Properties

Label 2527.1.d.f.1084.4
Level 25272527
Weight 11
Character 2527.1084
Self dual yes
Analytic conductor 1.2611.261
Analytic rank 00
Dimension 44
Projective image D10D_{10}
CM discriminant -7
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2527,1,Mod(1084,2527)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2527, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2527.1084");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: N N == 2527=7192 2527 = 7 \cdot 19^{2}
Weight: k k == 1 1
Character orbit: [χ][\chi] == 2527.d (of order 22, degree 11, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 1.261137286921.26113728692
Analytic rank: 00
Dimension: 44
Coefficient field: Q(ζ20)+\Q(\zeta_{20})^+
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x45x2+5 x^{4} - 5x^{2} + 5 Copy content Toggle raw display
Coefficient ring: Z[a1,a2]\Z[a_1, a_2]
Coefficient ring index: 1 1
Twist minimal: yes
Projective image: D10D_{10}
Projective field: Galois closure of 10.0.774773162367379.1

Embedding invariants

Embedding label 1084.4
Root 1.90211-1.90211 of defining polynomial
Character χ\chi == 2527.1084

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q+1.90211q2+2.61803q41.00000q7+3.07768q8+1.00000q90.618034q111.90211q14+3.23607q16+1.90211q181.17557q221.61803q23+1.00000q252.61803q281.17557q29+3.07768q32+2.61803q36+0.618034q431.61803q443.07768q46+1.00000q49+1.90211q501.90211q533.07768q562.23607q581.00000q63+2.61803q641.90211q67+3.07768q72+0.618034q77+1.17557q79+1.00000q81+1.17557q861.90211q884.23607q92+1.90211q980.618034q99+O(q100)q+1.90211 q^{2} +2.61803 q^{4} -1.00000 q^{7} +3.07768 q^{8} +1.00000 q^{9} -0.618034 q^{11} -1.90211 q^{14} +3.23607 q^{16} +1.90211 q^{18} -1.17557 q^{22} -1.61803 q^{23} +1.00000 q^{25} -2.61803 q^{28} -1.17557 q^{29} +3.07768 q^{32} +2.61803 q^{36} +0.618034 q^{43} -1.61803 q^{44} -3.07768 q^{46} +1.00000 q^{49} +1.90211 q^{50} -1.90211 q^{53} -3.07768 q^{56} -2.23607 q^{58} -1.00000 q^{63} +2.61803 q^{64} -1.90211 q^{67} +3.07768 q^{72} +0.618034 q^{77} +1.17557 q^{79} +1.00000 q^{81} +1.17557 q^{86} -1.90211 q^{88} -4.23607 q^{92} +1.90211 q^{98} -0.618034 q^{99} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q+6q44q7+4q9+2q11+4q162q23+4q256q28+6q362q432q44+4q494q63+6q642q77+4q818q92+2q99+O(q100) 4 q + 6 q^{4} - 4 q^{7} + 4 q^{9} + 2 q^{11} + 4 q^{16} - 2 q^{23} + 4 q^{25} - 6 q^{28} + 6 q^{36} - 2 q^{43} - 2 q^{44} + 4 q^{49} - 4 q^{63} + 6 q^{64} - 2 q^{77} + 4 q^{81} - 8 q^{92} + 2 q^{99}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/2527Z)×\left(\mathbb{Z}/2527\mathbb{Z}\right)^\times.

nn 14451445 18071807
χ(n)\chi(n) 1-1 11

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 1.90211 1.90211 0.951057 0.309017i 0.100000π-0.100000\pi
0.951057 + 0.309017i 0.100000π0.100000\pi
33 0 0 1.00000 00
−1.00000 π\pi
44 2.61803 2.61803
55 0 0 1.00000 00
−1.00000 π\pi
66 0 0
77 −1.00000 −1.00000
88 3.07768 3.07768
99 1.00000 1.00000
1010 0 0
1111 −0.618034 −0.618034 −0.309017 0.951057i 0.600000π-0.600000\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
1212 0 0
1313 0 0 1.00000 00
−1.00000 π\pi
1414 −1.90211 −1.90211
1515 0 0
1616 3.23607 3.23607
1717 0 0 1.00000 00
−1.00000 π\pi
1818 1.90211 1.90211
1919 0 0
2020 0 0
2121 0 0
2222 −1.17557 −1.17557
2323 −1.61803 −1.61803 −0.809017 0.587785i 0.800000π-0.800000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
2424 0 0
2525 1.00000 1.00000
2626 0 0
2727 0 0
2828 −2.61803 −2.61803
2929 −1.17557 −1.17557 −0.587785 0.809017i 0.700000π-0.700000\pi
−0.587785 + 0.809017i 0.700000π0.700000\pi
