Properties

Label 2527.1.y.f.2400.1
Level $2527$
Weight $1$
Character 2527.2400
Analytic conductor $1.261$
Analytic rank $0$
Dimension $24$
Projective image $D_{10}$
CM discriminant -7
Inner twists $24$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2527,1,Mod(62,2527)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2527, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([9, 16]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2527.62");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2527 = 7 \cdot 19^{2} \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 2527.y (of order \(18\), degree \(6\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.26113728692\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(4\) over \(\Q(\zeta_{18})\)
Coefficient field: 24.0.9606056659007943744000000000000000000.3
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{24} + 50x^{18} + 2375x^{12} + 6250x^{6} + 15625 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{10}\)
Projective field: Galois closure of 10.0.774773162367379.1

Embedding invariants

Embedding label 2400.1
Root \(0.900539 + 0.755642i\) of defining polynomial
Character \(\chi\) \(=\) 2527.2400
Dual form 2527.1.y.f.776.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.45710 + 1.22265i) q^{2} +(0.454617 - 2.57826i) q^{4} +(0.500000 - 0.866025i) q^{7} +(1.53884 + 2.66535i) q^{8} +(0.766044 + 0.642788i) q^{9} +O(q^{10})\) \(q+(-1.45710 + 1.22265i) q^{2} +(0.454617 - 2.57826i) q^{4} +(0.500000 - 0.866025i) q^{7} +(1.53884 + 2.66535i) q^{8} +(0.766044 + 0.642788i) q^{9} +(0.309017 + 0.535233i) q^{11} +(0.330298 + 1.87322i) q^{14} +(-3.04091 - 1.10680i) q^{16} -1.90211 q^{18} +(-1.10467 - 0.402069i) q^{22} +(-0.280969 + 1.59345i) q^{23} +(-0.939693 + 0.342020i) q^{25} +(-2.00553 - 1.68284i) q^{28} +(0.900539 + 0.755642i) q^{29} +(2.89208 - 1.05263i) q^{32} +(2.00553 - 1.68284i) q^{36} +(0.107320 + 0.608645i) q^{43} +(1.52045 - 0.553400i) q^{44} +(-1.53884 - 2.66535i) q^{46} +(-0.500000 - 0.866025i) q^{49} +(0.951057 - 1.64728i) q^{50} +(0.330298 - 1.87322i) q^{53} +3.07768 q^{56} -2.23607 q^{58} +(0.939693 - 0.342020i) q^{63} +(-1.30902 + 2.26728i) q^{64} +(1.45710 + 1.22265i) q^{67} +(-0.534434 + 3.03093i) q^{72} +0.618034 q^{77} +(1.10467 + 0.402069i) q^{79} +(0.173648 + 0.984808i) q^{81} +(-0.900539 - 0.755642i) q^{86} +(-0.951057 + 1.64728i) q^{88} +(3.98060 + 1.44882i) q^{92} +(1.78740 + 0.650561i) q^{98} +(-0.107320 + 0.608645i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + 12 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( 24 q + 12 q^{7} - 6 q^{11} - 12 q^{49} - 18 q^{64} - 12 q^{77}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2527\mathbb{Z}\right)^\times\).

\(n\) \(1445\) \(1807\)
\(\chi(n)\) \(-1\) \(e\left(\frac{7}{9}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.45710 + 1.22265i −1.45710 + 1.22265i −0.529919 + 0.848048i \(0.677778\pi\)
−0.927184 + 0.374607i \(0.877778\pi\)
\(3\) 0 0 −0.939693 0.342020i \(-0.888889\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(4\) 0.454617 2.57826i 0.454617 2.57826i
\(5\) 0 0 −0.173648 0.984808i \(-0.555556\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(6\) 0 0
\(7\) 0.500000 0.866025i 0.500000 0.866025i
\(8\) 1.53884 + 2.66535i 1.53884 + 2.66535i
\(9\) 0.766044 + 0.642788i 0.766044 + 0.642788i
\(10\) 0 0
\(11\) 0.309017 + 0.535233i 0.309017 + 0.535233i 0.978148 0.207912i \(-0.0666667\pi\)
−0.669131 + 0.743145i \(0.733333\pi\)
\(12\) 0 0
\(13\) 0 0 0.939693 0.342020i \(-0.111111\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(14\) 0.330298 + 1.87322i 0.330298 + 1.87322i
\(15\) 0 0
\(16\) −3.04091 1.10680i −3.04091 1.10680i
\(17\) 0 0 0.766044 0.642788i \(-0.222222\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(18\) −1.90211 −1.90211
\(19\) 0 0
\(20\) 0 0
\(21\) 0 0
\(22\) −1.10467 0.402069i −1.10467 0.402069i
\(23\) −0.280969 + 1.59345i −0.280969 + 1.59345i 0.438371 + 0.898794i \(0.355556\pi\)
−0.719340 + 0.694658i \(0.755556\pi\)
\(24\) 0 0
\(25\) −0.939693 + 0.342020i −0.939693 + 0.342020i
\(26\) 0 0
\(27\) 0 0
\(28\) −2.00553 1.68284i −2.00553 1.68284i
\(29\) 0.900539 + 0.755642i 0.900539 + 0.755642i 0.970296 0.241922i \(-0.0777778\pi\)
−0.0697565 + 0.997564i \(0.522222\pi\)
\(30\) 0 0
\(31\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(32\) 2.89208 1.05263i 2.89208 1.05263i
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 2.00553 1.68284i 2.00553 1.68284i
\(37\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 0 0 −0.939693 0.342020i \(-0.888889\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(42\) 0 0
