
Weight: k k == 1 1
Character orbit: [χ][\chi] == 931.t (of order 66, degree 22, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 0.4646295267610.464629526761
Analytic rank: 00
Dimension: 44
Relative dimension: 22 over Q(ζ6)\Q(\zeta_{6})
Coefficient field: Q(ζ12)\Q(\zeta_{12})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x4x2+1 x^{4} - x^{2} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2,a3]\Z[a_1, a_2, a_3]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 133)
Projective image: A4A_{4}
Projective field: Galois closure of 4.0.17689.1

Embedding invariants

Embedding label 619.1
Root 0.866025+0.500000i0.866025 + 0.500000i of defining polynomial
Character χ\chi == 931.619
Dual form 931.1.t.a.558.1

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q+1.00000q2+(0.866025+0.500000i)q3+1.00000iq5+(0.866025+0.500000i)q61.00000q8+1.00000iq10+(0.866025+0.500000i)q13+(0.5000000.866025i)q151.00000q16+(0.866025+0.500000i)q17+(0.8660250.500000i)q19+(0.500000+0.866025i)q23+(0.8660250.500000i)q24+(0.866025+0.500000i)q261.00000iq27+(0.500000+0.866025i)q29+(0.5000000.866025i)q30+(0.866025+0.500000i)q34+(0.8660250.500000i)q38+(0.5000000.866025i)q391.00000iq40+(0.866025+0.500000i)q41+(0.500000+0.866025i)q43+(0.500000+0.866025i)q46+(0.866025+0.500000i)q47+(0.8660250.500000i)q48+(0.5000000.866025i)q511.00000q531.00000iq54+(0.500000+0.866025i)q57+(0.500000+0.866025i)q58+(0.8660250.500000i)q59+(0.8660250.500000i)q61+1.00000q64+(0.5000000.866025i)q65+1.00000q671.00000iq69+(0.5000000.866025i)q71+(0.8660250.500000i)q73+(0.5000000.866025i)q78+1.00000q791.00000iq80+(0.500000+0.866025i)q81+(0.866025+0.500000i)q82+(0.5000000.866025i)q85+(0.500000+0.866025i)q86+(0.8660250.500000i)q87+(0.8660250.500000i)q89+(0.866025+0.500000i)q94+(0.500000+0.866025i)q95+(0.866025+0.500000i)q97+O(q100)q+1.00000 q^{2} +(-0.866025 + 0.500000i) q^{3} +1.00000i q^{5} +(-0.866025 + 0.500000i) q^{6} -1.00000 q^{8} +1.00000i q^{10} +(-0.866025 + 0.500000i) q^{13} +(-0.500000 - 0.866025i) q^{15} -1.00000 q^{16} +(-0.866025 + 0.500000i) q^{17} +(0.866025 - 0.500000i) q^{19} +(-0.500000 + 0.866025i) q^{23} +(0.866025 - 0.500000i) q^{24} +(-0.866025 + 0.500000i) q^{26} -1.00000i q^{27} +(0.500000 + 0.866025i) q^{29} +(-0.500000 - 0.866025i) q^{30} +(-0.866025 + 0.500000i) q^{34} +(0.866025 - 0.500000i) q^{38} +(0.500000 - 0.866025i) q^{39} -1.00000i q^{40} +(0.866025 + 0.500000i) q^{41} +(-0.500000 + 0.866025i) q^{43} +(-0.500000 + 0.866025i) q^{46} +(0.866025 + 0.500000i) q^{47} +(0.866025 - 0.500000i) q^{48} +(0.500000 - 0.866025i) q^{51} -1.00000 q^{53} -1.00000i q^{54} +(-0.500000 + 0.866025i) q^{57} +(0.500000 + 0.866025i) q^{58} +(0.866025 - 0.500000i) q^{59} +(-0.866025 - 0.500000i) q^{61} +1.00000 q^{64} +(-0.500000 - 0.866025i) q^{65} +1.00000 q^{67} -1.00000i q^{69} +(0.500000 - 0.866025i) q^{71} +(0.866025 - 0.500000i) q^{73} +(0.500000 - 0.866025i) q^{78} +1.00000 q^{79} -1.00000i q^{80} +(0.500000 + 0.866025i) q^{81} +(0.866025 + 0.500000i) q^{82} +(-0.500000 - 0.866025i) q^{85} +(-0.500000 + 0.866025i) q^{86} +(-0.866025 - 0.500000i) q^{87} +(-0.866025 - 0.500000i) q^{89} +(0.866025 + 0.500000i) q^{94} +(0.500000 + 0.866025i) q^{95} +(0.866025 + 0.500000i) q^{97} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q+4q24q82q154q162q23+2q292q30+2q392q432q46+2q514q532q57+2q58+4q642q65+4q67+2q71+2q78++2q95+O(q100) 4 q + 4 q^{2} - 4 q^{8} - 2 q^{15} - 4 q^{16} - 2 q^{23} + 2 q^{29} - 2 q^{30} + 2 q^{39} - 2 q^{43} - 2 q^{46} + 2 q^{51} - 4 q^{53} - 2 q^{57} + 2 q^{58} + 4 q^{64} - 2 q^{65} + 4 q^{67} + 2 q^{71} + 2 q^{78}+ \cdots + 2 q^{95}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/931Z)×\left(\mathbb{Z}/931\mathbb{Z}\right)^\times.

