Properties

Label 2548.2.i.m
Level $2548$
Weight $2$
Character orbit 2548.i
Analytic conductor $20.346$
Analytic rank $0$
Dimension $12$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2548,2,Mod(165,2548)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2548, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 4, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2548.165");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2548 = 2^{2} \cdot 7^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2548.i (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(20.3458824350\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} + 9x^{10} + 66x^{8} + 127x^{6} + 189x^{4} + 60x^{2} + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{9}]\)
Coefficient ring index: \( 3^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{11}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_1 q^{3} + \beta_{7} q^{5} + \beta_{9} q^{9} + ( - \beta_{10} + \beta_{4} - 1) q^{11} + (\beta_{11} - \beta_{6} + \beta_{5}) q^{13} + ( - \beta_{9} + \beta_{4}) q^{15} + ( - 2 \beta_{11} - \beta_{5} - \beta_{3}) q^{17}+ \cdots + ( - 2 \beta_{8} + \beta_{2} - 3) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 6 q^{11} + 6 q^{15} + 6 q^{25} + 12 q^{29} - 12 q^{37} - 6 q^{39} - 6 q^{43} - 6 q^{51} + 6 q^{53} + 36 q^{57} - 30 q^{65} + 12 q^{67} - 12 q^{71} - 12 q^{79} + 6 q^{81} + 36 q^{85} + 12 q^{93} - 12 q^{95}+ \cdots - 36 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{12} + 9x^{10} + 66x^{8} + 127x^{6} + 189x^{4} + 60x^{2} + 16 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( 9\nu^{10} + 66\nu^{8} + 484\nu^{6} + 189\nu^{4} + 60\nu^{2} - 3538 ) / 1326 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( 3\nu^{11} + 39\nu^{9} + 286\nu^{7} + 981\nu^{5} + 819\nu^{3} + 260\nu ) / 408 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( -55\nu^{10} - 477\nu^{8} - 3498\nu^{6} - 6017\nu^{4} - 10017\nu^{2} - 528 ) / 2652 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( 24\nu^{11} + 176\nu^{9} + 1217\nu^{7} + 504\nu^{5} + 160\nu^{3} - 521\nu ) / 1326 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( -55\nu^{11} - 477\nu^{9} - 3498\nu^{7} - 6017\nu^{5} - 10017\nu^{3} - 528\nu ) / 2652 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( -33\nu^{11} - 242\nu^{9} - 1701\nu^{7} - 693\nu^{5} - 220\nu^{3} + 6711\nu ) / 1326 \) Copy content Toggle raw display
\(\beta_{8}\)\(=\) \( ( -57\nu^{10} - 418\nu^{8} - 2918\nu^{6} - 1197\nu^{4} - 380\nu^{2} + 5906 ) / 1326 \) Copy content Toggle raw display
\(\beta_{9}\)\(=\) \( ( -55\nu^{10} - 477\nu^{8} - 3498\nu^{6} - 6017\nu^{4} - 9133\nu^{2} - 528 ) / 884 \) Copy content Toggle raw display
\(\beta_{10}\)\(=\) \( ( 241\nu^{10} + 2283\nu^{8} + 16742\nu^{6} + 36443\nu^{4} + 47943\nu^{2} + 15220 ) / 2652 \) Copy content Toggle raw display
\(\beta_{11}\)\(=\) \( ( 685\nu^{11} + 5981\nu^{9} + 43566\nu^{7} + 74939\nu^{5} + 106153\nu^{3} + 6576\nu ) / 5304 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{9} - 3\beta_{4} \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( -\beta_{11} - 5\beta_{6} + \beta_{5} + \beta_{3} \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( -\beta_{10} - 8\beta_{9} + 17\beta_{4} - 8\beta_{2} - 17 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( 7\beta_{11} + 7\beta_{7} + 32\beta_{6} - 9\beta_{3} - 32\beta_1 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( 9\beta_{8} + 57\beta_{2} + 112 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( -48\beta_{7} - 66\beta_{5} + 217\beta_1 \) Copy content Toggle raw display
\(\nu^{8}\)\(=\) \( 66\beta_{10} + 397\beta_{9} - 66\beta_{8} - 765\beta_{4} \) Copy content Toggle raw display
\(\nu^{9}\)\(=\) \( -331\beta_{11} - 1493\beta_{6} + 463\beta_{5} + 463\beta_{3} \) Copy content Toggle raw display
\(\nu^{10}\)\(=\) \( -463\beta_{10} - 2750\beta_{9} + 5273\beta_{4} - 2750\beta_{2} - 5273 \) Copy content Toggle raw display
\(\nu^{11}\)\(=\) \( 2287\beta_{11} + 2287\beta_{7} + 10310\beta_{6} - 3213\beta_{3} - 10310\beta_1 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2548\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(885\) \(1275\)
\(\chi(n)\) \(-1 + \beta_{4}\) \(-1 + \beta_{4}\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
165.1
−1.31475 2.27721i
−0.662644 1.14773i
