Properties

Label 931.1.t.a.619.1
Level $931$
Weight $1$
Character 931.619
Analytic conductor $0.465$
Analytic rank $0$
Dimension $4$
Projective image $A_{4}$
CM/RM no
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [931,1,Mod(558,931)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(931, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([5, 2]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("931.558");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 931 = 7^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 931.t (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.464629526761\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\zeta_{12})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 133)
Projective image: \(A_{4}\)
Projective field: Galois closure of 4.0.17689.1

Embedding invariants

Embedding label 619.1
Root \(0.866025 + 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 931.619
Dual form 931.1.t.a.558.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{2} +(-0.866025 + 0.500000i) q^{3} +1.00000i q^{5} +(-0.866025 + 0.500000i) q^{6} -1.00000 q^{8} +O(q^{10})\) \(q+1.00000 q^{2} +(-0.866025 + 0.500000i) q^{3} +1.00000i q^{5} +(-0.866025 + 0.500000i) q^{6} -1.00000 q^{8} +1.00000i q^{10} +(-0.866025 + 0.500000i) q^{13} +(-0.500000 - 0.866025i) q^{15} -1.00000 q^{16} +(-0.866025 + 0.500000i) q^{17} +(0.866025 - 0.500000i) q^{19} +(-0.500000 + 0.866025i) q^{23} +(0.866025 - 0.500000i) q^{24} +(-0.866025 + 0.500000i) q^{26} -1.00000i q^{27} +(0.500000 + 0.866025i) q^{29} +(-0.500000 - 0.866025i) q^{30} +(-0.866025 + 0.500000i) q^{34} +(0.866025 - 0.500000i) q^{38} +(0.500000 - 0.866025i) q^{39} -1.00000i q^{40} +(0.866025 + 0.500000i) q^{41} +(-0.500000 + 0.866025i) q^{43} +(-0.500000 + 0.866025i) q^{46} +(0.866025 + 0.500000i) q^{47} +(0.866025 - 0.500000i) q^{48} +(0.500000 - 0.866025i) q^{51} -1.00000 q^{53} -1.00000i q^{54} +(-0.500000 + 0.866025i) q^{57} +(0.500000 + 0.866025i) q^{58} +(0.866025 - 0.500000i) q^{59} +(-0.866025 - 0.500000i) q^{61} +1.00000 q^{64} +(-0.500000 - 0.866025i) q^{65} +1.00000 q^{67} -1.00000i q^{69} +(0.500000 - 0.866025i) q^{71} +(0.866025 - 0.500000i) q^{73} +(0.500000 - 0.866025i) q^{78} +1.00000 q^{79} -1.00000i q^{80} +(0.500000 + 0.866025i) q^{81} +(0.866025 + 0.500000i) q^{82} +(-0.500000 - 0.866025i) q^{85} +(-0.500000 + 0.866025i) q^{86} +(-0.866025 - 0.500000i) q^{87} +(-0.866025 - 0.500000i) q^{89} +(0.866025 + 0.500000i) q^{94} +(0.500000 + 0.866025i) q^{95} +(0.866025 + 0.500000i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{2} - 4 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 4 q + 4 q^{2} - 4 q^{8} - 2 q^{15} - 4 q^{16} - 2 q^{23} + 2 q^{29} - 2 q^{30} + 2 q^{39} - 2 q^{43} - 2 q^{46} + 2 q^{51} - 4 q^{53} - 2 q^{57} + 2 q^{58} + 4 q^{64} - 2 q^{65} + 4 q^{67} + 2 q^{71} + 2 q^{78} + 4 q^{79} + 2 q^{81} - 2 q^{85} - 2 q^{86} + 2 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/931\mathbb{Z}\right)^\times\).

