Properties

Label 2527.1.y.f.2400.1
Level 25272527
Weight 11
Character 2527.2400
Analytic conductor 1.2611.261
Analytic rank 00
Dimension 2424
Projective image D10D_{10}
CM discriminant -7
Inner twists 2424

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2527,1,Mod(62,2527)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2527, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([9, 16]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2527.62");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: N N == 2527=7192 2527 = 7 \cdot 19^{2}
Weight: k k == 1 1
Character orbit: [χ][\chi] == 2527.y (of order 1818, degree 66, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 1.261137286921.26113728692
Analytic rank: 00
Dimension: 2424
Relative dimension: 44 over Q(ζ18)\Q(\zeta_{18})
Coefficient field: 24.0.9606056659007943744000000000000000000.3
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x24+50x18+2375x12+6250x6+15625 x^{24} + 50x^{18} + 2375x^{12} + 6250x^{6} + 15625 Copy content Toggle raw display
Coefficient ring: Z[a1,,a4]\Z[a_1, \ldots, a_{4}]
Coefficient ring index: 1 1
Twist minimal: yes
Projective image: D10D_{10}
Projective field: Galois closure of 10.0.774773162367379.1

Embedding invariants

Embedding label 2400.1
Root 0.900539+0.755642i0.900539 + 0.755642i of defining polynomial
Character χ\chi == 2527.2400
Dual form 2527.1.y.f.776.1

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q+(1.45710+1.22265i)q2+(0.4546172.57826i)q4+(0.5000000.866025i)q7+(1.53884+2.66535i)q8+(0.766044+0.642788i)q9+(0.309017+0.535233i)q11+(0.330298+1.87322i)q14+(3.040911.10680i)q161.90211q18+(1.104670.402069i)q22+(0.280969+1.59345i)q23+(0.939693+0.342020i)q25+(2.005531.68284i)q28+(0.900539+0.755642i)q29+(2.892081.05263i)q32+(2.005531.68284i)q36+(0.107320+0.608645i)q43+(1.520450.553400i)q44+(1.538842.66535i)q46+(0.5000000.866025i)q49+(0.9510571.64728i)q50+(0.3302981.87322i)q53+3.07768q562.23607q58+(0.9396930.342020i)q63+(1.30902+2.26728i)q64+(1.45710+1.22265i)q67+(0.534434+3.03093i)q72+0.618034q77+(1.10467+0.402069i)q79+(0.173648+0.984808i)q81+(0.9005390.755642i)q86+(0.951057+1.64728i)q88+(3.98060+1.44882i)q92+(1.78740+0.650561i)q98+(0.107320+0.608645i)q99+O(q100)q+(-1.45710 + 1.22265i) q^{2} +(0.454617 - 2.57826i) q^{4} +(0.500000 - 0.866025i) q^{7} +(1.53884 + 2.66535i) q^{8} +(0.766044 + 0.642788i) q^{9} +(0.309017 + 0.535233i) q^{11} +(0.330298 + 1.87322i) q^{14} +(-3.04091 - 1.10680i) q^{16} -1.90211 q^{18} +(-1.10467 - 0.402069i) q^{22} +(-0.280969 + 1.59345i) q^{23} +(-0.939693 + 0.342020i) q^{25} +(-2.00553 - 1.68284i) q^{28} +(0.900539 + 0.755642i) q^{29} +(2.89208 - 1.05263i) q^{32} +(2.00553 - 1.68284i) q^{36} +(0.107320 + 0.608645i) q^{43} +(1.52045 - 0.553400i) q^{44} +(-1.53884 - 2.66535i) q^{46} +(-0.500000 - 0.866025i) q^{49} +(0.951057 - 1.64728i) q^{50} +(0.330298 - 1.87322i) q^{53} +3.07768 q^{56} -2.23607 q^{58} +(0.939693 - 0.342020i) q^{63} +(-1.30902 + 2.26728i) q^{64} +(1.45710 + 1.22265i) q^{67} +(-0.534434 + 3.03093i) q^{72} +0.618034 q^{77} +(1.10467 + 0.402069i) q^{79} +(0.173648 + 0.984808i) q^{81} +(-0.900539 - 0.755642i) q^{86} +(-0.951057 + 1.64728i) q^{88} +(3.98060 + 1.44882i) q^{92} +(1.78740 + 0.650561i) q^{98} +(-0.107320 + 0.608645i) q^{99} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 24q+12q76q1112q4918q6412q77+O(q100) 24 q + 12 q^{7} - 6 q^{11} - 12 q^{49} - 18 q^{64} - 12 q^{77}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/2527Z)×\left(\mathbb{Z}/2527\mathbb{Z}\right)^\times.

nn 14451445 18071807
χ(n)\chi(n) 1-1 e(79)e\left(\frac{7}{9}\right)

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 −1.45710 + 1.22265i −1.45710 + 1.22265i −0.529919 + 0.848048i 0.677778π0.677778\pi
−0.927184 + 0.374607i 0.877778π0.877778\pi
33 0 0 −0.939693 0.342020i 0.888889π-0.888889\pi
0.939693 + 0.342020i 0.111111π0.111111\pi
44 0.454617 2.57826i 0.454617 2.57826i
55 0 0 −0.173648 0.984808i 0.555556π-0.555556\pi
0.173648 + 0.984808i 0.444444π0.444444\pi
66 0 0
77 0.500000 0.866025i 0.500000 0.866025i
88 1.53884 + 2.66535i 1.53884 + 2.66535i
99 0.766044 + 0.642788i 0.766044 + 0.642788i
1010 0 0
1111 0.309017 + 0.535233i 0.309017 + 0.535233i 0.978148 0.207912i 0.0666667π-0.0666667\pi
−0.669131 + 0.743145i 0.733333π0.733333\pi
1212 0 0
1313 0 0 0.939693 0.342020i 0.111111π-0.111111\pi
−0.939693 + 0.342020i 0.888889π0.888889\pi
1414 0.330298 + 1.87322i 0.330298 + 1.87322i
1515 0 0
1616 −3.04091 1.10680i −3.04091 1.10680i
1717 0 0 0.766044 0.642788i 0.222222π-0.222222\pi
−0.766044 + 0.642788i 0.777778π0.777778\pi
1818 −1.90211 −1.90211
1919 0 0
2020 0 0
2121 0 0
2222 −1.10467 0.402069i −1.10467 0.402069i
2323 −0.280969 + 1.59345i −0.280969 + 1.59345i 0.438371 + 0.898794i 0.355556π0.355556\pi
−0.719340 + 0.694658i 0.755556π0.755556\pi
2424 0 0
2525 −0.939693 + 0.342020i −0.939693 + 0.342020i
2626 0 0
2727 0 0
2828 −2.00553 1.68284i −2.00553 1.68284i