nn 248248 344344
χ(n)\chi(n) e(16)e\left(\frac{1}{6}\right) e(23)e\left(\frac{2}{3}\right)

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 1.00000 1.00000 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
33 −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i 0.833333π-0.833333\pi
1.00000i 0.5π0.5\pi
44 0 0
55 1.00000i 1.00000i 0.866025 + 0.500000i 0.166667π0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
66 −0.866025 + 0.500000i −0.866025 + 0.500000i
77 0 0
88 −1.00000 −1.00000
99 0 0
1010 1.00000i 1.00000i
1111 0 0 −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
1212 0 0
1313 −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i 0.833333π-0.833333\pi
1.00000i 0.5π0.5\pi
1414 0 0
1515 −0.500000 0.866025i −0.500000 0.866025i
1616 −1.00000 −1.00000
1717 −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i 0.833333π-0.833333\pi
1.00000i 0.5π0.5\pi
1818 0 0
1919 0.866025 0.500000i 0.866025 0.500000i
2020 0 0
2121 0 0
2222 0 0
2323 −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i 0.333333π0.333333\pi
−1.00000 π\pi
2424 0.866025 0.500000i 0.866025 0.500000i
2525 0 0
2626 −0.866025 + 0.500000i −0.866025 + 0.500000i
2727 1.00000i 1.00000i
2828 0 0
2929 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 00
−0.500000 + 0.866025i 0.666667π0.666667\pi
3030 −0.500000 0.866025i −0.500000 0.866025i
3131 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
3232 0 0
3333 0 0
3434 −0.866025 + 0.500000i −0.866025 + 0.500000i
3535 0 0
3636 0 0
3737 0 0 0.866025 0.500000i 0.166667π-0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
3838 0.866025 0.500000i 0.866025 0.500000i
3939 0.500000 0.866025i 0.500000 0.866025i
4040 1.00000i 1.00000i
4141 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i 0.166667π-0.166667\pi
1.00000i 0.5π0.5\pi
4242 0 0
4343 −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i 0.333333π0.333333\pi
−1.00000 π\pi
4444 0 0
4545 0 0
4646 −0.500000 + 0.866025i −0.500000 + 0.866025i
4747 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i 0.166667π-0.166667\pi
1.00000i 0.5π0.5\pi
4848 0.866025 0.500000i 0.866025 0.500000i
4949 0 0
5050 0 0
5151 0.500000 0.866025i 0.500000 0.866025i
5252 0 0
5353 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
5454 1.00000i 1.00000i
5555 0 0
5656 0 0
5757 −0.500000 + 0.866025i −0.500000 + 0.866025i
5858 0.500000 + 0.866025i 0.500000 + 0.866025i
5959 0.866025 0.500000i 0.866025 0.500000i 1.00000i 0.5π-0.5\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
6060 0 0
6161 −0.866025 0.500000i −0.866025 0.500000i 1.00000i 0.5π-0.5\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
6262 0 0
6363 0 0
6464 1.00000 1.00000
6565 −0.500000 0.866025i −0.500000 0.866025i
6666 0 0
6767 1.00000 1.00000 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
6868 0 0
6969 1.00000i 1.00000i
7070 0 0
7171 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
7272 0 0
7373 0.866025 0.500000i 0.866025 0.500000i 1.00000i 0.5π-0.5\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
7474 0 0
7575 0 0
7676 0 0
7777 0 0
7878 0.500000 0.866025i 0.500000 0.866025i
7979 1.00000 1.00000 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
8080 1.00000i 1.00000i
8181 0.500000 + 0.866025i 0.500000 + 0.866025i
8282 0.866025 + 0.500000i 0.866025 + 0.500000i
8383 0 0 1.00000 00
−1.00000 π\pi
8484 0 0
8585 −0.500000 0.866025i −0.500000 0.866025i
8686 −0.500000 + 0.866025i −0.500000 + 0.866025i
8787 −0.866025 0.500000i −0.866025 0.500000i
8888 0 0
8989 −0.866025 0.500000i −0.866025 0.500000i 1.00000i 0.5π-0.5\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
9090 0 0
9191 0 0
9292 0 0
9393 0 0
9494 0.866025 + 0.500000i 0.866025 + 0.500000i
9595 0.500000 + 0.866025i 0.500000 + 0.866025i
9696 0 0
9797 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i 0.166667π-0.166667\pi
1.00000i 0.5π0.5\pi
9898 0 0
9999 0 0
100100 0 0
101101 1.00000i 1.00000i 0.866025 + 0.500000i 0.166667π0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
102102 0.500000 0.866025i 0.500000 0.866025i
103103 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
104104 0.866025 0.500000i 0.866025 0.500000i
105105 0 0
106106 −1.00000 −1.00000
107107 0 0 0.866025 0.500000i 0.166667π-0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
108108 0 0
109109 −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i 0.333333π-0.333333\pi
−1.00000 π\pi
110110 0 0
111111 0 0
112112 0 0
113113 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
114114 −0.500000 + 0.866025i −0.500000 + 0.866025i
115115 −0.866025 0.500000i −0.866025 0.500000i
116116 0 0
117117 0 0
118118 0.866025 0.500000i 0.866025 0.500000i
119119 0 0
120120 0.500000 + 0.866025i 0.500000 + 0.866025i
121121 0.500000 + 0.866025i 0.500000 + 0.866025i
122122 −0.866025 0.500000i −0.866025 0.500000i
123123 −1.00000 −1.00000
124124 0 0
125125 1.00000i 1.00000i
126126 0 0
127127 −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i 0.333333π-0.333333\pi
−1.00000 π\pi
128128 1.00000 1.00000
129129 1.00000i 1.00000i
130130 −0.500000 0.866025i −0.500000 0.866025i
131131 1.00000i 1.00000i 0.866025 + 0.500000i 0.166667π0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
132132 0 0
133133 0 0
134134 1.00000 1.00000
135135 1.00000 1.00000
136136 0.866025 0.500000i 0.866025 0.500000i
137137 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
138138 1.00000i 1.00000i
139139 0.866025 0.500000i 0.866025 0.500000i 1.00000i 0.5π-0.5\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
140140 0 0
141141 −1.00000 −1.00000