\(n\) \(248\) \(344\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(3\) −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i \(-0.833333\pi\)
1.00000i \(0.5\pi\)
\(4\) 0 0
\(5\) 1.00000i 1.00000i 0.866025 + 0.500000i \(0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(6\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(7\) 0 0
\(8\) −1.00000 −1.00000
\(9\) 0 0
\(10\) 1.00000i 1.00000i
\(11\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(12\) 0 0
\(13\) −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i \(-0.833333\pi\)
1.00000i \(0.5\pi\)
\(14\) 0 0
\(15\) −0.500000 0.866025i −0.500000 0.866025i
\(16\) −1.00000 −1.00000
\(17\) −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i \(-0.833333\pi\)
1.00000i \(0.5\pi\)
\(18\) 0 0
\(19\) 0.866025 0.500000i 0.866025 0.500000i
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i \(0.333333\pi\)
−1.00000 \(\pi\)
\(24\) 0.866025 0.500000i 0.866025 0.500000i
\(25\) 0 0
\(26\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(27\) 1.00000i 1.00000i
\(28\) 0 0
\(29\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(30\) −0.500000 0.866025i −0.500000 0.866025i
\(31\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(35\) 0 0
\(36\) 0 0
\(37\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(38\) 0.866025 0.500000i 0.866025 0.500000i
\(39\) 0.500000 0.866025i 0.500000 0.866025i
\(40\) 1.00000i 1.00000i
\(41\) 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i \(-0.166667\pi\)
1.00000i \(0.5\pi\)
\(42\) 0 0
\(43\) −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i \(0.333333\pi\)
−1.00000 \(\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(47\) 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i \(-0.166667\pi\)
1.00000i \(0.5\pi\)
\(48\) 0.866025 0.500000i 0.866025 0.500000i
\(49\) 0 0
\(50\) 0 0
\(51\) 0.500000 0.866025i 0.500000 0.866025i
\(52\) 0 0
\(53\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(54\) 1.00000i 1.00000i
\(55\) 0 0
\(56\) 0 0
\(57\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(58\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(59\) 0.866025 0.500000i 0.866025 0.500000i 1.00000i \(-0.5\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(60\) 0 0
\(61\) −0.866025 0.500000i −0.866025 0.500000i 1.00000i \(-0.5\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 1.00000 1.00000
\(65\) −0.500000 0.866025i −0.500000 0.866025i
\(66\) 0 0
\(67\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(68\) 0 0
\(69\) 1.00000i 1.00000i
\(70\) 0 0
\(71\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(72\) 0 0
\(73\) 0.866025 0.500000i 0.866025 0.500000i 1.00000i \(-0.5\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 0 0
\(78\) 0.500000 0.866025i 0.500000 0.866025i
\(79\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(80\) 1.00000i 1.00000i
\(81\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(82\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(83\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(84\) 0 0
\(85\) −0.500000 0.866025i −0.500000 0.866025i
\(86\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(87\) −0.866025 0.500000i −0.866025 0.500000i
\(88\) 0 0
\(89\) −0.866025 0.500000i −0.866025 0.500000i 1.00000i \(-0.5\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(95\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(96\) 0 0
\(97\) 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i \(-0.166667\pi\)
1.00000i \(0.5\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 1.00000i 1.00000i 0.866025 + 0.500000i \(0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(102\) 0.500000 0.866025i 0.500000 0.866025i
\(103\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(104\) 0.866025 0.500000i 0.866025 0.500000i
\(105\) 0 0
\(106\) −1.00000 −1.00000
\(107\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(108\) 0 0
\(109\) −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i \(-0.333333\pi\)
−1.00000 \(\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(114\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(115\) −0.866025 0.500000i −0.866025 0.500000i
\(116\) 0 0
\(117\) 0 0
\(118\) 0.866025 0.500000i 0.866025 0.500000i
\(119\) 0 0
\(120\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(121\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(122\) −0.866025 0.500000i −0.866025 0.500000i
\(123\) −1.00000 −1.00000
\(124\) 0 0
\(125\) 1.00000i 1.00000i
\(126\) 0 0
\(127\) −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i \(-0.333333\pi\)
−1.00000 \(\pi\)
\(128\) 1.00000 1.00000
\(129\) 1.00000i 1.00000i
\(130\) −0.500000 0.866025i −0.500000 0.866025i
\(131\) 1.00000i 1.00000i 0.866025 + 0.500000i \(0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 1.00000 1.00000
\(135\) 1.00000 1.00000
\(136\) 0.866025 0.500000i 0.866025 0.500000i
\(137\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(138\) 1.00000i 1.00000i
\(139\) 0.866025 0.500000i 0.866025 0.500000i 1.00000i \(-0.5\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(140\) 0 0
\(141\) −1.00000 −1.00000
\(142\) 0.500000 0.866025i 0.500000 0.866025i
