gp: [N,k,chi] = [2548,2,Mod(373,2548)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2548, base_ring=CyclotomicField(6))
chi = DirichletCharacter(H, H._module([0, 2, 4]))
N = Newforms(chi, 2, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("2548.373");
S:= CuspForms(chi, 2);
N := Newforms(S);
Newform invariants
sage: traces = [4,0,-2,0,3,0,0,0,2]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(9)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the q q q -expansion are expressed in terms of a basis 1 , β 1 , β 2 , β 3 1,\beta_1,\beta_2,\beta_3 1 , β 1 , β 2 , β 3 for the coefficient ring described below.
We also show the integral q q q -expansion of the trace form .
Basis of coefficient ring in terms of a root ν \nu ν of
x 4 − x 3 + 4 x 2 + 3 x + 9 x^{4} - x^{3} + 4x^{2} + 3x + 9 x 4 − x 3 + 4 x 2 + 3 x + 9
x^4 - x^3 + 4*x^2 + 3*x + 9
:
β 1 \beta_{1} β 1 = = =
ν \nu ν
v
β 2 \beta_{2} β 2 = = =
( − ν 3 + 4 ν 2 − 4 ν − 3 ) / 12 ( -\nu^{3} + 4\nu^{2} - 4\nu - 3 ) / 12 ( − ν 3 + 4 ν 2 − 4 ν − 3 ) / 1 2
(-v^3 + 4*v^2 - 4*v - 3) / 12
β 3 \beta_{3} β 3 = = =
( ν 3 + 7 ) / 4 ( \nu^{3} + 7 ) / 4 ( ν 3 + 7 ) / 4
(v^3 + 7) / 4
ν \nu ν = = =
β 1 \beta_1 β 1
b1
ν 2 \nu^{2} ν 2 = = =
β 3 + 3 β 2 + β 1 − 1 \beta_{3} + 3\beta_{2} + \beta _1 - 1 β 3 + 3 β 2 + β 1 − 1
b3 + 3*b2 + b1 - 1
ν 3 \nu^{3} ν 3 = = =
4 β 3 − 7 4\beta_{3} - 7 4 β 3 − 7
4*b3 - 7
Character values
We give the values of χ \chi χ on generators for ( Z / 2548 Z ) × \left(\mathbb{Z}/2548\mathbb{Z}\right)^\times ( Z / 2 5 4 8 Z ) × .
n n n
197 197 1 9 7
885 885 8 8 5
1275 1275 1 2 7 5
χ ( n ) \chi(n) χ ( n )
− 1 − β 2 -1 - \beta_{2} − 1 − β 2
β 2 \beta_{2} β 2
1 1 1
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S 2 n e w ( 2548 , [ χ ] ) S_{2}^{\mathrm{new}}(2548, [\chi]) S 2 n e w ( 2 5 4 8 , [ χ ] ) :
T 3 2 + T 3 − 3 T_{3}^{2} + T_{3} - 3 T 3 2 + T 3 − 3
T3^2 + T3 - 3
T 5 4 − 3 T 5 3 + 10 T 5 2 + 3 T 5 + 1 T_{5}^{4} - 3T_{5}^{3} + 10T_{5}^{2} + 3T_{5} + 1 T 5 4 − 3 T 5 3 + 1 0 T 5 2 + 3 T 5 + 1
T5^4 - 3*T5^3 + 10*T5^2 + 3*T5 + 1
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T 4 T^{4} T 4
T^4
3 3 3
( T 2 + T − 3 ) 2 (T^{2} + T - 3)^{2} ( T 2 + T − 3 ) 2
(T^2 + T - 3)^2
5 5 5
T 4 − 3 T 3 + ⋯ + 1 T^{4} - 3 T^{3} + \cdots + 1 T 4 − 3 T 3 + ⋯ + 1
T^4 - 3*T^3 + 10*T^2 + 3*T + 1
7 7 7
T 4 T^{4} T 4
T^4
