Properties

Label 2550.2.a.bc.1.1
Level $2550$
Weight $2$
Character 2550.1
Self dual yes
Analytic conductor $20.362$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2550,2,Mod(1,2550)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2550, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2550.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2550 = 2 \cdot 3 \cdot 5^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2550.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(20.3618525154\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 510)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 2550.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{2} +1.00000 q^{3} +1.00000 q^{4} +1.00000 q^{6} -2.00000 q^{7} +1.00000 q^{8} +1.00000 q^{9} -4.00000 q^{11} +1.00000 q^{12} -4.00000 q^{13} -2.00000 q^{14} +1.00000 q^{16} -1.00000 q^{17} +1.00000 q^{18} -4.00000 q^{19} -2.00000 q^{21} -4.00000 q^{22} -8.00000 q^{23} +1.00000 q^{24} -4.00000 q^{26} +1.00000 q^{27} -2.00000 q^{28} +2.00000 q^{29} +4.00000 q^{31} +1.00000 q^{32} -4.00000 q^{33} -1.00000 q^{34} +1.00000 q^{36} -6.00000 q^{37} -4.00000 q^{38} -4.00000 q^{39} +8.00000 q^{41} -2.00000 q^{42} -6.00000 q^{43} -4.00000 q^{44} -8.00000 q^{46} -8.00000 q^{47} +1.00000 q^{48} -3.00000 q^{49} -1.00000 q^{51} -4.00000 q^{52} +2.00000 q^{53} +1.00000 q^{54} -2.00000 q^{56} -4.00000 q^{57} +2.00000 q^{58} -6.00000 q^{59} +14.0000 q^{61} +4.00000 q^{62} -2.00000 q^{63} +1.00000 q^{64} -4.00000 q^{66} +2.00000 q^{67} -1.00000 q^{68} -8.00000 q^{69} +2.00000 q^{71} +1.00000 q^{72} -4.00000 q^{73} -6.00000 q^{74} -4.00000 q^{76} +8.00000 q^{77} -4.00000 q^{78} +1.00000 q^{81} +8.00000 q^{82} +16.0000 q^{83} -2.00000 q^{84} -6.00000 q^{86} +2.00000 q^{87} -4.00000 q^{88} -2.00000 q^{89} +8.00000 q^{91} -8.00000 q^{92} +4.00000 q^{93} -8.00000 q^{94} +1.00000 q^{96} -3.00000 q^{98} -4.00000 q^{99} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107
\(3\) 1.00000 0.577350
\(4\) 1.00000 0.500000
\(5\) 0 0
\(6\) 1.00000 0.408248
\(7\) −2.00000 −0.755929 −0.377964 0.925820i \(-0.623376\pi\)
−0.377964 + 0.925820i \(0.623376\pi\)
\(8\) 1.00000 0.353553
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) −4.00000 −1.20605 −0.603023 0.797724i \(-0.706037\pi\)
−0.603023 + 0.797724i \(0.706037\pi\)
\(12\) 1.00000 0.288675
\(13\) −4.00000 −1.10940 −0.554700 0.832050i \(-0.687167\pi\)
−0.554700 + 0.832050i \(0.687167\pi\)
\(14\) −2.00000 −0.534522
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) −1.00000 −0.242536
\(18\) 1.00000 0.235702
\(19\) −4.00000 −0.917663 −0.458831 0.888523i \(-0.651732\pi\)
−0.458831 + 0.888523i \(0.651732\pi\)
\(20\) 0 0
\(21\) −2.00000 −0.436436
\(22\) −4.00000 −0.852803
\(23\) −8.00000 −1.66812 −0.834058 0.551677i \(-0.813988\pi\)
−0.834058 + 0.551677i \(0.813988\pi\)
\(24\) 1.00000 0.204124
\(25\) 0 0
\(26\) −4.00000 −0.784465
\(27\) 1.00000 0.192450
\(28\) −2.00000 −0.377964
\(29\) 2.00000 0.371391 0.185695 0.982607i \(-0.440546\pi\)
0.185695 + 0.982607i \(0.440546\pi\)
\(30\) 0 0
\(31\) 4.00000 0.718421 0.359211 0.933257i \(-0.383046\pi\)
0.359211 + 0.933257i \(0.383046\pi\)
\(32\) 1.00000 0.176777
\(33\) −4.00000 −0.696311
\(34\) −1.00000 −0.171499
\(35\) 0 0
\(36\) 1.00000 0.166667
\(37\) −6.00000 −0.986394 −0.493197 0.869918i \(-0.664172\pi\)
−0.493197 + 0.869918i \(0.664172\pi\)
\(38\) −4.00000 −0.648886
\(39\) −4.00000 −0.640513
\(40\) 0 0
\(41\) 8.00000 1.24939 0.624695 0.780869i \(-0.285223\pi\)
0.624695 + 0.780869i \(0.285223\pi\)
\(42\) −2.00000 −0.308607
\(43\) −6.00000 −0.914991 −0.457496 0.889212i \(-0.651253\pi\)
−0.457496 + 0.889212i \(0.651253\pi\)
\(44\) −4.00000 −0.603023
\(45\) 0 0
\(46\) −8.00000 −1.17954
\(47\) −8.00000 −1.16692 −0.583460 0.812142i \(-0.698301\pi\)
−0.583460 + 0.812142i \(0.698301\pi\)
\(48\) 1.00000 0.144338
\(49\) −3.00000 −0.428571
\(50\) 0 0
\(51\) −1.00000 −0.140028
\(52\) −4.00000 −0.554700
\(53\) 2.00000 0.274721 0.137361 0.990521i \(-0.456138\pi\)
0.137361 + 0.990521i \(0.456138\pi\)
\(54\) 1.00000 0.136083
\(55\) 0 0
\(56\) −2.00000 −0.267261
\(57\) −4.00000 −0.529813
\(58\) 2.00000 0.262613
\(59\) −6.00000 −0.781133 −0.390567 0.920575i \(-0.627721\pi\)
−0.390567 + 0.920575i \(0.627721\pi\)
\(60\) 0 0
\(61\) 14.0000 1.79252 0.896258 0.443533i \(-0.146275\pi\)
0.896258 + 0.443533i \(0.146275\pi\)
\(62\) 4.00000 0.508001
\(63\) −2.00000 −0.251976
\(64\) 1.00000 0.125000
\(65\) 0 0
\(66\) −4.00000 −0.492366
\(67\) 2.00000 0.244339 0.122169 0.992509i \(-0.461015\pi\)
0.122169 + 0.992509i \(0.461015\pi\)