2929 0.900539 + 0.755642i 0.900539 + 0.755642i 0.970296 0.241922i 0.0777778π-0.0777778\pi
−0.0697565 + 0.997564i 0.522222π0.522222\pi
3030 0 0
3131 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
3232 2.89208 1.05263i 2.89208 1.05263i
3333 0 0
3434 0 0
3535 0 0
3636 2.00553 1.68284i 2.00553 1.68284i
3737 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
3838 0 0
3939 0 0
4040 0 0
4141 0 0 −0.939693 0.342020i 0.888889π-0.888889\pi
0.939693 + 0.342020i 0.111111π0.111111\pi
4242 0 0
4343 0.107320 + 0.608645i 0.107320 + 0.608645i 0.990268 + 0.139173i 0.0444444π0.0444444\pi
−0.882948 + 0.469472i 0.844444π0.844444\pi
4444 1.52045 0.553400i 1.52045 0.553400i
4545 0 0
4646 −1.53884 2.66535i −1.53884 2.66535i
4747 0 0 −0.766044 0.642788i 0.777778π-0.777778\pi
0.766044 + 0.642788i 0.222222π0.222222\pi
4848 0 0
4949 −0.500000 0.866025i −0.500000 0.866025i
5050 0.951057 1.64728i 0.951057 1.64728i
5151 0 0
5252 0 0
5353 0.330298 1.87322i 0.330298 1.87322i −0.139173 0.990268i 0.544444π-0.544444\pi
0.469472 0.882948i 0.344444π-0.344444\pi
5454 0 0
5555 0 0
5656 3.07768 3.07768
5757 0 0
5858 −2.23607 −2.23607
5959 0 0 0.766044 0.642788i 0.222222π-0.222222\pi
−0.766044 + 0.642788i 0.777778π0.777778\pi
6060 0 0
6161 0 0 0.173648 0.984808i 0.444444π-0.444444\pi
−0.173648 + 0.984808i 0.555556π0.555556\pi
6262 0 0
6363 0.939693 0.342020i 0.939693 0.342020i
6464 −1.30902 + 2.26728i −1.30902 + 2.26728i
6565 0 0
6666 0 0
6767 1.45710 + 1.22265i 1.45710 + 1.22265i 0.927184 + 0.374607i 0.122222π0.122222\pi
0.529919 + 0.848048i 0.322222π0.322222\pi
6868 0 0
6969 0 0
7070 0 0
7171 0 0 0.984808 0.173648i 0.0555556π-0.0555556\pi
−0.984808 + 0.173648i 0.944444π0.944444\pi
7272 −0.534434 + 3.03093i −0.534434 + 3.03093i
7373 0 0 −0.939693 0.342020i 0.888889π-0.888889\pi
0.939693 + 0.342020i 0.111111π0.111111\pi
7474 0 0
7575 0 0
7676 0 0
7777 0.618034 0.618034
7878 0 0
7979 1.10467 + 0.402069i 1.10467 + 0.402069i 0.829038 0.559193i 0.188889π-0.188889\pi
0.275637 + 0.961262i 0.411111π0.411111\pi
8080 0 0
8181 0.173648 + 0.984808i 0.173648 + 0.984808i
8282 0 0
8383 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
8484 0 0
8585 0 0
8686 −0.900539 0.755642i −0.900539 0.755642i
8787 0 0
8888 −0.951057 + 1.64728i −0.951057 + 1.64728i
8989 0 0 0.939693 0.342020i 0.111111π-0.111111\pi
−0.939693 + 0.342020i 0.888889π0.888889\pi
9090 0 0
9191 0 0
9292 3.98060 + 1.44882i 3.98060 + 1.44882i
9393 0 0
9494 0 0
9595 0 0
9696 0 0
9797 0 0 0.766044 0.642788i 0.222222π-0.222222\pi
−0.766044 + 0.642788i 0.777778π0.777778\pi
9898 1.78740 + 0.650561i 1.78740 + 0.650561i
9999 −0.107320 + 0.608645i −0.107320 + 0.608645i
100100 0.454617 + 2.57826i 0.454617 + 2.57826i
101101 0 0 0.939693 0.342020i 0.111111π-0.111111\pi
−0.939693 + 0.342020i 0.888889π0.888889\pi
102102 0 0
103103 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
104104 0 0
105105 0 0
106106 1.80902 + 3.13331i 1.80902 + 3.13331i
107107 −0.587785 + 1.01807i −0.587785 + 1.01807i 0.406737 + 0.913545i 0.366667π0.366667\pi
−0.994522 + 0.104528i 0.966667π0.966667\pi
108108 0 0
109109 −0.204136 1.15771i −0.204136 1.15771i −0.898794 0.438371i 0.855556π-0.855556\pi
0.694658 0.719340i 0.255556π-0.255556\pi
110110 0 0
111111 0 0
112112 −2.47897 + 2.08010i −2.47897 + 2.08010i
113113 −1.17557 −1.17557 −0.587785 0.809017i 0.700000π-0.700000\pi
−0.587785 + 0.809017i 0.700000π0.700000\pi
114114 0 0
115115 0 0
116116 2.35764 1.97830i 2.35764 1.97830i
117117 0 0
118118 0 0
119119 0 0
120120 0 0
121121 0.309017 0.535233i 0.309017 0.535233i
122122 0 0
123123 0 0
124124 0 0
125125 0 0
126126 −0.951057 + 1.64728i −0.951057 + 1.64728i
127127 −1.10467 + 0.402069i −1.10467 + 0.402069i −0.829038 0.559193i 0.811111π-0.811111\pi
−0.275637 + 0.961262i 0.588889π0.588889\pi
128128 −0.330298 1.87322i −0.330298 1.87322i
129129 0 0
130130 0 0
131131 0 0 0.766044 0.642788i 0.222222π-0.222222\pi
−0.766044 + 0.642788i 0.777778π0.777778\pi
132132 0 0
133133 0 0
134134 −3.61803 −3.61803
135135 0 0
136136 0 0
137137 0.107320 0.608645i 0.107320 0.608645i −0.882948 0.469472i 0.844444π-0.844444\pi
0.990268 0.139173i 0.0444444π-0.0444444\pi
138138 0 0
139139 0 0 0.939693 0.342020i 0.111111π-0.111111\pi
−0.939693 + 0.342020i 0.888889π0.888889\pi
140140 0 0
141141 0 0
142142 0 0
143143 0 0
144144 −1.61803 2.80252i −1.61803 2.80252i
145145 0 0
146146 0 0
147147 0 0
148148 0 0
149149 1.52045 + 0.553400i 1.52045 + 0.553400i 0.961262 0.275637i 0.0888889π-0.0888889\pi
0.559193 + 0.829038i 0.311111π0.311111\pi
150150 0 0
151151 1.90211 1.90211 0.951057 0.309017i 0.100000π-0.100000\pi
0.951057 + 0.309017i 0.100000π0.100000\pi
152152 0 0
153153 0 0
154154 −0.900539 + 0.755642i −0.900539 + 0.755642i
155155 0 0
156156 0 0
157157 0 0 −0.173648 0.984808i 0.555556π-0.555556\pi
0.173648 + 0.984808i 0.444444π0.444444\pi
158158 −2.10122 + 0.764780i −2.10122 + 0.764780i
159159 0 0
160160 0 0
161161 1.23949 + 1.04005i 1.23949 + 1.04005i
162162 −1.45710 1.22265i −1.45710 1.22265i
