Properties

Label 2548.2.l.i
Level 25482548
Weight 22
Character orbit 2548.l
Analytic conductor 20.34620.346
Analytic rank 00
Dimension 44
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2548,2,Mod(373,2548)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2548, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 2, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2548.373");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 2548=227213 2548 = 2^{2} \cdot 7^{2} \cdot 13
Weight: k k == 2 2
Character orbit: [χ][\chi] == 2548.l (of order 33, degree 22, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 20.345882435020.3458824350
Analytic rank: 00
Dimension: 44
Relative dimension: 22 over Q(ζ3)\Q(\zeta_{3})
Coefficient field: Q(3,13)\Q(\sqrt{-3}, \sqrt{13})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x4x3+4x2+3x+9 x^{4} - x^{3} + 4x^{2} + 3x + 9 Copy content Toggle raw display
Coefficient ring: Z[a1,,a5]\Z[a_1, \ldots, a_{5}]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 364)
Sato-Tate group: SU(2)[C3]\mathrm{SU}(2)[C_{3}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,β2,β31,\beta_1,\beta_2,\beta_3 for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(β31)q3+(β32β2+β11)q5+(β3+1)q9+(β3+5)q11+(β2+2β11)q13+(β33β2+β11)q15++(5β3+8)q99+O(q100) q + (\beta_{3} - 1) q^{3} + (\beta_{3} - 2 \beta_{2} + \beta_1 - 1) q^{5} + ( - \beta_{3} + 1) q^{9} + ( - \beta_{3} + 5) q^{11} + ( - \beta_{2} + 2 \beta_1 - 1) q^{13} + (\beta_{3} - 3 \beta_{2} + \beta_1 - 1) q^{15}+ \cdots + ( - 5 \beta_{3} + 8) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q2q3+3q5+2q9+18q11+5q15+4q1722q194q23q258q273q298q3122q334q3713q3910q41+q435q45++22q99+O(q100) 4 q - 2 q^{3} + 3 q^{5} + 2 q^{9} + 18 q^{11} + 5 q^{15} + 4 q^{17} - 22 q^{19} - 4 q^{23} - q^{25} - 8 q^{27} - 3 q^{29} - 8 q^{31} - 22 q^{33} - 4 q^{37} - 13 q^{39} - 10 q^{41} + q^{43} - 5 q^{45}+ \cdots + 22 q^{99}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x4x3+4x2+3x+9 x^{4} - x^{3} + 4x^{2} + 3x + 9 : Copy content Toggle raw display

β1\beta_{1}== ν \nu Copy content Toggle raw display
β2\beta_{2}== (ν3+4ν24ν3)/12 ( -\nu^{3} + 4\nu^{2} - 4\nu - 3 ) / 12 Copy content Toggle raw display
β3\beta_{3}== (ν3+7)/4 ( \nu^{3} + 7 ) / 4 Copy content Toggle raw display
ν\nu== β1 \beta_1 Copy content Toggle raw display
ν2\nu^{2}== β3+3β2+β11 \beta_{3} + 3\beta_{2} + \beta _1 - 1 Copy content Toggle raw display
ν3\nu^{3}== 4β37 4\beta_{3} - 7 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/2548Z)×\left(\mathbb{Z}/2548\mathbb{Z}\right)^\times.