3030 0 0
3131 0 0 1.00000 00
−1.00000 π\pi
3232 3.07768 3.07768
3333 0 0
3434 0 0
3535 0 0
3636 2.61803 2.61803
3737 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
3838 0 0
3939 0 0
4040 0 0
4141 0 0 1.00000 00
−1.00000 π\pi
4242 0 0
4343 0.618034 0.618034 0.309017 0.951057i 0.400000π-0.400000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
4444 −1.61803 −1.61803
4545 0 0
4646 −3.07768 −3.07768
4747 0 0 1.00000 00
−1.00000 π\pi
4848 0 0
4949 1.00000 1.00000
5050 1.90211 1.90211
5151 0 0
5252 0 0
5353 −1.90211 −1.90211 −0.951057 0.309017i 0.900000π-0.900000\pi
−0.951057 + 0.309017i 0.900000π0.900000\pi
5454 0 0
5555 0 0
5656 −3.07768 −3.07768
5757 0 0
5858 −2.23607 −2.23607
5959 0 0 1.00000 00
−1.00000 π\pi
6060 0 0
6161 0 0 1.00000 00
−1.00000 π\pi
6262 0 0
6363 −1.00000 −1.00000
6464 2.61803 2.61803
6565 0 0
6666 0 0
6767 −1.90211 −1.90211 −0.951057 0.309017i 0.900000π-0.900000\pi
−0.951057 + 0.309017i 0.900000π0.900000\pi
6868 0 0
6969 0 0
7070 0 0
7171 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
7272 3.07768 3.07768
7373 0 0 1.00000 00
−1.00000 π\pi
7474 0 0
7575 0 0
7676 0 0
7777 0.618034 0.618034
7878 0 0
7979 1.17557 1.17557 0.587785 0.809017i 0.300000π-0.300000\pi
0.587785 + 0.809017i 0.300000π0.300000\pi
8080 0 0
8181 1.00000 1.00000
8282 0 0
8383 0 0 1.00000 00
−1.00000 π\pi
8484 0 0
8585 0 0
8686 1.17557 1.17557
8787 0 0
8888 −1.90211 −1.90211
8989 0 0 1.00000 00
−1.00000 π\pi
9090 0 0
9191 0 0
9292 −4.23607 −4.23607
9393 0 0
9494 0 0
9595 0 0
9696 0 0
9797 0 0 1.00000 00
−1.00000 π\pi
9898 1.90211 1.90211
9999 −0.618034 −0.618034
100100 2.61803 2.61803
101101 0 0 1.00000 00
−1.00000 π\pi
102102 0 0
103103 0 0 1.00000 00
−1.00000 π\pi
104104 0 0
105105 0 0
106106 −3.61803 −3.61803
107107 −1.17557 −1.17557 −0.587785 0.809017i 0.700000π-0.700000\pi
−0.587785 + 0.809017i 0.700000π0.700000\pi
108108 0 0
109109 1.17557 1.17557 0.587785 0.809017i 0.300000π-0.300000\pi
0.587785 + 0.809017i 0.300000π0.300000\pi
110110 0 0
111111 0 0
112112 −3.23607 −3.23607
113113 1.17557 1.17557 0.587785 0.809017i 0.300000π-0.300000\pi
0.587785 + 0.809017i 0.300000π0.300000\pi
114114 0 0
115115 0 0
116116 −3.07768 −3.07768
117117 0 0
118118 0 0
119119 0 0
120120 0 0
121121 −0.618034 −0.618034
122122 0 0
123123 0 0
124124 0 0
125125 0 0
126126 −1.90211 −1.90211
127127 −1.17557 −1.17557 −0.587785 0.809017i 0.700000π-0.700000\pi
−0.587785 + 0.809017i 0.700000π0.700000\pi
128128 1.90211 1.90211
129129 0 0
130130 0 0
131131 0 0 1.00000 00
−1.00000 π\pi
132132 0 0
133133 0 0
134134 −3.61803 −3.61803
135135 0 0
136136 0 0
137137 0.618034 0.618034 0.309017 0.951057i 0.400000π-0.400000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
138138 0 0
139139 0 0 1.00000 00
−1.00000 π\pi
140140 0 0
141141 0 0
142142 0 0
143143 0 0
144144 3.23607 3.23607
145145 0 0
146146 0 0
147147 0 0
148148 0 0
149149 −1.61803 −1.61803 −0.809017 0.587785i 0.800000π-0.800000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
150150 0 0
151151 −1.90211 −1.90211 −0.951057 0.309017i 0.900000π-0.900000\pi
−0.951057 + 0.309017i 0.900000π0.900000\pi
152152 0 0
153153 0 0
154154 1.17557 1.17557
155155 0 0
156156 0 0
157157 0 0 1.00000 00
−1.00000 π\pi
158158 2.23607 2.23607
159159 0 0
160160 0 0
161161 1.61803 1.61803
162162 1.90211 1.90211
163163 1.61803 1.61803 0.809017 0.587785i 0.200000π-0.200000\pi
0.809017 + 0.587785i 0.200000π0.200000\pi
164164 0 0
165165 0 0
166166 0 0
167167 0 0 1.00000 00
−1.00000 π\pi
168168 0 0
169169 1.00000 1.00000
170170 0 0
171171 0 0
172172 1.61803 1.61803