\(43\) 0.107320 + 0.608645i 0.107320 + 0.608645i 0.990268 + 0.139173i \(0.0444444\pi\)
−0.882948 + 0.469472i \(0.844444\pi\)
\(44\) 1.52045 0.553400i 1.52045 0.553400i
\(45\) 0 0
\(46\) −1.53884 2.66535i −1.53884 2.66535i
\(47\) 0 0 −0.766044 0.642788i \(-0.777778\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(48\) 0 0
\(49\) −0.500000 0.866025i −0.500000 0.866025i
\(50\) 0.951057 1.64728i 0.951057 1.64728i
\(51\) 0 0
\(52\) 0 0
\(53\) 0.330298 1.87322i 0.330298 1.87322i −0.139173 0.990268i \(-0.544444\pi\)
0.469472 0.882948i \(-0.344444\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 3.07768 3.07768
\(57\) 0 0
\(58\) −2.23607 −2.23607
\(59\) 0 0 0.766044 0.642788i \(-0.222222\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(60\) 0 0
\(61\) 0 0 0.173648 0.984808i \(-0.444444\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(62\) 0 0
\(63\) 0.939693 0.342020i 0.939693 0.342020i
\(64\) −1.30902 + 2.26728i −1.30902 + 2.26728i
\(65\) 0 0
\(66\) 0 0
\(67\) 1.45710 + 1.22265i 1.45710 + 1.22265i 0.927184 + 0.374607i \(0.122222\pi\)
0.529919 + 0.848048i \(0.322222\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 0.984808 0.173648i \(-0.0555556\pi\)
−0.984808 + 0.173648i \(0.944444\pi\)
\(72\) −0.534434 + 3.03093i −0.534434 + 3.03093i
\(73\) 0 0 −0.939693 0.342020i \(-0.888889\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 0.618034 0.618034
\(78\) 0 0
\(79\) 1.10467 + 0.402069i 1.10467 + 0.402069i 0.829038 0.559193i \(-0.188889\pi\)
0.275637 + 0.961262i \(0.411111\pi\)
\(80\) 0 0
\(81\) 0.173648 + 0.984808i 0.173648 + 0.984808i
\(82\) 0 0
\(83\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) −0.900539 0.755642i −0.900539 0.755642i
\(87\) 0 0
\(88\) −0.951057 + 1.64728i −0.951057 + 1.64728i
\(89\) 0 0 0.939693 0.342020i \(-0.111111\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 3.98060 + 1.44882i 3.98060 + 1.44882i
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 0 0 0.766044 0.642788i \(-0.222222\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(98\) 1.78740 + 0.650561i 1.78740 + 0.650561i
\(99\) −0.107320 + 0.608645i −0.107320 + 0.608645i
\(100\) 0.454617 + 2.57826i 0.454617 + 2.57826i
\(101\) 0 0 0.939693 0.342020i \(-0.111111\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(102\) 0 0
\(103\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 1.80902 + 3.13331i 1.80902 + 3.13331i
\(107\) −0.587785 + 1.01807i −0.587785 + 1.01807i 0.406737 + 0.913545i \(0.366667\pi\)
−0.994522 + 0.104528i \(0.966667\pi\)
\(108\) 0 0
\(109\) −0.204136 1.15771i −0.204136 1.15771i −0.898794 0.438371i \(-0.855556\pi\)
0.694658 0.719340i \(-0.255556\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) −2.47897 + 2.08010i −2.47897 + 2.08010i
\(113\) −1.17557 −1.17557 −0.587785 0.809017i \(-0.700000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 2.35764 1.97830i 2.35764 1.97830i
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 0.309017 0.535233i 0.309017 0.535233i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 0 0
\(126\) −0.951057 + 1.64728i −0.951057 + 1.64728i
\(127\) −1.10467 + 0.402069i −1.10467 + 0.402069i −0.829038 0.559193i \(-0.811111\pi\)
−0.275637 + 0.961262i \(0.588889\pi\)
\(128\) −0.330298 1.87322i −0.330298 1.87322i
\(129\) 0 0
\(130\) 0 0
\(131\) 0 0 0.766044 0.642788i \(-0.222222\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) −3.61803 −3.61803
\(135\) 0 0
\(136\) 0 0
\(137\) 0.107320 0.608645i 0.107320 0.608645i −0.882948 0.469472i \(-0.844444\pi\)
0.990268 0.139173i \(-0.0444444\pi\)
\(138\) 0 0
\(139\) 0 0 0.939693 0.342020i \(-0.111111\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) −1.61803 2.80252i −1.61803 2.80252i
\(145\) 0 0
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 1.52045 + 0.553400i 1.52045 + 0.553400i 0.961262 0.275637i \(-0.0888889\pi\)
0.559193 + 0.829038i \(0.311111\pi\)
\(150\) 0 0
\(151\) 1.90211 1.90211 0.951057 0.309017i \(-0.100000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) −0.900539 + 0.755642i −0.900539 + 0.755642i
\(155\) 0 0
\(156\) 0 0
\(157\) 0 0 −0.173648 0.984808i \(-0.555556\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(158\) −2.10122 + 0.764780i −2.10122 + 0.764780i
\(159\) 0 0
\(160\) 0 0
\(161\) 1.23949 + 1.04005i 1.23949 + 1.04005i
\(162\) −1.45710 1.22265i −1.45710 1.22265i
\(163\) −0.809017 1.40126i −0.809017 1.40126i −0.913545 0.406737i \(-0.866667\pi\)