\(68\) −1.00000 −0.121268
\(69\) −8.00000 −0.963087
\(70\) 0 0
\(71\) 2.00000 0.237356 0.118678 0.992933i \(-0.462134\pi\)
0.118678 + 0.992933i \(0.462134\pi\)
\(72\) 1.00000 0.117851
\(73\) −4.00000 −0.468165 −0.234082 0.972217i \(-0.575209\pi\)
−0.234082 + 0.972217i \(0.575209\pi\)
\(74\) −6.00000 −0.697486
\(75\) 0 0
\(76\) −4.00000 −0.458831
\(77\) 8.00000 0.911685
\(78\) −4.00000 −0.452911
\(79\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 8.00000 0.883452
\(83\) 16.0000 1.75623 0.878114 0.478451i \(-0.158802\pi\)
0.878114 + 0.478451i \(0.158802\pi\)
\(84\) −2.00000 −0.218218
\(85\) 0 0
\(86\) −6.00000 −0.646997
\(87\) 2.00000 0.214423
\(88\) −4.00000 −0.426401
\(89\) −2.00000 −0.212000 −0.106000 0.994366i \(-0.533804\pi\)
−0.106000 + 0.994366i \(0.533804\pi\)
\(90\) 0 0
\(91\) 8.00000 0.838628
\(92\) −8.00000 −0.834058
\(93\) 4.00000 0.414781
\(94\) −8.00000 −0.825137
\(95\) 0 0
\(96\) 1.00000 0.102062
\(97\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(98\) −3.00000 −0.303046
\(99\) −4.00000 −0.402015
\(100\) 0 0
\(101\) 8.00000 0.796030 0.398015 0.917379i \(-0.369699\pi\)
0.398015 + 0.917379i \(0.369699\pi\)
\(102\) −1.00000 −0.0990148
\(103\) 12.0000 1.18240 0.591198 0.806527i \(-0.298655\pi\)
0.591198 + 0.806527i \(0.298655\pi\)
\(104\) −4.00000 −0.392232
\(105\) 0 0
\(106\) 2.00000 0.194257
\(107\) −12.0000 −1.16008 −0.580042 0.814587i \(-0.696964\pi\)
−0.580042 + 0.814587i \(0.696964\pi\)
\(108\) 1.00000 0.0962250
\(109\) −14.0000 −1.34096 −0.670478 0.741929i \(-0.733911\pi\)
−0.670478 + 0.741929i \(0.733911\pi\)
\(110\) 0 0
\(111\) −6.00000 −0.569495
\(112\) −2.00000 −0.188982
\(113\) −6.00000 −0.564433 −0.282216 0.959351i \(-0.591070\pi\)
−0.282216 + 0.959351i \(0.591070\pi\)
\(114\) −4.00000 −0.374634
\(115\) 0 0
\(116\) 2.00000 0.185695
\(117\) −4.00000 −0.369800
\(118\) −6.00000 −0.552345
\(119\) 2.00000 0.183340
\(120\) 0 0
\(121\) 5.00000 0.454545
\(122\) 14.0000 1.26750
\(123\) 8.00000 0.721336
\(124\) 4.00000 0.359211
\(125\) 0 0
\(126\) −2.00000 −0.178174
\(127\) 4.00000 0.354943 0.177471 0.984126i \(-0.443208\pi\)
0.177471 + 0.984126i \(0.443208\pi\)
\(128\) 1.00000 0.0883883
\(129\) −6.00000 −0.528271
\(130\) 0 0
\(131\) −16.0000 −1.39793 −0.698963 0.715158i \(-0.746355\pi\)
−0.698963 + 0.715158i \(0.746355\pi\)
\(132\) −4.00000 −0.348155
\(133\) 8.00000 0.693688
\(134\) 2.00000 0.172774
\(135\) 0 0
\(136\) −1.00000 −0.0857493
\(137\) 6.00000 0.512615 0.256307 0.966595i \(-0.417494\pi\)
0.256307 + 0.966595i \(0.417494\pi\)
\(138\) −8.00000 −0.681005
\(139\) −20.0000 −1.69638 −0.848189 0.529694i \(-0.822307\pi\)
−0.848189 + 0.529694i \(0.822307\pi\)
\(140\) 0 0
\(141\) −8.00000 −0.673722
\(142\) 2.00000 0.167836
\(143\) 16.0000 1.33799
\(144\) 1.00000 0.0833333
\(145\) 0 0
\(146\) −4.00000 −0.331042
\(147\) −3.00000 −0.247436
\(148\) −6.00000 −0.493197
\(149\) 16.0000 1.31077 0.655386 0.755295i \(-0.272506\pi\)
0.655386 + 0.755295i \(0.272506\pi\)
\(150\) 0 0
\(151\) −8.00000 −0.651031 −0.325515 0.945537i \(-0.605538\pi\)
−0.325515 + 0.945537i \(0.605538\pi\)
\(152\) −4.00000 −0.324443
\(153\) −1.00000 −0.0808452
\(154\) 8.00000 0.644658
\(155\) 0 0
\(156\) −4.00000 −0.320256
\(157\) 4.00000 0.319235 0.159617 0.987179i \(-0.448974\pi\)
0.159617 + 0.987179i \(0.448974\pi\)
\(158\) 0 0
\(159\) 2.00000 0.158610
\(160\) 0 0
\(161\) 16.0000 1.26098
\(162\) 1.00000 0.0785674
\(163\) 8.00000 0.626608 0.313304 0.949653i \(-0.398564\pi\)
0.313304 + 0.949653i \(0.398564\pi\)
\(164\) 8.00000 0.624695
\(165\) 0 0
\(166\) 16.0000 1.24184
\(167\) 12.0000 0.928588 0.464294 0.885681i \(-0.346308\pi\)
0.464294 + 0.885681i \(0.346308\pi\)
\(168\) −2.00000 −0.154303
\(169\) 3.00000 0.230769
\(170\) 0 0
\(171\) −4.00000 −0.305888
\(172\) −6.00000 −0.457496
\(173\) −22.0000 −1.67263 −0.836315 0.548250i \(-0.815294\pi\)
−0.836315 + 0.548250i \(0.815294\pi\)
\(174\) 2.00000 0.151620
\(175\) 0 0
\(176\) −4.00000 −0.301511
\(177\) −6.00000 −0.450988
\(178\) −2.00000 −0.149906
\(179\) 6.00000 0.448461 0.224231 0.974536i \(-0.428013\pi\)
0.224231 + 0.974536i \(0.428013\pi\)
\(180\) 0 0
\(181\) 26.0000 1.93256 0.966282 0.257485i \(-0.0828937\pi\)
0.966282 + 0.257485i \(0.0828937\pi\)
\(182\) 8.00000 0.592999
\(183\) 14.0000 1.03491
\(184\) −8.00000 −0.589768
\(185\) 0 0
\(186\) 4.00000 0.293294
\(187\) 4.00000 0.292509
\(188\) −8.00000 −0.583460
\(189\) −2.00000 −0.145479
\(190\) 0 0
\(191\) 4.00000 0.289430 0.144715 0.989473i \(-0.453773\pi\)
0.144715 + 0.989473i \(0.453773\pi\)
\(192\) 1.00000 0.0721688