\(143\) 0 0
\(144\) 0 0
\(145\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(146\) 0.866025 0.500000i 0.866025 0.500000i
\(147\) 0 0
\(148\) 0 0
\(149\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(150\) 0 0
\(151\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(152\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i \(-0.833333\pi\)
1.00000i \(0.5\pi\)
\(158\) 1.00000 1.00000
\(159\) 0.866025 0.500000i 0.866025 0.500000i
\(160\) 0 0
\(161\) 0 0
\(162\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(163\) −1.00000 1.73205i −1.00000 1.73205i −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 0.866025i \(-0.666667\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 0.866025 0.500000i 0.866025 0.500000i 1.00000i \(-0.5\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(168\) 0 0
\(169\) 0 0
\(170\) −0.500000 0.866025i −0.500000 0.866025i
\(171\) 0 0
\(172\) 0 0
\(173\) 1.00000i 1.00000i 0.866025 + 0.500000i \(0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(174\) −0.866025 0.500000i −0.866025 0.500000i
\(175\) 0 0
\(176\) 0 0
\(177\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(178\) −0.866025 0.500000i −0.866025 0.500000i
\(179\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(180\) 0 0
\(181\) −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i \(-0.833333\pi\)
1.00000i \(0.5\pi\)
\(182\) 0 0
\(183\) 1.00000 1.00000
\(184\) 0.500000 0.866025i 0.500000 0.866025i
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 0 0
\(190\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(191\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(192\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(193\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(194\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(195\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(196\) 0 0
\(197\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(198\) 0 0
\(199\) 1.00000i 1.00000i 0.866025 + 0.500000i \(0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(200\) 0 0
\(201\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(202\) 1.00000i 1.00000i
\(203\) 0 0
\(204\) 0 0
\(205\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(206\) 0 0
\(207\) 0 0
\(208\) 0.866025 0.500000i 0.866025 0.500000i
\(209\) 0 0
\(210\) 0 0
\(211\) −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i \(0.333333\pi\)
−1.00000 \(\pi\)
\(212\) 0 0
\(213\) 1.00000i 1.00000i
\(214\) 0 0
\(215\) −0.866025 0.500000i −0.866025 0.500000i
\(216\) 1.00000i 1.00000i
\(217\) 0 0
\(218\) −0.500000 0.866025i −0.500000 0.866025i
\(219\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(220\) 0 0
\(221\) 0.500000 0.866025i 0.500000 0.866025i
\(222\) 0 0
\(223\) −0.866025 0.500000i −0.866025 0.500000i 1.00000i \(-0.5\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(228\) 0 0
\(229\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(230\) −0.866025 0.500000i −0.866025 0.500000i
\(231\) 0 0
\(232\) −0.500000 0.866025i −0.500000 0.866025i
\(233\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(234\) 0 0
\(235\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(236\) 0 0
\(237\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(238\) 0 0
\(239\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(240\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(241\) 1.00000i 1.00000i −0.866025 0.500000i \(-0.833333\pi\)
0.866025 0.500000i \(-0.166667\pi\)
\(242\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(243\) 0 0
\(244\) 0 0
\(245\) 0 0
\(246\) −1.00000 −1.00000
\(247\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(248\) 0 0
\(249\) 0 0
\(250\) 1.00000i 1.00000i
\(251\) −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i \(-0.833333\pi\)
1.00000i \(0.5\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) −0.500000 0.866025i −0.500000 0.866025i
\(255\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(256\) 0 0
\(257\) 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i \(-0.166667\pi\)
1.00000i \(0.5\pi\)
\(258\) 1.00000i 1.00000i
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) 1.00000i 1.00000i
\(263\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(264\) 0 0
\(265\) 1.00000i 1.00000i
\(266\) 0 0
\(267\) 1.00000 1.00000
\(268\) 0 0
\(269\) 0.866025 0.500000i 0.866025 0.500000i 1.00000i \(-0.5\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(270\) 1.00000 1.00000
\(271\) 1.00000i 1.00000i −0.866025 0.500000i \(-0.833333\pi\)
0.866025 0.500000i \(-0.166667\pi\)
\(272\) 0.866025 0.500000i 0.866025 0.500000i
\(273\) 0 0
\(274\) −1.00000 −1.00000
\(275\) 0 0
\(276\) 0 0
\(277\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(278\) 0.866025 0.500000i 0.866025 0.500000i
\(279\) 0 0
\(280\) 0 0
\(281\) −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i \(-0.333333\pi\)
−1.00000 \(\pi\)
\(282\) −1.00000 −1.00000
\(283\) 0.866025 0.500000i 0.866025 0.500000i 1.00000i \(-0.5\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(284\) 0 0
\(285\) −0.866025 0.500000i −0.866025 0.500000i
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 0 0
