Properties

Label 2548.2.g.a
Level $2548$
Weight $2$
Character orbit 2548.g
Analytic conductor $20.346$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2548,2,Mod(2157,2548)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2548, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2548.2157");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2548 = 2^{2} \cdot 7^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2548.g (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(20.3458824350\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: 4.0.65712.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 7x^{2} + 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 364)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - q^{3} - \beta_1 q^{5} - 2 q^{9} - \beta_1 q^{11} - \beta_{2} q^{13} + \beta_1 q^{15} + ( - \beta_{3} + \beta_{2} + 1) q^{17} + ( - \beta_{3} - \beta_{2} - \beta_1) q^{19} + 3 q^{23} + (\beta_{3} - \beta_{2} - 2) q^{25}+ \cdots + 2 \beta_1 q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{3} - 8 q^{9} - 2 q^{13} + 8 q^{17} + 12 q^{23} - 12 q^{25} + 20 q^{27} + 2 q^{39} - 12 q^{43} - 8 q^{51} + 16 q^{53} - 32 q^{55} + 2 q^{65} - 12 q^{69} + 12 q^{75} - 16 q^{79} + 4 q^{81} - 28 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} + 7x^{2} + 3 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu^{3} + 6\nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} + \nu + 4 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( -\nu^{2} + \nu - 4 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{3} + \beta_{2} ) / 2 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( -\beta_{3} + \beta_{2} - 8 ) / 2 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( -3\beta_{3} - 3\beta_{2} + \beta_1 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2548\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(885\) \(1275\)
\(\chi(n)\) \(-1\) \(1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
2157.1
0.677214i
2.55761i
2.55761i
0.677214i
0 −1.00000 0 3.75270i 0 0 0 −2.00000 0
2157.2 0 −1.00000 0 1.38464i 0 0 0 −2.00000 0
2157.3 0 −1.00000 0 1.38464i 0 0 0 −2.00000 0
2157.4 0 −1.00000 0 3.75270i 0 0 0 −2.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
13.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2548.2.g.a 4
7.b odd 2 1 2548.2.g.d 4
7.c even 3 2 364.2.y.a 8
7.d odd 6 2 2548.2.y.a 8
13.b even 2 1 inner 2548.2.g.a 4
21.h odd 6 2 3276.2.gv.d 8
91.b odd 2 1 2548.2.g.d 4
91.r even 6 2 364.2.y.a 8
91.s odd 6 2 2548.2.y.a 8
273.w odd 6 2 3276.2.gv.d 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
364.2.y.a 8 7.c even 3 2
364.2.y.a 8 91.r even 6 2
2548.2.g.a 4 1.a even 1 1 trivial
2548.2.g.a 4 13.b even 2 1 inner
2548.2.g.d 4 7.b odd 2 1
2548.2.g.d 4 91.b odd 2 1
2548.2.y.a 8 7.d odd 6 2
2548.2.y.a 8 91.s odd 6 2
3276.2.gv.d 8 21.h odd 6 2
3276.2.gv.d 8 273.w odd 6 2

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3} + 1 \) acting on \(S_{2}^{\mathrm{new}}(2548, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( (T + 1)^{4} \) Copy content Toggle raw display
$5$ \( T^{4} + 16T^{2} + 27 \) Copy content Toggle raw display
$7$ \( T^{4} \) Copy content Toggle raw display
$11$ \( T^{4} + 16T^{2} + 27 \) Copy content Toggle raw display
$13$ \( T^{4} + 2 T^{3} + \cdots + 169 \) Copy content Toggle raw display
$17$ \( (T^{2} - 4 T - 33)^{2} \) Copy content Toggle raw display
$19$ \( T^{4} + 40T^{2} + 363 \) Copy content Toggle raw display
$23$ \( (T - 3)^{4} \) Copy content Toggle raw display
$29$ \( T^{4} \) Copy content Toggle raw display
$31$ \( T^{4} + 40T^{2} + 363 \) Copy content Toggle raw display
$37$ \( T^{4} + 48T^{2} + 243 \) Copy content Toggle raw display
$41$ \( T^{4} + 64T^{2} + 432 \) Copy content Toggle raw display
$43$ \( (T^{2} + 6 T - 28)^{2} \) Copy content Toggle raw display
$47$ \( T^{4} + 16T^{2} + 27 \) Copy content Toggle raw display
$53$ \( (T^{2} - 8 T - 21)^{2} \) Copy content Toggle raw display
$59$ \( T^{4} + 144T^{2} + 2187 \) Copy content Toggle raw display
$61$ \( (T^{2} - 37)^{2} \) Copy content Toggle raw display
$67$ \( T^{4} + 120T^{2} + 3267 \) Copy content Toggle raw display
$71$ \( T^{4} + 252T^{2} + 3888 \) Copy content Toggle raw display
$73$ \( T^{4} + 280 T^{2} + 15123 \) Copy content Toggle raw display
$79$ \( (T^{2} + 8 T - 21)^{2} \) Copy content Toggle raw display
$83$ \( T^{4} + 252T^{2} + 3888 \) Copy content Toggle raw display
$89$ \( T^{4} + 144T^{2} + 2187 \) Copy content Toggle raw display
$97$ \( T^{4} + 292 T^{2} + 21168 \) Copy content Toggle raw display
show more
show less