163163 −0.809017 1.40126i −0.809017 1.40126i −0.913545 0.406737i 0.866667π-0.866667\pi
0.104528 0.994522i 0.466667π-0.466667\pi
164164 0 0
165165 0 0
166166 0 0
167167 0 0 0.173648 0.984808i 0.444444π-0.444444\pi
−0.173648 + 0.984808i 0.555556π0.555556\pi
168168 0 0
169169 0.766044 0.642788i 0.766044 0.642788i
170170 0 0
171171 0 0
172172 1.61803 1.61803
173173 0 0 0.766044 0.642788i 0.222222π-0.222222\pi
−0.766044 + 0.642788i 0.777778π0.777778\pi
174174 0 0
175175 −0.173648 + 0.984808i −0.173648 + 0.984808i
176176 −0.347296 1.96962i −0.347296 1.96962i
177177 0 0
178178 0 0
179179 0 0 0.866025 0.500000i 0.166667π-0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
180180 0 0
181181 0 0 −0.766044 0.642788i 0.777778π-0.777778\pi
0.766044 + 0.642788i 0.222222π0.222222\pi
182182 0 0
183183 0 0
184184 −4.67948 + 1.70319i −4.67948 + 1.70319i
185185 0 0
186186 0 0
187187 0 0
188188 0 0
189189 0 0
190190 0 0
191191 1.61803 1.61803 0.809017 0.587785i 0.200000π-0.200000\pi
0.809017 + 0.587785i 0.200000π0.200000\pi
192192 0 0
193193 −1.78740 0.650561i −1.78740 0.650561i −0.999391 0.0348995i 0.988889π-0.988889\pi
−0.788011 0.615661i 0.788889π-0.788889\pi
194194 0 0
195195 0 0
196196 −2.46015 + 0.895420i −2.46015 + 0.895420i
197197 −0.809017 + 1.40126i −0.809017 + 1.40126i 0.104528 + 0.994522i 0.466667π0.466667\pi
−0.913545 + 0.406737i 0.866667π0.866667\pi
198198 −0.587785 1.01807i −0.587785 1.01807i
199199 0 0 −0.766044 0.642788i 0.777778π-0.777778\pi
0.766044 + 0.642788i 0.222222π0.222222\pi
200200 −2.35764 1.97830i −2.35764 1.97830i
201201 0 0
202202 0 0
203203 1.10467 0.402069i 1.10467 0.402069i
204204 0 0
205205 0 0
206206 0 0
207207 −1.23949 + 1.04005i −1.23949 + 1.04005i
208208 0 0
209209 0 0
210210 0 0
211211 −0.900539 + 0.755642i −0.900539 + 0.755642i −0.970296 0.241922i 0.922222π-0.922222\pi
0.0697565 + 0.997564i 0.477778π0.477778\pi
212212 −4.67948 1.70319i −4.67948 1.70319i
213213 0 0
214214 −0.388289 2.20210i −0.388289 2.20210i
215215 0 0
216216 0 0
217217 0 0
218218 1.71293 + 1.43732i 1.71293 + 1.43732i
219219 0 0
220220 0 0
221221 0 0
222222 0 0
223223 0 0 −0.173648 0.984808i 0.555556π-0.555556\pi
0.173648 + 0.984808i 0.444444π0.444444\pi
224224 0.534434 3.03093i 0.534434 3.03093i
225225 −0.939693 0.342020i −0.939693 0.342020i
226226 1.71293 1.43732i 1.71293 1.43732i
227227 0 0 1.00000 00
−1.00000 π\pi
228228 0 0
229229 0 0 1.00000 00
−1.00000 π\pi
230230 0 0
231231 0 0
232232 −0.628265 + 3.56307i −0.628265 + 3.56307i
233233 −0.107320 0.608645i −0.107320 0.608645i −0.990268 0.139173i 0.955556π-0.955556\pi
0.882948 0.469472i 0.155556π-0.155556\pi
234234 0 0
235235 0 0
236236 0 0
237237 0 0
238238 0 0
239239 −0.309017 0.535233i −0.309017 0.535233i 0.669131 0.743145i 0.266667π-0.266667\pi
−0.978148 + 0.207912i 0.933333π0.933333\pi
240240 0 0
241241 0 0 0.939693 0.342020i 0.111111π-0.111111\pi
−0.939693 + 0.342020i 0.888889π0.888889\pi
242242 0.204136 + 1.15771i 0.204136 + 1.15771i
243243 0 0
244244 0 0
245245 0 0
246246 0 0
247247 0 0
248248 0 0
249249 0 0
250250 0 0
251251 0 0 0.173648 0.984808i 0.444444π-0.444444\pi
−0.173648 + 0.984808i 0.555556π0.555556\pi
252252 −0.454617 2.57826i −0.454617 2.57826i
253253 −0.939693 + 0.342020i −0.939693 + 0.342020i
254254 1.11803 1.93649i 1.11803 1.93649i
255255 0 0
256256 0.766044 + 0.642788i 0.766044 + 0.642788i
257257 0 0 −0.766044 0.642788i 0.777778π-0.777778\pi
0.766044 + 0.642788i 0.222222π0.222222\pi
258258 0 0
259259 0 0
260260 0 0
261261 0.204136 + 1.15771i 0.204136 + 1.15771i
262262 0 0
263263 −1.52045 0.553400i −1.52045 0.553400i −0.559193 0.829038i 0.688889π-0.688889\pi
−0.961262 + 0.275637i 0.911111π0.911111\pi
264264 0 0
265265 0 0
266266 0 0
267267 0 0
268268 3.81475 3.20095i 3.81475 3.20095i
269269 0 0 −0.939693 0.342020i 0.888889π-0.888889\pi
0.939693 + 0.342020i 0.111111π0.111111\pi
270270 0 0
271271 0 0 −0.173648 0.984808i 0.555556π-0.555556\pi
0.173648 + 0.984808i 0.444444π0.444444\pi
272272 0 0
273273 0 0
274274 0.587785 + 1.01807i 0.587785 + 1.01807i
275275 −0.473442 0.397265i −0.473442 0.397265i
276276 0 0
277277 0.809017 + 1.40126i 0.809017 + 1.40126i 0.913545 + 0.406737i 0.133333π0.133333\pi
−0.104528 + 0.994522i 0.533333π0.533333\pi
278278 0 0
279279 0 0
280280 0 0
281281 0 0 −0.984808 0.173648i 0.944444π-0.944444\pi
0.984808 + 0.173648i 0.0555556π0.0555556\pi
282282 0 0
283283 0 0 0.766044 0.642788i 0.222222π-0.222222\pi
−0.766044 + 0.642788i 0.777778π0.777778\pi
284284 0 0
285285 0 0
286286 0 0
287287 0 0
288288 2.89208 + 1.05263i 2.89208 + 1.05263i
289289 0.173648 0.984808i 0.173648 0.984808i
290290 0 0
291291 0 0
292292 0 0
293293 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
294294 0 0
295295 0 0
296296 0 0
297297 0 0
298298 −2.89208 + 1.05263i −2.89208 + 1.05263i
299299 0 0
300300 0 0
301301 0.580762 + 0.211380i 0.580762 + 0.211380i
302302 −2.77157 + 2.32563i −2.77157 + 2.32563i
303303 0 0
304304 0 0
305305 0 0
306306 0 0