173173 0 0 1.00000 00
−1.00000 π\pi
174174 0 0
175175 −1.00000 −1.00000
176176 −2.00000 −2.00000
177177 0 0
178178 0 0
179179 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
180180 0 0
181181 0 0 1.00000 00
−1.00000 π\pi
182182 0 0
183183 0 0
184184 −4.97980 −4.97980
185185 0 0
186186 0 0
187187 0 0
188188 0 0
189189 0 0
190190 0 0
191191 1.61803 1.61803 0.809017 0.587785i 0.200000π-0.200000\pi
0.809017 + 0.587785i 0.200000π0.200000\pi
192192 0 0
193193 −1.90211 −1.90211 −0.951057 0.309017i 0.900000π-0.900000\pi
−0.951057 + 0.309017i 0.900000π0.900000\pi
194194 0 0
195195 0 0
196196 2.61803 2.61803
197197 1.61803 1.61803 0.809017 0.587785i 0.200000π-0.200000\pi
0.809017 + 0.587785i 0.200000π0.200000\pi
198198 −1.17557 −1.17557
199199 0 0 1.00000 00
−1.00000 π\pi
200200 3.07768 3.07768
201201 0 0
202202 0 0
203203 1.17557 1.17557
204204 0 0
205205 0 0
206206 0 0
207207 −1.61803 −1.61803
208208 0 0
209209 0 0
210210 0 0
211211 1.17557 1.17557 0.587785 0.809017i 0.300000π-0.300000\pi
0.587785 + 0.809017i 0.300000π0.300000\pi
212212 −4.97980 −4.97980
213213 0 0
214214 −2.23607 −2.23607
215215 0 0
216216 0 0
217217 0 0
218218 2.23607 2.23607
219219 0 0
220220 0 0
221221 0 0
222222 0 0
223223 0 0 1.00000 00
−1.00000 π\pi
224224 −3.07768 −3.07768
225225 1.00000 1.00000
226226 2.23607 2.23607
227227 0 0 1.00000 00
−1.00000 π\pi
228228 0 0
229229 0 0 1.00000 00
−1.00000 π\pi
230230 0 0
231231 0 0
232232 −3.61803 −3.61803
233233 −0.618034 −0.618034 −0.309017 0.951057i 0.600000π-0.600000\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
234234 0 0
235235 0 0
236236 0 0
237237 0 0
238238 0 0
239239 0.618034 0.618034 0.309017 0.951057i 0.400000π-0.400000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
240240 0 0
241241 0 0 1.00000 00
−1.00000 π\pi
242242 −1.17557 −1.17557
243243 0 0
244244 0 0
245245 0 0
246246 0 0
247247 0 0
248248 0 0
249249 0 0
250250 0 0
251251 0 0 1.00000 00
−1.00000 π\pi
252252 −2.61803 −2.61803
253253 1.00000 1.00000
254254 −2.23607 −2.23607
255255 0 0
256256 1.00000 1.00000
257257 0 0 1.00000 00
−1.00000 π\pi
258258 0 0
259259 0 0
260260 0 0
261261 −1.17557 −1.17557
262262 0 0
263263 1.61803 1.61803 0.809017 0.587785i 0.200000π-0.200000\pi
0.809017 + 0.587785i 0.200000π0.200000\pi
264264 0 0
265265 0 0
266266 0 0
267267 0 0
268268 −4.97980 −4.97980
269269 0 0 1.00000 00
−1.00000 π\pi
270270 0 0
271271 0 0 1.00000 00
−1.00000 π\pi
272272 0 0
273273 0 0
274274 1.17557 1.17557
275275 −0.618034 −0.618034
276276 0 0
277277 −1.61803 −1.61803 −0.809017 0.587785i 0.800000π-0.800000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
278278 0 0
279279 0 0
280280 0 0
281281 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
282282 0 0
283283 0 0 1.00000 00
−1.00000 π\pi
284284 0 0
285285 0 0
286286 0 0
287287 0 0
288288 3.07768 3.07768
289289 1.00000 1.00000
290290 0 0
291291 0 0
292292 0 0
293293 0 0 1.00000 00
−1.00000 π\pi
294294 0 0
295295 0 0
296296 0 0
297297 0 0
298298 −3.07768 −3.07768
299299 0 0
300300 0 0
301301 −0.618034 −0.618034
302302 −3.61803 −3.61803
303303 0 0
304304 0 0
305305 0 0
306306 0 0
307307 0 0 1.00000 00
−1.00000 π\pi
308308 1.61803 1.61803
309309 0 0
310310 0 0
311311 0 0 1.00000 00
−1.00000 π\pi
312312 0 0
313313 0 0 1.00000 00
−1.00000 π\pi
314314 0 0
315315 0 0
316316 3.07768 3.07768
317317 1.90211 1.90211 0.951057 0.309017i 0.100000π-0.100000\pi
0.951057 + 0.309017i 0.100000π0.100000\pi
318318 0 0
319319 0.726543 0.726543
320320 0 0
321321 0 0
322322 3.07768 3.07768
323323 0 0
324324 2.61803 2.61803
325325 0 0
326326 3.07768 3.07768
327327 0 0