\(193\) −24.0000 −1.72756 −0.863779 0.503871i \(-0.831909\pi\)
−0.863779 + 0.503871i \(0.831909\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) −3.00000 −0.214286
\(197\) 26.0000 1.85242 0.926212 0.377004i \(-0.123046\pi\)
0.926212 + 0.377004i \(0.123046\pi\)
\(198\) −4.00000 −0.284268
\(199\) −20.0000 −1.41776 −0.708881 0.705328i \(-0.750800\pi\)
−0.708881 + 0.705328i \(0.750800\pi\)
\(200\) 0 0
\(201\) 2.00000 0.141069
\(202\) 8.00000 0.562878
\(203\) −4.00000 −0.280745
\(204\) −1.00000 −0.0700140
\(205\) 0 0
\(206\) 12.0000 0.836080
\(207\) −8.00000 −0.556038
\(208\) −4.00000 −0.277350
\(209\) 16.0000 1.10674
\(210\) 0 0
\(211\) 4.00000 0.275371 0.137686 0.990476i \(-0.456034\pi\)
0.137686 + 0.990476i \(0.456034\pi\)
\(212\) 2.00000 0.137361
\(213\) 2.00000 0.137038
\(214\) −12.0000 −0.820303
\(215\) 0 0
\(216\) 1.00000 0.0680414
\(217\) −8.00000 −0.543075
\(218\) −14.0000 −0.948200
\(219\) −4.00000 −0.270295
\(220\) 0 0
\(221\) 4.00000 0.269069
\(222\) −6.00000 −0.402694
\(223\) −28.0000 −1.87502 −0.937509 0.347960i \(-0.886874\pi\)
−0.937509 + 0.347960i \(0.886874\pi\)
\(224\) −2.00000 −0.133631
\(225\) 0 0
\(226\) −6.00000 −0.399114
\(227\) −28.0000 −1.85843 −0.929213 0.369546i \(-0.879513\pi\)
−0.929213 + 0.369546i \(0.879513\pi\)
\(228\) −4.00000 −0.264906
\(229\) 6.00000 0.396491 0.198246 0.980152i \(-0.436476\pi\)
0.198246 + 0.980152i \(0.436476\pi\)
\(230\) 0 0
\(231\) 8.00000 0.526361
\(232\) 2.00000 0.131306
\(233\) −18.0000 −1.17922 −0.589610 0.807688i \(-0.700718\pi\)
−0.589610 + 0.807688i \(0.700718\pi\)
\(234\) −4.00000 −0.261488
\(235\) 0 0
\(236\) −6.00000 −0.390567
\(237\) 0 0
\(238\) 2.00000 0.129641
\(239\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(240\) 0 0
\(241\) −14.0000 −0.901819 −0.450910 0.892570i \(-0.648900\pi\)
−0.450910 + 0.892570i \(0.648900\pi\)
\(242\) 5.00000 0.321412
\(243\) 1.00000 0.0641500
\(244\) 14.0000 0.896258
\(245\) 0 0
\(246\) 8.00000 0.510061
\(247\) 16.0000 1.01806
\(248\) 4.00000 0.254000
\(249\) 16.0000 1.01396
\(250\) 0 0
\(251\) 26.0000 1.64111 0.820553 0.571571i \(-0.193666\pi\)
0.820553 + 0.571571i \(0.193666\pi\)
\(252\) −2.00000 −0.125988
\(253\) 32.0000 2.01182
\(254\) 4.00000 0.250982
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) 18.0000 1.12281 0.561405 0.827541i \(-0.310261\pi\)
0.561405 + 0.827541i \(0.310261\pi\)
\(258\) −6.00000 −0.373544
\(259\) 12.0000 0.745644
\(260\) 0 0
\(261\) 2.00000 0.123797
\(262\) −16.0000 −0.988483
\(263\) −8.00000 −0.493301 −0.246651 0.969104i \(-0.579330\pi\)
−0.246651 + 0.969104i \(0.579330\pi\)
\(264\) −4.00000 −0.246183
\(265\) 0 0
\(266\) 8.00000 0.490511
\(267\) −2.00000 −0.122398
\(268\) 2.00000 0.122169
\(269\) −30.0000 −1.82913 −0.914566 0.404436i \(-0.867468\pi\)
−0.914566 + 0.404436i \(0.867468\pi\)
\(270\) 0 0
\(271\) −24.0000 −1.45790 −0.728948 0.684569i \(-0.759990\pi\)
−0.728948 + 0.684569i \(0.759990\pi\)
\(272\) −1.00000 −0.0606339
\(273\) 8.00000 0.484182
\(274\) 6.00000 0.362473
\(275\) 0 0
\(276\) −8.00000 −0.481543
\(277\) −2.00000 −0.120168 −0.0600842 0.998193i \(-0.519137\pi\)
−0.0600842 + 0.998193i \(0.519137\pi\)
\(278\) −20.0000 −1.19952
\(279\) 4.00000 0.239474
\(280\) 0 0
\(281\) −2.00000 −0.119310 −0.0596550 0.998219i \(-0.519000\pi\)
−0.0596550 + 0.998219i \(0.519000\pi\)
\(282\) −8.00000 −0.476393
\(283\) 20.0000 1.18888 0.594438 0.804141i \(-0.297374\pi\)
0.594438 + 0.804141i \(0.297374\pi\)
\(284\) 2.00000 0.118678
\(285\) 0 0
\(286\) 16.0000 0.946100
\(287\) −16.0000 −0.944450
\(288\) 1.00000 0.0589256
\(289\) 1.00000 0.0588235
\(290\) 0 0
\(291\) 0 0
\(292\) −4.00000 −0.234082
\(293\) 14.0000 0.817889 0.408944 0.912559i \(-0.365897\pi\)
0.408944 + 0.912559i \(0.365897\pi\)
\(294\) −3.00000 −0.174964
\(295\) 0 0
\(296\) −6.00000 −0.348743
\(297\) −4.00000 −0.232104
\(298\) 16.0000 0.926855
\(299\) 32.0000 1.85061
\(300\) 0 0
\(301\) 12.0000 0.691669
\(302\) −8.00000 −0.460348
\(303\) 8.00000 0.459588
\(304\) −4.00000 −0.229416
\(305\) 0 0
\(306\) −1.00000 −0.0571662
\(307\) 10.0000 0.570730 0.285365 0.958419i \(-0.407885\pi\)
0.285365 + 0.958419i \(0.407885\pi\)
\(308\) 8.00000 0.455842
\(309\) 12.0000 0.682656
\(310\) 0 0
\(311\) 14.0000 0.793867 0.396934 0.917847i \(-0.370074\pi\)
0.396934 + 0.917847i \(0.370074\pi\)
\(312\) −4.00000 −0.226455
\(313\) −16.0000 −0.904373 −0.452187 0.891923i \(-0.649356\pi\)
−0.452187 + 0.891923i \(0.649356\pi\)
\(314\) 4.00000 0.225733
\(315\) 0 0
\(316\) 0 0
\(317\) 2.00000 0.112331 0.0561656 0.998421i \(-0.482113\pi\)
0.0561656 + 0.998421i \(0.482113\pi\)