11 11 1 1
( T 2 − 9 T + 17 ) 2 (T^{2} - 9 T + 17)^{2} ( T 2 − 9 T + 1 7 ) 2
(T^2 - 9*T + 17)^2
13 13 1 3
T 4 + 13 T 2 + 169 T^{4} + 13T^{2} + 169 T 4 + 1 3 T 2 + 1 6 9
T^4 + 13*T^2 + 169
17 17 1 7
T 4 − 4 T 3 + ⋯ + 81 T^{4} - 4 T^{3} + \cdots + 81 T 4 − 4 T 3 + ⋯ + 8 1
T^4 - 4*T^3 + 25*T^2 + 36*T + 81
19 19 1 9
( T 2 + 11 T + 27 ) 2 (T^{2} + 11 T + 27)^{2} ( T 2 + 1 1 T + 2 7 ) 2
(T^2 + 11*T + 27)^2
23 23 2 3
( T 2 + 2 T + 4 ) 2 (T^{2} + 2 T + 4)^{2} ( T 2 + 2 T + 4 ) 2
(T^2 + 2*T + 4)^2
29 29 2 9
T 4 + 3 T 3 + ⋯ + 1 T^{4} + 3 T^{3} + \cdots + 1 T 4 + 3 T 3 + ⋯ + 1
T^4 + 3*T^3 + 10*T^2 - 3*T + 1
31 31 3 1
T 4 + 8 T 3 + ⋯ + 9 T^{4} + 8 T^{3} + \cdots + 9 T 4 + 8 T 3 + ⋯ + 9
T^4 + 8*T^3 + 61*T^2 + 24*T + 9
37 37 3 7
T 4 + 4 T 3 + ⋯ + 2304 T^{4} + 4 T^{3} + \cdots + 2304 T 4 + 4 T 3 + ⋯ + 2 3 0 4
T^4 + 4*T^3 + 64*T^2 - 192*T + 2304
41 41 4 1
T 4 + 10 T 3 + ⋯ + 144 T^{4} + 10 T^{3} + \cdots + 144 T 4 + 1 0 T 3 + ⋯ + 1 4 4
T^4 + 10*T^3 + 88*T^2 + 120*T + 144
43 43 4 3
T 4 − T 3 + ⋯ + 841 T^{4} - T^{3} + \cdots + 841 T 4 − T 3 + ⋯ + 8 4 1
T^4 - T^3 + 30*T^2 + 29*T + 841
47 47 4 7
T 4 − 16 T 3 + ⋯ + 2601 T^{4} - 16 T^{3} + \cdots + 2601 T 4 − 1 6 T 3 + ⋯ + 2 6 0 1
T^4 - 16*T^3 + 205*T^2 - 816*T + 2601
53 53 5 3
T 4 + 117 T 2 + 13689 T^{4} + 117 T^{2} + 13689 T 4 + 1 1 7 T 2 + 1 3 6 8 9
T^4 + 117*T^2 + 13689
59 59 5 9
T 4 + 4 T 3 + ⋯ + 81 T^{4} + 4 T^{3} + \cdots + 81 T 4 + 4 T 3 + ⋯ + 8 1
T^4 + 4*T^3 + 25*T^2 - 36*T + 81
61 61 6 1
( T 2 − 52 ) 2 (T^{2} - 52)^{2} ( T 2 − 5 2 ) 2
(T^2 - 52)^2
67 67 6 7
( T − 13 ) 4 (T - 13)^{4} ( T − 1 3 ) 4
(T - 13)^4
71 71 7 1
T 4 + 2 T 3 + ⋯ + 13456 T^{4} + 2 T^{3} + \cdots + 13456 T 4 + 2 T 3 + ⋯ + 1 3 4 5 6
T^4 + 2*T^3 + 120*T^2 - 232*T + 13456
73 73 7 3
T 4 − 8 T 3 + ⋯ + 1296 T^{4} - 8 T^{3} + \cdots + 1296 T 4 − 8 T 3 + ⋯ + 1 2 9 6
T^4 - 8*T^3 + 100*T^2 + 288*T + 1296
79 79 7 9
( T 2 + 8 T + 64 ) 2 (T^{2} + 8 T + 64)^{2} ( T 2 + 8 T + 6 4 ) 2
(T^2 + 8*T + 64)^2
83 83 8 3
( T 2 − 16 T + 51 ) 2 (T^{2} - 16 T + 51)^{2} ( T 2 − 1 6 T + 5 1 ) 2
(T^2 - 16*T + 51)^2
89 89 8 9
T 4 − 21 T 3 + ⋯ + 6561 T^{4} - 21 T^{3} + \cdots + 6561 T 4 − 2 1 T 3 + ⋯ + 6 5 6 1
T^4 - 21*T^3 + 360*T^2 - 1701*T + 6561
97 97 9 7
T 4 + 23 T 3 + ⋯ + 10609 T^{4} + 23 T^{3} + \cdots + 10609 T 4 + 2 3 T 3 + ⋯ + 1 0 6 0 9
T^4 + 23*T^3 + 426*T^2 + 2369*T + 10609
show more
show less