nn 197197 885885 12751275
χ(n)\chi(n) 1β2-1 - \beta_{2} β2\beta_{2} 11

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
373.1
1.15139 + 1.99426i
−0.651388 1.12824i
1.15139 1.99426i
−0.651388 + 1.12824i
0 −2.30278 0 −0.151388 + 0.262211i 0 0 0 2.30278 0
373.2 0 1.30278 0 1.65139 2.86029i 0 0 0 −1.30278 0
1537.1 0 −2.30278 0 −0.151388 0.262211i 0 0 0 2.30278 0
1537.2 0 1.30278 0 1.65139 + 2.86029i 0 0 0 −1.30278 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
91.g even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2548.2.l.i 4
7.b odd 2 1 2548.2.l.k 4
7.c even 3 1 2548.2.i.l 4
7.c even 3 1 2548.2.k.f 4
7.d odd 6 1 364.2.k.c 4
7.d odd 6 1 2548.2.i.j 4
13.c even 3 1 2548.2.i.l 4
21.g even 6 1 3276.2.z.d 4
28.f even 6 1 1456.2.s.m 4
91.g even 3 1 inner 2548.2.l.i 4
91.h even 3 1 2548.2.k.f 4
91.m odd 6 1 2548.2.l.k 4
91.m odd 6 1 4732.2.a.k 2
91.n odd 6 1 2548.2.i.j 4
91.p odd 6 1 4732.2.a.j 2
91.v odd 6 1 364.2.k.c 4
91.w even 12 2 4732.2.g.g 4
273.r even 6 1 3276.2.z.d 4
364.ba even 6 1 1456.2.s.m 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
364.2.k.c 4 7.d odd 6 1
364.2.k.c 4 91.v odd 6 1
1456.2.s.m 4 28.f even 6 1
1456.2.s.m 4 364.ba even 6 1
2548.2.i.j 4 7.d odd 6 1
2548.2.i.j 4 91.n odd 6 1
2548.2.i.l 4 7.c even 3 1
2548.2.i.l 4 13.c even 3 1
2548.2.k.f 4 7.c even 3 1
2548.2.k.f 4 91.h even 3 1
2548.2.l.i 4 1.a even 1 1 trivial
2548.2.l.i 4 91.g even 3 1 inner
2548.2.l.k 4 7.b odd 2 1
2548.2.l.k 4 91.m odd 6 1
3276.2.z.d 4 21.g even 6 1
3276.2.z.d 4 273.r even 6 1
4732.2.a.j 2 91.p odd 6 1
4732.2.a.k 2 91.m odd 6 1
4732.2.g.g 4 91.w even 12 2

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(2548,[χ])S_{2}^{\mathrm{new}}(2548, [\chi]):

T32+T33 T_{3}^{2} + T_{3} - 3 Copy content Toggle raw display
T543T53+10T52+3T5+1 T_{5}^{4} - 3T_{5}^{3} + 10T_{5}^{2} + 3T_{5} + 1 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T4 T^{4} Copy content Toggle raw display
33 (T2+T3)2 (T^{2} + T - 3)^{2} Copy content Toggle raw display
55 T43T3++1 T^{4} - 3 T^{3} + \cdots + 1 Copy content Toggle raw display
77 T4 T^{4} Copy content Toggle raw display
1111 (T29T+17)2 (T^{2} - 9 T + 17)^{2} Copy content Toggle raw display
1313 T4+13T2+169 T^{4} + 13T^{2} + 169 Copy content Toggle raw display
1717 T44T3++81 T^{4} - 4 T^{3} + \cdots + 81 Copy content Toggle raw display
1919 (T2+11T+27)2 (T^{2} + 11 T + 27)^{2} Copy content Toggle raw display
2323 (T2+2T+4)2 (T^{2} + 2 T + 4)^{2} Copy content Toggle raw display
2929 T4+3T3++1 T^{4} + 3 T^{3} + \cdots + 1 Copy content Toggle raw display
3131 T4+8T3++9 T^{4} + 8 T^{3} + \cdots + 9 Copy content Toggle raw display
3737 T4+4T3++2304 T^{4} + 4 T^{3} + \cdots + 2304 Copy content Toggle raw display
4141 T4+10T3++144 T^{4} + 10 T^{3} + \cdots + 144 Copy content Toggle raw display
4343 T4T3++841 T^{4} - T^{3} + \cdots + 841 Copy content Toggle raw display
4747 T416T3++2601 T^{4} - 16 T^{3} + \cdots + 2601 Copy content Toggle raw display
5353 T4+117T2+13689 T^{4} + 117 T^{2} + 13689 Copy content Toggle raw display
5959 T4+4T3++81 T^{4} + 4 T^{3} + \cdots + 81 Copy content Toggle raw display
6161 (T252)2 (T^{2} - 52)^{2} Copy content Toggle raw display
6767 (T13)4 (T - 13)^{4} Copy content Toggle raw display
7171 T4+2T3++13456 T^{4} + 2 T^{3} + \cdots + 13456 Copy content Toggle raw display
7373 T48T3++1296 T^{4} - 8 T^{3} + \cdots + 1296 Copy content Toggle raw display
7979 (T2+8T+64)2 (T^{2} + 8 T + 64)^{2} Copy content Toggle raw display
8383 (T216T+51)2 (T^{2} - 16 T + 51)^{2} Copy content Toggle raw display
8989 T421T3++6561 T^{4} - 21 T^{3} + \cdots + 6561 Copy content Toggle raw display
9797 T4+23T3++10609 T^{4} + 23 T^{3} + \cdots + 10609 Copy content Toggle raw display
show more
show less