142142 0.500000 0.866025i 0.500000 0.866025i
143143 0 0
144144 0 0
145145 −0.866025 + 0.500000i −0.866025 + 0.500000i
146146 0.866025 0.500000i 0.866025 0.500000i
147147 0 0
148148 0 0
149149 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
150150 0 0
151151 0 0 −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
152152 −0.866025 + 0.500000i −0.866025 + 0.500000i
153153 0 0
154154 0 0
155155 0 0
156156 0 0
157157 −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i 0.833333π-0.833333\pi
1.00000i 0.5π0.5\pi
158158 1.00000 1.00000
159159 0.866025 0.500000i 0.866025 0.500000i
160160 0 0
161161 0 0
162162 0.500000 + 0.866025i 0.500000 + 0.866025i
163163 −1.00000 1.73205i −1.00000 1.73205i −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 0.866025i 0.666667π-0.666667\pi
164164 0 0
165165 0 0
166166 0 0
167167 0.866025 0.500000i 0.866025 0.500000i 1.00000i 0.5π-0.5\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
168168 0 0
169169 0 0
170170 −0.500000 0.866025i −0.500000 0.866025i
171171 0 0
172172 0 0
173173 1.00000i 1.00000i 0.866025 + 0.500000i 0.166667π0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
174174 −0.866025 0.500000i −0.866025 0.500000i
175175 0 0
176176 0 0
177177 −0.500000 + 0.866025i −0.500000 + 0.866025i
178178 −0.866025 0.500000i −0.866025 0.500000i
179179 0 0 −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
180180 0 0
181181 −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i 0.833333π-0.833333\pi
1.00000i 0.5π0.5\pi
182182 0 0
183183 1.00000 1.00000
184184 0.500000 0.866025i 0.500000 0.866025i
185185 0 0
186186 0 0
187187 0 0
188188 0 0
189189 0 0
190190 0.500000 + 0.866025i 0.500000 + 0.866025i
191191 0 0 0.866025 0.500000i 0.166667π-0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
192192 −0.866025 + 0.500000i −0.866025 + 0.500000i
193193 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 00
−0.500000 + 0.866025i 0.666667π0.666667\pi
194194 0.866025 + 0.500000i 0.866025 + 0.500000i
195195 0.866025 + 0.500000i 0.866025 + 0.500000i
196196 0 0
197197 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
198198 0 0
199199 1.00000i 1.00000i 0.866025 + 0.500000i 0.166667π0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
200200 0 0
201201 −0.866025 + 0.500000i −0.866025 + 0.500000i
202202 1.00000i 1.00000i
203203 0 0
204204 0 0
205205 −0.500000 + 0.866025i −0.500000 + 0.866025i
206206 0 0
207207 0 0
208208 0.866025 0.500000i 0.866025 0.500000i
209209 0 0
210210 0 0
211211 −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i 0.333333π0.333333\pi
−1.00000 π\pi
212212 0 0
213213 1.00000i 1.00000i
214214 0 0
215215 −0.866025 0.500000i −0.866025 0.500000i
216216 1.00000i 1.00000i
217217 0 0
218218 −0.500000 0.866025i −0.500000 0.866025i
219219 −0.500000 + 0.866025i −0.500000 + 0.866025i
220220 0 0
221221 0.500000 0.866025i 0.500000 0.866025i
222222 0 0
223223 −0.866025 0.500000i −0.866025 0.500000i 1.00000i 0.5π-0.5\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
224224 0 0
225225 0 0
226226 0 0
227227 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
228228 0 0
229229 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
230230 −0.866025 0.500000i −0.866025 0.500000i
231231 0 0
232232 −0.500000 0.866025i −0.500000 0.866025i
233233 1.00000 1.00000 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
234234 0 0
235235 −0.500000 + 0.866025i −0.500000 + 0.866025i
236236 0 0
237237 −0.866025 + 0.500000i −0.866025 + 0.500000i
238238 0 0
239239 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
240240 0.500000 + 0.866025i 0.500000 + 0.866025i
241241 1.00000i 1.00000i −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 0.500000i 0.166667π-0.166667\pi
242242 0.500000 + 0.866025i 0.500000 + 0.866025i
243243 0 0
244244 0 0
245245 0 0
246246 −1.00000 −1.00000
247247 −0.500000 + 0.866025i −0.500000 + 0.866025i
248248 0 0
249249 0 0
250250 1.00000i 1.00000i
251251 −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i 0.833333π-0.833333\pi
1.00000i 0.5π0.5\pi
252252 0 0
253253 0 0
254254 −0.500000 0.866025i −0.500000 0.866025i
255255 0.866025 + 0.500000i 0.866025 + 0.500000i
256256 0 0
257257 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i 0.166667π-0.166667\pi
1.00000i 0.5π0.5\pi
258258 1.00000i 1.00000i
259259 0 0
260260 0 0
261261 0 0
262262 1.00000i 1.00000i
263263 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 00
−0.500000 + 0.866025i 0.666667π0.666667\pi
264264 0 0
265265 1.00000i 1.00000i
266266 0 0
267267 1.00000 1.00000
268268 0 0
269269 0.866025 0.500000i 0.866025 0.500000i 1.00000i 0.5π-0.5\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
270270 1.00000 1.00000
271271 1.00000i 1.00000i −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 0.500000i 0.166667π-0.166667\pi
272272 0.866025 0.500000i 0.866025 0.500000i
273273 0 0
274274 −1.00000 −1.00000
275275 0 0
276276 0 0
277277 0 0 −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
278278 0.866025 0.500000i 0.866025 0.500000i
279279 0 0
280280 0 0
281281 −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i 0.333333π-0.333333\pi
−1.00000 π\pi
282282 −1.00000 −1.00000
283283 0.866025 0.500000i 0.866025 0.500000i 1.00000i 0.5π-0.5\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
284284 0 0
285285 −0.866025 0.500000i −0.866025 0.500000i
286286 0 0
287287 0 0
288288 0 0
289289 0 0
290290 −0.866025 + 0.500000i −0.866025 + 0.500000i
291291 −1.00000 −1.00000
292292 0 0
293293 2.00000i 2.00000i 1.00000i 0.5π0.5\pi
1.00000i 0.5π0.5\pi
294294 0 0
