Properties

Label 253.3.k.b.186.1
Level $253$
Weight $3$
Character 253.186
Analytic conductor $6.894$
Analytic rank $0$
Dimension $10$
CM discriminant -11
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [253,3,Mod(32,253)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(253, base_ring=CyclotomicField(22))
 
chi = DirichletCharacter(H, H._module([11, 10]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("253.32");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 253 = 11 \cdot 23 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 253.k (of order \(22\), degree \(10\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.89375068832\)
Analytic rank: \(0\)
Dimension: \(10\)
Coefficient field: \(\Q(\zeta_{22})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{10} - x^{9} + x^{8} - x^{7} + x^{6} - x^{5} + x^{4} - x^{3} + x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{22}]$

Embedding invariants

Embedding label 186.1
Root \(-0.841254 - 0.540641i\) of defining polynomial
Character \(\chi\) \(=\) 253.186
Dual form 253.3.k.b.219.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.109264 - 0.759951i) q^{3} +(1.66166 + 3.63853i) q^{4} +(5.96859 + 1.75253i) q^{5} +(8.06985 - 2.36952i) q^{9} +(-9.25379 + 5.94705i) q^{11} +(2.58354 - 1.66034i) q^{12} +(0.679686 - 4.72732i) q^{15} +(-10.4778 + 12.0920i) q^{16} +(3.54111 + 24.6290i) q^{20} +(22.7909 + 3.09434i) q^{23} +(11.5213 + 7.40429i) q^{25} +(-5.55294 - 12.1592i) q^{27} +(-3.05767 + 21.2665i) q^{31} +(5.53058 + 6.38263i) q^{33} +(22.0309 + 25.4250i) q^{36} +(70.7534 - 20.7751i) q^{37} +(-37.0152 - 23.7882i) q^{44} +52.3183 q^{45} -25.5490 q^{47} +(10.3342 + 6.64137i) q^{48} +(-6.97343 - 48.5013i) q^{49} +(-28.3730 + 32.7442i) q^{53} +(-65.6544 + 19.2779i) q^{55} +(0.526648 + 0.607784i) q^{59} +(18.3299 - 5.38215i) q^{60} +(-61.4076 - 18.0309i) q^{64} +(-101.518 - 65.2419i) q^{67} +(-0.138691 - 17.6581i) q^{69} +(-71.4983 - 45.9492i) q^{71} +(4.36803 - 9.56465i) q^{75} +(-83.7291 + 53.8094i) q^{80} +(55.0448 - 35.3752i) q^{81} +(-25.0923 - 174.521i) q^{89} +(26.6119 + 88.0671i) q^{92} +16.4956 q^{93} +(133.184 + 39.1063i) q^{97} +(-60.5850 + 69.9188i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10 q + 5 q^{3} - 4 q^{4} + 34 q^{5} - 16 q^{9} + 11 q^{11} - 24 q^{12} + 50 q^{15} - 16 q^{16} - 128 q^{20} + 32 q^{23} + 57 q^{25} + 134 q^{27} + 202 q^{31} + 187 q^{33} + 156 q^{36} + 256 q^{37} + 44 q^{44}+ \cdots - 429 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/253\mathbb{Z}\right)^\times\).

\(n\) \(24\) \(166\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{11}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0 −0.841254 0.540641i \(-0.818182\pi\)
0.841254 + 0.540641i \(0.181818\pi\)
\(3\) −0.109264 0.759951i −0.0364215 0.253317i 0.963474 0.267803i \(-0.0862978\pi\)
−0.999895 + 0.0144864i \(0.995389\pi\)
\(4\) 1.66166 + 3.63853i 0.415415 + 0.909632i
\(5\) 5.96859 + 1.75253i 1.19372 + 0.350507i 0.817447 0.576003i \(-0.195388\pi\)
0.376270 + 0.926510i \(0.377207\pi\)
\(6\) 0 0
\(7\) 0 0 0.654861 0.755750i \(-0.272727\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(8\) 0 0
\(9\) 8.06985 2.36952i 0.896650 0.263280i
\(10\) 0 0
\(11\) −9.25379 + 5.94705i −0.841254 + 0.540641i
\(12\) 2.58354 1.66034i 0.215295 0.138362i
\(13\) 0 0 −0.654861 0.755750i \(-0.727273\pi\)
0.654861 + 0.755750i \(0.272727\pi\)
\(14\) 0 0
\(15\) 0.679686 4.72732i 0.0453124 0.315155i
\(16\) −10.4778 + 12.0920i −0.654861 + 0.755750i
\(17\) 0 0 0.415415 0.909632i \(-0.363636\pi\)
−0.415415 + 0.909632i \(0.636364\pi\)
\(18\) 0 0
\(19\) 0 0 −0.415415 0.909632i \(-0.636364\pi\)
0.415415 + 0.909632i \(0.363636\pi\)
\(20\) 3.54111 + 24.6290i 0.177056 + 1.23145i
\(21\) 0 0
\(22\) 0 0
\(23\) 22.7909 + 3.09434i 0.990909 + 0.134536i
\(24\) 0 0
\(25\) 11.5213 + 7.40429i 0.460852 + 0.296171i
\(26\) 0 0
\(27\) −5.55294 12.1592i −0.205665 0.450342i
\(28\) 0 0
\(29\) 0 0 0.415415 0.909632i \(-0.363636\pi\)
−0.415415 + 0.909632i \(0.636364\pi\)
\(30\) 0 0
\(31\) −3.05767 + 21.2665i −0.0986344 + 0.686017i 0.879172 + 0.476505i \(0.158097\pi\)
−0.977806 + 0.209512i \(0.932812\pi\)
\(32\) 0 0
\(33\) 5.53058 + 6.38263i 0.167593 + 0.193413i
\(34\) 0 0
\(35\) 0 0
\(36\) 22.0309 + 25.4250i 0.611970 + 0.706251i
\(37\) 70.7534 20.7751i 1.91226 0.561489i 0.932552 0.361037i \(-0.117577\pi\)
0.979704 0.200452i \(-0.0642410\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 0 0 −0.959493 0.281733i \(-0.909091\pi\)
0.959493 + 0.281733i \(0.0909091\pi\)
\(42\) 0 0
\(43\) 0 0 −0.142315 0.989821i \(-0.545455\pi\)
0.142315 + 0.989821i \(0.454545\pi\)