\(290\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(291\) −1.00000 −1.00000
\(292\) 0 0
\(293\) 2.00000i 2.00000i 1.00000i \(0.5\pi\)
1.00000i \(0.5\pi\)
\(294\) 0 0
\(295\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(296\) 0 0
\(297\) 0 0
\(298\) −1.00000 −1.00000
\(299\) 1.00000i 1.00000i
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) −0.500000 0.866025i −0.500000 0.866025i
\(304\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(305\) 0.500000 0.866025i 0.500000 0.866025i
\(306\) 0 0
\(307\) −0.866025 0.500000i −0.866025 0.500000i 1.00000i \(-0.5\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(312\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(313\) −0.866025 0.500000i −0.866025 0.500000i 1.00000i \(-0.5\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(314\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(315\) 0 0
\(316\) 0 0
\(317\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(318\) 0.866025 0.500000i 0.866025 0.500000i
\(319\) 0 0
\(320\) 1.00000i 1.00000i
\(321\) 0 0
\(322\) 0 0
\(323\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(324\) 0 0
\(325\) 0 0
\(326\) −1.00000 1.73205i −1.00000 1.73205i
\(327\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(328\) −0.866025 0.500000i −0.866025 0.500000i
\(329\) 0 0
\(330\) 0 0
\(331\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0.866025 0.500000i 0.866025 0.500000i
\(335\) 1.00000i 1.00000i
\(336\) 0 0
\(337\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 0 0
\(344\) 0.500000 0.866025i 0.500000 0.866025i
\(345\) 1.00000 1.00000
\(346\) 1.00000i 1.00000i
\(347\) −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i \(-0.333333\pi\)
−1.00000 \(\pi\)
\(348\) 0 0
\(349\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(350\) 0 0
\(351\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(352\) 0 0
\(353\) 1.73205 + 1.00000i 1.73205 + 1.00000i 0.866025 + 0.500000i \(0.166667\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(354\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(355\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(360\) 0 0
\(361\) 0.500000 0.866025i 0.500000 0.866025i
\(362\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(363\) −0.866025 0.500000i −0.866025 0.500000i
\(364\) 0 0
\(365\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(366\) 1.00000 1.00000
\(367\) 1.00000i 1.00000i −0.866025 0.500000i \(-0.833333\pi\)
0.866025 0.500000i \(-0.166667\pi\)
\(368\) 0.500000 0.866025i 0.500000 0.866025i
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(374\) 0 0
\(375\) −0.500000 0.866025i −0.500000 0.866025i
\(376\) −0.866025 0.500000i −0.866025 0.500000i
\(377\) −0.866025 0.500000i −0.866025 0.500000i
\(378\) 0 0
\(379\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(380\) 0 0
\(381\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(382\) 0 0
\(383\) 1.00000i 1.00000i −0.866025 0.500000i \(-0.833333\pi\)
0.866025 0.500000i \(-0.166667\pi\)
\(384\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(385\) 0 0
\(386\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(387\) 0 0
\(388\) 0 0
\(389\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(390\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(391\) 1.00000i 1.00000i
\(392\) 0 0
\(393\) −0.500000 0.866025i −0.500000 0.866025i
\(394\) 0 0
\(395\) 1.00000i 1.00000i
\(396\) 0 0
\(397\) 1.00000i 1.00000i −0.866025 0.500000i \(-0.833333\pi\)
0.866025 0.500000i \(-0.166667\pi\)
\(398\) 1.00000i 1.00000i
\(399\) 0 0
\(400\) 0 0
\(401\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(402\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(403\) 0 0
\(404\) 0 0
\(405\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(406\) 0 0
\(407\) 0 0
\(408\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(409\) 1.00000i 1.00000i −0.866025 0.500000i \(-0.833333\pi\)
0.866025 0.500000i \(-0.166667\pi\)
\(410\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(411\) 0.866025 0.500000i 0.866025 0.500000i
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(418\) 0 0
\(419\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(420\) 0 0
\(421\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(422\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(423\) 0 0
\(424\) 1.00000 1.00000
\(425\) 0 0
\(426\) 1.00000i 1.00000i
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) −0.866025 0.500000i −0.866025 0.500000i
\(431\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(432\) 1.00000i 1.00000i
\(433\) 0.866025 0.500000i 0.866025 0.500000i 1.00000i \(-0.5\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(434\) 0 0
\(435\) 0.500000 0.866025i 0.500000 0.866025i
\(436\) 0 0
\(437\) 1.00000i 1.00000i
\(438\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(439\) 1.00000i 1.00000i 0.866025 + 0.500000i \(0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0.500000 0.866025i 0.500000 0.866025i
\(443\) −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i \(0.333333\pi\)
−1.00000 \(\pi\)
\(444\) 0 0
\(445\) 0.500000 0.866025i 0.500000 0.866025i
\(446\) −0.866025 0.500000i −0.866025 0.500000i