\(318\) 2.00000 0.112154
\(319\) −8.00000 −0.447914
\(320\) 0 0
\(321\) −12.0000 −0.669775
\(322\) 16.0000 0.891645
\(323\) 4.00000 0.222566
\(324\) 1.00000 0.0555556
\(325\) 0 0
\(326\) 8.00000 0.443079
\(327\) −14.0000 −0.774202
\(328\) 8.00000 0.441726
\(329\) 16.0000 0.882109
\(330\) 0 0
\(331\) −8.00000 −0.439720 −0.219860 0.975531i \(-0.570560\pi\)
−0.219860 + 0.975531i \(0.570560\pi\)
\(332\) 16.0000 0.878114
\(333\) −6.00000 −0.328798
\(334\) 12.0000 0.656611
\(335\) 0 0
\(336\) −2.00000 −0.109109
\(337\) −20.0000 −1.08947 −0.544735 0.838608i \(-0.683370\pi\)
−0.544735 + 0.838608i \(0.683370\pi\)
\(338\) 3.00000 0.163178
\(339\) −6.00000 −0.325875
\(340\) 0 0
\(341\) −16.0000 −0.866449
\(342\) −4.00000 −0.216295
\(343\) 20.0000 1.07990
\(344\) −6.00000 −0.323498
\(345\) 0 0
\(346\) −22.0000 −1.18273
\(347\) 28.0000 1.50312 0.751559 0.659665i \(-0.229302\pi\)
0.751559 + 0.659665i \(0.229302\pi\)
\(348\) 2.00000 0.107211
\(349\) −14.0000 −0.749403 −0.374701 0.927146i \(-0.622255\pi\)
−0.374701 + 0.927146i \(0.622255\pi\)
\(350\) 0 0
\(351\) −4.00000 −0.213504
\(352\) −4.00000 −0.213201
\(353\) 10.0000 0.532246 0.266123 0.963939i \(-0.414257\pi\)
0.266123 + 0.963939i \(0.414257\pi\)
\(354\) −6.00000 −0.318896
\(355\) 0 0
\(356\) −2.00000 −0.106000
\(357\) 2.00000 0.105851
\(358\) 6.00000 0.317110
\(359\) 36.0000 1.90001 0.950004 0.312239i \(-0.101079\pi\)
0.950004 + 0.312239i \(0.101079\pi\)
\(360\) 0 0
\(361\) −3.00000 −0.157895
\(362\) 26.0000 1.36653
\(363\) 5.00000 0.262432
\(364\) 8.00000 0.419314
\(365\) 0 0
\(366\) 14.0000 0.731792
\(367\) −22.0000 −1.14839 −0.574195 0.818718i \(-0.694685\pi\)
−0.574195 + 0.818718i \(0.694685\pi\)
\(368\) −8.00000 −0.417029
\(369\) 8.00000 0.416463
\(370\) 0 0
\(371\) −4.00000 −0.207670
\(372\) 4.00000 0.207390
\(373\) 16.0000 0.828449 0.414224 0.910175i \(-0.364053\pi\)
0.414224 + 0.910175i \(0.364053\pi\)
\(374\) 4.00000 0.206835
\(375\) 0 0
\(376\) −8.00000 −0.412568
\(377\) −8.00000 −0.412021
\(378\) −2.00000 −0.102869
\(379\) −4.00000 −0.205466 −0.102733 0.994709i \(-0.532759\pi\)
−0.102733 + 0.994709i \(0.532759\pi\)
\(380\) 0 0
\(381\) 4.00000 0.204926
\(382\) 4.00000 0.204658
\(383\) −8.00000 −0.408781 −0.204390 0.978889i \(-0.565521\pi\)
−0.204390 + 0.978889i \(0.565521\pi\)
\(384\) 1.00000 0.0510310
\(385\) 0 0
\(386\) −24.0000 −1.22157
\(387\) −6.00000 −0.304997
\(388\) 0 0
\(389\) 24.0000 1.21685 0.608424 0.793612i \(-0.291802\pi\)
0.608424 + 0.793612i \(0.291802\pi\)
\(390\) 0 0
\(391\) 8.00000 0.404577
\(392\) −3.00000 −0.151523
\(393\) −16.0000 −0.807093
\(394\) 26.0000 1.30986
\(395\) 0 0
\(396\) −4.00000 −0.201008
\(397\) −6.00000 −0.301131 −0.150566 0.988600i \(-0.548110\pi\)
−0.150566 + 0.988600i \(0.548110\pi\)
\(398\) −20.0000 −1.00251
\(399\) 8.00000 0.400501
\(400\) 0 0
\(401\) −12.0000 −0.599251 −0.299626 0.954057i \(-0.596862\pi\)
−0.299626 + 0.954057i \(0.596862\pi\)
\(402\) 2.00000 0.0997509
\(403\) −16.0000 −0.797017
\(404\) 8.00000 0.398015
\(405\) 0 0
\(406\) −4.00000 −0.198517
\(407\) 24.0000 1.18964
\(408\) −1.00000 −0.0495074
\(409\) −26.0000 −1.28562 −0.642809 0.766027i \(-0.722231\pi\)
−0.642809 + 0.766027i \(0.722231\pi\)
\(410\) 0 0
\(411\) 6.00000 0.295958
\(412\) 12.0000 0.591198
\(413\) 12.0000 0.590481
\(414\) −8.00000 −0.393179
\(415\) 0 0
\(416\) −4.00000 −0.196116
\(417\) −20.0000 −0.979404
\(418\) 16.0000 0.782586
\(419\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(420\) 0 0
\(421\) −18.0000 −0.877266 −0.438633 0.898666i \(-0.644537\pi\)
−0.438633 + 0.898666i \(0.644537\pi\)
\(422\) 4.00000 0.194717
\(423\) −8.00000 −0.388973
\(424\) 2.00000 0.0971286
\(425\) 0 0
\(426\) 2.00000 0.0969003
\(427\) −28.0000 −1.35501
\(428\) −12.0000 −0.580042
\(429\) 16.0000 0.772487
\(430\) 0 0
\(431\) 14.0000 0.674356 0.337178 0.941441i \(-0.390528\pi\)
0.337178 + 0.941441i \(0.390528\pi\)
\(432\) 1.00000 0.0481125
\(433\) 26.0000 1.24948 0.624740 0.780833i \(-0.285205\pi\)
0.624740 + 0.780833i \(0.285205\pi\)
\(434\) −8.00000 −0.384012
\(435\) 0 0
\(436\) −14.0000 −0.670478
\(437\) 32.0000 1.53077
\(438\) −4.00000 −0.191127
\(439\) −24.0000 −1.14546 −0.572729 0.819745i \(-0.694115\pi\)
−0.572729 + 0.819745i \(0.694115\pi\)
\(440\) 0 0
\(441\) −3.00000 −0.142857
\(442\) 4.00000 0.190261
\(443\) −24.0000 −1.14027 −0.570137 0.821549i \(-0.693110\pi\)
−0.570137 + 0.821549i \(0.693110\pi\)
\(444\) −6.00000 −0.284747
\(445\) 0 0
\(446\) −28.0000 −1.32584
\(447\) 16.0000 0.756774
\(448\) −2.00000 −0.0944911
\(449\) −12.0000 −0.566315 −0.283158 0.959073i \(-0.591382\pi\)