\(44\) −37.0152 23.7882i −0.841254 0.540641i
\(45\) 52.3183 1.16263
\(46\) 0 0
\(47\) −25.5490 −0.543596 −0.271798 0.962354i \(-0.587618\pi\)
−0.271798 + 0.962354i \(0.587618\pi\)
\(48\) 10.3342 + 6.64137i 0.215295 + 0.138362i
\(49\) −6.97343 48.5013i −0.142315 0.989821i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −28.3730 + 32.7442i −0.535339 + 0.617814i −0.957404 0.288751i \(-0.906760\pi\)
0.422065 + 0.906566i \(0.361305\pi\)
\(54\) 0 0
\(55\) −65.6544 + 19.2779i −1.19372 + 0.350507i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 0.526648 + 0.607784i 0.00892624 + 0.0103014i 0.760195 0.649695i \(-0.225103\pi\)
−0.751269 + 0.659996i \(0.770558\pi\)
\(60\) 18.3299 5.38215i 0.305498 0.0897024i
\(61\) 0 0 0.142315 0.989821i \(-0.454545\pi\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) −61.4076 18.0309i −0.959493 0.281733i
\(65\) 0 0
\(66\) 0 0
\(67\) −101.518 65.2419i −1.51520 0.973759i −0.992633 0.121161i \(-0.961338\pi\)
−0.522566 0.852599i \(-0.675025\pi\)
\(68\) 0 0
\(69\) −0.138691 17.6581i −0.00201002 0.255914i
\(70\) 0 0
\(71\) −71.4983 45.9492i −1.00702 0.647171i −0.0703984 0.997519i \(-0.522427\pi\)
−0.936620 + 0.350348i \(0.886063\pi\)
\(72\) 0 0
\(73\) 0 0 −0.415415 0.909632i \(-0.636364\pi\)
0.415415 + 0.909632i \(0.363636\pi\)
\(74\) 0 0
\(75\) 4.36803 9.56465i 0.0582404 0.127529i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 0 0 −0.654861 0.755750i \(-0.727273\pi\)
0.654861 + 0.755750i \(0.272727\pi\)
\(80\) −83.7291 + 53.8094i −1.04661 + 0.672618i
\(81\) 55.0448 35.3752i 0.679566 0.436731i
\(82\) 0 0
\(83\) 0 0 0.959493 0.281733i \(-0.0909091\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −25.0923 174.521i −0.281936 1.96091i −0.276813 0.960924i \(-0.589278\pi\)
−0.00512342 0.999987i \(-0.501631\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 26.6119 + 88.0671i 0.289260 + 0.957251i
\(93\) 16.4956 0.177372
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 133.184 + 39.1063i 1.37303 + 0.403157i 0.883337 0.468739i \(-0.155292\pi\)
0.489691 + 0.871896i \(0.337110\pi\)
\(98\) 0 0
\(99\) −60.5850 + 69.9188i −0.611970 + 0.706251i
\(100\) −7.79623 + 54.2240i −0.0779623 + 0.542240i
\(101\) 0 0 0.959493 0.281733i \(-0.0909091\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(102\) 0 0
\(103\) 89.0287 57.2153i 0.864356 0.555488i −0.0316653 0.999499i \(-0.510081\pi\)
0.896022 + 0.444010i \(0.146445\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 0 0 0.142315 0.989821i \(-0.454545\pi\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(108\) 35.0147 40.4091i 0.324210 0.374158i
\(109\) 0 0 0.415415 0.909632i \(-0.363636\pi\)
−0.415415 + 0.909632i \(0.636364\pi\)
\(110\) 0 0
\(111\) −23.5189 51.4992i −0.211882 0.463957i
\(112\) 0 0
\(113\) −190.050 122.138i −1.68186 1.08087i −0.855895 0.517149i \(-0.826993\pi\)
−0.825967 0.563718i \(-0.809370\pi\)
\(114\) 0 0
\(115\) 130.606 + 58.4107i 1.13571 + 0.507919i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 50.2652 110.065i 0.415415 0.909632i
\(122\) 0 0
\(123\) 0 0
\(124\) −82.4597 + 24.2123i −0.664997 + 0.195261i
\(125\) −46.0505 53.1451i −0.368404 0.425161i
\(126\) 0 0
\(127\) 0 0 0.841254 0.540641i \(-0.181818\pi\)
−0.841254 + 0.540641i \(0.818182\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 0 0 0.654861 0.755750i \(-0.272727\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(132\) −14.0334 + 30.7289i −0.106314 + 0.232795i
\(133\) 0 0
\(134\) 0 0
\(135\) −11.8337 82.3052i −0.0876571 0.609668i
\(136\) 0 0
\(137\) −31.2268 −0.227933 −0.113966 0.993485i \(-0.536356\pi\)
−0.113966 + 0.993485i \(0.536356\pi\)
\(138\) 0 0
\(139\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(140\) 0 0
\(141\) 2.79160 + 19.4160i 0.0197986 + 0.137702i
\(142\) 0 0
\(143\) 0 0
\(144\) −55.9018 + 122.408i −0.388207 + 0.850055i
\(145\) 0 0
\(146\) 0 0
\(147\) −36.0966 + 10.5989i −0.245555 + 0.0721015i
\(148\) 193.159 + 222.917i 1.30513 + 1.50620i
\(149\) 0 0 0.841254 0.540641i \(-0.181818\pi\)
−0.841254 + 0.540641i \(0.818182\pi\)
\(150\) 0 0
\(151\) 0 0 −0.654861 0.755750i \(-0.727273\pi\)
0.654861 + 0.755750i \(0.272727\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −55.5203 + 121.572i −0.358195 + 0.784338i
\(156\) 0 0
\(157\) 89.3142 + 195.571i 0.568880 + 1.24567i 0.947391 + 0.320078i \(0.103709\pi\)
−0.378511 + 0.925597i \(0.623564\pi\)
\(158\) 0 0
\(159\) 27.9841 + 17.9843i 0.176001 + 0.113109i
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 273.506 + 175.772i 1.67795 + 1.07835i 0.878736 + 0.477308i \(0.158388\pi\)
0.799215 + 0.601045i \(0.205249\pi\)