295295 0.500000 + 0.866025i 0.500000 + 0.866025i
296296 0 0
297297 0 0
298298 −1.00000 −1.00000
299299 1.00000i 1.00000i
300300 0 0
301301 0 0
302302 0 0
303303 −0.500000 0.866025i −0.500000 0.866025i
304304 −0.866025 + 0.500000i −0.866025 + 0.500000i
305305 0.500000 0.866025i 0.500000 0.866025i
306306 0 0
307307 −0.866025 0.500000i −0.866025 0.500000i 1.00000i 0.5π-0.5\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
308308 0 0
309309 0 0
310310 0 0
311311 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
312312 −0.500000 + 0.866025i −0.500000 + 0.866025i
313313 −0.866025 0.500000i −0.866025 0.500000i 1.00000i 0.5π-0.5\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
314314 −0.866025 + 0.500000i −0.866025 + 0.500000i
315315 0 0
316316 0 0
317317 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
318318 0.866025 0.500000i 0.866025 0.500000i
319319 0 0
320320 1.00000i 1.00000i
321321 0 0
322322 0 0
323323 −0.500000 + 0.866025i −0.500000 + 0.866025i
324324 0 0
325325 0 0
326326 −1.00000 1.73205i −1.00000 1.73205i
327327 0.866025 + 0.500000i 0.866025 + 0.500000i
328328 −0.866025 0.500000i −0.866025 0.500000i
329329 0 0
330330 0 0
331331 0 0 0.866025 0.500000i 0.166667π-0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
332332 0 0
333333 0 0
334334 0.866025 0.500000i 0.866025 0.500000i
335335 1.00000i 1.00000i
336336 0 0
337337 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
338338 0 0
339339 0 0
340340 0 0
341341 0 0
342342 0 0
343343 0 0
344344 0.500000 0.866025i 0.500000 0.866025i
345345 1.00000 1.00000
346346 1.00000i 1.00000i
347347 −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i 0.333333π-0.333333\pi
−1.00000 π\pi
348348 0 0
349349 0 0 1.00000 00
−1.00000 π\pi
350350 0 0
351351 0.500000 + 0.866025i 0.500000 + 0.866025i
352352 0 0
353353 1.73205 + 1.00000i 1.73205 + 1.00000i 0.866025 + 0.500000i 0.166667π0.166667\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
354354 −0.500000 + 0.866025i −0.500000 + 0.866025i
355355 0.866025 + 0.500000i 0.866025 + 0.500000i
356356 0 0
357357 0 0
358358 0 0
359359 1.00000 1.00000 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
360360 0 0
361361 0.500000 0.866025i 0.500000 0.866025i
362362 −0.866025 + 0.500000i −0.866025 + 0.500000i
363363 −0.866025 0.500000i −0.866025 0.500000i
364364 0 0
365365 0.500000 + 0.866025i 0.500000 + 0.866025i
366366 1.00000 1.00000
367367 1.00000i 1.00000i −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 0.500000i 0.166667π-0.166667\pi
368368 0.500000 0.866025i 0.500000 0.866025i
369369 0 0
370370 0 0
371371 0 0
372372 0 0
373373 0 0 0.866025 0.500000i 0.166667π-0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
374374 0 0
375375 −0.500000 0.866025i −0.500000 0.866025i
376376 −0.866025 0.500000i −0.866025 0.500000i
377377 −0.866025 0.500000i −0.866025 0.500000i
378378 0 0
379379 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
380380 0 0
381381 0.866025 + 0.500000i 0.866025 + 0.500000i
382382 0 0
383383 1.00000i 1.00000i −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 0.500000i 0.166667π-0.166667\pi
384384 −0.866025 + 0.500000i −0.866025 + 0.500000i
385385 0 0
386386 0.500000 + 0.866025i 0.500000 + 0.866025i
387387 0 0
388388 0 0
389389 1.00000 1.00000 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
390390 0.866025 + 0.500000i 0.866025 + 0.500000i
391391 1.00000i 1.00000i
392392 0 0
393393 −0.500000 0.866025i −0.500000 0.866025i
394394 0 0
395395 1.00000i 1.00000i
396396 0 0
397397 1.00000i 1.00000i −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 0.500000i 0.166667π-0.166667\pi
398398 1.00000i 1.00000i
399399 0 0
400400 0 0
401401 1.00000 1.00000 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
402402 −0.866025 + 0.500000i −0.866025 + 0.500000i
403403 0 0
404404 0 0
405405 −0.866025 + 0.500000i −0.866025 + 0.500000i
406406 0 0
407407 0 0
408408 −0.500000 + 0.866025i −0.500000 + 0.866025i
409409 1.00000i 1.00000i −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 0.500000i 0.166667π-0.166667\pi
410410 −0.500000 + 0.866025i −0.500000 + 0.866025i
411411 0.866025 0.500000i 0.866025 0.500000i
412412 0 0
413413 0 0
414414 0 0
415415 0 0
416416 0 0
417417 −0.500000 + 0.866025i −0.500000 + 0.866025i
418418 0 0
419419 0 0 1.00000 00
−1.00000 π\pi
420420 0 0
421421 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
422422 −0.500000 + 0.866025i −0.500000 + 0.866025i
423423 0 0
424424 1.00000 1.00000
425425 0 0
426426 1.00000i 1.00000i
427427 0 0
428428 0 0
429429 0 0
430430 −0.866025 0.500000i −0.866025 0.500000i
431431 1.00000 1.00000 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
432432 1.00000i 1.00000i
433433 0.866025 0.500000i 0.866025 0.500000i 1.00000i 0.5π-0.5\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
434434 0 0
435435 0.500000 0.866025i 0.500000 0.866025i
436436 0 0
437437 1.00000i 1.00000i
438438 −0.500000 + 0.866025i −0.500000 + 0.866025i
439439 1.00000i 1.00000i 0.866025 + 0.500000i 0.166667π0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
440440 0 0
441441 0 0
442442 0.500000 0.866025i 0.500000 0.866025i
443443 −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i 0.333333π0.333333\pi
−1.00000 π\pi
444444 0 0
445445 0.500000 0.866025i 0.500000 0.866025i
446446 −0.866025 0.500000i −0.866025 0.500000i
447447 0.866025 0.500000i 0.866025 0.500000i
448448 0 0
449449 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
450450 0 0
451451 0 0
452452 0 0
453453 0 0
454454 0 0
455455 0 0
456456 0.500000 0.866025i 0.500000 0.866025i