−0.286958 0.497025i
0.286958 + 0.497025i
0.662644 + 1.14773i
1.31475 + 2.27721i
−1.31475 + 2.27721i
−0.662644 + 1.14773i
−0.286958 + 0.497025i
0.286958 0.497025i
0.662644 1.14773i
1.31475 2.27721i
0 −1.31475 2.27721i 0 0.934445 + 1.61851i 0 0 0 −1.95712 + 3.38982i 0
165.2 0 −0.662644 1.14773i 0 −0.0919085 0.159190i 0 0 0 0.621805 1.07700i 0
165.3 0 −0.286958 0.497025i 0 −1.45546 2.52093i 0 0 0 1.33531 2.31283i 0
165.4 0 0.286958 + 0.497025i 0 1.45546 + 2.52093i 0 0 0 1.33531 2.31283i 0
165.5 0 0.662644 + 1.14773i 0 0.0919085 + 0.159190i 0 0 0 0.621805 1.07700i 0
165.6 0 1.31475 + 2.27721i 0 −0.934445 1.61851i 0 0 0 −1.95712 + 3.38982i 0
1745.1 0 −1.31475 + 2.27721i 0 0.934445 1.61851i 0 0 0 −1.95712 3.38982i 0
1745.2 0 −0.662644 + 1.14773i 0 −0.0919085 + 0.159190i 0 0 0 0.621805 + 1.07700i 0
1745.3 0 −0.286958 + 0.497025i 0 −1.45546 + 2.52093i 0 0 0 1.33531 + 2.31283i 0
1745.4 0 0.286958 0.497025i 0 1.45546 2.52093i 0 0 0 1.33531 + 2.31283i 0
1745.5 0 0.662644 1.14773i 0 0.0919085 0.159190i 0 0 0 0.621805 + 1.07700i 0
1745.6 0 1.31475 2.27721i 0 −0.934445 + 1.61851i 0 0 0 −1.95712 3.38982i 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 165.6
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.b odd 2 1 inner
91.h even 3 1 inner
91.v odd 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2548.2.i.m 12
7.b odd 2 1 inner 2548.2.i.m 12
7.c even 3 1 2548.2.k.g 12
7.c even 3 1 2548.2.l.m 12
7.d odd 6 1 2548.2.k.g 12
7.d odd 6 1 2548.2.l.m 12
13.c even 3 1 2548.2.l.m 12
91.g even 3 1 2548.2.k.g 12
91.h even 3 1 inner 2548.2.i.m 12
91.m odd 6 1 2548.2.k.g 12
91.n odd 6 1 2548.2.l.m 12
91.v odd 6 1 inner 2548.2.i.m 12
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
2548.2.i.m 12 1.a even 1 1 trivial
2548.2.i.m 12 7.b odd 2 1 inner
2548.2.i.m 12 91.h even 3 1 inner
2548.2.i.m 12 91.v odd 6 1 inner
2548.2.k.g 12 7.c even 3 1
2548.2.k.g 12 7.d odd 6 1
2548.2.k.g 12 91.g even 3 1
2548.2.k.g 12 91.m odd 6 1
2548.2.l.m 12 7.c even 3 1
2548.2.l.m 12 7.d odd 6 1
2548.2.l.m 12 13.c even 3 1
2548.2.l.m 12 91.n odd 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(2548, [\chi])\):

\( T_{3}^{12} + 9T_{3}^{10} + 66T_{3}^{8} + 127T_{3}^{6} + 189T_{3}^{4} + 60T_{3}^{2} + 16 \) Copy content Toggle raw display
\( T_{5}^{12} + 12T_{5}^{10} + 114T_{5}^{8} + 358T_{5}^{6} + 888T_{5}^{4} + 30T_{5}^{2} + 1 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{12} \) Copy content Toggle raw display
$3$ \( T^{12} + 9 T^{10} + \cdots + 16 \) Copy content Toggle raw display
$5$ \( T^{12} + 12 T^{10} + \cdots + 1 \) Copy content Toggle raw display
$7$ \( T^{12} \) Copy content Toggle raw display
$11$ \( (T^{6} + 3 T^{5} + 24 T^{4} + \cdots + 64)^{2} \) Copy content Toggle raw display
$13$ \( T^{12} + 3 T^{10} + \cdots + 4826809 \) Copy content Toggle raw display
$17$ \( (T^{6} - 51 T^{4} + \cdots - 169)^{2} \) Copy content Toggle raw display
$19$ \( T^{12} + 9 T^{10} + \cdots + 16 \) Copy content Toggle raw display
$23$ \( (T^{3} - 48 T + 104)^{4} \) Copy content Toggle raw display
$29$ \( (T^{6} - 6 T^{5} + \cdots + 84681)^{2} \) Copy content Toggle raw display
$31$ \( T^{12} + \cdots + 12444741136 \) Copy content Toggle raw display
$37$ \( (T^{3} + 3 T^{2} - 18 T - 52)^{4} \) Copy content Toggle raw display
$41$ \( T^{12} + \cdots + 136048896 \) Copy content Toggle raw display
$43$ \( (T^{6} + 3 T^{5} + \cdots + 53824)^{2} \) Copy content Toggle raw display
$47$ \( T^{12} + 36 T^{10} + \cdots + 104976 \) Copy content Toggle raw display
$53$ \( (T^{6} - 3 T^{5} + \cdots + 22801)^{2} \) Copy content Toggle raw display
$59$ \( (T^{6} - 240 T^{4} + \cdots - 215296)^{2} \) Copy content Toggle raw display
$61$ \( T^{12} + \cdots + 479785216 \) Copy content Toggle raw display
$67$ \( (T^{6} - 6 T^{5} + \cdots + 68644)^{2} \) Copy content Toggle raw display
$71$ \( (T^{6} + 6 T^{5} + \cdots + 984064)^{2} \) Copy content Toggle raw display
$73$ \( T^{12} + \cdots + 723394816 \) Copy content Toggle raw display
$79$ \( (T^{6} + 6 T^{5} + \cdots + 256)^{2} \) Copy content Toggle raw display
$83$ \( (T^{6} - 480 T^{4} + \cdots - 2598544)^{2} \) Copy content Toggle raw display
$89$ \( (T^{6} - 369 T^{4} + \cdots - 24336)^{2} \) Copy content Toggle raw display
$97$ \( T^{12} + \cdots + 723394816 \) Copy content Toggle raw display
show more
show less