\(164\) 0 0
\(165\) 21.8239 + 47.7878i 0.132266 + 0.289623i
\(166\) 0 0
\(167\) 0 0 0.415415 0.909632i \(-0.363636\pi\)
−0.415415 + 0.909632i \(0.636364\pi\)
\(168\) 0 0
\(169\) −24.0512 + 167.280i −0.142315 + 0.989821i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 0 0 0.841254 0.540641i \(-0.181818\pi\)
−0.841254 + 0.540641i \(0.818182\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 25.0474 174.209i 0.142315 0.989821i
\(177\) 0.404343 0.466636i 0.00228442 0.00263636i
\(178\) 0 0
\(179\) −319.404 93.7856i −1.78438 0.523942i −0.788536 0.614989i \(-0.789161\pi\)
−0.995847 + 0.0910465i \(0.970979\pi\)
\(180\) 86.9352 + 190.361i 0.482973 + 1.05756i
\(181\) −29.7134 206.661i −0.164162 1.14177i −0.890682 0.454628i \(-0.849772\pi\)
0.726519 0.687146i \(-0.241137\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 458.707 2.47950
\(186\) 0 0
\(187\) 0 0
\(188\) −42.4538 92.9608i −0.225818 0.494472i
\(189\) 0 0
\(190\) 0 0
\(191\) 105.022 121.202i 0.549854 0.634566i −0.410995 0.911638i \(-0.634819\pi\)
0.960849 + 0.277072i \(0.0893640\pi\)
\(192\) −6.99293 + 48.6369i −0.0364215 + 0.253317i
\(193\) 0 0 0.959493 0.281733i \(-0.0909091\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 164.886 105.966i 0.841254 0.540641i
\(197\) 0 0 −0.654861 0.755750i \(-0.727273\pi\)
0.654861 + 0.755750i \(0.272727\pi\)
\(198\) 0 0
\(199\) −42.6197 + 296.427i −0.214169 + 1.48958i 0.544861 + 0.838526i \(0.316582\pi\)
−0.759031 + 0.651055i \(0.774327\pi\)
\(200\) 0 0
\(201\) −38.4883 + 84.2776i −0.191484 + 0.419292i
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 191.251 29.0327i 0.923919 0.140255i
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) 0 0 −0.415415 0.909632i \(-0.636364\pi\)
0.415415 + 0.909632i \(0.363636\pi\)
\(212\) −166.287 48.8262i −0.784372 0.230312i
\(213\) −27.1069 + 59.3558i −0.127262 + 0.278666i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 0 0
\(220\) −179.238 206.852i −0.814720 0.940237i
\(221\) 0 0
\(222\) 0 0
\(223\) −60.8208 + 70.1909i −0.272739 + 0.314757i −0.875551 0.483126i \(-0.839501\pi\)
0.602812 + 0.797883i \(0.294047\pi\)
\(224\) 0 0
\(225\) 110.520 + 32.4515i 0.491199 + 0.144229i
\(226\) 0 0
\(227\) 0 0 −0.142315 0.989821i \(-0.545455\pi\)
0.142315 + 0.989821i \(0.454545\pi\)
\(228\) 0 0
\(229\) 373.412 1.63062 0.815311 0.579023i \(-0.196566\pi\)
0.815311 + 0.579023i \(0.196566\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 0 0 −0.142315 0.989821i \(-0.545455\pi\)
0.142315 + 0.989821i \(0.454545\pi\)
\(234\) 0 0
\(235\) −152.492 44.7755i −0.648900 0.190534i
\(236\) −1.33633 + 2.92616i −0.00566242 + 0.0123990i
\(237\) 0 0
\(238\) 0 0
\(239\) 0 0 0.959493 0.281733i \(-0.0909091\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(240\) 50.0412 + 57.7506i 0.208505 + 0.240627i
\(241\) 0 0 0.841254 0.540641i \(-0.181818\pi\)
−0.841254 + 0.540641i \(0.818182\pi\)
\(242\) 0 0
\(243\) −111.681 128.887i −0.459592 0.530397i
\(244\) 0 0
\(245\) 43.3786 301.705i 0.177056 1.23145i
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −263.298 169.212i −1.04900 0.674150i −0.101801 0.994805i \(-0.532461\pi\)
−0.947196 + 0.320655i \(0.896097\pi\)
\(252\) 0 0
\(253\) −229.304 + 106.904i −0.906341 + 0.422546i
\(254\) 0 0
\(255\) 0 0
\(256\) −36.4326 253.394i −0.142315 0.989821i
\(257\) 147.682 + 323.380i 0.574640 + 1.25829i 0.944290 + 0.329115i \(0.106750\pi\)
−0.369650 + 0.929171i \(0.620522\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 0 0 −0.654861 0.755750i \(-0.727273\pi\)
0.654861 + 0.755750i \(0.272727\pi\)
\(264\) 0 0
\(265\) −226.732 + 145.712i −0.855592 + 0.549856i
\(266\) 0 0
\(267\) −129.886 + 38.1379i −0.486464 + 0.142839i
\(268\) 68.6954 477.787i 0.256326 1.78279i
\(269\) −340.335 + 392.768i −1.26519 + 1.46010i −0.437190 + 0.899369i \(0.644026\pi\)
−0.827996 + 0.560734i \(0.810519\pi\)
\(270\) 0 0
\(271\) 0 0 −0.959493 0.281733i \(-0.909091\pi\)
0.959493 + 0.281733i \(0.0909091\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −150.649 −0.547816
\(276\) 64.0189 29.8463i 0.231953 0.108139i
\(277\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(278\) 0 0
\(279\) 25.7166 + 178.863i 0.0921742 + 0.641086i
\(280\) 0 0
\(281\) 0 0 −0.959493 0.281733i \(-0.909091\pi\)
0.959493 + 0.281733i \(0.0909091\pi\)
\(282\) 0 0
\(283\) 0 0 0.654861 0.755750i \(-0.272727\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(284\) 48.3815 336.500i 0.170357 1.18486i
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −189.255 218.412i −0.654861 0.755750i
\(290\) 0 0
\(291\) 15.1666 105.486i 0.0521189 0.362495i