−0.283158 + 0.959073i \(0.591382\pi\)
\(450\) 0 0
\(451\) −32.0000 −1.50682
\(452\) −6.00000 −0.282216
\(453\) −8.00000 −0.375873
\(454\) −28.0000 −1.31411
\(455\) 0 0
\(456\) −4.00000 −0.187317
\(457\) 2.00000 0.0935561 0.0467780 0.998905i \(-0.485105\pi\)
0.0467780 + 0.998905i \(0.485105\pi\)
\(458\) 6.00000 0.280362
\(459\) −1.00000 −0.0466760
\(460\) 0 0
\(461\) −28.0000 −1.30409 −0.652045 0.758180i \(-0.726089\pi\)
−0.652045 + 0.758180i \(0.726089\pi\)
\(462\) 8.00000 0.372194
\(463\) −4.00000 −0.185896 −0.0929479 0.995671i \(-0.529629\pi\)
−0.0929479 + 0.995671i \(0.529629\pi\)
\(464\) 2.00000 0.0928477
\(465\) 0 0
\(466\) −18.0000 −0.833834
\(467\) 12.0000 0.555294 0.277647 0.960683i \(-0.410445\pi\)
0.277647 + 0.960683i \(0.410445\pi\)
\(468\) −4.00000 −0.184900
\(469\) −4.00000 −0.184703
\(470\) 0 0
\(471\) 4.00000 0.184310
\(472\) −6.00000 −0.276172
\(473\) 24.0000 1.10352
\(474\) 0 0
\(475\) 0 0
\(476\) 2.00000 0.0916698
\(477\) 2.00000 0.0915737
\(478\) 0 0
\(479\) −22.0000 −1.00521 −0.502603 0.864517i \(-0.667624\pi\)
−0.502603 + 0.864517i \(0.667624\pi\)
\(480\) 0 0
\(481\) 24.0000 1.09431
\(482\) −14.0000 −0.637683
\(483\) 16.0000 0.728025
\(484\) 5.00000 0.227273
\(485\) 0 0
\(486\) 1.00000 0.0453609
\(487\) 22.0000 0.996915 0.498458 0.866914i \(-0.333900\pi\)
0.498458 + 0.866914i \(0.333900\pi\)
\(488\) 14.0000 0.633750
\(489\) 8.00000 0.361773
\(490\) 0 0
\(491\) −18.0000 −0.812329 −0.406164 0.913800i \(-0.633134\pi\)
−0.406164 + 0.913800i \(0.633134\pi\)
\(492\) 8.00000 0.360668
\(493\) −2.00000 −0.0900755
\(494\) 16.0000 0.719874
\(495\) 0 0
\(496\) 4.00000 0.179605
\(497\) −4.00000 −0.179425
\(498\) 16.0000 0.716977
\(499\) 4.00000 0.179065 0.0895323 0.995984i \(-0.471463\pi\)
0.0895323 + 0.995984i \(0.471463\pi\)
\(500\) 0 0
\(501\) 12.0000 0.536120
\(502\) 26.0000 1.16044
\(503\) 16.0000 0.713405 0.356702 0.934218i \(-0.383901\pi\)
0.356702 + 0.934218i \(0.383901\pi\)
\(504\) −2.00000 −0.0890871
\(505\) 0 0
\(506\) 32.0000 1.42257
\(507\) 3.00000 0.133235
\(508\) 4.00000 0.177471
\(509\) 8.00000 0.354594 0.177297 0.984157i \(-0.443265\pi\)
0.177297 + 0.984157i \(0.443265\pi\)
\(510\) 0 0
\(511\) 8.00000 0.353899
\(512\) 1.00000 0.0441942
\(513\) −4.00000 −0.176604
\(514\) 18.0000 0.793946
\(515\) 0 0
\(516\) −6.00000 −0.264135
\(517\) 32.0000 1.40736
\(518\) 12.0000 0.527250
\(519\) −22.0000 −0.965693
\(520\) 0 0
\(521\) −36.0000 −1.57719 −0.788594 0.614914i \(-0.789191\pi\)
−0.788594 + 0.614914i \(0.789191\pi\)
\(522\) 2.00000 0.0875376
\(523\) 14.0000 0.612177 0.306089 0.952003i \(-0.400980\pi\)
0.306089 + 0.952003i \(0.400980\pi\)
\(524\) −16.0000 −0.698963
\(525\) 0 0
\(526\) −8.00000 −0.348817
\(527\) −4.00000 −0.174243
\(528\) −4.00000 −0.174078
\(529\) 41.0000 1.78261
\(530\) 0 0
\(531\) −6.00000 −0.260378
\(532\) 8.00000 0.346844
\(533\) −32.0000 −1.38607
\(534\) −2.00000 −0.0865485
\(535\) 0 0
\(536\) 2.00000 0.0863868
\(537\) 6.00000 0.258919
\(538\) −30.0000 −1.29339
\(539\) 12.0000 0.516877
\(540\) 0 0
\(541\) 30.0000 1.28980 0.644900 0.764267i \(-0.276899\pi\)
0.644900 + 0.764267i \(0.276899\pi\)
\(542\) −24.0000 −1.03089
\(543\) 26.0000 1.11577
\(544\) −1.00000 −0.0428746
\(545\) 0 0
\(546\) 8.00000 0.342368
\(547\) −44.0000 −1.88130 −0.940652 0.339372i \(-0.889785\pi\)
−0.940652 + 0.339372i \(0.889785\pi\)
\(548\) 6.00000 0.256307
\(549\) 14.0000 0.597505
\(550\) 0 0
\(551\) −8.00000 −0.340811
\(552\) −8.00000 −0.340503
\(553\) 0 0
\(554\) −2.00000 −0.0849719
\(555\) 0 0
\(556\) −20.0000 −0.848189
\(557\) 2.00000 0.0847427 0.0423714 0.999102i \(-0.486509\pi\)
0.0423714 + 0.999102i \(0.486509\pi\)
\(558\) 4.00000 0.169334
\(559\) 24.0000 1.01509
\(560\) 0 0
\(561\) 4.00000 0.168880
\(562\) −2.00000 −0.0843649
\(563\) 24.0000 1.01148 0.505740 0.862686i \(-0.331220\pi\)
0.505740 + 0.862686i \(0.331220\pi\)
\(564\) −8.00000 −0.336861
\(565\) 0 0
\(566\) 20.0000 0.840663
\(567\) −2.00000 −0.0839921
\(568\) 2.00000 0.0839181
\(569\) 42.0000 1.76073 0.880366 0.474295i \(-0.157297\pi\)
0.880366 + 0.474295i \(0.157297\pi\)
\(570\) 0 0
\(571\) 28.0000 1.17176 0.585882 0.810397i \(-0.300748\pi\)
0.585882 + 0.810397i \(0.300748\pi\)
\(572\) 16.0000 0.668994
\(573\) 4.00000 0.167102
\(574\) −16.0000 −0.667827
\(575\) 0 0
\(576\) 1.00000 0.0416667
\(577\) −6.00000 −0.249783 −0.124892 0.992170i \(-0.539858\pi\)
−0.124892 + 0.992170i \(0.539858\pi\)
\(578\) 1.00000 0.0415945
\(579\) −24.0000 −0.997406
\(580\) 0 0
\(581\) −32.0000 −1.32758
\(582\) 0 0
\(583\) −8.00000 −0.331326