0.104528 0.994522i \(-0.466667\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 0 0 0.173648 0.984808i \(-0.444444\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(168\) 0 0
\(169\) 0.766044 0.642788i 0.766044 0.642788i
\(170\) 0 0
\(171\) 0 0
\(172\) 1.61803 1.61803
\(173\) 0 0 0.766044 0.642788i \(-0.222222\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(174\) 0 0
\(175\) −0.173648 + 0.984808i −0.173648 + 0.984808i
\(176\) −0.347296 1.96962i −0.347296 1.96962i
\(177\) 0 0
\(178\) 0 0
\(179\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(180\) 0 0
\(181\) 0 0 −0.766044 0.642788i \(-0.777778\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) −4.67948 + 1.70319i −4.67948 + 1.70319i
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 1.61803 1.61803 0.809017 0.587785i \(-0.200000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(192\) 0 0
\(193\) −1.78740 0.650561i −1.78740 0.650561i −0.999391 0.0348995i \(-0.988889\pi\)
−0.788011 0.615661i \(-0.788889\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) −2.46015 + 0.895420i −2.46015 + 0.895420i
\(197\) −0.809017 + 1.40126i −0.809017 + 1.40126i 0.104528 + 0.994522i \(0.466667\pi\)
−0.913545 + 0.406737i \(0.866667\pi\)
\(198\) −0.587785 1.01807i −0.587785 1.01807i
\(199\) 0 0 −0.766044 0.642788i \(-0.777778\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(200\) −2.35764 1.97830i −2.35764 1.97830i
\(201\) 0 0
\(202\) 0 0
\(203\) 1.10467 0.402069i 1.10467 0.402069i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) −1.23949 + 1.04005i −1.23949 + 1.04005i
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) −0.900539 + 0.755642i −0.900539 + 0.755642i −0.970296 0.241922i \(-0.922222\pi\)
0.0697565 + 0.997564i \(0.477778\pi\)
\(212\) −4.67948 1.70319i −4.67948 1.70319i
\(213\) 0 0
\(214\) −0.388289 2.20210i −0.388289 2.20210i
\(215\) 0 0
\(216\) 0 0
\(217\) 0 0
\(218\) 1.71293 + 1.43732i 1.71293 + 1.43732i
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 0 0 −0.173648 0.984808i \(-0.555556\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(224\) 0.534434 3.03093i 0.534434 3.03093i
\(225\) −0.939693 0.342020i −0.939693 0.342020i
\(226\) 1.71293 1.43732i 1.71293 1.43732i
\(227\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(228\) 0 0
\(229\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) −0.628265 + 3.56307i −0.628265 + 3.56307i
\(233\) −0.107320 0.608645i −0.107320 0.608645i −0.990268 0.139173i \(-0.955556\pi\)
0.882948 0.469472i \(-0.155556\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −0.309017 0.535233i −0.309017 0.535233i 0.669131 0.743145i \(-0.266667\pi\)
−0.978148 + 0.207912i \(0.933333\pi\)
\(240\) 0 0
\(241\) 0 0 0.939693 0.342020i \(-0.111111\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(242\) 0.204136 + 1.15771i 0.204136 + 1.15771i
\(243\) 0 0
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 0 0 0.173648 0.984808i \(-0.444444\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(252\) −0.454617 2.57826i −0.454617 2.57826i
\(253\) −0.939693 + 0.342020i −0.939693 + 0.342020i
\(254\) 1.11803 1.93649i 1.11803 1.93649i
\(255\) 0 0
\(256\) 0.766044 + 0.642788i 0.766044 + 0.642788i
\(257\) 0 0 −0.766044 0.642788i \(-0.777778\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 0.204136 + 1.15771i 0.204136 + 1.15771i
\(262\) 0 0
\(263\) −1.52045 0.553400i −1.52045 0.553400i −0.559193 0.829038i \(-0.688889\pi\)
−0.961262 + 0.275637i \(0.911111\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 3.81475 3.20095i 3.81475 3.20095i
\(269\) 0 0 −0.939693 0.342020i \(-0.888889\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(270\) 0 0
\(271\) 0 0 −0.173648 0.984808i \(-0.555556\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0.587785 + 1.01807i 0.587785 + 1.01807i
\(275\) −0.473442 0.397265i −0.473442 0.397265i
\(276\) 0 0
\(277\) 0.809017 + 1.40126i 0.809017 + 1.40126i 0.913545 + 0.406737i \(0.133333\pi\)
−0.104528 + 0.994522i \(0.533333\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 0 0 −0.984808 0.173648i \(-0.944444\pi\)
0.984808 + 0.173648i \(0.0555556\pi\)
\(282\) 0 0
\(283\) 0 0 0.766044 0.642788i \(-0.222222\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 2.89208 + 1.05263i 2.89208 + 1.05263i
\(289\) 0.173648 0.984808i 0.173648 0.984808i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) −2.89208 + 1.05263i −2.89208 + 1.05263i
\(299\) 0 0
\(300\) 0 0
\(301\) 0.580762 + 0.211380i 0.580762 + 0.211380i
\(302\) −2.77157 + 2.32563i −2.77157 + 2.32563i
\(303\) 0 0
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 0 0 −0.939693 0.342020i \(-0.888889\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(308\) 0.280969 1.59345i 0.280969 1.59345i