457457 0 0 0.866025 0.500000i 0.166667π-0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
458458 0 0
459459 0.500000 + 0.866025i 0.500000 + 0.866025i
460460 0 0
461461 −0.866025 0.500000i −0.866025 0.500000i 1.00000i 0.5π-0.5\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
462462 0 0
463463 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
464464 −0.500000 0.866025i −0.500000 0.866025i
465465 0 0
466466 1.00000 1.00000
467467 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
468468 0 0
469469 0 0
470470 −0.500000 + 0.866025i −0.500000 + 0.866025i
471471 0.500000 0.866025i 0.500000 0.866025i
472472 −0.866025 + 0.500000i −0.866025 + 0.500000i
473473 0 0
474474 −0.866025 + 0.500000i −0.866025 + 0.500000i
475475 0 0
476476 0 0
477477 0 0
478478 0 0
479479 1.00000i 1.00000i −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 0.500000i 0.166667π-0.166667\pi
480480 0 0
481481 0 0
482482 1.00000i 1.00000i
483483 0 0
484484 0 0
485485 −0.500000 + 0.866025i −0.500000 + 0.866025i
486486 0 0
487487 0 0 −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
488488 0.866025 + 0.500000i 0.866025 + 0.500000i
489489 1.73205 + 1.00000i 1.73205 + 1.00000i
490490 0 0
491491 −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i 0.333333π0.333333\pi
−1.00000 π\pi
492492 0 0
493493 −0.866025 0.500000i −0.866025 0.500000i
494494 −0.500000 + 0.866025i −0.500000 + 0.866025i
495495 0 0
496496 0 0
497497 0 0
498498 0 0
499499 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
500500 0 0
501501 −0.500000 + 0.866025i −0.500000 + 0.866025i
502502 −0.866025 + 0.500000i −0.866025 + 0.500000i
503503 −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i 0.833333π-0.833333\pi
1.00000i 0.5π0.5\pi
504504 0 0
505505 −1.00000 −1.00000
506506 0 0
507507 0 0
508508 0 0
509509 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i 0.166667π-0.166667\pi
1.00000i 0.5π0.5\pi
510510 0.866025 + 0.500000i 0.866025 + 0.500000i
511511 0 0
512512 −1.00000 −1.00000
513513 −0.500000 0.866025i −0.500000 0.866025i
514514 0.866025 + 0.500000i 0.866025 + 0.500000i
515515 0 0
516516 0 0
517517 0 0
518518 0 0
519519 −0.500000 0.866025i −0.500000 0.866025i
520520 0.500000 + 0.866025i 0.500000 + 0.866025i
521521 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
522522 0 0
523523 −0.866025 0.500000i −0.866025 0.500000i 1.00000i 0.5π-0.5\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
524524 0 0
525525 0 0
526526 0.500000 + 0.866025i 0.500000 + 0.866025i
527527 0 0
528528 0 0
529529 0 0
530530 1.00000i 1.00000i
531531 0 0
532532 0 0
533533 −1.00000 −1.00000
534534 1.00000 1.00000
535535 0 0
536536 −1.00000 −1.00000
537537 0 0
538538 0.866025 0.500000i 0.866025 0.500000i
539539 0 0
540540 0 0
541541 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
542542 1.00000i 1.00000i
543543 0.500000 0.866025i 0.500000 0.866025i
544544 0 0
545545 0.866025 0.500000i 0.866025 0.500000i
546546 0 0
547547 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 00
−0.500000 + 0.866025i 0.666667π0.666667\pi
548548 0 0
549549 0 0
550550 0 0
551551 0.866025 + 0.500000i 0.866025 + 0.500000i
552552 1.00000i 1.00000i
553553 0 0
554554 0 0
555555 0 0
556556 0 0
557557 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
558558 0 0
559559 1.00000i 1.00000i
560560 0 0
561561 0 0
562562 −0.500000 0.866025i −0.500000 0.866025i
563563 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
564564 0 0
565565 0 0
566566 0.866025 0.500000i 0.866025 0.500000i
567567 0 0
568568 −0.500000 + 0.866025i −0.500000 + 0.866025i
569569 0 0 0.866025 0.500000i 0.166667π-0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
570570 −0.866025 0.500000i −0.866025 0.500000i
571571 0 0 −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
572572 0 0
573573 0 0
574574 0 0
575575 0 0
576576 0 0
577577 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
578578 0 0
579579 −0.866025 0.500000i −0.866025 0.500000i
580580 0 0
581581 0 0
582582 −1.00000 −1.00000
583583 0 0
584584 −0.866025 + 0.500000i −0.866025 + 0.500000i
585585 0 0
586586 2.00000i 2.00000i
587587 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i 0.166667π-0.166667\pi
1.00000i 0.5π0.5\pi
588588 0 0
589589 0 0
590590 0.500000 + 0.866025i 0.500000 + 0.866025i
591591 0 0
592592 0 0
593593 −0.866025 0.500000i −0.866025 0.500000i 1.00000i 0.5π-0.5\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
594594 0 0
595595 0 0
596596 0 0
597597 −0.500000 0.866025i −0.500000 0.866025i
598598 1.00000i 1.00000i
599599 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
600600 0 0
601601 0 0 1.00000 00
−1.00000 π\pi
602602 0 0
603603 0 0
604604 0 0
605605 −0.866025 + 0.500000i −0.866025 + 0.500000i
606606 −0.500000 0.866025i −0.500000 0.866025i
607607 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
608608 0 0
609609 0 0
610610 0.500000 0.866025i 0.500000 0.866025i
611611 −1.00000 −1.00000
612612 0 0
613613 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 00
−0.500000 + 0.866025i 0.666667π0.666667\pi
614614 −0.866025 0.500000i −0.866025 0.500000i
615615 1.00000i 1.00000i
616616 0 0
617617 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 00
−0.500000 + 0.866025i 0.666667π0.666667\pi
618618 0 0
619619 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
620620 0 0
621621 0.866025 + 0.500000i 0.866025 + 0.500000i
622622 0 0
623623 0 0
624624 −0.500000 + 0.866025i −0.500000 + 0.866025i
625625 −1.00000 −1.00000
626626 −0.866025 0.500000i −0.866025 0.500000i
627627 0 0
628628 0 0
629629 0 0
630630 0 0
