gp: [N,k,chi] = [2535,2,Mod(1,2535)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2535, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0, 0]))
N = Newforms(chi, 2, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("2535.1");
S:= CuspForms(chi, 2);
N := Newforms(S);
Newform invariants
sage: traces = [3,0,-3,6,3,0,3]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
p p p
Sign
3 3 3
+ 1 +1 + 1
5 5 5
− 1 -1 − 1
13 13 1 3
+ 1 +1 + 1
This newform does not admit any (nontrivial ) inner twists .
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S 2 n e w ( Γ 0 ( 2535 ) ) S_{2}^{\mathrm{new}}(\Gamma_0(2535)) S 2 n e w ( Γ 0 ( 2 5 3 5 ) ) :
T 2 3 − 6 T 2 − 2 T_{2}^{3} - 6T_{2} - 2 T 2 3 − 6 T 2 − 2
T2^3 - 6*T2 - 2
T 7 3 − 3 T 7 2 − 3 T 7 + 3 T_{7}^{3} - 3T_{7}^{2} - 3T_{7} + 3 T 7 3 − 3 T 7 2 − 3 T 7 + 3
T7^3 - 3*T7^2 - 3*T7 + 3
T 11 3 − 24 T 11 + 16 T_{11}^{3} - 24T_{11} + 16 T 1 1 3 − 2 4 T 1 1 + 1 6
T11^3 - 24*T11 + 16
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T 3 − 6 T − 2 T^{3} - 6T - 2 T 3 − 6 T − 2
T^3 - 6*T - 2
3 3 3
( T + 1 ) 3 (T + 1)^{3} ( T + 1 ) 3
(T + 1)^3
5 5 5
( T − 1 ) 3 (T - 1)^{3} ( T − 1 ) 3
(T - 1)^3
7 7 7
T 3 − 3 T 2 + ⋯ + 3 T^{3} - 3 T^{2} + \cdots + 3 T 3 − 3 T 2 + ⋯ + 3
T^3 - 3*T^2 - 3*T + 3
11 11 1 1
T 3 − 24 T + 16 T^{3} - 24T + 16 T 3 − 2 4 T + 1 6
T^3 - 24*T + 16
13 13 1 3
T 3 T^{3} T 3
T^3
17 17 1 7
T 3 − 42 T − 98 T^{3} - 42T - 98 T 3 − 4 2 T − 9 8
T^3 - 42*T - 98
19 19 1 9
T 3 − 12 T 2 + ⋯ − 4 T^{3} - 12 T^{2} + \cdots - 4 T 3 − 1 2 T 2 + ⋯ − 4
T^3 - 12*T^2 + 36*T - 4
23 23 2 3
T 3 − 48 T + 96 T^{3} - 48T + 96 T 3 − 4 8 T + 9 6
T^3 - 48*T + 96
29 29 2 9
T 3 − 6 T 2 + 14 T^{3} - 6T^{2} + 14 T 3 − 6 T 2 + 1 4
T^3 - 6*T^2 + 14
31 31 3 1
T 3 − 3 T 2 + ⋯ + 363 T^{3} - 3 T^{2} + \cdots + 363 T 3 − 3 T 2 + ⋯ + 3 6 3
T^3 - 3*T^2 - 93*T + 363
37 37 3 7
T 3 − 6 T 2 + ⋯ − 8 T^{3} - 6 T^{2} + \cdots - 8 T 3 − 6 T 2 + ⋯ − 8
T^3 - 6*T^2 - 36*T - 8
41 41 4 1
T 3 − 24 T + 26 T^{3} - 24T + 26 T 3 − 2 4 T + 2 6
T^3 - 24*T + 26
43 43 4 3
T 3 − 9 T 2 + ⋯ + 11 T^{3} - 9 T^{2} + \cdots + 11 T 3 − 9 T 2 + ⋯ + 1 1
T^3 - 9*T^2 + 15*T + 11
47 47 4 7
T 3 + 12 T 2 + ⋯ − 206 T^{3} + 12 T^{2} + \cdots - 206 T 3 + 1 2 T 2 + ⋯ − 2 0 6
T^3 + 12*T^2 - 6*T - 206
53 53 5 3
T 3 − 24 T + 16 T^{3} - 24T + 16 T 3 − 2 4 T + 1 6
T^3 - 24*T + 16
59 59 5 9
T 3 + 6 T 2 + ⋯ − 14 T^{3} + 6 T^{2} + \cdots - 14 T 3 + 6 T 2 + ⋯ − 1 4
T^3 + 6*T^2 - 12*T - 14
61 61 6 1
T 3 + 3 T 2 + ⋯ − 67 T^{3} + 3 T^{2} + \cdots - 67 T 3 + 3 T 2 + ⋯ − 6 7
T^3 + 3*T^2 - 21*T - 67
67 67 6 7
T 3 − 9 T 2 + ⋯ + 351 T^{3} - 9 T^{2} + \cdots + 351 T 3 − 9 T 2 + ⋯ + 3 5 1
T^3 - 9*T^2 - 81*T + 351
71 71 7 1
T 3 + 12 T 2 + ⋯ − 682 T^{3} + 12 T^{2} + \cdots - 682 T 3 + 1 2 T 2 + ⋯ − 6 8 2
T^3 + 12*T^2 - 48*T - 682
73 73 7 3
T 3 − 21 T 2 + ⋯ + 89 T^{3} - 21 T^{2} + \cdots + 89 T 3 − 2 1 T 2 + ⋯ + 8 9
T^3 - 21*T^2 + 93*T + 89
79 79 7 9
T 3 + 3 T 2 + ⋯ − 363 T^{3} + 3 T^{2} + \cdots - 363 T 3 + 3 T 2 + ⋯ − 3 6 3
T^3 + 3*T^2 - 93*T - 363
83 83 8 3
T 3 + 18 T 2 + ⋯ − 168 T^{3} + 18 T^{2} + \cdots - 168 T 3 + 1 8 T 2 + ⋯ − 1 6 8
T^3 + 18*T^2 + 60*T - 168
89 89 8 9
T 3 − 30 T 2 + ⋯ − 882 T^{3} - 30 T^{2} + \cdots - 882 T 3 − 3 0 T 2 + ⋯ − 8 8 2
T^3 - 30*T^2 + 288*T - 882
97 97 9 7
T 3 − 15 T 2 + ⋯ + 589 T^{3} - 15 T^{2} + \cdots + 589 T 3 − 1 5 T 2 + ⋯ + 5 8 9
T^3 - 15*T^2 - 9*T + 589
show more
show less