\(309\) 0 0
\(310\) 0 0
\(311\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(312\) 0 0
\(313\) 0 0 −0.766044 0.642788i \(-0.777778\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 1.53884 2.66535i 1.53884 2.66535i
\(317\) 1.78740 0.650561i 1.78740 0.650561i 0.788011 0.615661i \(-0.211111\pi\)
0.999391 0.0348995i \(-0.0111111\pi\)
\(318\) 0 0
\(319\) −0.126163 + 0.715505i −0.126163 + 0.715505i
\(320\) 0 0
\(321\) 0 0
\(322\) −3.07768 −3.07768
\(323\) 0 0
\(324\) 2.61803 2.61803
\(325\) 0 0
\(326\) 2.89208 + 1.05263i 2.89208 + 1.05263i
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 0.951057 + 1.64728i 0.951057 + 1.64728i 0.743145 + 0.669131i \(0.233333\pi\)
0.207912 + 0.978148i \(0.433333\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) −0.330298 1.87322i −0.330298 1.87322i −0.469472 0.882948i \(-0.655556\pi\)
0.139173 0.990268i \(-0.455556\pi\)
\(338\) −0.330298 + 1.87322i −0.330298 + 1.87322i
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) −1.00000 −1.00000
\(344\) −1.45710 + 1.22265i −1.45710 + 1.22265i
\(345\) 0 0
\(346\) 0 0
\(347\) 0.280969 + 1.59345i 0.280969 + 1.59345i 0.719340 + 0.694658i \(0.244444\pi\)
−0.438371 + 0.898794i \(0.644444\pi\)
\(348\) 0 0
\(349\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(350\) −0.951057 1.64728i −0.951057 1.64728i
\(351\) 0 0
\(352\) 1.45710 + 1.22265i 1.45710 + 1.22265i
\(353\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 0.473442 0.397265i 0.473442 0.397265i −0.374607 0.927184i \(-0.622222\pi\)
0.848048 + 0.529919i \(0.177778\pi\)
\(360\) 0 0
\(361\) 0 0
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 0 0 0.939693 0.342020i \(-0.111111\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(368\) 2.61803 4.53457i 2.61803 4.53457i
\(369\) 0 0
\(370\) 0 0
\(371\) −1.45710 1.22265i −1.45710 1.22265i
\(372\) 0 0
\(373\) 0.587785 1.01807i 0.587785 1.01807i −0.406737 0.913545i \(-0.633333\pi\)
0.994522 0.104528i \(-0.0333333\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 1.17557 1.17557 0.587785 0.809017i \(-0.300000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) −2.35764 + 1.97830i −2.35764 + 1.97830i
\(383\) 0 0 −0.939693 0.342020i \(-0.888889\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 3.39984 1.23744i 3.39984 1.23744i
\(387\) −0.309017 + 0.535233i −0.309017 + 0.535233i
\(388\) 0 0
\(389\) −1.53209 1.28558i −1.53209 1.28558i −0.766044 0.642788i \(-0.777778\pi\)
−0.766044 0.642788i \(-0.777778\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 1.53884 2.66535i 1.53884 2.66535i
\(393\) 0 0
\(394\) −0.534434 3.03093i −0.534434 3.03093i
\(395\) 0 0
\(396\) 1.52045 + 0.553400i 1.52045 + 0.553400i
\(397\) 0 0 0.766044 0.642788i \(-0.222222\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 3.23607 3.23607
\(401\) 0.900539 0.755642i 0.900539 0.755642i −0.0697565 0.997564i \(-0.522222\pi\)
0.970296 + 0.241922i \(0.0777778\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 0 0
\(406\) −1.11803 + 1.93649i −1.11803 + 1.93649i
\(407\) 0 0
\(408\) 0 0
\(409\) 0 0 −0.766044 0.642788i \(-0.777778\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 0.534434 3.03093i 0.534434 3.03093i
\(415\) 0 0
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(420\) 0 0
\(421\) 1.78740 + 0.650561i 1.78740 + 0.650561i 0.999391 + 0.0348995i \(0.0111111\pi\)
0.788011 + 0.615661i \(0.211111\pi\)
\(422\) 0.388289 2.20210i 0.388289 2.20210i
\(423\) 0 0
\(424\) 5.50106 2.00222i 5.50106 2.00222i
\(425\) 0 0
\(426\) 0 0
\(427\) 0 0
\(428\) 2.35764 + 1.97830i 2.35764 + 1.97830i
\(429\) 0 0
\(430\) 0 0
\(431\) −1.78740 + 0.650561i −1.78740 + 0.650561i −0.788011 + 0.615661i \(0.788889\pi\)
−0.999391 + 0.0348995i \(0.988889\pi\)
\(432\) 0 0
\(433\) 0 0 0.173648 0.984808i \(-0.444444\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) −3.07768 −3.07768
\(437\) 0 0
\(438\) 0 0
\(439\) 0 0 0.766044 0.642788i \(-0.222222\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(440\) 0 0
\(441\) 0.173648 0.984808i 0.173648 0.984808i
\(442\) 0 0
\(443\) 1.52045 0.553400i 1.52045 0.553400i 0.559193 0.829038i \(-0.311111\pi\)
0.961262 + 0.275637i \(0.0888889\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 1.30902 + 2.26728i 1.30902 + 2.26728i
\(449\) −0.951057 + 1.64728i −0.951057 + 1.64728i −0.207912 + 0.978148i \(0.566667\pi\)
−0.743145 + 0.669131i \(0.766667\pi\)
\(450\) 1.78740 0.650561i 1.78740 0.650561i
\(451\) 0 0
\(452\) −0.534434 + 3.03093i −0.534434 + 3.03093i