328328 0 0
329329 0 0
330330 0 0
331331 1.90211 1.90211 0.951057 0.309017i 0.100000π-0.100000\pi
0.951057 + 0.309017i 0.100000π0.100000\pi
332332 0 0
333333 0 0
334334 0 0
335335 0 0
336336 0 0
337337 1.90211 1.90211 0.951057 0.309017i 0.100000π-0.100000\pi
0.951057 + 0.309017i 0.100000π0.100000\pi
338338 1.90211 1.90211
339339 0 0
340340 0 0
341341 0 0
342342 0 0
343343 −1.00000 −1.00000
344344 1.90211 1.90211
345345 0 0
346346 0 0
347347 1.61803 1.61803 0.809017 0.587785i 0.200000π-0.200000\pi
0.809017 + 0.587785i 0.200000π0.200000\pi
348348 0 0
349349 0 0 1.00000 00
−1.00000 π\pi
350350 −1.90211 −1.90211
351351 0 0
352352 −1.90211 −1.90211
353353 0 0 1.00000 00
−1.00000 π\pi
354354 0 0
355355 0 0
356356 0 0
357357 0 0
358358 0 0
359359 0.618034 0.618034 0.309017 0.951057i 0.400000π-0.400000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
360360 0 0
361361 0 0
362362 0 0
363363 0 0
364364 0 0
365365 0 0
366366 0 0
367367 0 0 1.00000 00
−1.00000 π\pi
368368 −5.23607 −5.23607
369369 0 0
370370 0 0
371371 1.90211 1.90211
372372 0 0
373373 1.17557 1.17557 0.587785 0.809017i 0.300000π-0.300000\pi
0.587785 + 0.809017i 0.300000π0.300000\pi
374374 0 0
375375 0 0
376376 0 0
377377 0 0
378378 0 0
379379 −1.17557 −1.17557 −0.587785 0.809017i 0.700000π-0.700000\pi
−0.587785 + 0.809017i 0.700000π0.700000\pi
380380 0 0
381381 0 0
382382 3.07768 3.07768
383383 0 0 1.00000 00
−1.00000 π\pi
384384 0 0
385385 0 0
386386 −3.61803 −3.61803
387387 0.618034 0.618034
388388 0 0
389389 −2.00000 −2.00000 −1.00000 π\pi
−1.00000 π\pi
390390 0 0
391391 0 0
392392 3.07768 3.07768
393393 0 0
394394 3.07768 3.07768
395395 0 0
396396 −1.61803 −1.61803
397397 0 0 1.00000 00
−1.00000 π\pi
398398 0 0
399399 0 0
400400 3.23607 3.23607
401401 −1.17557 −1.17557 −0.587785 0.809017i 0.700000π-0.700000\pi
−0.587785 + 0.809017i 0.700000π0.700000\pi
402402 0 0
403403 0 0
404404 0 0
405405 0 0
406406 2.23607 2.23607
407407 0 0
408408 0 0
409409 0 0 1.00000 00
−1.00000 π\pi
410410 0 0
411411 0 0
412412 0 0
413413 0 0
414414 −3.07768 −3.07768
415415 0 0
416416 0 0
417417 0 0
418418 0 0
419419 0 0 1.00000 00
−1.00000 π\pi
420420 0 0
421421 1.90211 1.90211 0.951057 0.309017i 0.100000π-0.100000\pi
0.951057 + 0.309017i 0.100000π0.100000\pi
422422 2.23607 2.23607
423423 0 0
424424 −5.85410 −5.85410
425425 0 0
426426 0 0
427427 0 0
428428 −3.07768 −3.07768
429429 0 0
430430 0 0
431431 −1.90211 −1.90211 −0.951057 0.309017i 0.900000π-0.900000\pi
−0.951057 + 0.309017i 0.900000π0.900000\pi
432432 0 0
433433 0 0 1.00000 00
−1.00000 π\pi
434434 0 0
435435 0 0
436436 3.07768 3.07768
437437 0 0
438438 0 0
439439 0 0 1.00000 00
−1.00000 π\pi
440440 0 0
441441 1.00000 1.00000
442442 0 0
443443 −1.61803 −1.61803 −0.809017 0.587785i 0.800000π-0.800000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
444444 0 0
445445 0 0
446446 0 0
447447 0 0
448448 −2.61803 −2.61803
449449 −1.90211 −1.90211 −0.951057 0.309017i 0.900000π-0.900000\pi
−0.951057 + 0.309017i 0.900000π0.900000\pi
450450 1.90211 1.90211
451451 0 0
452452 3.07768 3.07768
453453 0 0
454454 0 0
455455 0 0
456456 0 0
457457 −0.618034 −0.618034 −0.309017 0.951057i 0.600000π-0.600000\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
458458 0 0
459459 0 0
460460 0 0
461461 0 0 1.00000 00
−1.00000 π\pi
462462 0 0
463463 0.618034 0.618034 0.309017 0.951057i 0.400000π-0.400000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
464464 −3.80423 −3.80423
465465 0 0
466466 −1.17557 −1.17557
467467 0 0 1.00000 00
−1.00000 π\pi
468468 0 0
469469 1.90211 1.90211
470470 0 0
471471 0 0