307307 0 0 −0.939693 0.342020i 0.888889π-0.888889\pi
0.939693 + 0.342020i 0.111111π0.111111\pi
308308 0.280969 1.59345i 0.280969 1.59345i
309309 0 0
310310 0 0
311311 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
312312 0 0
313313 0 0 −0.766044 0.642788i 0.777778π-0.777778\pi
0.766044 + 0.642788i 0.222222π0.222222\pi
314314 0 0
315315 0 0
316316 1.53884 2.66535i 1.53884 2.66535i
317317 1.78740 0.650561i 1.78740 0.650561i 0.788011 0.615661i 0.211111π-0.211111\pi
0.999391 0.0348995i 0.0111111π-0.0111111\pi
318318 0 0
319319 −0.126163 + 0.715505i −0.126163 + 0.715505i
320320 0 0
321321 0 0
322322 −3.07768 −3.07768
323323 0 0
324324 2.61803 2.61803
325325 0 0
326326 2.89208 + 1.05263i 2.89208 + 1.05263i
327327 0 0
328328 0 0
329329 0 0
330330 0 0
331331 0.951057 + 1.64728i 0.951057 + 1.64728i 0.743145 + 0.669131i 0.233333π0.233333\pi
0.207912 + 0.978148i 0.433333π0.433333\pi
332332 0 0
333333 0 0
334334 0 0
335335 0 0
336336 0 0
337337 −0.330298 1.87322i −0.330298 1.87322i −0.469472 0.882948i 0.655556π-0.655556\pi
0.139173 0.990268i 0.455556π-0.455556\pi
338338 −0.330298 + 1.87322i −0.330298 + 1.87322i
339339 0 0
340340 0 0
341341 0 0
342342 0 0
343343 −1.00000 −1.00000
344344 −1.45710 + 1.22265i −1.45710 + 1.22265i
345345 0 0
346346 0 0
347347 0.280969 + 1.59345i 0.280969 + 1.59345i 0.719340 + 0.694658i 0.244444π0.244444\pi
−0.438371 + 0.898794i 0.644444π0.644444\pi
348348 0 0
349349 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
350350 −0.951057 1.64728i −0.951057 1.64728i
351351 0 0
352352 1.45710 + 1.22265i 1.45710 + 1.22265i
353353 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
354354 0 0
355355 0 0
356356 0 0
357357 0 0
358358 0 0
359359 0.473442 0.397265i 0.473442 0.397265i −0.374607 0.927184i 0.622222π-0.622222\pi
0.848048 + 0.529919i 0.177778π0.177778\pi
360360 0 0
361361 0 0
362362 0 0
363363 0 0
364364 0 0
365365 0 0
366366 0 0
367367 0 0 0.939693 0.342020i 0.111111π-0.111111\pi
−0.939693 + 0.342020i 0.888889π0.888889\pi
368368 2.61803 4.53457i 2.61803 4.53457i
369369 0 0
370370 0 0
371371 −1.45710 1.22265i −1.45710 1.22265i
372372 0 0
373373 0.587785 1.01807i 0.587785 1.01807i −0.406737 0.913545i 0.633333π-0.633333\pi
0.994522 0.104528i 0.0333333π-0.0333333\pi
374374 0 0
375375 0 0
376376 0 0
377377 0 0
378378 0 0
379379 1.17557 1.17557 0.587785 0.809017i 0.300000π-0.300000\pi
0.587785 + 0.809017i 0.300000π0.300000\pi
380380 0 0
381381 0 0
382382 −2.35764 + 1.97830i −2.35764 + 1.97830i
383383 0 0 −0.939693 0.342020i 0.888889π-0.888889\pi
0.939693 + 0.342020i 0.111111π0.111111\pi
384384 0 0
385385 0 0
386386 3.39984 1.23744i 3.39984 1.23744i
387387 −0.309017 + 0.535233i −0.309017 + 0.535233i
388388 0 0
389389 −1.53209 1.28558i −1.53209 1.28558i −0.766044 0.642788i 0.777778π-0.777778\pi
−0.766044 0.642788i 0.777778π-0.777778\pi
390390 0 0
391391 0 0
392392 1.53884 2.66535i 1.53884 2.66535i
393393 0 0
394394 −0.534434 3.03093i −0.534434 3.03093i
395395 0 0
396396 1.52045 + 0.553400i 1.52045 + 0.553400i
397397 0 0 0.766044 0.642788i 0.222222π-0.222222\pi
−0.766044 + 0.642788i 0.777778π0.777778\pi
398398 0 0
399399 0 0
400400 3.23607 3.23607
401401 0.900539 0.755642i 0.900539 0.755642i −0.0697565 0.997564i 0.522222π-0.522222\pi
0.970296 + 0.241922i 0.0777778π0.0777778\pi
402402 0 0
403403 0 0
404404 0 0
405405 0 0
406406 −1.11803 + 1.93649i −1.11803 + 1.93649i
407407 0 0
408408 0 0
409409 0 0 −0.766044 0.642788i 0.777778π-0.777778\pi
0.766044 + 0.642788i 0.222222π0.222222\pi
410410 0 0
411411 0 0
412412 0 0
413413 0 0
414414 0.534434 3.03093i 0.534434 3.03093i
415415 0 0
416416 0 0
417417 0 0
418418 0 0
419419 0 0 1.00000 00
−1.00000 π\pi
420420 0 0
421421 1.78740 + 0.650561i 1.78740 + 0.650561i 0.999391 + 0.0348995i 0.0111111π0.0111111\pi
0.788011 + 0.615661i 0.211111π0.211111\pi
422422 0.388289 2.20210i 0.388289 2.20210i
423423 0 0
424424 5.50106 2.00222i 5.50106 2.00222i
425425 0 0
426426 0 0
427427 0 0
428428 2.35764 + 1.97830i 2.35764 + 1.97830i
429429 0 0
430430 0 0
431431 −1.78740 + 0.650561i −1.78740 + 0.650561i −0.788011 + 0.615661i 0.788889π0.788889\pi
−0.999391 + 0.0348995i 0.988889π0.988889\pi
432432 0 0
433433 0 0 0.173648 0.984808i 0.444444π-0.444444\pi
−0.173648 + 0.984808i 0.555556π0.555556\pi
434434 0 0
435435 0 0
436436 −3.07768 −3.07768
437437 0 0
438438 0 0
439439 0 0 0.766044 0.642788i 0.222222π-0.222222\pi
−0.766044 + 0.642788i 0.777778π0.777778\pi
440440 0 0
441441 0.173648 0.984808i 0.173648 0.984808i
442442 0 0
443443 1.52045 0.553400i 1.52045 0.553400i 0.559193 0.829038i 0.311111π-0.311111\pi
0.961262 + 0.275637i 0.0888889π0.0888889\pi
444444 0 0
445445 0 0
446446 0 0
447447 0 0
448448 1.30902 + 2.26728i 1.30902 + 2.26728i
449449 −0.951057 + 1.64728i −0.951057 + 1.64728i −0.207912 + 0.978148i 0.566667π0.566667\pi
−0.743145 + 0.669131i 0.766667π0.766667\pi
450450 1.78740 0.650561i 1.78740 0.650561i
451451 0 0
452452 −0.534434 + 3.03093i −0.534434 + 3.03093i
453453 0 0