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −0.618034 −0.618034 −0.309017 0.951057i \(-0.600000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 0 0 −0.173648 0.984808i \(-0.555556\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(462\) 0 0
\(463\) −0.309017 + 0.535233i −0.309017 + 0.535233i −0.978148 0.207912i \(-0.933333\pi\)
0.669131 + 0.743145i \(0.266667\pi\)
\(464\) −1.90211 3.29456i −1.90211 3.29456i
\(465\) 0 0
\(466\) 0.900539 + 0.755642i 0.900539 + 0.755642i
\(467\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(468\) 0 0
\(469\) 1.78740 0.650561i 1.78740 0.650561i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −0.292603 + 0.245523i −0.292603 + 0.245523i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 1.45710 1.22265i 1.45710 1.22265i
\(478\) 1.10467 + 0.402069i 1.10467 + 0.402069i
\(479\) 0 0 0.173648 0.984808i \(-0.444444\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 0 0
\(484\) −1.23949 1.04005i −1.23949 1.04005i
\(485\) 0 0
\(486\) 0 0
\(487\) 0.951057 1.64728i 0.951057 1.64728i 0.207912 0.978148i \(-0.433333\pi\)
0.743145 0.669131i \(-0.233333\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −1.52045 0.553400i −1.52045 0.553400i −0.559193 0.829038i \(-0.688889\pi\)
−0.961262 + 0.275637i \(0.911111\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) −0.280969 1.59345i −0.280969 1.59345i −0.719340 0.694658i \(-0.755556\pi\)
0.438371 0.898794i \(-0.355556\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 0 0 −0.766044 0.642788i \(-0.777778\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(504\) 2.35764 + 1.97830i 2.35764 + 1.97830i
\(505\) 0 0
\(506\) 0.951057 1.64728i 0.951057 1.64728i
\(507\) 0 0
\(508\) 0.534434 + 3.03093i 0.534434 + 3.03093i
\(509\) 0 0 0.173648 0.984808i \(-0.444444\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(522\) −1.71293 1.43732i −1.71293 1.43732i
\(523\) 0 0 −0.766044 0.642788i \(-0.777778\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 2.89208 1.05263i 2.89208 1.05263i
\(527\) 0 0
\(528\) 0 0
\(529\) −1.52045 0.553400i −1.52045 0.553400i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 0 0
\(536\) −1.01655 + 5.76517i −1.01655 + 5.76517i
\(537\) 0 0
\(538\) 0 0
\(539\) 0.309017 0.535233i 0.309017 0.535233i
\(540\) 0 0
\(541\) 0.473442 + 0.397265i 0.473442 + 0.397265i 0.848048 0.529919i \(-0.177778\pi\)
−0.374607 + 0.927184i \(0.622222\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) −0.330298 + 1.87322i −0.330298 + 1.87322i 0.139173 + 0.990268i \(0.455556\pi\)
−0.469472 + 0.882948i \(0.655556\pi\)
\(548\) −1.52045 0.553400i −1.52045 0.553400i
\(549\) 0 0
\(550\) 1.17557 1.17557
\(551\) 0 0
\(552\) 0 0
\(553\) 0.900539 0.755642i 0.900539 0.755642i
\(554\) −2.89208 1.05263i −2.89208 1.05263i
\(555\) 0 0
\(556\) 0 0
\(557\) 0.580762 0.211380i 0.580762 0.211380i −0.0348995 0.999391i \(-0.511111\pi\)
0.615661 + 0.788011i \(0.288889\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 0.939693 + 0.342020i 0.939693 + 0.342020i
\(568\) 0 0
\(569\) −1.90211 −1.90211 −0.951057 0.309017i \(-0.900000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(570\) 0 0
\(571\) −1.61803 −1.61803 −0.809017 0.587785i \(-0.800000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −0.280969 1.59345i −0.280969 1.59345i
\(576\) −2.46015 + 0.895420i −2.46015 + 0.895420i
\(577\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(578\) 0.951057 + 1.64728i 0.951057 + 1.64728i
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 1.10467 0.402069i 1.10467 0.402069i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 0 0 0.766044 0.642788i \(-0.222222\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 0 0 0.173648 0.984808i \(-0.444444\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 2.11803 3.66854i 2.11803 3.66854i
\(597\) 0 0
\(598\) 0 0
\(599\) −0.900539 0.755642i −0.900539 0.755642i 0.0697565 0.997564i \(-0.477778\pi\)
−0.970296 + 0.241922i \(0.922222\pi\)
\(600\) 0 0
\(601\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(602\) −1.10467 + 0.402069i −1.10467 + 0.402069i
\(603\) 0.330298 + 1.87322i 0.330298 + 1.87322i
\(604\) 0.864733 4.90414i 0.864733 4.90414i
\(605\) 0 0
\(606\) 0 0
\(607\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) −0.347296 1.96962i −0.347296 1.96962i −0.173648 0.984808i \(-0.555556\pi\)
−0.173648 0.984808i \(-0.555556\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0.951057 + 1.64728i 0.951057 + 1.64728i
\(617\) −1.23949 1.04005i −1.23949 1.04005i −0.997564 0.0697565i \(-0.977778\pi\)
−0.241922 0.970296i \(-0.577778\pi\)