\(447\) 0.866025 0.500000i 0.866025 0.500000i
\(448\) 0 0
\(449\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0.500000 0.866025i 0.500000 0.866025i
\(457\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(458\) 0 0
\(459\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(460\) 0 0
\(461\) −0.866025 0.500000i −0.866025 0.500000i 1.00000i \(-0.5\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(462\) 0 0
\(463\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(464\) −0.500000 0.866025i −0.500000 0.866025i
\(465\) 0 0
\(466\) 1.00000 1.00000
\(467\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(471\) 0.500000 0.866025i 0.500000 0.866025i
\(472\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(473\) 0 0
\(474\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(475\) 0 0
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 1.00000i 1.00000i −0.866025 0.500000i \(-0.833333\pi\)
0.866025 0.500000i \(-0.166667\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 1.00000i 1.00000i
\(483\) 0 0
\(484\) 0 0
\(485\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(486\) 0 0
\(487\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(488\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(489\) 1.73205 + 1.00000i 1.73205 + 1.00000i
\(490\) 0 0
\(491\) −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i \(0.333333\pi\)
−1.00000 \(\pi\)
\(492\) 0 0
\(493\) −0.866025 0.500000i −0.866025 0.500000i
\(494\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(500\) 0 0
\(501\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(502\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(503\) −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i \(-0.833333\pi\)
1.00000i \(0.5\pi\)
\(504\) 0 0
\(505\) −1.00000 −1.00000
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i \(-0.166667\pi\)
1.00000i \(0.5\pi\)
\(510\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(511\) 0 0
\(512\) −1.00000 −1.00000
\(513\) −0.500000 0.866025i −0.500000 0.866025i
\(514\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) −0.500000 0.866025i −0.500000 0.866025i
\(520\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(521\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(522\) 0 0
\(523\) −0.866025 0.500000i −0.866025 0.500000i 1.00000i \(-0.5\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(527\) 0 0
\(528\) 0 0
\(529\) 0 0
\(530\) 1.00000i 1.00000i
\(531\) 0 0
\(532\) 0 0
\(533\) −1.00000 −1.00000
\(534\) 1.00000 1.00000
\(535\) 0 0
\(536\) −1.00000 −1.00000
\(537\) 0 0
\(538\) 0.866025 0.500000i 0.866025 0.500000i
\(539\) 0 0
\(540\) 0 0
\(541\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(542\) 1.00000i 1.00000i
\(543\) 0.500000 0.866025i 0.500000 0.866025i
\(544\) 0 0
\(545\) 0.866025 0.500000i 0.866025 0.500000i
\(546\) 0 0
\(547\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(552\) 1.00000i 1.00000i
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(558\) 0 0
\(559\) 1.00000i 1.00000i
\(560\) 0 0
\(561\) 0 0
\(562\) −0.500000 0.866025i −0.500000 0.866025i
\(563\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0.866025 0.500000i 0.866025 0.500000i
\(567\) 0 0
\(568\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(569\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(570\) −0.866025 0.500000i −0.866025 0.500000i
\(571\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(578\) 0 0
\(579\) −0.866025 0.500000i −0.866025 0.500000i
\(580\) 0 0
\(581\) 0 0
\(582\) −1.00000 −1.00000
\(583\) 0 0
\(584\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(585\) 0 0
\(586\) 2.00000i 2.00000i
\(587\) 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i \(-0.166667\pi\)
1.00000i \(0.5\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(591\) 0 0
\(592\) 0 0
\(593\) −0.866025 0.500000i −0.866025 0.500000i 1.00000i \(-0.5\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −0.500000 0.866025i −0.500000 0.866025i
\(598\) 1.00000i 1.00000i
\(599\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(600\) 0 0
\(601\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(606\) −0.500000 0.866025i −0.500000 0.866025i
\(607\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0.500000 0.866025i 0.500000 0.866025i
\(611\) −1.00000 −1.00000
\(612\) 0 0
\(613\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(614\) −0.866025 0.500000i −0.866025 0.500000i
\(615\) 1.00000i 1.00000i
\(616\) 0 0
\(617\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(618\) 0 0
\(619\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(620\) 0 0
\(621\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(622\) 0 0
\(623\) 0 0
\(624\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(625\) −1.00000 −1.00000
\(626\) −0.866025 0.500000i −0.866025 0.500000i
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(632\) −1.00000 −1.00000
\(633\) 1.00000i 1.00000i
\(634\) 0.500000 0.866025i 0.500000 0.866025i
\(635\) 0.866025 0.500000i 0.866025 0.500000i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) 1.00000i 1.00000i
\(641\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(642\) 0 0