454454 0 0
455455 0 0
456456 0 0
457457 −0.618034 −0.618034 −0.309017 0.951057i 0.600000π-0.600000\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
458458 0 0
459459 0 0
460460 0 0
461461 0 0 −0.173648 0.984808i 0.555556π-0.555556\pi
0.173648 + 0.984808i 0.444444π0.444444\pi
462462 0 0
463463 −0.309017 + 0.535233i −0.309017 + 0.535233i −0.978148 0.207912i 0.933333π-0.933333\pi
0.669131 + 0.743145i 0.266667π0.266667\pi
464464 −1.90211 3.29456i −1.90211 3.29456i
465465 0 0
466466 0.900539 + 0.755642i 0.900539 + 0.755642i
467467 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
468468 0 0
469469 1.78740 0.650561i 1.78740 0.650561i
470470 0 0
471471 0 0
472472 0 0
473473 −0.292603 + 0.245523i −0.292603 + 0.245523i
474474 0 0
475475 0 0
476476 0 0
477477 1.45710 1.22265i 1.45710 1.22265i
478478 1.10467 + 0.402069i 1.10467 + 0.402069i
479479 0 0 0.173648 0.984808i 0.444444π-0.444444\pi
−0.173648 + 0.984808i 0.555556π0.555556\pi
480480 0 0
481481 0 0
482482 0 0
483483 0 0
484484 −1.23949 1.04005i −1.23949 1.04005i
485485 0 0
486486 0 0
487487 0.951057 1.64728i 0.951057 1.64728i 0.207912 0.978148i 0.433333π-0.433333\pi
0.743145 0.669131i 0.233333π-0.233333\pi
488488 0 0
489489 0 0
490490 0 0
491491 −1.52045 0.553400i −1.52045 0.553400i −0.559193 0.829038i 0.688889π-0.688889\pi
−0.961262 + 0.275637i 0.911111π0.911111\pi
492492 0 0
493493 0 0
494494 0 0
495495 0 0
496496 0 0
497497 0 0
498498 0 0
499499 −0.280969 1.59345i −0.280969 1.59345i −0.719340 0.694658i 0.755556π-0.755556\pi
0.438371 0.898794i 0.355556π-0.355556\pi
500500 0 0
501501 0 0
502502 0 0
503503 0 0 −0.766044 0.642788i 0.777778π-0.777778\pi
0.766044 + 0.642788i 0.222222π0.222222\pi
504504 2.35764 + 1.97830i 2.35764 + 1.97830i
505505 0 0
506506 0.951057 1.64728i 0.951057 1.64728i
507507 0 0
508508 0.534434 + 3.03093i 0.534434 + 3.03093i
509509 0 0 0.173648 0.984808i 0.444444π-0.444444\pi
−0.173648 + 0.984808i 0.555556π0.555556\pi
510510 0 0
511511 0 0
512512 0 0
513513 0 0
514514 0 0
515515 0 0
516516 0 0
517517 0 0
518518 0 0
519519 0 0
520520 0 0
521521 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
522522 −1.71293 1.43732i −1.71293 1.43732i
523523 0 0 −0.766044 0.642788i 0.777778π-0.777778\pi
0.766044 + 0.642788i 0.222222π0.222222\pi
524524 0 0
525525 0 0
526526 2.89208 1.05263i 2.89208 1.05263i
527527 0 0
528528 0 0
529529 −1.52045 0.553400i −1.52045 0.553400i
530530 0 0
531531 0 0
532532 0 0
533533 0 0
534534 0 0
535535 0 0
536536 −1.01655 + 5.76517i −1.01655 + 5.76517i
537537 0 0
538538 0 0
539539 0.309017 0.535233i 0.309017 0.535233i
540540 0 0
541541 0.473442 + 0.397265i 0.473442 + 0.397265i 0.848048 0.529919i 0.177778π-0.177778\pi
−0.374607 + 0.927184i 0.622222π0.622222\pi
542542 0 0
543543 0 0
544544 0 0
545545 0 0
546546 0 0
547547 −0.330298 + 1.87322i −0.330298 + 1.87322i 0.139173 + 0.990268i 0.455556π0.455556\pi
−0.469472 + 0.882948i 0.655556π0.655556\pi
548548 −1.52045 0.553400i −1.52045 0.553400i
549549 0 0
550550 1.17557 1.17557
551551 0 0
552552 0 0
553553 0.900539 0.755642i 0.900539 0.755642i
554554 −2.89208 1.05263i −2.89208 1.05263i
555555 0 0
556556 0 0
557557 0.580762 0.211380i 0.580762 0.211380i −0.0348995 0.999391i 0.511111π-0.511111\pi
0.615661 + 0.788011i 0.288889π0.288889\pi
558558 0 0
559559 0 0
560560 0 0
561561 0 0
562562 0 0
563563 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
564564 0 0
565565 0 0
566566 0 0
567567 0.939693 + 0.342020i 0.939693 + 0.342020i
568568 0 0
569569 −1.90211 −1.90211 −0.951057 0.309017i 0.900000π-0.900000\pi
−0.951057 + 0.309017i 0.900000π0.900000\pi
570570 0 0
571571 −1.61803 −1.61803 −0.809017 0.587785i 0.800000π-0.800000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
572572 0 0
573573 0 0
574574 0 0
575575 −0.280969 1.59345i −0.280969 1.59345i
576576 −2.46015 + 0.895420i −2.46015 + 0.895420i
577577 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
578578 0.951057 + 1.64728i 0.951057 + 1.64728i
579579 0 0
580580 0 0
581581 0 0
582582 0 0
583583 1.10467 0.402069i 1.10467 0.402069i
584584 0 0
585585 0 0
586586 0 0
587587 0 0 0.766044 0.642788i 0.222222π-0.222222\pi
−0.766044 + 0.642788i 0.777778π0.777778\pi
588588 0 0
589589 0 0
590590 0 0
591591 0 0
592592 0 0
593593 0 0 0.173648 0.984808i 0.444444π-0.444444\pi
−0.173648 + 0.984808i 0.555556π0.555556\pi
594594 0 0
595595 0 0
596596 2.11803 3.66854i 2.11803 3.66854i
597597 0 0
598598 0 0
599599 −0.900539 0.755642i −0.900539 0.755642i 0.0697565 0.997564i 0.477778π-0.477778\pi
−0.970296 + 0.241922i 0.922222π0.922222\pi
600600 0 0
601601 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
602602 −1.10467 + 0.402069i −1.10467 + 0.402069i
603603 0.330298 + 1.87322i 0.330298 + 1.87322i
604604 0.864733 4.90414i 0.864733 4.90414i
605605 0 0
606606 0 0
607607 0 0 1.00000 00
−1.00000 π\pi
608608 0 0
609609 0 0
610610 0 0
611611 0 0
612612 0 0
613613 −0.347296 1.96962i −0.347296 1.96962i −0.173648 0.984808i 0.555556π-0.555556\pi