\(584\) −4.00000 −0.165521
\(585\) 0 0
\(586\) 14.0000 0.578335
\(587\) −8.00000 −0.330195 −0.165098 0.986277i \(-0.552794\pi\)
−0.165098 + 0.986277i \(0.552794\pi\)
\(588\) −3.00000 −0.123718
\(589\) −16.0000 −0.659269
\(590\) 0 0
\(591\) 26.0000 1.06950
\(592\) −6.00000 −0.246598
\(593\) 18.0000 0.739171 0.369586 0.929197i \(-0.379500\pi\)
0.369586 + 0.929197i \(0.379500\pi\)
\(594\) −4.00000 −0.164122
\(595\) 0 0
\(596\) 16.0000 0.655386
\(597\) −20.0000 −0.818546
\(598\) 32.0000 1.30858
\(599\) 12.0000 0.490307 0.245153 0.969484i \(-0.421162\pi\)
0.245153 + 0.969484i \(0.421162\pi\)
\(600\) 0 0
\(601\) 30.0000 1.22373 0.611863 0.790964i \(-0.290420\pi\)
0.611863 + 0.790964i \(0.290420\pi\)
\(602\) 12.0000 0.489083
\(603\) 2.00000 0.0814463
\(604\) −8.00000 −0.325515
\(605\) 0 0
\(606\) 8.00000 0.324978
\(607\) −34.0000 −1.38002 −0.690009 0.723801i \(-0.742393\pi\)
−0.690009 + 0.723801i \(0.742393\pi\)
\(608\) −4.00000 −0.162221
\(609\) −4.00000 −0.162088
\(610\) 0 0
\(611\) 32.0000 1.29458
\(612\) −1.00000 −0.0404226
\(613\) −16.0000 −0.646234 −0.323117 0.946359i \(-0.604731\pi\)
−0.323117 + 0.946359i \(0.604731\pi\)
\(614\) 10.0000 0.403567
\(615\) 0 0
\(616\) 8.00000 0.322329
\(617\) 6.00000 0.241551 0.120775 0.992680i \(-0.461462\pi\)
0.120775 + 0.992680i \(0.461462\pi\)
\(618\) 12.0000 0.482711
\(619\) −4.00000 −0.160774 −0.0803868 0.996764i \(-0.525616\pi\)
−0.0803868 + 0.996764i \(0.525616\pi\)
\(620\) 0 0
\(621\) −8.00000 −0.321029
\(622\) 14.0000 0.561349
\(623\) 4.00000 0.160257
\(624\) −4.00000 −0.160128
\(625\) 0 0
\(626\) −16.0000 −0.639489
\(627\) 16.0000 0.638978
\(628\) 4.00000 0.159617
\(629\) 6.00000 0.239236
\(630\) 0 0
\(631\) −16.0000 −0.636950 −0.318475 0.947931i \(-0.603171\pi\)
−0.318475 + 0.947931i \(0.603171\pi\)
\(632\) 0 0
\(633\) 4.00000 0.158986
\(634\) 2.00000 0.0794301
\(635\) 0 0
\(636\) 2.00000 0.0793052
\(637\) 12.0000 0.475457
\(638\) −8.00000 −0.316723
\(639\) 2.00000 0.0791188
\(640\) 0 0
\(641\) 12.0000 0.473972 0.236986 0.971513i \(-0.423841\pi\)
0.236986 + 0.971513i \(0.423841\pi\)
\(642\) −12.0000 −0.473602
\(643\) −16.0000 −0.630978 −0.315489 0.948929i \(-0.602169\pi\)
−0.315489 + 0.948929i \(0.602169\pi\)
\(644\) 16.0000 0.630488
\(645\) 0 0
\(646\) 4.00000 0.157378
\(647\) 16.0000 0.629025 0.314512 0.949253i \(-0.398159\pi\)
0.314512 + 0.949253i \(0.398159\pi\)
\(648\) 1.00000 0.0392837
\(649\) 24.0000 0.942082
\(650\) 0 0
\(651\) −8.00000 −0.313545
\(652\) 8.00000 0.313304
\(653\) 30.0000 1.17399 0.586995 0.809590i \(-0.300311\pi\)
0.586995 + 0.809590i \(0.300311\pi\)
\(654\) −14.0000 −0.547443
\(655\) 0 0
\(656\) 8.00000 0.312348
\(657\) −4.00000 −0.156055
\(658\) 16.0000 0.623745
\(659\) 14.0000 0.545363 0.272681 0.962104i \(-0.412090\pi\)
0.272681 + 0.962104i \(0.412090\pi\)
\(660\) 0 0
\(661\) 2.00000 0.0777910 0.0388955 0.999243i \(-0.487616\pi\)
0.0388955 + 0.999243i \(0.487616\pi\)
\(662\) −8.00000 −0.310929
\(663\) 4.00000 0.155347
\(664\) 16.0000 0.620920
\(665\) 0 0
\(666\) −6.00000 −0.232495
\(667\) −16.0000 −0.619522
\(668\) 12.0000 0.464294
\(669\) −28.0000 −1.08254
\(670\) 0 0
\(671\) −56.0000 −2.16186
\(672\) −2.00000 −0.0771517
\(673\) 8.00000 0.308377 0.154189 0.988041i \(-0.450724\pi\)
0.154189 + 0.988041i \(0.450724\pi\)
\(674\) −20.0000 −0.770371
\(675\) 0 0
\(676\) 3.00000 0.115385
\(677\) −6.00000 −0.230599 −0.115299 0.993331i \(-0.536783\pi\)
−0.115299 + 0.993331i \(0.536783\pi\)
\(678\) −6.00000 −0.230429
\(679\) 0 0
\(680\) 0 0
\(681\) −28.0000 −1.07296
\(682\) −16.0000 −0.612672
\(683\) −36.0000 −1.37750 −0.688751 0.724998i \(-0.741841\pi\)
−0.688751 + 0.724998i \(0.741841\pi\)
\(684\) −4.00000 −0.152944
\(685\) 0 0
\(686\) 20.0000 0.763604
\(687\) 6.00000 0.228914
\(688\) −6.00000 −0.228748
\(689\) −8.00000 −0.304776
\(690\) 0 0
\(691\) −20.0000 −0.760836 −0.380418 0.924815i \(-0.624220\pi\)
−0.380418 + 0.924815i \(0.624220\pi\)
\(692\) −22.0000 −0.836315
\(693\) 8.00000 0.303895
\(694\) 28.0000 1.06287
\(695\) 0 0
\(696\) 2.00000 0.0758098
\(697\) −8.00000 −0.303022
\(698\) −14.0000 −0.529908
\(699\) −18.0000 −0.680823
\(700\) 0 0
\(701\) 36.0000 1.35970 0.679851 0.733351i \(-0.262045\pi\)
0.679851 + 0.733351i \(0.262045\pi\)
\(702\) −4.00000 −0.150970
\(703\) 24.0000 0.905177
\(704\) −4.00000 −0.150756
\(705\) 0 0
\(706\) 10.0000 0.376355
\(707\) −16.0000 −0.601742
\(708\) −6.00000 −0.225494
\(709\) 22.0000 0.826227 0.413114 0.910679i \(-0.364441\pi\)
0.413114 + 0.910679i \(0.364441\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) −2.00000 −0.0749532