\(643\) 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i \(-0.166667\pi\)
1.00000i \(0.5\pi\)
\(644\) 0 0
\(645\) 1.00000 1.00000
\(646\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(647\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(648\) −0.500000 0.866025i −0.500000 0.866025i
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(654\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(655\) −1.00000 −1.00000
\(656\) −0.866025 0.500000i −0.866025 0.500000i
\(657\) 0 0
\(658\) 0 0
\(659\) −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i \(-0.333333\pi\)
−1.00000 \(\pi\)
\(660\) 0 0
\(661\) 1.00000i 1.00000i −0.866025 0.500000i \(-0.833333\pi\)
0.866025 0.500000i \(-0.166667\pi\)
\(662\) 0 0
\(663\) 1.00000i 1.00000i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −1.00000 −1.00000
\(668\) 0 0
\(669\) 1.00000 1.00000
\(670\) 1.00000i 1.00000i
\(671\) 0 0
\(672\) 0 0
\(673\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(674\) 0.500000 0.866025i 0.500000 0.866025i
\(675\) 0 0
\(676\) 0 0
\(677\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(681\) 0 0
\(682\) 0 0
\(683\) 1.00000 1.73205i 1.00000 1.73205i 0.500000 0.866025i \(-0.333333\pi\)
0.500000 0.866025i \(-0.333333\pi\)
\(684\) 0 0
\(685\) 1.00000i 1.00000i
\(686\) 0 0
\(687\) 0 0
\(688\) 0.500000 0.866025i 0.500000 0.866025i
\(689\) 0.866025 0.500000i 0.866025 0.500000i
\(690\) 1.00000 1.00000
\(691\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) −0.500000 0.866025i −0.500000 0.866025i
\(695\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(696\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(697\) −1.00000 −1.00000
\(698\) 0 0
\(699\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(700\) 0 0
\(701\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(702\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(703\) 0 0
\(704\) 0 0
\(705\) 1.00000i 1.00000i
\(706\) 1.73205 + 1.00000i 1.73205 + 1.00000i
\(707\) 0 0
\(708\) 0 0
\(709\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(710\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(711\) 0 0
\(712\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 1.00000 1.00000
\(719\) 1.00000i 1.00000i −0.866025 0.500000i \(-0.833333\pi\)
0.866025 0.500000i \(-0.166667\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0.500000 0.866025i 0.500000 0.866025i
\(723\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(724\) 0 0
\(725\) 0 0
\(726\) −0.866025 0.500000i −0.866025 0.500000i
\(727\) 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i \(-0.166667\pi\)
1.00000i \(0.5\pi\)
\(728\) 0 0
\(729\) −1.00000 −1.00000
\(730\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(731\) 1.00000i 1.00000i
\(732\) 0 0
\(733\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(734\) 1.00000i 1.00000i
\(735\) 0 0
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(740\) 0 0
\(741\) 1.00000i 1.00000i
\(742\) 0 0
\(743\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(744\) 0 0
\(745\) 1.00000i 1.00000i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) −0.500000 0.866025i −0.500000 0.866025i
\(751\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(752\) −0.866025 0.500000i −0.866025 0.500000i
\(753\) 0.500000 0.866025i 0.500000 0.866025i
\(754\) −0.866025 0.500000i −0.866025 0.500000i
\(755\) 0 0
\(756\) 0 0
\(757\) −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i \(0.333333\pi\)
−1.00000 \(\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) −0.500000 0.866025i −0.500000 0.866025i
\(761\) 1.73205 1.00000i 1.73205 1.00000i 0.866025 0.500000i \(-0.166667\pi\)
0.866025 0.500000i \(-0.166667\pi\)
\(762\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) 1.00000i 1.00000i
\(767\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(768\) 0 0
\(769\) 0.866025 0.500000i 0.866025 0.500000i 1.00000i \(-0.5\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(770\) 0 0
\(771\) −1.00000 −1.00000
\(772\) 0 0
\(773\) 1.00000i 1.00000i 0.866025 + 0.500000i \(0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) −0.866025 0.500000i −0.866025 0.500000i
\(777\) 0 0
\(778\) 1.00000 1.00000
\(779\) 1.00000 1.00000
\(780\) 0 0
\(781\) 0 0
\(782\) 1.00000i 1.00000i
\(783\) 0.866025 0.500000i 0.866025 0.500000i
\(784\) 0 0
\(785\) −0.500000 0.866025i −0.500000 0.866025i
\(786\) −0.500000 0.866025i −0.500000 0.866025i
\(787\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(788\) 0 0
\(789\) −0.866025 0.500000i −0.866025 0.500000i
\(790\) 1.00000i 1.00000i
\(791\) 0 0
\(792\) 0 0
\(793\) 1.00000 1.00000
\(794\) 1.00000i 1.00000i
\(795\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(796\) 0 0
\(797\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(798\) 0 0
\(799\) −1.00000 −1.00000
\(800\) 0 0
\(801\) 0 0
\(802\) 1.00000 1.00000
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(808\) 1.00000i 1.00000i
\(809\) −1.00000 + 1.73205i −1.00000 + 1.73205i −0.500000 + 0.866025i \(0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(810\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(811\) 0.866025 0.500000i 0.866025 0.500000i 1.00000i \(-0.5\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(812\) 0 0