\(292\) 0 0
\(293\) 0 0 0.415415 0.909632i \(-0.363636\pi\)
−0.415415 + 0.909632i \(0.636364\pi\)
\(294\) 0 0
\(295\) 2.07818 + 4.55058i 0.00704468 + 0.0154257i
\(296\) 0 0
\(297\) 123.697 + 79.4955i 0.416490 + 0.267662i
\(298\) 0 0
\(299\) 0 0
\(300\) 42.0594 0.140198
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 0 0 0.142315 0.989821i \(-0.454545\pi\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(308\) 0 0
\(309\) −53.2085 61.4059i −0.172196 0.198724i
\(310\) 0 0
\(311\) −471.604 + 303.082i −1.51641 + 0.974540i −0.523983 + 0.851729i \(0.675554\pi\)
−0.992430 + 0.122811i \(0.960809\pi\)
\(312\) 0 0
\(313\) −80.2984 + 23.5777i −0.256544 + 0.0753282i −0.407476 0.913216i \(-0.633591\pi\)
0.150931 + 0.988544i \(0.451773\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 256.908 + 75.4349i 0.810435 + 0.237965i 0.660592 0.750745i \(-0.270305\pi\)
0.149842 + 0.988710i \(0.452123\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) −334.916 215.238i −1.04661 0.672618i
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) 220.179 + 141.501i 0.679566 + 0.436731i
\(325\) 0 0
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) −273.791 + 80.3924i −0.827164 + 0.242877i −0.667798 0.744342i \(-0.732763\pi\)
−0.159366 + 0.987220i \(0.550945\pi\)
\(332\) 0 0
\(333\) 521.743 335.304i 1.56679 1.00692i
\(334\) 0 0
\(335\) −491.582 567.316i −1.46741 1.69348i
\(336\) 0 0
\(337\) 0 0 0.142315 0.989821i \(-0.454545\pi\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(338\) 0 0
\(339\) −72.0532 + 157.774i −0.212546 + 0.465411i
\(340\) 0 0
\(341\) −98.1781 214.980i −0.287912 0.630440i
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 30.1186 105.637i 0.0873003 0.306194i
\(346\) 0 0
\(347\) 0 0 −0.841254 0.540641i \(-0.818182\pi\)
0.841254 + 0.540641i \(0.181818\pi\)
\(348\) 0 0
\(349\) 0 0 −0.415415 0.909632i \(-0.636364\pi\)
0.415415 + 0.909632i \(0.363636\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 33.5944 233.654i 0.0951683 0.661910i −0.885269 0.465079i \(-0.846026\pi\)
0.980437 0.196831i \(-0.0630650\pi\)
\(354\) 0 0
\(355\) −346.216 399.555i −0.975257 1.12551i
\(356\) 593.305 381.294i 1.66659 1.07105i
\(357\) 0 0
\(358\) 0 0
\(359\) 0 0 0.959493 0.281733i \(-0.0909091\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(360\) 0 0
\(361\) −236.405 + 272.826i −0.654861 + 0.755750i
\(362\) 0 0
\(363\) −89.1366 26.1729i −0.245555 0.0721015i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 733.230 1.99790 0.998951 0.0457811i \(-0.0145777\pi\)
0.998951 + 0.0457811i \(0.0145777\pi\)
\(368\) −276.215 + 243.166i −0.750583 + 0.660776i
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 27.4101 + 60.0198i 0.0736831 + 0.161343i
\(373\) 0 0 −0.959493 0.281733i \(-0.909091\pi\)
0.959493 + 0.281733i \(0.0909091\pi\)
\(374\) 0 0
\(375\) −35.3560 + 40.8030i −0.0942826 + 0.108808i
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 524.567 337.119i 1.38408 0.889496i 0.384646 0.923064i \(-0.374324\pi\)
0.999436 + 0.0335688i \(0.0106873\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −2.92942 + 20.3746i −0.00764862 + 0.0531973i −0.993288 0.115665i \(-0.963100\pi\)
0.985640 + 0.168862i \(0.0540093\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 79.0168 + 549.574i 0.203651 + 1.41643i
\(389\) 521.891 + 335.399i 1.34162 + 0.862208i 0.997065 0.0765572i \(-0.0243928\pi\)
0.344557 + 0.938765i \(0.388029\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) −355.073 104.259i −0.896650 0.263280i
\(397\) −293.958 + 643.678i −0.740448 + 1.62136i 0.0423677 + 0.999102i \(0.486510\pi\)
−0.782816 + 0.622253i \(0.786217\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) −210.250 + 61.7350i −0.525625 + 0.154337i
\(401\) 208.433 + 240.545i 0.519784 + 0.599863i 0.953577 0.301150i \(-0.0973705\pi\)
−0.433793 + 0.901013i \(0.642825\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 390.536 114.672i 0.964287 0.283140i
\(406\) 0 0
\(407\) −531.187 + 613.022i −1.30513 + 1.50620i
\(408\) 0 0
\(409\) 0 0 −0.959493 0.281733i \(-0.909091\pi\)
0.959493 + 0.281733i \(0.0909091\pi\)
\(410\) 0 0
\(411\) 3.41198 + 23.7308i 0.00830164 + 0.0577392i
\(412\) 356.115 + 228.861i 0.864356 + 0.555488i
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 720.197 + 211.469i 1.71885 + 0.504699i 0.984695 0.174286i \(-0.0557619\pi\)
0.734152 + 0.678985i \(0.237580\pi\)
\(420\) 0 0
\(421\) 267.863 309.130i 0.636254 0.734276i −0.342454 0.939535i \(-0.611258\pi\)
0.978708 + 0.205259i \(0.0658036\pi\)
\(422\) 0 0
\(423\) −206.177 + 60.5390i −0.487415 + 0.143118i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 0.415415 0.909632i \(-0.363636\pi\)