\(618\) 0 0
\(619\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 0.766044 0.642788i 0.766044 0.642788i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) 0.280969 1.59345i 0.280969 1.59345i −0.438371 0.898794i \(-0.644444\pi\)
0.719340 0.694658i \(-0.244444\pi\)
\(632\) 0.628265 + 3.56307i 0.628265 + 3.56307i
\(633\) 0 0
\(634\) −1.80902 + 3.13331i −1.80902 + 3.13331i
\(635\) 0 0
\(636\) 0 0
\(637\) 0 0
\(638\) −0.690983 1.19682i −0.690983 1.19682i
\(639\) 0 0
\(640\) 0 0
\(641\) −0.330298 1.87322i −0.330298 1.87322i −0.469472 0.882948i \(-0.655556\pi\)
0.139173 0.990268i \(-0.455556\pi\)
\(642\) 0 0
\(643\) 0 0 −0.939693 0.342020i \(-0.888889\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(644\) 3.24502 2.72289i 3.24502 2.72289i
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(648\) −2.35764 + 1.97830i −2.35764 + 1.97830i
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) −3.98060 + 1.44882i −3.98060 + 1.44882i
\(653\) −0.809017 + 1.40126i −0.809017 + 1.40126i 0.104528 + 0.994522i \(0.466667\pi\)
−0.913545 + 0.406737i \(0.866667\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −1.78740 + 0.650561i −1.78740 + 0.650561i −0.788011 + 0.615661i \(0.788889\pi\)
−0.999391 + 0.0348995i \(0.988889\pi\)
\(660\) 0 0
\(661\) 0 0 0.173648 0.984808i \(-0.444444\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(662\) −3.39984 1.23744i −3.39984 1.23744i
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −1.45710 + 1.22265i −1.45710 + 1.22265i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) −0.587785 1.01807i −0.587785 1.01807i −0.994522 0.104528i \(-0.966667\pi\)
0.406737 0.913545i \(-0.366667\pi\)
\(674\) 2.77157 + 2.32563i 2.77157 + 2.32563i
\(675\) 0 0
\(676\) −1.30902 2.26728i −1.30902 2.26728i
\(677\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 1.90211 1.90211 0.951057 0.309017i \(-0.100000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 1.45710 1.22265i 1.45710 1.22265i
\(687\) 0 0
\(688\) 0.347296 1.96962i 0.347296 1.96962i
\(689\) 0 0
\(690\) 0 0
\(691\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(692\) 0 0
\(693\) 0.473442 + 0.397265i 0.473442 + 0.397265i
\(694\) −2.35764 1.97830i −2.35764 1.97830i
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) 2.46015 + 0.895420i 2.46015 + 0.895420i
\(701\) −0.473442 + 0.397265i −0.473442 + 0.397265i −0.848048 0.529919i \(-0.822222\pi\)
0.374607 + 0.927184i \(0.377778\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) −1.61803 −1.61803
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) −0.580762 + 0.211380i −0.580762 + 0.211380i −0.615661 0.788011i \(-0.711111\pi\)
0.0348995 + 0.999391i \(0.488889\pi\)
\(710\) 0 0
\(711\) 0.587785 + 1.01807i 0.587785 + 1.01807i
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) −0.204136 + 1.15771i −0.204136 + 1.15771i
\(719\) 0 0 −0.939693 0.342020i \(-0.888889\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −1.10467 0.402069i −1.10467 0.402069i
\(726\) 0 0
\(727\) 0 0 −0.173648 0.984808i \(-0.555556\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(728\) 0 0
\(729\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0.864733 + 4.90414i 0.864733 + 4.90414i
\(737\) −0.204136 + 1.15771i −0.204136 + 1.15771i
\(738\) 0 0
\(739\) −1.23949 + 1.04005i −1.23949 + 1.04005i −0.241922 + 0.970296i \(0.577778\pi\)
−0.997564 + 0.0697565i \(0.977778\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 3.61803 3.61803
\(743\) 0 0 −0.642788 0.766044i \(-0.722222\pi\)
0.642788 + 0.766044i \(0.277778\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0.388289 + 2.20210i 0.388289 + 2.20210i
\(747\) 0 0
\(748\) 0 0
\(749\) 0.587785 + 1.01807i 0.587785 + 1.01807i
\(750\) 0 0
\(751\) −1.45710 1.22265i −1.45710 1.22265i −0.927184 0.374607i \(-0.877778\pi\)
−0.529919 0.848048i \(-0.677778\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 1.52045 + 0.553400i 1.52045 + 0.553400i 0.961262 0.275637i \(-0.0888889\pi\)
0.559193 + 0.829038i \(0.311111\pi\)
\(758\) −1.71293 + 1.43732i −1.71293 + 1.43732i
\(759\) 0 0
\(760\) 0 0
\(761\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(762\) 0 0
\(763\) −1.10467 0.402069i −1.10467 0.402069i
\(764\) 0.735585 4.17171i 0.735585 4.17171i
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) 0 0 −0.766044 0.642788i \(-0.777778\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −2.48990 + 4.31263i −2.48990 + 4.31263i
\(773\) 0 0 0.939693 0.342020i \(-0.111111\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(774\) −0.204136 1.15771i −0.204136 1.15771i