472472 0 0
473473 −0.381966 −0.381966
474474 0 0
475475 0 0
476476 0 0
477477 −1.90211 −1.90211
478478 1.17557 1.17557
479479 0 0 1.00000 00
−1.00000 π\pi
480480 0 0
481481 0 0
482482 0 0
483483 0 0
484484 −1.61803 −1.61803
485485 0 0
486486 0 0
487487 1.90211 1.90211 0.951057 0.309017i 0.100000π-0.100000\pi
0.951057 + 0.309017i 0.100000π0.100000\pi
488488 0 0
489489 0 0
490490 0 0
491491 1.61803 1.61803 0.809017 0.587785i 0.200000π-0.200000\pi
0.809017 + 0.587785i 0.200000π0.200000\pi
492492 0 0
493493 0 0
494494 0 0
495495 0 0
496496 0 0
497497 0 0
498498 0 0
499499 −1.61803 −1.61803 −0.809017 0.587785i 0.800000π-0.800000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
500500 0 0
501501 0 0
502502 0 0
503503 0 0 1.00000 00
−1.00000 π\pi
504504 −3.07768 −3.07768
505505 0 0
506506 1.90211 1.90211
507507 0 0
508508 −3.07768 −3.07768
509509 0 0 1.00000 00
−1.00000 π\pi
510510 0 0
511511 0 0
512512 0 0
513513 0 0
514514 0 0
515515 0 0
516516 0 0
517517 0 0
518518 0 0
519519 0 0
520520 0 0
521521 0 0 1.00000 00
−1.00000 π\pi
522522 −2.23607 −2.23607
523523 0 0 1.00000 00
−1.00000 π\pi
524524 0 0
525525 0 0
526526 3.07768 3.07768
527527 0 0
528528 0 0
529529 1.61803 1.61803
530530 0 0
531531 0 0
532532 0 0
533533 0 0
534534 0 0
535535 0 0
536536 −5.85410 −5.85410
537537 0 0
538538 0 0
539539 −0.618034 −0.618034
540540 0 0
541541 0.618034 0.618034 0.309017 0.951057i 0.400000π-0.400000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
542542 0 0
543543 0 0
544544 0 0
545545 0 0
546546 0 0
547547 1.90211 1.90211 0.951057 0.309017i 0.100000π-0.100000\pi
0.951057 + 0.309017i 0.100000π0.100000\pi
548548 1.61803 1.61803
549549 0 0
550550 −1.17557 −1.17557
551551 0 0
552552 0 0
553553 −1.17557 −1.17557
554554 −3.07768 −3.07768
555555 0 0
556556 0 0
557557 −0.618034 −0.618034 −0.309017 0.951057i 0.600000π-0.600000\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
558558 0 0
559559 0 0
560560 0 0
561561 0 0
562562 0 0
563563 0 0 1.00000 00
−1.00000 π\pi
564564 0 0
565565 0 0
566566 0 0
567567 −1.00000 −1.00000
568568 0 0
569569 1.90211 1.90211 0.951057 0.309017i 0.100000π-0.100000\pi
0.951057 + 0.309017i 0.100000π0.100000\pi
570570 0 0
571571 −1.61803 −1.61803 −0.809017 0.587785i 0.800000π-0.800000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
572572 0 0
573573 0 0
574574 0 0
575575 −1.61803 −1.61803
576576 2.61803 2.61803
577577 0 0 1.00000 00
−1.00000 π\pi
578578 1.90211 1.90211
579579 0 0
580580 0 0
581581 0 0
582582 0 0
583583 1.17557 1.17557
584584 0 0
585585 0 0
586586 0 0
587587 0 0 1.00000 00
−1.00000 π\pi
588588 0 0
589589 0 0
590590 0 0
591591 0 0
592592 0 0
593593 0 0 1.00000 00
−1.00000 π\pi
594594 0 0
595595 0 0
596596 −4.23607 −4.23607
597597 0 0
598598 0 0
599599 1.17557 1.17557 0.587785 0.809017i 0.300000π-0.300000\pi
0.587785 + 0.809017i 0.300000π0.300000\pi
600600 0 0
601601 0 0 1.00000 00
−1.00000 π\pi
602602 −1.17557 −1.17557
603603 −1.90211 −1.90211
604604 −4.97980 −4.97980
605605 0 0
606606 0 0
607607 0 0 1.00000 00
−1.00000 π\pi
608608 0 0
609609 0 0
610610 0 0
611611 0 0
612612 0 0
613613 −2.00000 −2.00000 −1.00000 π\pi
−1.00000 π\pi
614614 0 0
615615 0 0
616616 1.90211 1.90211
617617 −1.61803 −1.61803 −0.809017 0.587785i 0.800000π-0.800000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
618618 0 0
619619 0 0 1.00000 00
−1.00000 π\pi
620620 0 0
621621 0 0
622622 0 0
623623 0 0
624624 0 0
625625 1.00000 1.00000
626626 0 0
627627 0 0
628628 0 0
629629 0 0
630630 0 0
631631 1.61803 1.61803 0.809017 0.587785i 0.200000π-0.200000\pi
0.809017 + 0.587785i 0.200000π0.200000\pi