−0.415415 + 0.909632i \(0.636364\pi\)
\(432\) 205.212 + 60.2557i 0.475028 + 0.139481i
\(433\) 357.417 + 782.635i 0.825444 + 1.80747i 0.516130 + 0.856510i \(0.327372\pi\)
0.309314 + 0.950960i \(0.399901\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) 0 0 −0.841254 0.540641i \(-0.818182\pi\)
0.841254 + 0.540641i \(0.181818\pi\)
\(440\) 0 0
\(441\) −171.199 374.874i −0.388207 0.850055i
\(442\) 0 0
\(443\) −327.582 + 717.304i −0.739462 + 1.61920i 0.0449762 + 0.998988i \(0.485679\pi\)
−0.784438 + 0.620207i \(0.787048\pi\)
\(444\) 148.301 171.148i 0.334011 0.385469i
\(445\) 156.088 1085.62i 0.350761 2.43959i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −656.154 + 421.685i −1.46137 + 0.939165i −0.462757 + 0.886485i \(0.653140\pi\)
−0.998611 + 0.0526795i \(0.983224\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 128.603 894.456i 0.284521 1.97888i
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 0 0 −0.142315 0.989821i \(-0.545455\pi\)
0.142315 + 0.989821i \(0.454545\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 4.49480 + 572.274i 0.00977131 + 1.24407i
\(461\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(462\) 0 0
\(463\) −32.3219 224.804i −0.0698098 0.485538i −0.994493 0.104801i \(-0.966579\pi\)
0.924683 0.380737i \(-0.124330\pi\)
\(464\) 0 0
\(465\) 98.4555 + 28.9091i 0.211732 + 0.0621702i
\(466\) 0 0
\(467\) −605.073 + 698.292i −1.29566 + 1.49527i −0.537386 + 0.843337i \(0.680588\pi\)
−0.758275 + 0.651935i \(0.773957\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 138.865 89.2434i 0.294831 0.189476i
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) −151.378 + 331.471i −0.317354 + 0.694908i
\(478\) 0 0
\(479\) 0 0 −0.415415 0.909632i \(-0.636364\pi\)
0.415415 + 0.909632i \(0.363636\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 0 0
\(484\) 484.000 1.00000
\(485\) 726.383 + 466.818i 1.49770 + 0.962511i
\(486\) 0 0
\(487\) −103.712 227.099i −0.212962 0.466321i 0.772761 0.634697i \(-0.218875\pi\)
−0.985723 + 0.168376i \(0.946148\pi\)
\(488\) 0 0
\(489\) 103.693 227.057i 0.212052 0.464329i
\(490\) 0 0
\(491\) 0 0 0.142315 0.989821i \(-0.454545\pi\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) −484.142 + 311.139i −0.978065 + 0.628564i
\(496\) −225.117 259.799i −0.453865 0.523789i
\(497\) 0 0
\(498\) 0 0
\(499\) −135.781 + 156.699i −0.272106 + 0.314027i −0.875312 0.483558i \(-0.839344\pi\)
0.603206 + 0.797585i \(0.293890\pi\)
\(500\) 116.850 255.865i 0.233699 0.511730i
\(501\) 0 0
\(502\) 0 0
\(503\) 0 0 −0.142315 0.989821i \(-0.545455\pi\)
0.142315 + 0.989821i \(0.454545\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 129.752 0.255922
\(508\) 0 0
\(509\) 77.7965 + 541.086i 0.152842 + 1.06304i 0.911426 + 0.411463i \(0.134982\pi\)
−0.758584 + 0.651575i \(0.774109\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 631.647 185.468i 1.22650 0.360133i
\(516\) 0 0
\(517\) 236.425 151.941i 0.457302 0.293890i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 132.024 918.249i 0.253405 1.76247i −0.324039 0.946044i \(-0.605041\pi\)
0.577445 0.816430i \(-0.304050\pi\)
\(522\) 0 0
\(523\) 0 0 0.415415 0.909632i \(-0.363636\pi\)
−0.415415 + 0.909632i \(0.636364\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) −135.127 −0.255922
\(529\) 509.850 + 141.045i 0.963800 + 0.266626i
\(530\) 0 0
\(531\) 5.69013 + 3.65682i 0.0107159 + 0.00688667i
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) −36.3729 + 252.979i −0.0677336 + 0.471097i
\(538\) 0 0
\(539\) 352.970 + 407.349i 0.654861 + 0.755750i
\(540\) 279.806 179.821i 0.518160 0.333001i
\(541\) 0 0 0.841254 0.540641i \(-0.181818\pi\)
−0.841254 + 0.540641i \(0.818182\pi\)
\(542\) 0 0
\(543\) −153.806 + 45.1614i −0.283252 + 0.0831702i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 0 0 −0.959493 0.281733i \(-0.909091\pi\)
0.959493 + 0.281733i \(0.0909091\pi\)
\(548\) −51.8883 113.619i −0.0946866 0.207335i
\(549\) 0 0
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) −50.1204 348.595i −0.0903070 0.628099i
\(556\) 0 0
\(557\) 0 0 −0.959493 0.281733i \(-0.909091\pi\)
0.959493 + 0.281733i \(0.0909091\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 0 0 0.841254 0.540641i \(-0.181818\pi\)
−0.841254 + 0.540641i \(0.818182\pi\)
\(564\) −66.0070 + 42.4201i −0.117034 + 0.0752130i
\(565\) −920.281 1062.06i −1.62882 1.87975i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 0 0 0.415415 0.909632i \(-0.363636\pi\)
−0.415415 + 0.909632i \(0.636364\pi\)
\(570\) 0 0
\(571\) 0 0 −0.415415 0.909632i \(-0.636364\pi\)