\(713\) −32.0000 −1.19841
\(714\) 2.00000 0.0748481
\(715\) 0 0
\(716\) 6.00000 0.224231
\(717\) 0 0
\(718\) 36.0000 1.34351
\(719\) 10.0000 0.372937 0.186469 0.982461i \(-0.440296\pi\)
0.186469 + 0.982461i \(0.440296\pi\)
\(720\) 0 0
\(721\) −24.0000 −0.893807
\(722\) −3.00000 −0.111648
\(723\) −14.0000 −0.520666
\(724\) 26.0000 0.966282
\(725\) 0 0
\(726\) 5.00000 0.185567
\(727\) −44.0000 −1.63187 −0.815935 0.578144i \(-0.803777\pi\)
−0.815935 + 0.578144i \(0.803777\pi\)
\(728\) 8.00000 0.296500
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) 6.00000 0.221918
\(732\) 14.0000 0.517455
\(733\) −48.0000 −1.77292 −0.886460 0.462805i \(-0.846843\pi\)
−0.886460 + 0.462805i \(0.846843\pi\)
\(734\) −22.0000 −0.812035
\(735\) 0 0
\(736\) −8.00000 −0.294884
\(737\) −8.00000 −0.294684
\(738\) 8.00000 0.294484
\(739\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(740\) 0 0
\(741\) 16.0000 0.587775
\(742\) −4.00000 −0.146845
\(743\) 20.0000 0.733729 0.366864 0.930274i \(-0.380431\pi\)
0.366864 + 0.930274i \(0.380431\pi\)
\(744\) 4.00000 0.146647
\(745\) 0 0
\(746\) 16.0000 0.585802
\(747\) 16.0000 0.585409
\(748\) 4.00000 0.146254
\(749\) 24.0000 0.876941
\(750\) 0 0
\(751\) −24.0000 −0.875772 −0.437886 0.899030i \(-0.644273\pi\)
−0.437886 + 0.899030i \(0.644273\pi\)
\(752\) −8.00000 −0.291730
\(753\) 26.0000 0.947493
\(754\) −8.00000 −0.291343
\(755\) 0 0
\(756\) −2.00000 −0.0727393
\(757\) 28.0000 1.01768 0.508839 0.860862i \(-0.330075\pi\)
0.508839 + 0.860862i \(0.330075\pi\)
\(758\) −4.00000 −0.145287
\(759\) 32.0000 1.16153
\(760\) 0 0
\(761\) −6.00000 −0.217500 −0.108750 0.994069i \(-0.534685\pi\)
−0.108750 + 0.994069i \(0.534685\pi\)
\(762\) 4.00000 0.144905
\(763\) 28.0000 1.01367
\(764\) 4.00000 0.144715
\(765\) 0 0
\(766\) −8.00000 −0.289052
\(767\) 24.0000 0.866590
\(768\) 1.00000 0.0360844
\(769\) 14.0000 0.504853 0.252426 0.967616i \(-0.418771\pi\)
0.252426 + 0.967616i \(0.418771\pi\)
\(770\) 0 0
\(771\) 18.0000 0.648254
\(772\) −24.0000 −0.863779
\(773\) 42.0000 1.51064 0.755318 0.655359i \(-0.227483\pi\)
0.755318 + 0.655359i \(0.227483\pi\)
\(774\) −6.00000 −0.215666
\(775\) 0 0
\(776\) 0 0
\(777\) 12.0000 0.430498
\(778\) 24.0000 0.860442
\(779\) −32.0000 −1.14652
\(780\) 0 0
\(781\) −8.00000 −0.286263
\(782\) 8.00000 0.286079
\(783\) 2.00000 0.0714742
\(784\) −3.00000 −0.107143
\(785\) 0 0
\(786\) −16.0000 −0.570701
\(787\) −24.0000 −0.855508 −0.427754 0.903895i \(-0.640695\pi\)
−0.427754 + 0.903895i \(0.640695\pi\)
\(788\) 26.0000 0.926212
\(789\) −8.00000 −0.284808
\(790\) 0 0
\(791\) 12.0000 0.426671
\(792\) −4.00000 −0.142134
\(793\) −56.0000 −1.98862
\(794\) −6.00000 −0.212932
\(795\) 0 0
\(796\) −20.0000 −0.708881
\(797\) 14.0000 0.495905 0.247953 0.968772i \(-0.420242\pi\)
0.247953 + 0.968772i \(0.420242\pi\)
\(798\) 8.00000 0.283197
\(799\) 8.00000 0.283020
\(800\) 0 0
\(801\) −2.00000 −0.0706665
\(802\) −12.0000 −0.423735
\(803\) 16.0000 0.564628
\(804\) 2.00000 0.0705346
\(805\) 0 0
\(806\) −16.0000 −0.563576
\(807\) −30.0000 −1.05605
\(808\) 8.00000 0.281439
\(809\) −48.0000 −1.68759 −0.843795 0.536666i \(-0.819684\pi\)
−0.843795 + 0.536666i \(0.819684\pi\)
\(810\) 0 0
\(811\) 20.0000 0.702295 0.351147 0.936320i \(-0.385792\pi\)
0.351147 + 0.936320i \(0.385792\pi\)
\(812\) −4.00000 −0.140372
\(813\) −24.0000 −0.841717
\(814\) 24.0000 0.841200
\(815\) 0 0
\(816\) −1.00000 −0.0350070
\(817\) 24.0000 0.839654
\(818\) −26.0000 −0.909069
\(819\) 8.00000 0.279543
\(820\) 0 0
\(821\) −18.0000 −0.628204 −0.314102 0.949389i \(-0.601703\pi\)
−0.314102 + 0.949389i \(0.601703\pi\)
\(822\) 6.00000 0.209274
\(823\) −14.0000 −0.488009 −0.244005 0.969774i \(-0.578461\pi\)
−0.244005 + 0.969774i \(0.578461\pi\)
\(824\) 12.0000 0.418040
\(825\) 0 0
\(826\) 12.0000 0.417533
\(827\) −44.0000 −1.53003 −0.765015 0.644013i \(-0.777268\pi\)
−0.765015 + 0.644013i \(0.777268\pi\)
\(828\) −8.00000 −0.278019
\(829\) −46.0000 −1.59765 −0.798823 0.601566i \(-0.794544\pi\)
−0.798823 + 0.601566i \(0.794544\pi\)
\(830\) 0 0
\(831\) −2.00000 −0.0693792
\(832\) −4.00000 −0.138675
\(833\) 3.00000 0.103944
\(834\) −20.0000 −0.692543
\(835\) 0 0
\(836\) 16.0000 0.553372
\(837\) 4.00000 0.138260
\(838\) 0 0
\(839\) 6.00000 0.207143 0.103572 0.994622i \(-0.466973\pi\)
0.103572 + 0.994622i \(0.466973\pi\)
\(840\) 0 0
\(841\) −25.0000 −0.862069
\(842\) −18.0000 −0.620321
\(843\) −2.00000 −0.0688837
\(844\) 4.00000 0.137686
\(845\) 0 0
\(846\) −8.00000 −0.275046
\(847\) −10.0000 −0.343604
\(848\) 2.00000 0.0686803
\(849\) 20.0000 0.686398
\(850\) 0 0