632632 3.61803 3.61803
633633 0 0
634634 3.61803 3.61803
635635 0 0
636636 0 0
637637 0 0
638638 1.38197 1.38197
639639 0 0
640640 0 0
641641 1.90211 1.90211 0.951057 0.309017i 0.100000π-0.100000\pi
0.951057 + 0.309017i 0.100000π0.100000\pi
642642 0 0
643643 0 0 1.00000 00
−1.00000 π\pi
644644 4.23607 4.23607
645645 0 0
646646 0 0
647647 0 0 1.00000 00
−1.00000 π\pi
648648 3.07768 3.07768
649649 0 0
650650 0 0
651651 0 0
652652 4.23607 4.23607
653653 1.61803 1.61803 0.809017 0.587785i 0.200000π-0.200000\pi
0.809017 + 0.587785i 0.200000π0.200000\pi
654654 0 0
655655 0 0
656656 0 0
657657 0 0
658658 0 0
659659 −1.90211 −1.90211 −0.951057 0.309017i 0.900000π-0.900000\pi
−0.951057 + 0.309017i 0.900000π0.900000\pi
660660 0 0
661661 0 0 1.00000 00
−1.00000 π\pi
662662 3.61803 3.61803
663663 0 0
664664 0 0
665665 0 0
666666 0 0
667667 1.90211 1.90211
668668 0 0
669669 0 0
670670 0 0
671671 0 0
672672 0 0
673673 −1.17557 −1.17557 −0.587785 0.809017i 0.700000π-0.700000\pi
−0.587785 + 0.809017i 0.700000π0.700000\pi
674674 3.61803 3.61803
675675 0 0
676676 2.61803 2.61803
677677 0 0 1.00000 00
−1.00000 π\pi
678678 0 0
679679 0 0
680680 0 0
681681 0 0
682682 0 0
683683 −1.90211 −1.90211 −0.951057 0.309017i 0.900000π-0.900000\pi
−0.951057 + 0.309017i 0.900000π0.900000\pi
684684 0 0
685685 0 0
686686 −1.90211 −1.90211
687687 0 0
688688 2.00000 2.00000
689689 0 0
690690 0 0
691691 0 0 1.00000 00
−1.00000 π\pi
692692 0 0
693693 0.618034 0.618034
694694 3.07768 3.07768
695695 0 0
696696 0 0
697697 0 0
698698 0 0
699699 0 0
700700 −2.61803 −2.61803
701701 −0.618034 −0.618034 −0.309017 0.951057i 0.600000π-0.600000\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
702702 0 0
703703 0 0
704704 −1.61803 −1.61803
705705 0 0
706706 0 0
707707 0 0
708708 0 0
709709 0.618034 0.618034 0.309017 0.951057i 0.400000π-0.400000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
710710 0 0
711711 1.17557 1.17557
712712 0 0
713713 0 0
714714 0 0
715715 0 0
716716 0 0
717717 0 0
718718 1.17557 1.17557
719719 0 0 1.00000 00
−1.00000 π\pi
720720 0 0
721721 0 0
722722 0 0
723723 0 0
724724 0 0
725725 −1.17557 −1.17557
726726 0 0
727727 0 0 1.00000 00
−1.00000 π\pi
728728 0 0
729729 1.00000 1.00000
730730 0 0
731731 0 0
732732 0 0
733733 0 0 1.00000 00
−1.00000 π\pi
734734 0 0
735735 0 0
736736 −4.97980 −4.97980
737737 1.17557 1.17557
738738 0 0
739739 −1.61803 −1.61803 −0.809017 0.587785i 0.800000π-0.800000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
740740 0 0
741741 0 0
742742 3.61803 3.61803
743743 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
744744 0 0
745745 0 0
746746 2.23607 2.23607
747747 0 0
748748 0 0
749749 1.17557 1.17557
750750 0 0
751751 1.90211 1.90211 0.951057 0.309017i 0.100000π-0.100000\pi
0.951057 + 0.309017i 0.100000π0.100000\pi
752752 0 0
753753 0 0
754754 0 0
755755 0 0
756756 0 0
757757 −1.61803 −1.61803 −0.809017 0.587785i 0.800000π-0.800000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
758758 −2.23607 −2.23607
759759 0 0
760760 0 0
761761 0 0 1.00000 00
−1.00000 π\pi
762762 0 0
763763 −1.17557 −1.17557
764764 4.23607 4.23607
765765 0 0
766766 0 0
767767 0 0
768768 0 0
769769 0 0 1.00000 00
−1.00000 π\pi
770770 0 0
771771 0 0
772772 −4.97980 −4.97980
773773 0 0 1.00000 00
−1.00000 π\pi
774774 1.17557 1.17557
775775 0 0
776776 0 0
777777 0 0
778778 −3.80423 −3.80423
779779 0 0
780780 0 0
781781 0 0
782782 0 0
783783 0 0
784784 3.23607 3.23607
785785 0 0
786786 0 0
787787 0 0 1.00000 00
−1.00000 π\pi
788788 4.23607 4.23607
789789 0 0
790790 0 0
791791 −1.17557 −1.17557