0.415415 + 0.909632i \(0.363636\pi\)
\(572\) 0 0
\(573\) −103.583 66.5687i −0.180773 0.116176i
\(574\) 0 0
\(575\) 239.669 + 204.401i 0.416816 + 0.355480i
\(576\) −538.274 −0.934504
\(577\) 726.546 + 466.923i 1.25918 + 0.809225i 0.988172 0.153353i \(-0.0490070\pi\)
0.271007 + 0.962577i \(0.412643\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 67.8264 471.743i 0.116340 0.809165i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −824.950 + 530.163i −1.40537 + 0.903174i −0.999940 0.0109532i \(-0.996513\pi\)
−0.405427 + 0.914128i \(0.632877\pi\)
\(588\) −98.5448 113.727i −0.167593 0.193413i
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) −490.126 + 1073.23i −0.827916 + 1.81288i
\(593\) 0 0 −0.959493 0.281733i \(-0.909091\pi\)
0.959493 + 0.281733i \(0.0909091\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 229.927 0.385137
\(598\) 0 0
\(599\) 838.177 1.39929 0.699647 0.714489i \(-0.253341\pi\)
0.699647 + 0.714489i \(0.253341\pi\)
\(600\) 0 0
\(601\) 0 0 −0.142315 0.989821i \(-0.545455\pi\)
0.142315 + 0.989821i \(0.454545\pi\)
\(602\) 0 0
\(603\) −973.830 285.942i −1.61497 0.474199i
\(604\) 0 0
\(605\) 492.906 568.844i 0.814720 0.940237i
\(606\) 0 0
\(607\) 0 0 0.959493 0.281733i \(-0.0909091\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 0 0 0.142315 0.989821i \(-0.454545\pi\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 205.680 + 450.377i 0.333356 + 0.729947i 0.999879 0.0155367i \(-0.00494569\pi\)
−0.666524 + 0.745484i \(0.732218\pi\)
\(618\) 0 0
\(619\) −852.807 548.066i −1.37772 0.885406i −0.378526 0.925591i \(-0.623569\pi\)
−0.999192 + 0.0401853i \(0.987205\pi\)
\(620\) −534.601 −0.862259
\(621\) −88.9317 294.303i −0.143207 0.473918i
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −323.949 709.350i −0.518319 1.13496i
\(626\) 0 0
\(627\) 0 0
\(628\) −563.180 + 649.945i −0.896784 + 1.03494i
\(629\) 0 0
\(630\) 0 0
\(631\) −826.419 953.739i −1.30970 1.51147i −0.659402 0.751791i \(-0.729190\pi\)
−0.650296 0.759681i \(-0.725355\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 0 0
\(636\) −18.9363 + 131.705i −0.0297740 + 0.207083i
\(637\) 0 0
\(638\) 0 0
\(639\) −685.858 201.386i −1.07333 0.315158i
\(640\) 0 0
\(641\) −179.171 1246.16i −0.279519 1.94409i −0.326495 0.945199i \(-0.605868\pi\)
0.0469766 0.998896i \(-0.485041\pi\)
\(642\) 0 0
\(643\) −34.2057 −0.0531970 −0.0265985 0.999646i \(-0.508468\pi\)
−0.0265985 + 0.999646i \(0.508468\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −175.431 1220.15i −0.271145 1.88585i −0.436631 0.899641i \(-0.643828\pi\)
0.165486 0.986212i \(-0.447081\pi\)
\(648\) 0 0
\(649\) −8.48801 2.49231i −0.0130786 0.00384022i
\(650\) 0 0
\(651\) 0 0
\(652\) −185.076 + 1287.23i −0.283859 + 1.97428i
\(653\) 337.477 99.0921i 0.516810 0.151749i −0.0129185 0.999917i \(-0.504112\pi\)
0.529728 + 0.848168i \(0.322294\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 0 0 0.142315 0.989821i \(-0.454545\pi\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(660\) −137.613 + 158.814i −0.208505 + 0.240627i
\(661\) −197.767 + 433.048i −0.299193 + 0.655141i −0.998200 0.0599735i \(-0.980898\pi\)
0.699007 + 0.715115i \(0.253626\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 59.9872 + 38.5514i 0.0896670 + 0.0576255i
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 0 0 0.415415 0.909632i \(-0.363636\pi\)
−0.415415 + 0.909632i \(0.636364\pi\)
\(674\) 0 0
\(675\) 26.0535 181.206i 0.0385977 0.268453i
\(676\) −648.617 + 190.451i −0.959493 + 0.281733i
\(677\) 0 0 −0.654861 0.755750i \(-0.727273\pi\)
0.654861 + 0.755750i \(0.272727\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 648.714 748.656i 0.949802 1.09613i −0.0454669 0.998966i \(-0.514478\pi\)
0.995268 0.0971636i \(-0.0309770\pi\)
\(684\) 0 0
\(685\) −186.380 54.7260i −0.272087 0.0798919i
\(686\) 0 0
\(687\) −40.8007 283.775i −0.0593897 0.413064i
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) 992.681 1.43659 0.718293 0.695741i \(-0.244924\pi\)
0.718293 + 0.695741i \(0.244924\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 0 0 0.841254 0.540641i \(-0.181818\pi\)
−0.841254 + 0.540641i \(0.818182\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 675.483 198.340i 0.959493 0.281733i
\(705\) −17.3653 + 120.778i −0.0246317 + 0.171317i
\(706\) 0 0
\(707\) 0 0
\(708\) 2.36975 + 0.695821i 0.00334710 + 0.000982798i
\(709\) −9.21202 20.1715i −0.0129930 0.0284507i 0.903024 0.429590i \(-0.141342\pi\)
−0.916017 + 0.401139i \(0.868614\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −135.493 + 475.222i −0.190032 + 0.666510i