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) 3.80423 3.80423
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 0.561937 + 3.18690i 0.561937 + 3.18690i
\(785\) 0 0
\(786\) 0 0
\(787\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(788\) 3.24502 + 2.72289i 3.24502 + 2.72289i
\(789\) 0 0
\(790\) 0 0
\(791\) −0.587785 + 1.01807i −0.587785 + 1.01807i
\(792\) −1.78740 + 0.650561i −1.78740 + 0.650561i
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) −2.35764 + 1.97830i −2.35764 + 1.97830i
\(801\) 0 0
\(802\) −0.388289 + 2.20210i −0.388289 + 2.20210i
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 1.00000 + 1.73205i 1.00000 + 1.73205i 0.500000 + 0.866025i \(0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(810\) 0 0
\(811\) 0 0 0.939693 0.342020i \(-0.111111\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(812\) −0.534434 3.03093i −0.534434 3.03093i
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 0.280969 1.59345i 0.280969 1.59345i −0.438371 0.898794i \(-0.644444\pi\)
0.719340 0.694658i \(-0.244444\pi\)
\(822\) 0 0
\(823\) −0.580762 + 0.211380i −0.580762 + 0.211380i −0.615661 0.788011i \(-0.711111\pi\)
0.0348995 + 0.999391i \(0.488889\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −0.900539 0.755642i −0.900539 0.755642i 0.0697565 0.997564i \(-0.477778\pi\)
−0.970296 + 0.241922i \(0.922222\pi\)
\(828\) 2.11803 + 3.66854i 2.11803 + 3.66854i
\(829\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 0 0 −0.939693 0.342020i \(-0.888889\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(840\) 0 0
\(841\) 0.0663277 + 0.376163i 0.0663277 + 0.376163i
\(842\) −3.39984 + 1.23744i −3.39984 + 1.23744i
\(843\) 0 0
\(844\) 1.53884 + 2.66535i 1.53884 + 2.66535i
\(845\) 0 0
\(846\) 0 0
\(847\) −0.309017 0.535233i −0.309017 0.535233i
\(848\) −3.07768 + 5.33070i −3.07768 + 5.33070i
\(849\) 0 0
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) 0 0 0.766044 0.642788i \(-0.222222\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) −3.61803 −3.61803
\(857\) 0 0 0.766044 0.642788i \(-0.222222\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(858\) 0 0
\(859\) 0 0 0.173648 0.984808i \(-0.444444\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 1.80902 3.13331i 1.80902 3.13331i
\(863\) −0.587785 1.01807i −0.587785 1.01807i −0.994522 0.104528i \(-0.966667\pi\)
0.406737 0.913545i \(-0.366667\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 0.126163 + 0.715505i 0.126163 + 0.715505i
\(870\) 0 0
\(871\) 0 0
\(872\) 2.77157 2.32563i 2.77157 2.32563i
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 1.78740 + 0.650561i 1.78740 + 0.650561i 0.999391 + 0.0348995i \(0.0111111\pi\)
0.788011 + 0.615661i \(0.211111\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(882\) 0.951057 + 1.64728i 0.951057 + 1.64728i
\(883\) −1.23949 1.04005i −1.23949 1.04005i −0.997564 0.0697565i \(-0.977778\pi\)
−0.241922 0.970296i \(-0.577778\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) −1.53884 + 2.66535i −1.53884 + 2.66535i
\(887\) 0 0 0.939693 0.342020i \(-0.111111\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(888\) 0 0
\(889\) −0.204136 + 1.15771i −0.204136 + 1.15771i
\(890\) 0 0
\(891\) −0.473442 + 0.397265i −0.473442 + 0.397265i
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) −1.78740 0.650561i −1.78740 0.650561i
\(897\) 0 0
\(898\) −0.628265 3.56307i −0.628265 3.56307i
\(899\) 0 0
\(900\) −1.30902 + 2.26728i −1.30902 + 2.26728i
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) −1.80902 3.13331i −1.80902 3.13331i
\(905\) 0 0
\(906\) 0 0
\(907\) 0 0 0.984808 0.173648i \(-0.0555556\pi\)
−0.984808 + 0.173648i \(0.944444\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −1.90211 −1.90211 −0.951057 0.309017i \(-0.900000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0.900539 0.755642i 0.900539 0.755642i
\(915\) 0 0
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 0.309017 0.535233i 0.309017 0.535233i −0.669131 0.743145i \(-0.733333\pi\)
0.978148 + 0.207912i \(0.0666667\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 0 0
\(926\) −0.204136 1.15771i −0.204136 1.15771i
\(927\) 0 0
\(928\) 3.39984 + 1.23744i 3.39984 + 1.23744i
\(929\) 0 0 0.766044 0.642788i \(-0.222222\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) −1.61803 −1.61803
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 0 0 0.939693 0.342020i \(-0.111111\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(938\) −1.80902 + 3.13331i −1.80902 + 3.13331i
\(939\) 0 0
\(940\) 0 0