631631 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 00
−0.500000 + 0.866025i 0.666667π0.666667\pi
632632 −1.00000 −1.00000
633633 1.00000i 1.00000i
634634 0.500000 0.866025i 0.500000 0.866025i
635635 0.866025 0.500000i 0.866025 0.500000i
636636 0 0
637637 0 0
638638 0 0
639639 0 0
640640 1.00000i 1.00000i
641641 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 00
−0.500000 + 0.866025i 0.666667π0.666667\pi
642642 0 0
643643 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i 0.166667π-0.166667\pi
1.00000i 0.5π0.5\pi
644644 0 0
645645 1.00000 1.00000
646646 −0.500000 + 0.866025i −0.500000 + 0.866025i
647647 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
648648 −0.500000 0.866025i −0.500000 0.866025i
649649 0 0
650650 0 0
651651 0 0
652652 0 0
653653 0 0 0.866025 0.500000i 0.166667π-0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
654654 0.866025 + 0.500000i 0.866025 + 0.500000i
655655 −1.00000 −1.00000
656656 −0.866025 0.500000i −0.866025 0.500000i
657657 0 0
658658 0 0
659659 −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i 0.333333π-0.333333\pi
−1.00000 π\pi
660660 0 0
661661 1.00000i 1.00000i −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 0.500000i 0.166667π-0.166667\pi
662662 0 0
663663 1.00000i 1.00000i
664664 0 0
665665 0 0
666666 0 0
667667 −1.00000 −1.00000
668668 0 0
669669 1.00000 1.00000
670670 1.00000i 1.00000i
671671 0 0
672672 0 0
673673 2.00000 2.00000 1.00000 00
1.00000 00
674674 0.500000 0.866025i 0.500000 0.866025i
675675 0 0
676676 0 0
677677 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
678678 0 0
679679 0 0
680680 0.500000 + 0.866025i 0.500000 + 0.866025i
681681 0 0
682682 0 0
683683 1.00000 1.73205i 1.00000 1.73205i 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 0.866025i 0.333333π-0.333333\pi
684684 0 0
685685 1.00000i 1.00000i
686686 0 0
687687 0 0
688688 0.500000 0.866025i 0.500000 0.866025i
689689 0.866025 0.500000i 0.866025 0.500000i
690690 1.00000 1.00000
691691 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
692692 0 0
693693 0 0
694694 −0.500000 0.866025i −0.500000 0.866025i
695695 0.500000 + 0.866025i 0.500000 + 0.866025i
696696 0.866025 + 0.500000i 0.866025 + 0.500000i
697697 −1.00000 −1.00000
698698 0 0
699699 −0.866025 + 0.500000i −0.866025 + 0.500000i
700700 0 0
701701 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
702702 0.500000 + 0.866025i 0.500000 + 0.866025i
703703 0 0
704704 0 0
705705 1.00000i 1.00000i
706706 1.73205 + 1.00000i 1.73205 + 1.00000i
707707 0 0
708708 0 0
709709 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
710710 0.866025 + 0.500000i 0.866025 + 0.500000i
711711 0 0
712712 0.866025 + 0.500000i 0.866025 + 0.500000i
713713 0 0
714714 0 0
715715 0 0
716716 0 0
717717 0 0
718718 1.00000 1.00000
719719 1.00000i 1.00000i −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 0.500000i 0.166667π-0.166667\pi
720720 0 0
721721 0 0
722722 0.500000 0.866025i 0.500000 0.866025i
723723 0.500000 + 0.866025i 0.500000 + 0.866025i
724724 0 0
725725 0 0
726726 −0.866025 0.500000i −0.866025 0.500000i
727727 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i 0.166667π-0.166667\pi
1.00000i 0.5π0.5\pi
728728 0 0
729729 −1.00000 −1.00000
730730 0.500000 + 0.866025i 0.500000 + 0.866025i
731731 1.00000i 1.00000i
732732 0 0
733733 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
734734 1.00000i 1.00000i
735735 0 0
736736 0 0
737737 0 0
738738 0 0
739739 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 00
−0.500000 + 0.866025i 0.666667π0.666667\pi
740740 0 0
741741 1.00000i 1.00000i
742742 0 0
743743 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
744744 0 0
745745 1.00000i 1.00000i
746746 0 0
747747 0 0
748748 0 0
749749 0 0
750750 −0.500000 0.866025i −0.500000 0.866025i
751751 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
752752 −0.866025 0.500000i −0.866025 0.500000i
753753 0.500000 0.866025i 0.500000 0.866025i
754754 −0.866025 0.500000i −0.866025 0.500000i
755755 0 0
756756 0 0
757757 −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i 0.333333π0.333333\pi
−1.00000 π\pi
758758 0 0
759759 0 0
760760 −0.500000 0.866025i −0.500000 0.866025i
761761 1.73205 1.00000i 1.73205 1.00000i 0.866025 0.500000i 0.166667π-0.166667\pi
0.866025 0.500000i 0.166667π-0.166667\pi
762762 0.866025 + 0.500000i 0.866025 + 0.500000i
763763 0 0
764764 0 0
765765 0 0
766766 1.00000i 1.00000i
767767 −0.500000 + 0.866025i −0.500000 + 0.866025i
768768 0 0
769769 0.866025 0.500000i 0.866025 0.500000i 1.00000i 0.5π-0.5\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
770770 0 0
771771 −1.00000 −1.00000
772772 0 0
773773 1.00000i 1.00000i 0.866025 + 0.500000i 0.166667π0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
774774 0 0
775775 0 0
776776 −0.866025 0.500000i −0.866025 0.500000i
777777 0 0
778778 1.00000 1.00000
779779 1.00000 1.00000
780780 0 0
781781 0 0
782782 1.00000i 1.00000i
783783 0.866025 0.500000i 0.866025 0.500000i
784784 0 0
785785 −0.500000 0.866025i −0.500000 0.866025i
786786 −0.500000 0.866025i −0.500000 0.866025i
787787 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
788788 0 0
789789 −0.866025 0.500000i −0.866025 0.500000i
790790 1.00000i 1.00000i
791791 0 0
792792 0 0
793793 1.00000 1.00000
794794 1.00000i 1.00000i
795795 0.500000 + 0.866025i 0.500000 + 0.866025i
796796 0 0
797797 0 0 1.00000 00
−1.00000 π\pi
798798 0 0
799799 −1.00000 −1.00000
800800 0 0
801801 0 0
802802 1.00000 1.00000
803803 0 0
804804 0 0
805805 0 0
806806 0 0