\(714\) 0 0
\(715\) 0 0
\(716\) −189.500 1318.00i −0.264665 1.84078i
\(717\) 0 0
\(718\) 0 0
\(719\) −581.901 + 1274.19i −0.809320 + 1.77216i −0.199015 + 0.979996i \(0.563774\pi\)
−0.610305 + 0.792167i \(0.708953\pi\)
\(720\) −548.179 + 632.632i −0.761359 + 0.878656i
\(721\) 0 0
\(722\) 0 0
\(723\) 0 0
\(724\) 702.568 451.513i 0.970398 0.623637i
\(725\) 0 0
\(726\) 0 0
\(727\) −79.8288 + 23.4399i −0.109806 + 0.0322419i −0.336174 0.941800i \(-0.609133\pi\)
0.226368 + 0.974042i \(0.427315\pi\)
\(728\) 0 0
\(729\) 299.894 346.097i 0.411378 0.474755i
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 0 0 −0.142315 0.989821i \(-0.545455\pi\)
0.142315 + 0.989821i \(0.454545\pi\)
\(734\) 0 0
\(735\) −234.021 −0.318396
\(736\) 0 0
\(737\) 1327.43 1.80112
\(738\) 0 0
\(739\) 0 0 −0.142315 0.989821i \(-0.545455\pi\)
0.142315 + 0.989821i \(0.454545\pi\)
\(740\) 762.215 + 1669.02i 1.03002 + 2.25543i
\(741\) 0 0
\(742\) 0 0
\(743\) 0 0 0.654861 0.755750i \(-0.272727\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 138.472 963.096i 0.184384 1.28242i −0.661862 0.749626i \(-0.730233\pi\)
0.846246 0.532793i \(-0.178857\pi\)
\(752\) 267.697 308.939i 0.355980 0.410823i
\(753\) −99.8234 + 218.583i −0.132568 + 0.290282i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) −1250.97 803.946i −1.65253 1.06202i −0.927866 0.372914i \(-0.878359\pi\)
−0.724664 0.689103i \(-0.758005\pi\)
\(758\) 0 0
\(759\) 106.297 + 162.579i 0.140049 + 0.214202i
\(760\) 0 0
\(761\) 0 0 −0.841254 0.540641i \(-0.818182\pi\)
0.841254 + 0.540641i \(0.181818\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 615.508 + 180.730i 0.805639 + 0.236557i
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) −188.586 + 55.3740i −0.245555 + 0.0721015i
\(769\) 0 0 −0.654861 0.755750i \(-0.727273\pi\)
0.654861 + 0.755750i \(0.272727\pi\)
\(770\) 0 0
\(771\) 229.616 147.565i 0.297816 0.191395i
\(772\) 0 0
\(773\) 1067.60 313.477i 1.38112 0.405533i 0.494959 0.868916i \(-0.335183\pi\)
0.886158 + 0.463384i \(0.153365\pi\)
\(774\) 0 0
\(775\) −192.692 + 222.378i −0.248635 + 0.286940i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 934.892 1.19704
\(782\) 0 0
\(783\) 0 0
\(784\) 659.543 + 423.862i 0.841254 + 0.540641i
\(785\) 190.335 + 1323.81i 0.242465 + 1.68638i
\(786\) 0 0
\(787\) 0 0 −0.959493 0.281733i \(-0.909091\pi\)
0.959493 + 0.281733i \(0.0909091\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) 135.508 + 156.384i 0.170450 + 0.196709i
\(796\) −1149.38 + 337.487i −1.44394 + 0.423979i
\(797\) −165.909 + 1153.92i −0.208167 + 1.44783i 0.570967 + 0.820973i \(0.306569\pi\)
−0.779133 + 0.626858i \(0.784341\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) −616.023 1348.90i −0.769067 1.68402i
\(802\) 0 0
\(803\) 0 0
\(804\) −370.601 −0.460946
\(805\) 0 0
\(806\) 0 0
\(807\) 335.671 + 215.723i 0.415949 + 0.267314i
\(808\) 0 0
\(809\) 0 0 −0.415415 0.909632i \(-0.636364\pi\)
0.415415 + 0.909632i \(0.363636\pi\)
\(810\) 0 0
\(811\) 0 0 0.415415 0.909632i \(-0.363636\pi\)
−0.415415 + 0.909632i \(0.636364\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 1324.40 + 1528.44i 1.62503 + 1.87538i
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 0 0 0.654861 0.755750i \(-0.272727\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(822\) 0 0
\(823\) −1577.50 463.195i −1.91676 0.562813i −0.971934 0.235255i \(-0.924408\pi\)
−0.944831 0.327558i \(-0.893774\pi\)
\(824\) 0 0
\(825\) 16.4606 + 114.486i 0.0199523 + 0.138771i
\(826\) 0 0
\(827\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(828\) 423.431 + 647.630i 0.511390 + 0.782162i
\(829\) −1311.78 −1.58236 −0.791180 0.611584i \(-0.790533\pi\)
−0.791180 + 0.611584i \(0.790533\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 275.564 80.9129i 0.329228 0.0966701i
\(838\) 0 0
\(839\) 109.013 70.0587i 0.129933 0.0835026i −0.474060 0.880493i \(-0.657212\pi\)
0.603993 + 0.796990i \(0.293576\pi\)
\(840\) 0 0
\(841\) −550.738 635.585i −0.654861 0.755750i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −436.715 + 956.273i −0.516823 + 1.13168i
\(846\) 0 0
\(847\) 0 0
\(848\) −98.6566 686.172i −0.116340 0.809165i
\(849\) 0 0
\(850\) 0 0
\(851\) 1676.82 254.548i 1.97041 0.299116i
\(852\) −261.010 −0.306350
\(853\) 0 0 −0.841254 0.540641i \(-0.818182\pi\)
0.841254 + 0.540641i \(0.181818\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 0 0 0.415415 0.909632i \(-0.363636\pi\)
−0.415415 + 0.909632i \(0.636364\pi\)
\(858\) 0 0
\(859\) −236.423 + 1644.36i −0.275231 + 1.91427i 0.114647 + 0.993406i \(0.463426\pi\)