\(813\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(814\) 0 0
\(815\) 1.73205 1.00000i 1.73205 1.00000i
\(816\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(817\) 1.00000i 1.00000i
\(818\) 1.00000i 1.00000i
\(819\) 0 0
\(820\) 0 0
\(821\) −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i \(0.333333\pi\)
−1.00000 \(\pi\)
\(822\) 0.866025 0.500000i 0.866025 0.500000i
\(823\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i \(-0.333333\pi\)
−1.00000 \(\pi\)
\(828\) 0 0
\(829\) 1.73205 + 1.00000i 1.73205 + 1.00000i 0.866025 + 0.500000i \(0.166667\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(833\) 0 0
\(834\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(835\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −0.866025 0.500000i −0.866025 0.500000i 1.00000i \(-0.5\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(840\) 0 0
\(841\) 0 0
\(842\) 0.500000 0.866025i 0.500000 0.866025i
\(843\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 0 0
\(848\) 1.00000 1.00000
\(849\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) −0.866025 0.500000i −0.866025 0.500000i 1.00000i \(-0.5\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i \(-0.833333\pi\)
1.00000i \(0.5\pi\)
\(858\) 0 0
\(859\) 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i \(-0.166667\pi\)
1.00000i \(0.5\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 1.00000 1.00000
\(863\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(864\) 0 0
\(865\) −1.00000 −1.00000
\(866\) 0.866025 0.500000i 0.866025 0.500000i
\(867\) 0 0
\(868\) 0 0
\(869\) 0 0
\(870\) 0.500000 0.866025i 0.500000 0.866025i
\(871\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(872\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(873\) 0 0
\(874\) 1.00000i 1.00000i
\(875\) 0 0
\(876\) 0 0
\(877\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(878\) 1.00000i 1.00000i
\(879\) −1.00000 1.73205i −1.00000 1.73205i
\(880\) 0 0
\(881\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(882\) 0 0
\(883\) −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i \(-0.333333\pi\)
−1.00000 \(\pi\)
\(884\) 0 0
\(885\) −0.866025 0.500000i −0.866025 0.500000i
\(886\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(887\) −0.866025 0.500000i −0.866025 0.500000i 1.00000i \(-0.5\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0.500000 0.866025i 0.500000 0.866025i
\(891\) 0 0
\(892\) 0 0
\(893\) 1.00000 1.00000
\(894\) 0.866025 0.500000i 0.866025 0.500000i
\(895\) 0 0
\(896\) 0 0
\(897\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(898\) 0 0
\(899\) 0 0
\(900\) 0 0
\(901\) 0.866025 0.500000i 0.866025 0.500000i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −0.500000 0.866025i −0.500000 0.866025i
\(906\) 0 0
\(907\) −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i \(-0.333333\pi\)
−1.00000 \(\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(912\) 0.500000 0.866025i 0.500000 0.866025i
\(913\) 0 0
\(914\) 0 0
\(915\) 1.00000i 1.00000i
\(916\) 0 0
\(917\) 0 0
\(918\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(919\) 1.00000 + 1.73205i 1.00000 + 1.73205i 0.500000 + 0.866025i \(0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(920\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(921\) 1.00000 1.00000
\(922\) −0.866025 0.500000i −0.866025 0.500000i
\(923\) 1.00000i 1.00000i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 1.00000i 1.00000i −0.866025 0.500000i \(-0.833333\pi\)
0.866025 0.500000i \(-0.166667\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i \(-0.833333\pi\)
1.00000i \(0.5\pi\)
\(938\) 0 0
\(939\) 1.00000 1.00000
\(940\) 0 0
\(941\) 1.00000i 1.00000i 0.866025 + 0.500000i \(0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(942\) 0.500000 0.866025i 0.500000 0.866025i
\(943\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(944\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(945\) 0 0
\(946\) 0 0
\(947\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(948\) 0 0
\(949\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(950\) 0 0
\(951\) 1.00000i 1.00000i
\(952\) 0 0
\(953\) −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i \(0.333333\pi\)
−1.00000 \(\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 1.00000i 1.00000i
\(959\) 0 0
\(960\) −0.500000 0.866025i −0.500000 0.866025i
\(961\) −0.500000 0.866025i −0.500000 0.866025i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(966\) 0 0
\(967\) −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i \(0.333333\pi\)
−1.00000 \(\pi\)
\(968\) −0.500000 0.866025i −0.500000 0.866025i
\(969\) 1.00000i 1.00000i
\(970\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(971\) 1.00000i 1.00000i −0.866025 0.500000i \(-0.833333\pi\)
0.866025 0.500000i \(-0.166667\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(977\) 1.00000 1.73205i 1.00000 1.73205i 0.500000 0.866025i \(-0.333333\pi\)
0.500000 0.866025i \(-0.333333\pi\)
\(978\) 1.73205 + 1.00000i 1.73205 + 1.00000i
\(979\) 0 0