807807 −0.500000 + 0.866025i −0.500000 + 0.866025i
808808 1.00000i 1.00000i
809809 −1.00000 + 1.73205i −1.00000 + 1.73205i −0.500000 + 0.866025i 0.666667π0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
810810 −0.866025 + 0.500000i −0.866025 + 0.500000i
811811 0.866025 0.500000i 0.866025 0.500000i 1.00000i 0.5π-0.5\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
812812 0 0
813813 0.500000 + 0.866025i 0.500000 + 0.866025i
814814 0 0
815815 1.73205 1.00000i 1.73205 1.00000i
816816 −0.500000 + 0.866025i −0.500000 + 0.866025i
817817 1.00000i 1.00000i
818818 1.00000i 1.00000i
819819 0 0
820820 0 0
821821 −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i 0.333333π0.333333\pi
−1.00000 π\pi
822822 0.866025 0.500000i 0.866025 0.500000i
823823 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
824824 0 0
825825 0 0
826826 0 0
827827 −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i 0.333333π-0.333333\pi
−1.00000 π\pi
828828 0 0
829829 1.73205 + 1.00000i 1.73205 + 1.00000i 0.866025 + 0.500000i 0.166667π0.166667\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
830830 0 0
831831 0 0
832832 −0.866025 + 0.500000i −0.866025 + 0.500000i
833833 0 0
834834 −0.500000 + 0.866025i −0.500000 + 0.866025i
835835 0.500000 + 0.866025i 0.500000 + 0.866025i
836836 0 0
837837 0 0
838838 0 0
839839 −0.866025 0.500000i −0.866025 0.500000i 1.00000i 0.5π-0.5\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
840840 0 0
841841 0 0
842842 0.500000 0.866025i 0.500000 0.866025i
843843 0.866025 + 0.500000i 0.866025 + 0.500000i
844844 0 0
845845 0 0
846846 0 0
847847 0 0
848848 1.00000 1.00000
849849 −0.500000 + 0.866025i −0.500000 + 0.866025i
850850 0 0
851851 0 0
852852 0 0
853853 −0.866025 0.500000i −0.866025 0.500000i 1.00000i 0.5π-0.5\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
854854 0 0
855855 0 0
856856 0 0
857857 −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i 0.833333π-0.833333\pi
1.00000i 0.5π0.5\pi
858858 0 0
859859 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i 0.166667π-0.166667\pi
1.00000i 0.5π0.5\pi
860860 0 0
861861 0 0
862862 1.00000 1.00000
863863 0 0 0.866025 0.500000i 0.166667π-0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
864864 0 0
865865 −1.00000 −1.00000
866866 0.866025 0.500000i 0.866025 0.500000i
867867 0 0
868868 0 0
869869 0 0
870870 0.500000 0.866025i 0.500000 0.866025i
871871 −0.866025 + 0.500000i −0.866025 + 0.500000i
872872 0.500000 + 0.866025i 0.500000 + 0.866025i
873873 0 0
874874 1.00000i 1.00000i
875875 0 0
876876 0 0
877877 1.00000 1.00000 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
878878 1.00000i 1.00000i
879879 −1.00000 1.73205i −1.00000 1.73205i
880880 0 0
881881 0 0 1.00000 00
−1.00000 π\pi
882882 0 0
883883 −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i 0.333333π-0.333333\pi
−1.00000 π\pi
884884 0 0
885885 −0.866025 0.500000i −0.866025 0.500000i
886886 −0.500000 + 0.866025i −0.500000 + 0.866025i
887887 −0.866025 0.500000i −0.866025 0.500000i 1.00000i 0.5π-0.5\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
888888 0 0
889889 0 0
890890 0.500000 0.866025i 0.500000 0.866025i
891891 0 0
892892 0 0
893893 1.00000 1.00000
894894 0.866025 0.500000i 0.866025 0.500000i
895895 0 0
896896 0 0
897897 0.500000 + 0.866025i 0.500000 + 0.866025i
898898 0 0
899899 0 0
900900 0 0
901901 0.866025 0.500000i 0.866025 0.500000i
902902 0 0
903903 0 0
904904 0 0
905905 −0.500000 0.866025i −0.500000 0.866025i
906906 0 0
907907 −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i 0.333333π-0.333333\pi
−1.00000 π\pi
908908 0 0
909909 0 0
910910 0 0
911911 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
912912 0.500000 0.866025i 0.500000 0.866025i
913913 0 0
914914 0 0
915915 1.00000i 1.00000i
916916 0 0
917917 0 0
918918 0.500000 + 0.866025i 0.500000 + 0.866025i
919919 1.00000 + 1.73205i 1.00000 + 1.73205i 0.500000 + 0.866025i 0.333333π0.333333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
920920 0.866025 + 0.500000i 0.866025 + 0.500000i
921921 1.00000 1.00000
922922 −0.866025 0.500000i −0.866025 0.500000i
923923 1.00000i 1.00000i
924924 0 0
925925 0 0
926926 0 0
927927 0 0
928928 0 0
929929 1.00000i 1.00000i −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 0.500000i 0.166667π-0.166667\pi
930930 0 0
931931 0 0
932932 0 0
933933 0 0
934934 0 0
935935 0 0
936936 0 0
937937 −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i 0.833333π-0.833333\pi
1.00000i 0.5π0.5\pi
938938 0 0
939939 1.00000 1.00000
940940 0 0
941941 1.00000i 1.00000i 0.866025 + 0.500000i 0.166667π0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
942942 0.500000 0.866025i 0.500000 0.866025i
943943 −0.866025 + 0.500000i −0.866025 + 0.500000i
944944 −0.866025 + 0.500000i −0.866025 + 0.500000i
945945 0 0
946946 0 0
947947 1.00000 1.00000 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
948948 0 0
949949 −0.500000 + 0.866025i −0.500000 + 0.866025i
950950 0 0
951951 1.00000i 1.00000i
952952 0 0
953953 −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i 0.333333π0.333333\pi
−1.00000 π\pi
954954 0 0
955955 0 0
956956 0 0
957957 0 0
958958 1.00000i 1.00000i
959959 0 0
960960 −0.500000 0.866025i −0.500000 0.866025i
961961 −0.500000 0.866025i −0.500000 0.866025i
962962 0 0
963963 0 0
964964 0 0
965965 −0.866025 + 0.500000i −0.866025 + 0.500000i
966966 0 0
967967 −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i 0.333333π0.333333\pi
−1.00000 π\pi
968968 −0.500000 0.866025i −0.500000 0.866025i
969969 1.00000i 1.00000i
970970 −0.500000 + 0.866025i −0.500000 + 0.866025i