−0.389878 + 0.920866i \(0.627483\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 455.947 293.019i 0.528327 0.339535i −0.249131 0.968470i \(-0.580145\pi\)
0.777458 + 0.628934i \(0.216509\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) −145.303 + 167.689i −0.167593 + 0.193413i
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 1167.44 1.33727
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 0 0 −0.142315 0.989821i \(-0.545455\pi\)
0.142315 + 0.989821i \(0.454545\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 454.804 995.882i 0.516823 1.13168i
\(881\) −474.116 + 547.159i −0.538156 + 0.621066i −0.958082 0.286493i \(-0.907511\pi\)
0.419926 + 0.907558i \(0.362056\pi\)
\(882\) 0 0
\(883\) 1562.50 458.791i 1.76954 0.519583i 0.775764 0.631023i \(-0.217364\pi\)
0.993771 + 0.111440i \(0.0355463\pi\)
\(884\) 0 0
\(885\) 3.23115 2.07653i 0.00365102 0.00234637i
\(886\) 0 0
\(887\) 0 0 −0.654861 0.755750i \(-0.727273\pi\)
0.654861 + 0.755750i \(0.272727\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) −298.995 + 654.709i −0.335573 + 0.734802i
\(892\) −356.455 104.665i −0.399613 0.117337i
\(893\) 0 0
\(894\) 0 0
\(895\) −1742.03 1119.53i −1.94640 1.25088i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 0 0
\(900\) 65.5705 + 456.053i 0.0728561 + 0.506725i
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 184.834 1285.55i 0.204236 1.42049i
\(906\) 0 0
\(907\) 1133.17 + 1307.75i 1.24936 + 1.44184i 0.851466 + 0.524410i \(0.175714\pi\)
0.397896 + 0.917430i \(0.369740\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 620.773 182.275i 0.681419 0.200083i 0.0773371 0.997005i \(-0.475358\pi\)
0.604082 + 0.796922i \(0.293540\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) 0 0
\(916\) 620.484 + 1358.67i 0.677385 + 1.48327i
\(917\) 0 0
\(918\) 0 0
\(919\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 968.996 + 284.523i 1.04756 + 0.307592i
\(926\) 0 0
\(927\) 582.875 672.674i 0.628776 0.725646i
\(928\) 0 0
\(929\) −1756.35 + 515.710i −1.89058 + 0.555124i −0.896991 + 0.442048i \(0.854252\pi\)
−0.993586 + 0.113076i \(0.963930\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 281.857 + 325.280i 0.302098 + 0.348639i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 0 0 0.415415 0.909632i \(-0.363636\pi\)
−0.415415 + 0.909632i \(0.636364\pi\)
\(938\) 0 0
\(939\) 26.6917 + 58.4467i 0.0284257 + 0.0622435i
\(940\) −90.4720 629.246i −0.0962468 0.669411i
\(941\) 0 0 −0.841254 0.540641i \(-0.818182\pi\)
0.841254 + 0.540641i \(0.181818\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) −12.8674 −0.0136307
\(945\) 0 0
\(946\) 0 0
\(947\) 464.030 + 1016.08i 0.490000 + 1.07295i 0.979592 + 0.200998i \(0.0644185\pi\)
−0.489592 + 0.871952i \(0.662854\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 29.2560 203.480i 0.0307634 0.213964i
\(952\) 0 0
\(953\) 0 0 −0.654861 0.755750i \(-0.727273\pi\)
0.654861 + 0.755750i \(0.272727\pi\)
\(954\) 0 0
\(955\) 839.245 539.350i 0.878790 0.564764i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) −126.976 + 278.038i −0.132266 + 0.289623i
\(961\) 479.157 + 140.693i 0.498602 + 0.146403i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 1854.02 + 544.389i 1.90939 + 0.560647i 0.982835 + 0.184489i \(0.0590631\pi\)
0.926555 + 0.376158i \(0.122755\pi\)
\(972\) 283.382 620.519i 0.291545 0.638394i
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −1120.97 + 720.404i −1.14736 + 0.737363i −0.969112 0.246622i \(-0.920679\pi\)
−0.178248 + 0.983986i \(0.557043\pi\)
\(978\) 0 0
\(979\) 1270.08 + 1465.76i 1.29733 + 1.49720i
\(980\) 1169.84 343.497i 1.19372 0.350507i
\(981\) 0 0
\(982\) 0 0
\(983\) 812.666 1779.49i 0.826720 1.81026i 0.322991 0.946402i \(-0.395312\pi\)
0.503729 0.863862i \(-0.331961\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) −576.550 370.526i −0.581786 0.373891i 0.216398 0.976305i \(-0.430569\pi\)
−0.798184 + 0.602414i \(0.794206\pi\)
\(992\) 0 0
\(993\) 91.0099 + 199.284i 0.0916515 + 0.200689i
\(994\) 0 0
\(995\) −773.877 + 1694.55i −0.777766 + 1.70307i
\(996\) 0 0
\(997\) 0 0 0.142315 0.989821i \(-0.454545\pi\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(998\) 0 0
\(999\) −645.499 744.946i −0.646145 0.745691i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 253.3.k.b.186.1 10
11.10 odd 2 CM 253.3.k.b.186.1 10
23.12 even 11 inner 253.3.k.b.219.1 yes 10
253.219 odd 22 inner 253.3.k.b.219.1 yes 10
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
253.3.k.b.186.1 10 1.1 even 1 trivial
253.3.k.b.186.1 10 11.10 odd 2 CM
253.3.k.b.219.1 yes 10 23.12 even 11 inner
253.3.k.b.219.1 yes 10 253.219 odd 22 inner