792792 −1.90211 −1.90211
793793 0 0
794794 0 0
795795 0 0
796796 0 0
797797 0 0 1.00000 00
−1.00000 π\pi
798798 0 0
799799 0 0
800800 3.07768 3.07768
801801 0 0
802802 −2.23607 −2.23607
803803 0 0
804804 0 0
805805 0 0
806806 0 0
807807 0 0
808808 0 0
809809 −2.00000 −2.00000 −1.00000 π\pi
−1.00000 π\pi
810810 0 0
811811 0 0 1.00000 00
−1.00000 π\pi
812812 3.07768 3.07768
813813 0 0
814814 0 0
815815 0 0
816816 0 0
817817 0 0
818818 0 0
819819 0 0
820820 0 0
821821 1.61803 1.61803 0.809017 0.587785i 0.200000π-0.200000\pi
0.809017 + 0.587785i 0.200000π0.200000\pi
822822 0 0
823823 0.618034 0.618034 0.309017 0.951057i 0.400000π-0.400000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
824824 0 0
825825 0 0
826826 0 0
827827 1.17557 1.17557 0.587785 0.809017i 0.300000π-0.300000\pi
0.587785 + 0.809017i 0.300000π0.300000\pi
828828 −4.23607 −4.23607
829829 0 0 1.00000 00
−1.00000 π\pi
830830 0 0
831831 0 0
832832 0 0
833833 0 0
834834 0 0
835835 0 0
836836 0 0
837837 0 0
838838 0 0
839839 0 0 1.00000 00
−1.00000 π\pi
840840 0 0
841841 0.381966 0.381966
842842 3.61803 3.61803
843843 0 0
844844 3.07768 3.07768
845845 0 0
846846 0 0
847847 0.618034 0.618034
848848 −6.15537 −6.15537
849849 0 0
850850 0 0
851851 0 0
852852 0 0
853853 0 0 1.00000 00
−1.00000 π\pi
854854 0 0
855855 0 0
856856 −3.61803 −3.61803
857857 0 0 1.00000 00
−1.00000 π\pi
858858 0 0
859859 0 0 1.00000 00
−1.00000 π\pi
860860 0 0
861861 0 0
862862 −3.61803 −3.61803
863863 −1.17557 −1.17557 −0.587785 0.809017i 0.700000π-0.700000\pi
−0.587785 + 0.809017i 0.700000π0.700000\pi
864864 0 0
865865 0 0
866866 0 0
867867 0 0
868868 0 0
869869 −0.726543 −0.726543
870870 0 0
871871 0 0
872872 3.61803 3.61803
873873 0 0
874874 0 0
875875 0 0
876876 0 0
877877 1.90211 1.90211 0.951057 0.309017i 0.100000π-0.100000\pi
0.951057 + 0.309017i 0.100000π0.100000\pi
878878 0 0
879879 0 0
880880 0 0
881881 0 0 1.00000 00
−1.00000 π\pi
882882 1.90211 1.90211
883883 −1.61803 −1.61803 −0.809017 0.587785i 0.800000π-0.800000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
884884 0 0
885885 0 0
886886 −3.07768 −3.07768
887887 0 0 1.00000 00
−1.00000 π\pi
888888 0 0
889889 1.17557 1.17557
890890 0 0
891891 −0.618034 −0.618034
892892 0 0
893893 0 0
894894 0 0
895895 0 0
896896 −1.90211 −1.90211
897897 0 0
898898 −3.61803 −3.61803
899899 0 0
900900 2.61803 2.61803
901901 0 0
902902 0 0
903903 0 0
904904 3.61803 3.61803
905905 0 0
906906 0 0
907907 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
908908 0 0
909909 0 0
910910 0 0
911911 1.90211 1.90211 0.951057 0.309017i 0.100000π-0.100000\pi
0.951057 + 0.309017i 0.100000π0.100000\pi
912912 0 0
913913 0 0
914914 −1.17557 −1.17557
915915 0 0
916916 0 0
917917 0 0
918918 0 0
919919 −0.618034 −0.618034 −0.309017 0.951057i 0.600000π-0.600000\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
920920 0 0
921921 0 0
922922 0 0
923923 0 0
924924 0 0
925925 0 0
926926 1.17557 1.17557
927927 0 0
928928 −3.61803 −3.61803
929929 0 0 1.00000 00
−1.00000 π\pi
930930 0 0
931931 0 0
932932 −1.61803 −1.61803
933933 0 0
934934 0 0
935935 0 0
936936 0 0
937937 0 0 1.00000 00
−1.00000 π\pi
938938 3.61803 3.61803
939939 0 0
940940 0 0
941941 0 0 1.00000 00
−1.00000 π\pi
942942 0 0
943943 0 0
944944 0 0
945945 0 0
946946 −0.726543 −0.726543
947947 0.618034 0.618034 0.309017 0.951057i 0.400000π-0.400000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
948948 0 0
949949 0 0
950950 0 0
951951 0 0
952952 0 0
953953 −1.90211 −1.90211 −0.951057 0.309017i 0.900000π-0.900000\pi
−0.951057 + 0.309017i 0.900000π0.900000\pi