\(941\) 0 0 −0.766044 0.642788i \(-0.777778\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 0.126163 0.715505i 0.126163 0.715505i
\(947\) −0.580762 0.211380i −0.580762 0.211380i 0.0348995 0.999391i \(-0.488889\pi\)
−0.615661 + 0.788011i \(0.711111\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −1.78740 0.650561i −1.78740 0.650561i −0.999391 0.0348995i \(-0.988889\pi\)
−0.788011 0.615661i \(-0.788889\pi\)
\(954\) −0.628265 + 3.56307i −0.628265 + 3.56307i
\(955\) 0 0
\(956\) −1.52045 + 0.553400i −1.52045 + 0.553400i
\(957\) 0 0
\(958\) 0 0
\(959\) −0.473442 0.397265i −0.473442 0.397265i
\(960\) 0 0
\(961\) −0.500000 0.866025i −0.500000 0.866025i
\(962\) 0 0
\(963\) −1.10467 + 0.402069i −1.10467 + 0.402069i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) −0.473442 + 0.397265i −0.473442 + 0.397265i −0.848048 0.529919i \(-0.822222\pi\)
0.374607 + 0.927184i \(0.377778\pi\)
\(968\) 1.90211 1.90211
\(969\) 0 0
\(970\) 0 0
\(971\) 0 0 0.766044 0.642788i \(-0.222222\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0.628265 + 3.56307i 0.628265 + 3.56307i
\(975\) 0 0
\(976\) 0 0
\(977\) −0.587785 1.01807i −0.587785 1.01807i −0.994522 0.104528i \(-0.966667\pi\)
0.406737 0.913545i \(-0.366667\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) 0.587785 1.01807i 0.587785 1.01807i
\(982\) 2.89208 1.05263i 2.89208 1.05263i
\(983\) 0 0 −0.173648 0.984808i \(-0.555556\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −1.00000 −1.00000
\(990\) 0 0
\(991\) 0 0 0.342020 0.939693i \(-0.388889\pi\)
−0.342020 + 0.939693i \(0.611111\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 0 0 −0.766044 0.642788i \(-0.777778\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(998\) 2.35764 + 1.97830i 2.35764 + 1.97830i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2527.1.y.f.2400.1 24
7.6 odd 2 CM 2527.1.y.f.2400.1 24
19.2 odd 18 inner 2527.1.y.f.62.1 24
19.3 odd 18 inner 2527.1.y.f.776.4 24
19.4 even 9 2527.1.d.f.1084.1 4
19.5 even 9 inner 2527.1.y.f.2050.1 24
19.6 even 9 2527.1.m.e.1014.4 8
19.7 even 3 inner 2527.1.y.f.1833.1 24
19.8 odd 6 inner 2527.1.y.f.1182.1 24
19.9 even 9 2527.1.m.e.790.4 8
19.10 odd 18 2527.1.m.e.790.1 8
19.11 even 3 inner 2527.1.y.f.1182.4 24
19.12 odd 6 inner 2527.1.y.f.1833.4 24
19.13 odd 18 2527.1.m.e.1014.1 8
19.14 odd 18 inner 2527.1.y.f.2050.4 24
19.15 odd 18 2527.1.d.f.1084.4 yes 4
19.16 even 9 inner 2527.1.y.f.776.1 24
19.17 even 9 inner 2527.1.y.f.62.4 24
19.18 odd 2 inner 2527.1.y.f.2400.4 24
133.6 odd 18 2527.1.m.e.1014.4 8
133.13 even 18 2527.1.m.e.1014.1 8
133.27 even 6 inner 2527.1.y.f.1182.1 24
133.34 even 18 2527.1.d.f.1084.4 yes 4
133.41 even 18 inner 2527.1.y.f.776.4 24
133.48 even 18 2527.1.m.e.790.1 8
133.55 odd 18 inner 2527.1.y.f.62.4 24
133.62 odd 18 inner 2527.1.y.f.2050.1 24
133.69 even 6 inner 2527.1.y.f.1833.4 24
133.83 odd 6 inner 2527.1.y.f.1833.1 24
133.90 even 18 inner 2527.1.y.f.2050.4 24
133.97 even 18 inner 2527.1.y.f.62.1 24
133.104 odd 18 2527.1.m.e.790.4 8
133.111 odd 18 inner 2527.1.y.f.776.1 24
133.118 odd 18 2527.1.d.f.1084.1 4
133.125 odd 6 inner 2527.1.y.f.1182.4 24
133.132 even 2 inner 2527.1.y.f.2400.4 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2527.1.d.f.1084.1 4 19.4 even 9
2527.1.d.f.1084.1 4 133.118 odd 18
2527.1.d.f.1084.4 yes 4 19.15 odd 18
2527.1.d.f.1084.4 yes 4 133.34 even 18
2527.1.m.e.790.1 8 19.10 odd 18
2527.1.m.e.790.1 8 133.48 even 18
2527.1.m.e.790.4 8 19.9 even 9
2527.1.m.e.790.4 8 133.104 odd 18
2527.1.m.e.1014.1 8 19.13 odd 18
2527.1.m.e.1014.1 8 133.13 even 18
2527.1.m.e.1014.4 8 19.6 even 9
2527.1.m.e.1014.4 8 133.6 odd 18
2527.1.y.f.62.1 24 19.2 odd 18 inner
2527.1.y.f.62.1 24 133.97 even 18 inner
2527.1.y.f.62.4 24 19.17 even 9 inner
2527.1.y.f.62.4 24 133.55 odd 18 inner
2527.1.y.f.776.1 24 19.16 even 9 inner
2527.1.y.f.776.1 24 133.111 odd 18 inner
2527.1.y.f.776.4 24 19.3 odd 18 inner
2527.1.y.f.776.4 24 133.41 even 18 inner
2527.1.y.f.1182.1 24 19.8 odd 6 inner
2527.1.y.f.1182.1 24 133.27 even 6 inner
2527.1.y.f.1182.4 24 19.11 even 3 inner
2527.1.y.f.1182.4 24 133.125 odd 6 inner
2527.1.y.f.1833.1 24 19.7 even 3 inner
2527.1.y.f.1833.1 24 133.83 odd 6 inner
2527.1.y.f.1833.4 24 19.12 odd 6 inner
2527.1.y.f.1833.4 24 133.69 even 6 inner
2527.1.y.f.2050.1 24 19.5 even 9 inner
2527.1.y.f.2050.1 24 133.62 odd 18 inner
2527.1.y.f.2050.4 24 19.14 odd 18 inner
2527.1.y.f.2050.4 24 133.90 even 18 inner
2527.1.y.f.2400.1 24 1.1 even 1 trivial
2527.1.y.f.2400.1 24 7.6 odd 2 CM
2527.1.y.f.2400.4 24 19.18 odd 2 inner
2527.1.y.f.2400.4 24 133.132 even 2 inner