971971 1.00000i 1.00000i −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 0.500000i 0.166667π-0.166667\pi
972972 0 0
973973 0 0
974974 0 0
975975 0 0
976976 0.866025 + 0.500000i 0.866025 + 0.500000i
977977 1.00000 1.73205i 1.00000 1.73205i 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 0.866025i 0.333333π-0.333333\pi
978978 1.73205 + 1.00000i 1.73205 + 1.00000i
979979 0 0
980980 0 0
981981 0 0
982982 −0.500000 + 0.866025i −0.500000 + 0.866025i
983983 −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i 0.833333π-0.833333\pi
1.00000i 0.5π0.5\pi
984984 1.00000 1.00000
985985 0 0
986986 −0.866025 0.500000i −0.866025 0.500000i
987987 0 0
988988 0 0
989989 −0.500000 0.866025i −0.500000 0.866025i
990990 0 0
991991 −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i 0.333333π-0.333333\pi
−1.00000 π\pi
992992 0 0
993993 0 0
994994 0 0
995995 −1.00000 −1.00000
996996 0 0
997997 1.00000i 1.00000i −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 0.500000i 0.166667π-0.166667\pi
998998 −1.00000 −1.00000
999999 0 0
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 931.1.t.a.619.1 4
7.2 even 3 931.1.k.a.68.1 4
7.3 odd 6 133.1.m.a.125.1 yes 4
7.4 even 3 133.1.m.a.125.2 yes 4
7.5 odd 6 931.1.k.a.68.2 4
7.6 odd 2 inner 931.1.t.a.619.2 4
19.7 even 3 931.1.k.a.178.1 4
21.11 odd 6 1197.1.ci.c.1189.2 4
21.17 even 6 1197.1.ci.c.1189.1 4
28.3 even 6 2128.1.cy.a.657.2 4
28.11 odd 6 2128.1.cy.a.657.1 4
35.3 even 12 3325.1.bi.b.524.2 4
35.4 even 6 3325.1.bc.a.3051.1 4
35.17 even 12 3325.1.bi.a.524.1 4
35.18 odd 12 3325.1.bi.a.524.2 4
35.24 odd 6 3325.1.bc.a.3051.2 4
35.32 odd 12 3325.1.bi.b.524.1 4
133.3 even 18 2527.1.y.d.1182.2 12
133.4 even 9 2527.1.y.e.62.1 12
133.10 even 18 2527.1.y.d.2050.2 12
133.11 even 3 2527.1.d.e.1084.1 2
133.17 odd 18 2527.1.y.e.2400.2 12
133.18 odd 6 2527.1.m.d.790.1 4
133.24 odd 18 2527.1.y.e.1833.2 12
133.25 even 9 2527.1.y.e.776.2 12
133.26 odd 6 inner 931.1.t.a.558.1 4
133.31 even 6 2527.1.m.d.1014.1 4
133.32 odd 18 2527.1.y.d.776.1 12
133.45 odd 6 133.1.m.a.83.2 yes 4
133.46 odd 6 2527.1.d.b.1084.2 2
133.52 even 18 2527.1.y.d.1833.1 12
133.53 odd 18 2527.1.y.d.62.2 12
133.59 even 18 2527.1.y.d.2400.1 12
133.60 odd 18 2527.1.y.d.1182.1 12
133.66 odd 18 2527.1.y.e.2050.1 12
133.67 odd 18 2527.1.y.d.2050.1 12
133.73 odd 18 2527.1.y.e.1182.1 12
133.74 even 9 2527.1.y.e.2400.1 12
133.80 odd 18 2527.1.y.e.62.2 12
133.81 even 9 2527.1.y.e.1833.1 12
133.83 odd 6 931.1.k.a.178.2 4
133.87 odd 6 2527.1.d.e.1084.2 2
133.88 odd 6 2527.1.m.d.1014.2 4
133.94 even 6 2527.1.m.d.790.2 4
133.101 odd 18 2527.1.y.e.776.1 12
133.102 even 3 133.1.m.a.83.1 4
133.108 even 18 2527.1.y.d.776.2 12
133.109 odd 18 2527.1.y.d.1833.2 12
133.116 odd 18 2527.1.y.d.2400.2 12
133.121 even 3 inner 931.1.t.a.558.2 4
133.122 even 6 2527.1.d.b.1084.1 2
133.123 even 9 2527.1.y.e.2050.2 12
133.129 even 18 2527.1.y.d.62.1 12
133.130 even 9 2527.1.y.e.1182.2 12
399.311 even 6 1197.1.ci.c.748.2 4
399.368 odd 6 1197.1.ci.c.748.1 4
532.235 odd 6 2128.1.cy.a.881.2 4
532.311 even 6 2128.1.cy.a.881.1 4
665.102 odd 12 3325.1.bi.b.349.2 4
665.178 even 12 3325.1.bi.b.349.1 4
665.368 odd 12 3325.1.bi.a.349.1 4
665.444 odd 6 3325.1.bc.a.2876.1 4
665.577 even 12 3325.1.bi.a.349.2 4
665.634 even 6 3325.1.bc.a.2876.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
133.1.m.a.83.1 4 133.102 even 3
133.1.m.a.83.2 yes 4 133.45 odd 6
133.1.m.a.125.1 yes 4 7.3 odd 6
133.1.m.a.125.2 yes 4 7.4 even 3
931.1.k.a.68.1 4 7.2 even 3
931.1.k.a.68.2 4 7.5 odd 6
931.1.k.a.178.1 4 19.7 even 3
931.1.k.a.178.2 4 133.83 odd 6
931.1.t.a.558.1 4 133.26 odd 6 inner
931.1.t.a.558.2 4 133.121 even 3 inner
931.1.t.a.619.1 4 1.1 even 1 trivial
931.1.t.a.619.2 4 7.6 odd 2 inner
1197.1.ci.c.748.1 4 399.368 odd 6
1197.1.ci.c.748.2 4 399.311 even 6
1197.1.ci.c.1189.1 4 21.17 even 6
1197.1.ci.c.1189.2 4 21.11 odd 6
2128.1.cy.a.657.1 4 28.11 odd 6
2128.1.cy.a.657.2 4 28.3 even 6
2128.1.cy.a.881.1 4 532.311 even 6
2128.1.cy.a.881.2 4 532.235 odd 6
2527.1.d.b.1084.1 2 133.122 even 6
2527.1.d.b.1084.2 2 133.46 odd 6
2527.1.d.e.1084.1 2 133.11 even 3
2527.1.d.e.1084.2 2 133.87 odd 6
2527.1.m.d.790.1 4 133.18 odd 6
2527.1.m.d.790.2 4 133.94 even 6
2527.1.m.d.1014.1 4 133.31 even 6
2527.1.m.d.1014.2 4 133.88 odd 6
2527.1.y.d.62.1 12 133.129 even 18
2527.1.y.d.62.2 12 133.53 odd 18
2527.1.y.d.776.1 12 133.32 odd 18
2527.1.y.d.776.2 12 133.108 even 18
2527.1.y.d.1182.1 12 133.60 odd 18
2527.1.y.d.1182.2 12 133.3 even 18
2527.1.y.d.1833.1 12 133.52 even 18
2527.1.y.d.1833.2 12 133.109 odd 18
2527.1.y.d.2050.1 12 133.67 odd 18
2527.1.y.d.2050.2 12 133.10 even 18
2527.1.y.d.2400.1 12 133.59 even 18
2527.1.y.d.2400.2 12 133.116 odd 18
2527.1.y.e.62.1 12 133.4 even 9
2527.1.y.e.62.2 12 133.80 odd 18
2527.1.y.e.776.1 12 133.101 odd 18
2527.1.y.e.776.2 12 133.25 even 9
2527.1.y.e.1182.1 12 133.73 odd 18
2527.1.y.e.1182.2 12 133.130 even 9
2527.1.y.e.1833.1 12 133.81 even 9
2527.1.y.e.1833.2 12 133.24 odd 18
2527.1.y.e.2050.1 12 133.66 odd 18
2527.1.y.e.2050.2 12 133.123 even 9
2527.1.y.e.2400.1 12 133.74 even 9
2527.1.y.e.2400.2 12 133.17 odd 18
3325.1.bc.a.2876.1 4 665.444 odd 6
3325.1.bc.a.2876.2 4 665.634 even 6
3325.1.bc.a.3051.1 4 35.4 even 6
3325.1.bc.a.3051.2 4 35.24 odd 6
3325.1.bi.a.349.1 4 665.368 odd 12
3325.1.bi.a.349.2 4 665.577 even 12
3325.1.bi.a.524.1 4 35.17 even 12
3325.1.bi.a.524.2 4 35.18 odd 12
3325.1.bi.b.349.1 4 665.178 even 12
3325.1.bi.b.349.2 4 665.102 odd 12
3325.1.bi.b.524.1 4 35.32 odd 12
3325.1.bi.b.524.2 4 35.3 even 12