Properties

Label 2535.2.a.bb
Level 25352535
Weight 22
Character orbit 2535.a
Self dual yes
Analytic conductor 20.24220.242
Analytic rank 00
Dimension 33
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2535,2,Mod(1,2535)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2535, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2535.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: N N == 2535=35132 2535 = 3 \cdot 5 \cdot 13^{2}
Weight: k k == 2 2
Character orbit: [χ][\chi] == 2535.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,0,-3,6,3,0,3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 20.242076912420.2420769124
Analytic rank: 00
Dimension: 33
Coefficient field: 3.3.756.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x36x2 x^{3} - 6x - 2 Copy content Toggle raw display
Coefficient ring: Z[a1,a2]\Z[a_1, a_2]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 195)
Fricke sign: 1-1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,β21,\beta_1,\beta_2 for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+β1q2q3+(β2+2)q4+q5β1q6+(β1+1)q7+(2β1+2)q8+q9+β1q102β1q11+(β22)q12+(β2+β1+4)q14+2β1q99+O(q100) q + \beta_1 q^{2} - q^{3} + (\beta_{2} + 2) q^{4} + q^{5} - \beta_1 q^{6} + (\beta_1 + 1) q^{7} + (2 \beta_1 + 2) q^{8} + q^{9} + \beta_1 q^{10} - 2 \beta_1 q^{11} + ( - \beta_{2} - 2) q^{12} + (\beta_{2} + \beta_1 + 4) q^{14}+ \cdots - 2 \beta_1 q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 3q3q3+6q4+3q5+3q7+6q8+3q96q12+12q143q15+12q16+12q19+6q203q2124q226q24+3q253q27+12q28+6q29++30q98+O(q100) 3 q - 3 q^{3} + 6 q^{4} + 3 q^{5} + 3 q^{7} + 6 q^{8} + 3 q^{9} - 6 q^{12} + 12 q^{14} - 3 q^{15} + 12 q^{16} + 12 q^{19} + 6 q^{20} - 3 q^{21} - 24 q^{22} - 6 q^{24} + 3 q^{25} - 3 q^{27} + 12 q^{28} + 6 q^{29}+ \cdots + 30 q^{98}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x36x2 x^{3} - 6x - 2 : Copy content Toggle raw display

β1\beta_{1}== ν \nu Copy content Toggle raw display
β2\beta_{2}== ν24 \nu^{2} - 4 Copy content Toggle raw display
ν\nu== β1 \beta_1 Copy content Toggle raw display
ν2\nu^{2}== β2+4 \beta_{2} + 4 Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
−2.26180
−0.339877
2.60168
−2.26180 −1.00000 3.11575 1.00000 2.26180 −1.26180 −2.52360 1.00000 −2.26180
1.2 −0.339877 −1.00000 −1.88448 1.00000 0.339877 0.660123 1.32025 1.00000 −0.339877
1.3 2.60168 −1.00000 4.76873 1.00000 −2.60168 3.60168 7.20336 1.00000 2.60168
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
33 +1 +1
55 1 -1
1313 +1 +1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2535.2.a.bb 3
3.b odd 2 1 7605.2.a.bv 3
13.b even 2 1 2535.2.a.ba 3
13.c even 3 2 195.2.i.d 6
39.d odd 2 1 7605.2.a.bw 3
39.i odd 6 2 585.2.j.f 6
65.n even 6 2 975.2.i.l 6
65.q odd 12 4 975.2.bb.k 12
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
195.2.i.d 6 13.c even 3 2
585.2.j.f 6 39.i odd 6 2
975.2.i.l 6 65.n even 6 2
975.2.bb.k 12 65.q odd 12 4
2535.2.a.ba 3 13.b even 2 1
2535.2.a.bb 3 1.a even 1 1 trivial
7605.2.a.bv 3 3.b odd 2 1
7605.2.a.bw 3 39.d odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(Γ0(2535))S_{2}^{\mathrm{new}}(\Gamma_0(2535)):

T236T22 T_{2}^{3} - 6T_{2} - 2 Copy content Toggle raw display
T733T723T7+3 T_{7}^{3} - 3T_{7}^{2} - 3T_{7} + 3 Copy content Toggle raw display
T11324T11+16 T_{11}^{3} - 24T_{11} + 16 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T36T2 T^{3} - 6T - 2 Copy content Toggle raw display
33 (T+1)3 (T + 1)^{3} Copy content Toggle raw display
55 (T1)3 (T - 1)^{3} Copy content Toggle raw display
77 T33T2++3 T^{3} - 3 T^{2} + \cdots + 3 Copy content Toggle raw display
1111 T324T+16 T^{3} - 24T + 16 Copy content Toggle raw display
1313 T3 T^{3} Copy content Toggle raw display
1717 T342T98 T^{3} - 42T - 98 Copy content Toggle raw display
1919 T312T2+4 T^{3} - 12 T^{2} + \cdots - 4 Copy content Toggle raw display
2323 T348T+96 T^{3} - 48T + 96 Copy content Toggle raw display
2929 T36T2+14 T^{3} - 6T^{2} + 14 Copy content Toggle raw display
3131 T33T2++363 T^{3} - 3 T^{2} + \cdots + 363 Copy content Toggle raw display
3737 T36T2+8 T^{3} - 6 T^{2} + \cdots - 8 Copy content Toggle raw display
4141 T324T+26 T^{3} - 24T + 26 Copy content Toggle raw display
4343 T39T2++11 T^{3} - 9 T^{2} + \cdots + 11 Copy content Toggle raw display
4747 T3+12T2+206 T^{3} + 12 T^{2} + \cdots - 206 Copy content Toggle raw display
5353 T324T+16 T^{3} - 24T + 16 Copy content Toggle raw display
5959 T3+6T2+14 T^{3} + 6 T^{2} + \cdots - 14 Copy content Toggle raw display
6161 T3+3T2+67 T^{3} + 3 T^{2} + \cdots - 67 Copy content Toggle raw display
6767 T39T2++351 T^{3} - 9 T^{2} + \cdots + 351 Copy content Toggle raw display
7171 T3+12T2+682 T^{3} + 12 T^{2} + \cdots - 682 Copy content Toggle raw display
7373 T321T2++89 T^{3} - 21 T^{2} + \cdots + 89 Copy content Toggle raw display
7979 T3+3T2+363 T^{3} + 3 T^{2} + \cdots - 363 Copy content Toggle raw display
8383 T3+18T2+168 T^{3} + 18 T^{2} + \cdots - 168 Copy content Toggle raw display
8989 T330T2+882 T^{3} - 30 T^{2} + \cdots - 882 Copy content Toggle raw display
9797 T315T2++589 T^{3} - 15 T^{2} + \cdots + 589 Copy content Toggle raw display
show more
show less