−0.173648 0.984808i 0.555556π-0.555556\pi
614614 0 0
615615 0 0
616616 0.951057 + 1.64728i 0.951057 + 1.64728i
617617 −1.23949 1.04005i −1.23949 1.04005i −0.997564 0.0697565i 0.977778π-0.977778\pi
−0.241922 0.970296i 0.577778π-0.577778\pi
618618 0 0
619619 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
620620 0 0
621621 0 0
622622 0 0
623623 0 0
624624 0 0
625625 0.766044 0.642788i 0.766044 0.642788i
626626 0 0
627627 0 0
628628 0 0
629629 0 0
630630 0 0
631631 0.280969 1.59345i 0.280969 1.59345i −0.438371 0.898794i 0.644444π-0.644444\pi
0.719340 0.694658i 0.244444π-0.244444\pi
632632 0.628265 + 3.56307i 0.628265 + 3.56307i
633633 0 0
634634 −1.80902 + 3.13331i −1.80902 + 3.13331i
635635 0 0
636636 0 0
637637 0 0
638638 −0.690983 1.19682i −0.690983 1.19682i
639639 0 0
640640 0 0
641641 −0.330298 1.87322i −0.330298 1.87322i −0.469472 0.882948i 0.655556π-0.655556\pi
0.139173 0.990268i 0.455556π-0.455556\pi
642642 0 0
643643 0 0 −0.939693 0.342020i 0.888889π-0.888889\pi
0.939693 + 0.342020i 0.111111π0.111111\pi
644644 3.24502 2.72289i 3.24502 2.72289i
645645 0 0
646646 0 0
647647 0 0 1.00000 00
−1.00000 π\pi
648648 −2.35764 + 1.97830i −2.35764 + 1.97830i
649649 0 0
650650 0 0
651651 0 0
652652 −3.98060 + 1.44882i −3.98060 + 1.44882i
653653 −0.809017 + 1.40126i −0.809017 + 1.40126i 0.104528 + 0.994522i 0.466667π0.466667\pi
−0.913545 + 0.406737i 0.866667π0.866667\pi
654654 0 0
655655 0 0
656656 0 0
657657 0 0
658658 0 0
659659 −1.78740 + 0.650561i −1.78740 + 0.650561i −0.788011 + 0.615661i 0.788889π0.788889\pi
−0.999391 + 0.0348995i 0.988889π0.988889\pi
660660 0 0
661661 0 0 0.173648 0.984808i 0.444444π-0.444444\pi
−0.173648 + 0.984808i 0.555556π0.555556\pi
662662 −3.39984 1.23744i −3.39984 1.23744i
663663 0 0
664664 0 0
665665 0 0
666666 0 0
667667 −1.45710 + 1.22265i −1.45710 + 1.22265i
668668 0 0
669669 0 0
670670 0 0
671671 0 0
672672 0 0
673673 −0.587785 1.01807i −0.587785 1.01807i −0.994522 0.104528i 0.966667π-0.966667\pi
0.406737 0.913545i 0.366667π-0.366667\pi
674674 2.77157 + 2.32563i 2.77157 + 2.32563i
675675 0 0
676676 −1.30902 2.26728i −1.30902 2.26728i
677677 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
678678 0 0
679679 0 0
680680 0 0
681681 0 0
682682 0 0
683683 1.90211 1.90211 0.951057 0.309017i 0.100000π-0.100000\pi
0.951057 + 0.309017i 0.100000π0.100000\pi
684684 0 0
685685 0 0
686686 1.45710 1.22265i 1.45710 1.22265i
687687 0 0
688688 0.347296 1.96962i 0.347296 1.96962i
689689 0 0
690690 0 0
691691 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
692692 0 0
693693 0.473442 + 0.397265i 0.473442 + 0.397265i
694694 −2.35764 1.97830i −2.35764 1.97830i
695695 0 0
696696 0 0
697697 0 0
698698 0 0
699699 0 0
700700 2.46015 + 0.895420i 2.46015 + 0.895420i
701701 −0.473442 + 0.397265i −0.473442 + 0.397265i −0.848048 0.529919i 0.822222π-0.822222\pi
0.374607 + 0.927184i 0.377778π0.377778\pi
702702 0 0
703703 0 0
704704 −1.61803 −1.61803
705705 0 0
706706 0 0
707707 0 0
708708 0 0
709709 −0.580762 + 0.211380i −0.580762 + 0.211380i −0.615661 0.788011i 0.711111π-0.711111\pi
0.0348995 + 0.999391i 0.488889π0.488889\pi
710710 0 0
711711 0.587785 + 1.01807i 0.587785 + 1.01807i
712712 0 0
713713 0 0
714714 0 0
715715 0 0
716716 0 0
717717 0 0
718718 −0.204136 + 1.15771i −0.204136 + 1.15771i
719719 0 0 −0.939693 0.342020i 0.888889π-0.888889\pi
0.939693 + 0.342020i 0.111111π0.111111\pi
720720 0 0
721721 0 0
722722 0 0
723723 0 0
724724 0 0
725725 −1.10467 0.402069i −1.10467 0.402069i
726726 0 0
727727 0 0 −0.173648 0.984808i 0.555556π-0.555556\pi
0.173648 + 0.984808i 0.444444π0.444444\pi
728728 0 0
729729 −0.500000 + 0.866025i −0.500000 + 0.866025i
730730 0 0
731731 0 0
732732 0 0
733733 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
734734 0 0
735735 0 0
736736 0.864733 + 4.90414i 0.864733 + 4.90414i
737737 −0.204136 + 1.15771i −0.204136 + 1.15771i
738738 0 0
739739 −1.23949 + 1.04005i −1.23949 + 1.04005i −0.241922 + 0.970296i 0.577778π0.577778\pi
−0.997564 + 0.0697565i 0.977778π0.977778\pi
740740 0 0
741741 0 0
742742 3.61803 3.61803
743743 0 0 −0.642788 0.766044i 0.722222π-0.722222\pi
0.642788 + 0.766044i 0.277778π0.277778\pi
744744 0 0
745745 0 0
746746 0.388289 + 2.20210i 0.388289 + 2.20210i
747747 0 0
748748 0 0
749749 0.587785 + 1.01807i 0.587785 + 1.01807i
750750 0 0
751751 −1.45710 1.22265i −1.45710 1.22265i −0.927184 0.374607i 0.877778π-0.877778\pi
−0.529919 0.848048i 0.677778π-0.677778\pi
752752 0 0
753753 0 0
754754 0 0
755755 0 0
756756 0 0
757757 1.52045 + 0.553400i 1.52045 + 0.553400i 0.961262 0.275637i 0.0888889π-0.0888889\pi
0.559193 + 0.829038i 0.311111π0.311111\pi
758758 −1.71293 + 1.43732i −1.71293 + 1.43732i
759759 0 0
760760 0 0
761761 0 0 1.00000 00
−1.00000 π\pi
762762 0 0
763763 −1.10467 0.402069i −1.10467 0.402069i
764764 0.735585 4.17171i 0.735585 4.17171i
765765 0 0
766766 0 0
767767 0 0
768768 0 0
769769 0 0 −0.766044 0.642788i 0.777778π-0.777778\pi