954954 −3.61803 −3.61803
955955 0 0
956956 1.61803 1.61803
957957 0 0
958958 0 0
959959 −0.618034 −0.618034
960960 0 0
961961 1.00000 1.00000
962962 0 0
963963 −1.17557 −1.17557
964964 0 0
965965 0 0
966966 0 0
967967 −0.618034 −0.618034 −0.309017 0.951057i 0.600000π-0.600000\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
968968 −1.90211 −1.90211
969969 0 0
970970 0 0
971971 0 0 1.00000 00
−1.00000 π\pi
972972 0 0
973973 0 0
974974 3.61803 3.61803
975975 0 0
976976 0 0
977977 −1.17557 −1.17557 −0.587785 0.809017i 0.700000π-0.700000\pi
−0.587785 + 0.809017i 0.700000π0.700000\pi
978978 0 0
979979 0 0
980980 0 0
981981 1.17557 1.17557
982982 3.07768 3.07768
983983 0 0 1.00000 00
−1.00000 π\pi
984984 0 0
985985 0 0
986986 0 0
987987 0 0
988988 0 0
989989 −1.00000 −1.00000
990990 0 0
991991 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
992992 0 0
993993 0 0
994994 0 0
995995 0 0
996996 0 0
997997 0 0 1.00000 00
−1.00000 π\pi
998998 −3.07768 −3.07768
999999 0 0
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2527.1.d.f.1084.4 yes 4
7.6 odd 2 CM 2527.1.d.f.1084.4 yes 4
19.2 odd 18 2527.1.y.f.1182.4 24
19.3 odd 18 2527.1.y.f.1833.1 24
19.4 even 9 2527.1.y.f.776.4 24
19.5 even 9 2527.1.y.f.2400.4 24
19.6 even 9 2527.1.y.f.2050.4 24
19.7 even 3 2527.1.m.e.790.1 8
19.8 odd 6 2527.1.m.e.1014.4 8
19.9 even 9 2527.1.y.f.62.1 24
19.10 odd 18 2527.1.y.f.62.4 24
19.11 even 3 2527.1.m.e.1014.1 8
19.12 odd 6 2527.1.m.e.790.4 8
19.13 odd 18 2527.1.y.f.2050.1 24
19.14 odd 18 2527.1.y.f.2400.1 24
19.15 odd 18 2527.1.y.f.776.1 24
19.16 even 9 2527.1.y.f.1833.4 24
19.17 even 9 2527.1.y.f.1182.1 24
19.18 odd 2 inner 2527.1.d.f.1084.1 4
133.6 odd 18 2527.1.y.f.2050.4 24
133.13 even 18 2527.1.y.f.2050.1 24
133.27 even 6 2527.1.m.e.1014.4 8
133.34 even 18 2527.1.y.f.776.1 24
133.41 even 18 2527.1.y.f.1833.1 24
133.48 even 18 2527.1.y.f.62.4 24
133.55 odd 18 2527.1.y.f.1182.1 24
133.62 odd 18 2527.1.y.f.2400.4 24
133.69 even 6 2527.1.m.e.790.4 8
133.83 odd 6 2527.1.m.e.790.1 8
133.90 even 18 2527.1.y.f.2400.1 24
133.97 even 18 2527.1.y.f.1182.4 24
133.104 odd 18 2527.1.y.f.62.1 24
133.111 odd 18 2527.1.y.f.1833.4 24
133.118 odd 18 2527.1.y.f.776.4 24
133.125 odd 6 2527.1.m.e.1014.1 8
133.132 even 2 inner 2527.1.d.f.1084.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2527.1.d.f.1084.1 4 19.18 odd 2 inner
2527.1.d.f.1084.1 4 133.132 even 2 inner
2527.1.d.f.1084.4 yes 4 1.1 even 1 trivial
2527.1.d.f.1084.4 yes 4 7.6 odd 2 CM
2527.1.m.e.790.1 8 19.7 even 3
2527.1.m.e.790.1 8 133.83 odd 6
2527.1.m.e.790.4 8 19.12 odd 6
2527.1.m.e.790.4 8 133.69 even 6
2527.1.m.e.1014.1 8 19.11 even 3
2527.1.m.e.1014.1 8 133.125 odd 6
2527.1.m.e.1014.4 8 19.8 odd 6
2527.1.m.e.1014.4 8 133.27 even 6
2527.1.y.f.62.1 24 19.9 even 9
2527.1.y.f.62.1 24 133.104 odd 18
2527.1.y.f.62.4 24 19.10 odd 18
2527.1.y.f.62.4 24 133.48 even 18
2527.1.y.f.776.1 24 19.15 odd 18
2527.1.y.f.776.1 24 133.34 even 18
2527.1.y.f.776.4 24 19.4 even 9
2527.1.y.f.776.4 24 133.118 odd 18
2527.1.y.f.1182.1 24 19.17 even 9
2527.1.y.f.1182.1 24 133.55 odd 18
2527.1.y.f.1182.4 24 19.2 odd 18
2527.1.y.f.1182.4 24 133.97 even 18
2527.1.y.f.1833.1 24 19.3 odd 18
2527.1.y.f.1833.1 24 133.41 even 18
2527.1.y.f.1833.4 24 19.16 even 9
2527.1.y.f.1833.4 24 133.111 odd 18
2527.1.y.f.2050.1 24 19.13 odd 18
2527.1.y.f.2050.1 24 133.13 even 18
2527.1.y.f.2050.4 24 19.6 even 9
2527.1.y.f.2050.4 24 133.6 odd 18
2527.1.y.f.2400.1 24 19.14 odd 18
2527.1.y.f.2400.1 24 133.90 even 18
2527.1.y.f.2400.4 24 19.5 even 9
2527.1.y.f.2400.4 24 133.62 odd 18