\(980\) 0 0
\(981\) 0 0
\(982\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(983\) −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i \(-0.833333\pi\)
1.00000i \(0.5\pi\)
\(984\) 1.00000 1.00000
\(985\) 0 0
\(986\) −0.866025 0.500000i −0.866025 0.500000i
\(987\) 0 0
\(988\) 0 0
\(989\) −0.500000 0.866025i −0.500000 0.866025i
\(990\) 0 0
\(991\) −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i \(-0.333333\pi\)
−1.00000 \(\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −1.00000 −1.00000
\(996\) 0 0
\(997\) 1.00000i 1.00000i −0.866025 0.500000i \(-0.833333\pi\)
0.866025 0.500000i \(-0.166667\pi\)
\(998\) −1.00000 −1.00000
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 931.1.t.a.619.1 4
7.2 even 3 931.1.k.a.68.1 4
7.3 odd 6 133.1.m.a.125.1 yes 4
7.4 even 3 133.1.m.a.125.2 yes 4
7.5 odd 6 931.1.k.a.68.2 4
7.6 odd 2 inner 931.1.t.a.619.2 4
19.7 even 3 931.1.k.a.178.1 4
21.11 odd 6 1197.1.ci.c.1189.2 4
21.17 even 6 1197.1.ci.c.1189.1 4
28.3 even 6 2128.1.cy.a.657.2 4
28.11 odd 6 2128.1.cy.a.657.1 4
35.3 even 12 3325.1.bi.b.524.2 4
35.4 even 6 3325.1.bc.a.3051.1 4
35.17 even 12 3325.1.bi.a.524.1 4
35.18 odd 12 3325.1.bi.a.524.2 4
35.24 odd 6 3325.1.bc.a.3051.2 4
35.32 odd 12 3325.1.bi.b.524.1 4
133.3 even 18 2527.1.y.d.1182.2 12
133.4 even 9 2527.1.y.e.62.1 12
133.10 even 18 2527.1.y.d.2050.2 12
133.11 even 3 2527.1.d.e.1084.1 2
133.17 odd 18 2527.1.y.e.2400.2 12
133.18 odd 6 2527.1.m.d.790.1 4
133.24 odd 18 2527.1.y.e.1833.2 12
133.25 even 9 2527.1.y.e.776.2 12
133.26 odd 6 inner 931.1.t.a.558.1 4
133.31 even 6 2527.1.m.d.1014.1 4
133.32 odd 18 2527.1.y.d.776.1 12
133.45 odd 6 133.1.m.a.83.2 yes 4
133.46 odd 6 2527.1.d.b.1084.2 2
133.52 even 18 2527.1.y.d.1833.1 12
133.53 odd 18 2527.1.y.d.62.2 12
133.59 even 18 2527.1.y.d.2400.1 12
133.60 odd 18 2527.1.y.d.1182.1 12
133.66 odd 18 2527.1.y.e.2050.1 12
133.67 odd 18 2527.1.y.d.2050.1 12
133.73 odd 18 2527.1.y.e.1182.1 12
133.74 even 9 2527.1.y.e.2400.1 12
133.80 odd 18 2527.1.y.e.62.2 12
133.81 even 9 2527.1.y.e.1833.1 12
133.83 odd 6 931.1.k.a.178.2 4
133.87 odd 6 2527.1.d.e.1084.2 2
133.88 odd 6 2527.1.m.d.1014.2 4
133.94 even 6 2527.1.m.d.790.2 4
133.101 odd 18 2527.1.y.e.776.1 12
133.102 even 3 133.1.m.a.83.1 4
133.108 even 18 2527.1.y.d.776.2 12
133.109 odd 18 2527.1.y.d.1833.2 12
133.116 odd 18 2527.1.y.d.2400.2 12
133.121 even 3 inner 931.1.t.a.558.2 4
133.122 even 6 2527.1.d.b.1084.1 2
133.123 even 9 2527.1.y.e.2050.2 12
133.129 even 18 2527.1.y.d.62.1 12
133.130 even 9 2527.1.y.e.1182.2 12
399.311 even 6 1197.1.ci.c.748.2 4
399.368 odd 6 1197.1.ci.c.748.1 4
532.235 odd 6 2128.1.cy.a.881.2 4
532.311 even 6 2128.1.cy.a.881.1 4
665.102 odd 12 3325.1.bi.b.349.2 4
665.178 even 12 3325.1.bi.b.349.1 4
665.368 odd 12 3325.1.bi.a.349.1 4
665.444 odd 6 3325.1.bc.a.2876.1 4
665.577 even 12 3325.1.bi.a.349.2 4
665.634 even 6 3325.1.bc.a.2876.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
133.1.m.a.83.1 4 133.102 even 3
133.1.m.a.83.2 yes 4 133.45 odd 6
133.1.m.a.125.1 yes 4 7.3 odd 6
133.1.m.a.125.2 yes 4 7.4 even 3
931.1.k.a.68.1 4 7.2 even 3
931.1.k.a.68.2 4 7.5 odd 6
931.1.k.a.178.1 4 19.7 even 3
931.1.k.a.178.2 4 133.83 odd 6
931.1.t.a.558.1 4 133.26 odd 6 inner
931.1.t.a.558.2 4 133.121 even 3 inner
931.1.t.a.619.1 4 1.1 even 1 trivial
931.1.t.a.619.2 4 7.6 odd 2 inner
1197.1.ci.c.748.1 4 399.368 odd 6
1197.1.ci.c.748.2 4 399.311 even 6
1197.1.ci.c.1189.1 4 21.17 even 6
1197.1.ci.c.1189.2 4 21.11 odd 6
2128.1.cy.a.657.1 4 28.11 odd 6
2128.1.cy.a.657.2 4 28.3 even 6
2128.1.cy.a.881.1 4 532.311 even 6
2128.1.cy.a.881.2 4 532.235 odd 6
2527.1.d.b.1084.1 2 133.122 even 6
2527.1.d.b.1084.2 2 133.46 odd 6
2527.1.d.e.1084.1 2 133.11 even 3
2527.1.d.e.1084.2 2 133.87 odd 6
2527.1.m.d.790.1 4 133.18 odd 6
2527.1.m.d.790.2 4 133.94 even 6
2527.1.m.d.1014.1 4 133.31 even 6
2527.1.m.d.1014.2 4 133.88 odd 6
2527.1.y.d.62.1 12 133.129 even 18
2527.1.y.d.62.2 12 133.53 odd 18
2527.1.y.d.776.1 12 133.32 odd 18
2527.1.y.d.776.2 12 133.108 even 18
2527.1.y.d.1182.1 12 133.60 odd 18
2527.1.y.d.1182.2 12 133.3 even 18
2527.1.y.d.1833.1 12 133.52 even 18
2527.1.y.d.1833.2 12 133.109 odd 18
2527.1.y.d.2050.1 12 133.67 odd 18
2527.1.y.d.2050.2 12 133.10 even 18
2527.1.y.d.2400.1 12 133.59 even 18
2527.1.y.d.2400.2 12 133.116 odd 18
2527.1.y.e.62.1 12 133.4 even 9
2527.1.y.e.62.2 12 133.80 odd 18
2527.1.y.e.776.1 12 133.101 odd 18
2527.1.y.e.776.2 12 133.25 even 9
2527.1.y.e.1182.1 12 133.73 odd 18
2527.1.y.e.1182.2 12 133.130 even 9
2527.1.y.e.1833.1 12 133.81 even 9
2527.1.y.e.1833.2 12 133.24 odd 18
2527.1.y.e.2050.1 12 133.66 odd 18
2527.1.y.e.2050.2 12 133.123 even 9
2527.1.y.e.2400.1 12 133.74 even 9
2527.1.y.e.2400.2 12 133.17 odd 18
3325.1.bc.a.2876.1 4 665.444 odd 6
3325.1.bc.a.2876.2 4 665.634 even 6
3325.1.bc.a.3051.1 4 35.4 even 6
3325.1.bc.a.3051.2 4 35.24 odd 6
3325.1.bi.a.349.1 4 665.368 odd 12
3325.1.bi.a.349.2 4 665.577 even 12
3325.1.bi.a.524.1 4 35.17 even 12
3325.1.bi.a.524.2 4 35.18 odd 12
3325.1.bi.b.349.1 4 665.178 even 12
3325.1.bi.b.349.2 4 665.102 odd 12
3325.1.bi.b.524.1 4 35.32 odd 12
3325.1.bi.b.524.2 4 35.3 even 12