0.766044 + 0.642788i 0.222222π0.222222\pi
770770 0 0
771771 0 0
772772 −2.48990 + 4.31263i −2.48990 + 4.31263i
773773 0 0 0.939693 0.342020i 0.111111π-0.111111\pi
−0.939693 + 0.342020i 0.888889π0.888889\pi
774774 −0.204136 1.15771i −0.204136 1.15771i
775775 0 0
776776 0 0
777777 0 0
778778 3.80423 3.80423
779779 0 0
780780 0 0
781781 0 0
782782 0 0
783783 0 0
784784 0.561937 + 3.18690i 0.561937 + 3.18690i
785785 0 0
786786 0 0
787787 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
788788 3.24502 + 2.72289i 3.24502 + 2.72289i
789789 0 0
790790 0 0
791791 −0.587785 + 1.01807i −0.587785 + 1.01807i
792792 −1.78740 + 0.650561i −1.78740 + 0.650561i
793793 0 0
794794 0 0
795795 0 0
796796 0 0
797797 0 0 1.00000 00
−1.00000 π\pi
798798 0 0
799799 0 0
800800 −2.35764 + 1.97830i −2.35764 + 1.97830i
801801 0 0
802802 −0.388289 + 2.20210i −0.388289 + 2.20210i
803803 0 0
804804 0 0
805805 0 0
806806 0 0
807807 0 0
808808 0 0
809809 1.00000 + 1.73205i 1.00000 + 1.73205i 0.500000 + 0.866025i 0.333333π0.333333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
810810 0 0
811811 0 0 0.939693 0.342020i 0.111111π-0.111111\pi
−0.939693 + 0.342020i 0.888889π0.888889\pi
812812 −0.534434 3.03093i −0.534434 3.03093i
813813 0 0
814814 0 0
815815 0 0
816816 0 0
817817 0 0
818818 0 0
819819 0 0
820820 0 0
821821 0.280969 1.59345i 0.280969 1.59345i −0.438371 0.898794i 0.644444π-0.644444\pi
0.719340 0.694658i 0.244444π-0.244444\pi
822822 0 0
823823 −0.580762 + 0.211380i −0.580762 + 0.211380i −0.615661 0.788011i 0.711111π-0.711111\pi
0.0348995 + 0.999391i 0.488889π0.488889\pi
824824 0 0
825825 0 0
826826 0 0
827827 −0.900539 0.755642i −0.900539 0.755642i 0.0697565 0.997564i 0.477778π-0.477778\pi
−0.970296 + 0.241922i 0.922222π0.922222\pi
828828 2.11803 + 3.66854i 2.11803 + 3.66854i
829829 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
830830 0 0
831831 0 0
832832 0 0
833833 0 0
834834 0 0
835835 0 0
836836 0 0
837837 0 0
838838 0 0
839839 0 0 −0.939693 0.342020i 0.888889π-0.888889\pi
0.939693 + 0.342020i 0.111111π0.111111\pi
840840 0 0
841841 0.0663277 + 0.376163i 0.0663277 + 0.376163i
842842 −3.39984 + 1.23744i −3.39984 + 1.23744i
843843 0 0
844844 1.53884 + 2.66535i 1.53884 + 2.66535i
845845 0 0
846846 0 0
847847 −0.309017 0.535233i −0.309017 0.535233i
848848 −3.07768 + 5.33070i −3.07768 + 5.33070i
849849 0 0
850850 0 0
851851 0 0
852852 0 0
853853 0 0 0.766044 0.642788i 0.222222π-0.222222\pi
−0.766044 + 0.642788i 0.777778π0.777778\pi
854854 0 0
855855 0 0
856856 −3.61803 −3.61803
857857 0 0 0.766044 0.642788i 0.222222π-0.222222\pi
−0.766044 + 0.642788i 0.777778π0.777778\pi
858858 0 0
859859 0 0 0.173648 0.984808i 0.444444π-0.444444\pi
−0.173648 + 0.984808i 0.555556π0.555556\pi
860860 0 0
861861 0 0
862862 1.80902 3.13331i 1.80902 3.13331i
863863 −0.587785 1.01807i −0.587785 1.01807i −0.994522 0.104528i 0.966667π-0.966667\pi
0.406737 0.913545i 0.366667π-0.366667\pi
864864 0 0
865865 0 0
866866 0 0
867867 0 0
868868 0 0
869869 0.126163 + 0.715505i 0.126163 + 0.715505i
870870 0 0
871871 0 0
872872 2.77157 2.32563i 2.77157 2.32563i
873873 0 0
874874 0 0
875875 0 0
876876 0 0
877877 1.78740 + 0.650561i 1.78740 + 0.650561i 0.999391 + 0.0348995i 0.0111111π0.0111111\pi
0.788011 + 0.615661i 0.211111π0.211111\pi
878878 0 0
879879 0 0
880880 0 0
881881 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
882882 0.951057 + 1.64728i 0.951057 + 1.64728i
883883 −1.23949 1.04005i −1.23949 1.04005i −0.997564 0.0697565i 0.977778π-0.977778\pi
−0.241922 0.970296i 0.577778π-0.577778\pi
884884 0 0
885885 0 0
886886 −1.53884 + 2.66535i −1.53884 + 2.66535i
887887 0 0 0.939693 0.342020i 0.111111π-0.111111\pi
−0.939693 + 0.342020i 0.888889π0.888889\pi
888888 0 0
889889 −0.204136 + 1.15771i −0.204136 + 1.15771i
890890 0 0
891891 −0.473442 + 0.397265i −0.473442 + 0.397265i
892892 0 0
893893 0 0
894894 0 0
895895 0 0
896896 −1.78740 0.650561i −1.78740 0.650561i
897897 0 0
898898 −0.628265 3.56307i −0.628265 3.56307i
899899 0 0
900900 −1.30902 + 2.26728i −1.30902 + 2.26728i
901901 0 0
902902 0 0
903903 0 0
904904 −1.80902 3.13331i −1.80902 3.13331i
905905 0 0
906906 0 0
907907 0 0 0.984808 0.173648i 0.0555556π-0.0555556\pi
−0.984808 + 0.173648i 0.944444π0.944444\pi
908908 0 0
909909 0 0
910910 0 0
911911 −1.90211 −1.90211 −0.951057 0.309017i 0.900000π-0.900000\pi
−0.951057 + 0.309017i 0.900000π0.900000\pi
912912 0 0
913913 0 0
914914 0.900539 0.755642i 0.900539 0.755642i
915915 0 0
916916 0 0
917917 0 0
918918 0 0
919919 0.309017 0.535233i 0.309017 0.535233i −0.669131 0.743145i 0.733333π-0.733333\pi
0.978148 + 0.207912i 0.0666667π0.0666667\pi
920920 0 0
921921 0 0
922922 0 0
923923 0 0
924924 0 0
925925 0 0
926926 −0.204136 1.15771i −0.204136 1.15771i
927927 0 0
928928 3.39984 + 1.23744i 3.39984 + 1.23744i
929929 0 0 0.766044 0.642788i 0.222222π-0.222222\pi
−0.766044 + 0.642788i 0.777778π0.777778\pi
930930 0 0
931931 0 0
932932 −1.61803 −1.61803
933933 0 0
934934 0 0
935935 0 0
936936 0 0
937937 0 0 0.939693 0.342020i 0.111111π-0.111111\pi
−0.939693 + 0.342020i 0.888889π0.888889\pi
938938 −1.80902 + 3.13331i −1.80902 + 3.13331i
939939 0 0
940940 0 0
941941 0 0 −0.766044 0.642788i 0.777778π-0.777778\pi
0.766044 + 0.642788i 0.222222π0.222222\pi
942942 0 0
943943 0 0
944944 0 0
945945 0 0
946946 0.126163 0.715505i 0.126163 0.715505i
947947 −0.580762 0.211380i −0.580762 0.211380i 0.0348995 0.999391i 0.488889π-0.488889\pi
−0.615661 + 0.788011i 0.711111π0.711111\pi
948948 0 0
949949 0 0
950950 0 0
951951 0 0
952952 0 0
953953 −1.78740 0.650561i −1.78740 0.650561i −0.999391 0.0348995i 0.988889π-0.988889\pi
−0.788011 0.615661i 0.788889π-0.788889\pi
954954 −0.628265 + 3.56307i −0.628265 + 3.56307i
955955 0 0
956956 −1.52045 + 0.553400i −1.52045 + 0.553400i
957957 0 0
958958 0 0
959959 −0.473442 0.397265i −0.473442 0.397265i
960960 0 0
961961 −0.500000 0.866025i −0.500000 0.866025i
962962 0 0
963963 −1.10467 + 0.402069i −1.10467 + 0.402069i
964964 0 0
965965 0 0
966966 0 0
967967 −0.473442 + 0.397265i −0.473442 + 0.397265i −0.848048 0.529919i 0.822222π-0.822222\pi
0.374607 + 0.927184i 0.377778π0.377778\pi
968968 1.90211 1.90211
969969 0 0
970970 0 0
971971 0 0 0.766044 0.642788i 0.222222π-0.222222\pi
−0.766044 + 0.642788i 0.777778π0.777778\pi
972972 0 0
973973 0 0
974974 0.628265 + 3.56307i 0.628265 + 3.56307i
975975 0 0
976976 0 0
977977 −0.587785 1.01807i −0.587785 1.01807i −0.994522 0.104528i 0.966667π-0.966667\pi
0.406737 0.913545i 0.366667π-0.366667\pi
978978 0 0
979979 0 0
980980 0 0
981981 0.587785 1.01807i 0.587785 1.01807i
982982 2.89208 1.05263i 2.89208 1.05263i
983983 0 0 −0.173648 0.984808i 0.555556π-0.555556\pi
0.173648 + 0.984808i 0.444444π0.444444\pi
984984 0 0
985985 0 0
986986 0 0
987987 0 0
988988 0 0
989989 −1.00000 −1.00000
990990 0 0
991991 0 0 0.342020 0.939693i 0.388889π-0.388889\pi
−0.342020 + 0.939693i 0.611111π0.611111\pi
992992 0 0
993993 0 0
994994 0 0
995995 0 0
996996 0 0
997997 0 0 −0.766044 0.642788i 0.777778π-0.777778\pi
0.766044 + 0.642788i 0.222222π0.222222\pi
998998 2.35764 + 1.97830i 2.35764 + 1.97830i
999999 0 0
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2527.1.y.f.2400.1 24
7.6 odd 2 CM 2527.1.y.f.2400.1 24
19.2 odd 18 inner 2527.1.y.f.62.1 24
19.3 odd 18 inner 2527.1.y.f.776.4 24
19.4 even 9 2527.1.d.f.1084.1 4
19.5 even 9 inner 2527.1.y.f.2050.1 24
19.6 even 9 2527.1.m.e.1014.4 8
19.7 even 3 inner 2527.1.y.f.1833.1 24
19.8 odd 6 inner 2527.1.y.f.1182.1 24
19.9 even 9 2527.1.m.e.790.4 8
19.10 odd 18 2527.1.m.e.790.1 8
19.11 even 3 inner 2527.1.y.f.1182.4 24
19.12 odd 6 inner 2527.1.y.f.1833.4 24
19.13 odd 18 2527.1.m.e.1014.1 8
19.14 odd 18 inner 2527.1.y.f.2050.4 24
19.15 odd 18 2527.1.d.f.1084.4 yes 4
19.16 even 9 inner 2527.1.y.f.776.1 24
19.17 even 9 inner 2527.1.y.f.62.4 24
19.18 odd 2 inner 2527.1.y.f.2400.4 24
133.6 odd 18 2527.1.m.e.1014.4 8
133.13 even 18 2527.1.m.e.1014.1 8
133.27 even 6 inner 2527.1.y.f.1182.1 24
133.34 even 18 2527.1.d.f.1084.4 yes 4
133.41 even 18 inner 2527.1.y.f.776.4 24
133.48 even 18 2527.1.m.e.790.1 8
133.55 odd 18 inner 2527.1.y.f.62.4 24
133.62 odd 18 inner 2527.1.y.f.2050.1 24
133.69 even 6 inner 2527.1.y.f.1833.4 24
133.83 odd 6 inner 2527.1.y.f.1833.1 24
133.90 even 18 inner 2527.1.y.f.2050.4 24
133.97 even 18 inner 2527.1.y.f.62.1 24
133.104 odd 18 2527.1.m.e.790.4 8
133.111 odd 18 inner 2527.1.y.f.776.1 24
133.118 odd 18 2527.1.d.f.1084.1 4
133.125 odd 6 inner 2527.1.y.f.1182.4 24
133.132 even 2 inner 2527.1.y.f.2400.4 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2527.1.d.f.1084.1 4 19.4 even 9
2527.1.d.f.1084.1 4 133.118 odd 18
2527.1.d.f.1084.4 yes 4 19.15 odd 18
2527.1.d.f.1084.4 yes 4 133.34 even 18
2527.1.m.e.790.1 8 19.10 odd 18
2527.1.m.e.790.1 8 133.48 even 18
2527.1.m.e.790.4 8 19.9 even 9
2527.1.m.e.790.4 8 133.104 odd 18
2527.1.m.e.1014.1 8 19.13 odd 18
2527.1.m.e.1014.1 8 133.13 even 18
2527.1.m.e.1014.4 8 19.6 even 9
2527.1.m.e.1014.4 8 133.6 odd 18
2527.1.y.f.62.1 24 19.2 odd 18 inner
2527.1.y.f.62.1 24 133.97 even 18 inner
2527.1.y.f.62.4 24 19.17 even 9 inner
2527.1.y.f.62.4 24 133.55 odd 18 inner
2527.1.y.f.776.1 24 19.16 even 9 inner
2527.1.y.f.776.1 24 133.111 odd 18 inner
2527.1.y.f.776.4 24 19.3 odd 18 inner
2527.1.y.f.776.4 24 133.41 even 18 inner
2527.1.y.f.1182.1 24 19.8 odd 6 inner
2527.1.y.f.1182.1 24 133.27 even 6 inner
2527.1.y.f.1182.4 24 19.11 even 3 inner
2527.1.y.f.1182.4 24 133.125 odd 6 inner
2527.1.y.f.1833.1 24 19.7 even 3 inner
2527.1.y.f.1833.1 24 133.83 odd 6 inner
2527.1.y.f.1833.4 24 19.12 odd 6 inner
2527.1.y.f.1833.4 24 133.69 even 6 inner
2527.1.y.f.2050.1 24 19.5 even 9 inner
2527.1.y.f.2050.1 24 133.62 odd 18 inner
2527.1.y.f.2050.4 24 19.14 odd 18 inner
2527.1.y.f.2050.4 24 133.90 even 18 inner
2527.1.y.f.2400.1 24 1.1 even 1 trivial
2527.1.y.f.2400.1 24 7.6 odd 2 CM
2527.1.y.f.2400.4 24 19.18 odd 2 inner
2527.1.y.f.2400.4 24 133.132 even 2 inner