\(851\) 48.0000 1.64542
\(852\) 2.00000 0.0685189
\(853\) −2.00000 −0.0684787 −0.0342393 0.999414i \(-0.510901\pi\)
−0.0342393 + 0.999414i \(0.510901\pi\)
\(854\) −28.0000 −0.958140
\(855\) 0 0
\(856\) −12.0000 −0.410152
\(857\) 22.0000 0.751506 0.375753 0.926720i \(-0.377384\pi\)
0.375753 + 0.926720i \(0.377384\pi\)
\(858\) 16.0000 0.546231
\(859\) −32.0000 −1.09183 −0.545913 0.837842i \(-0.683817\pi\)
−0.545913 + 0.837842i \(0.683817\pi\)
\(860\) 0 0
\(861\) −16.0000 −0.545279
\(862\) 14.0000 0.476842
\(863\) 16.0000 0.544646 0.272323 0.962206i \(-0.412208\pi\)
0.272323 + 0.962206i \(0.412208\pi\)
\(864\) 1.00000 0.0340207
\(865\) 0 0
\(866\) 26.0000 0.883516
\(867\) 1.00000 0.0339618
\(868\) −8.00000 −0.271538
\(869\) 0 0
\(870\) 0 0
\(871\) −8.00000 −0.271070
\(872\) −14.0000 −0.474100
\(873\) 0 0
\(874\) 32.0000 1.08242
\(875\) 0 0
\(876\) −4.00000 −0.135147
\(877\) −50.0000 −1.68838 −0.844190 0.536044i \(-0.819918\pi\)
−0.844190 + 0.536044i \(0.819918\pi\)
\(878\) −24.0000 −0.809961
\(879\) 14.0000 0.472208
\(880\) 0 0
\(881\) 36.0000 1.21287 0.606435 0.795133i \(-0.292599\pi\)
0.606435 + 0.795133i \(0.292599\pi\)
\(882\) −3.00000 −0.101015
\(883\) 46.0000 1.54802 0.774012 0.633171i \(-0.218247\pi\)
0.774012 + 0.633171i \(0.218247\pi\)
\(884\) 4.00000 0.134535
\(885\) 0 0
\(886\) −24.0000 −0.806296
\(887\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(888\) −6.00000 −0.201347
\(889\) −8.00000 −0.268311
\(890\) 0 0
\(891\) −4.00000 −0.134005
\(892\) −28.0000 −0.937509
\(893\) 32.0000 1.07084
\(894\) 16.0000 0.535120
\(895\) 0 0
\(896\) −2.00000 −0.0668153
\(897\) 32.0000 1.06845
\(898\) −12.0000 −0.400445
\(899\) 8.00000 0.266815
\(900\) 0 0
\(901\) −2.00000 −0.0666297
\(902\) −32.0000 −1.06548
\(903\) 12.0000 0.399335
\(904\) −6.00000 −0.199557
\(905\) 0 0
\(906\) −8.00000 −0.265782
\(907\) 32.0000 1.06254 0.531271 0.847202i \(-0.321714\pi\)
0.531271 + 0.847202i \(0.321714\pi\)
\(908\) −28.0000 −0.929213
\(909\) 8.00000 0.265343
\(910\) 0 0
\(911\) 50.0000 1.65657 0.828287 0.560304i \(-0.189316\pi\)
0.828287 + 0.560304i \(0.189316\pi\)
\(912\) −4.00000 −0.132453
\(913\) −64.0000 −2.11809
\(914\) 2.00000 0.0661541
\(915\) 0 0
\(916\) 6.00000 0.198246
\(917\) 32.0000 1.05673
\(918\) −1.00000 −0.0330049
\(919\) −8.00000 −0.263896 −0.131948 0.991257i \(-0.542123\pi\)
−0.131948 + 0.991257i \(0.542123\pi\)
\(920\) 0 0
\(921\) 10.0000 0.329511
\(922\) −28.0000 −0.922131
\(923\) −8.00000 −0.263323
\(924\) 8.00000 0.263181
\(925\) 0 0
\(926\) −4.00000 −0.131448
\(927\) 12.0000 0.394132
\(928\) 2.00000 0.0656532
\(929\) −48.0000 −1.57483 −0.787414 0.616424i \(-0.788581\pi\)
−0.787414 + 0.616424i \(0.788581\pi\)
\(930\) 0 0
\(931\) 12.0000 0.393284
\(932\) −18.0000 −0.589610
\(933\) 14.0000 0.458339
\(934\) 12.0000 0.392652
\(935\) 0 0
\(936\) −4.00000 −0.130744
\(937\) 34.0000 1.11073 0.555366 0.831606i \(-0.312578\pi\)
0.555366 + 0.831606i \(0.312578\pi\)
\(938\) −4.00000 −0.130605
\(939\) −16.0000 −0.522140
\(940\) 0 0
\(941\) −2.00000 −0.0651981 −0.0325991 0.999469i \(-0.510378\pi\)
−0.0325991 + 0.999469i \(0.510378\pi\)
\(942\) 4.00000 0.130327
\(943\) −64.0000 −2.08413
\(944\) −6.00000 −0.195283
\(945\) 0 0
\(946\) 24.0000 0.780307
\(947\) 4.00000 0.129983 0.0649913 0.997886i \(-0.479298\pi\)
0.0649913 + 0.997886i \(0.479298\pi\)
\(948\) 0 0
\(949\) 16.0000 0.519382
\(950\) 0 0
\(951\) 2.00000 0.0648544
\(952\) 2.00000 0.0648204
\(953\) −42.0000 −1.36051 −0.680257 0.732974i \(-0.738132\pi\)
−0.680257 + 0.732974i \(0.738132\pi\)
\(954\) 2.00000 0.0647524
\(955\) 0 0
\(956\) 0 0
\(957\) −8.00000 −0.258603
\(958\) −22.0000 −0.710788
\(959\) −12.0000 −0.387500
\(960\) 0 0
\(961\) −15.0000 −0.483871
\(962\) 24.0000 0.773791
\(963\) −12.0000 −0.386695
\(964\) −14.0000 −0.450910
\(965\) 0 0
\(966\) 16.0000 0.514792
\(967\) −56.0000 −1.80084 −0.900419 0.435023i \(-0.856740\pi\)
−0.900419 + 0.435023i \(0.856740\pi\)
\(968\) 5.00000 0.160706
\(969\) 4.00000 0.128499
\(970\) 0 0
\(971\) −50.0000 −1.60458 −0.802288 0.596937i \(-0.796384\pi\)
−0.802288 + 0.596937i \(0.796384\pi\)
\(972\) 1.00000 0.0320750
\(973\) 40.0000 1.28234
\(974\) 22.0000 0.704925
\(975\) 0 0
\(976\) 14.0000 0.448129
\(977\) 42.0000 1.34370 0.671850 0.740688i \(-0.265500\pi\)
0.671850 + 0.740688i \(0.265500\pi\)
\(978\) 8.00000 0.255812
\(979\) 8.00000 0.255681
\(980\) 0 0
\(981\) −14.0000 −0.446986
\(982\) −18.0000 −0.574403
\(983\) 52.0000 1.65854 0.829271 0.558846i \(-0.188756\pi\)
0.829271 + 0.558846i \(0.188756\pi\)
\(984\) 8.00000 0.255031
\(985\) 0 0
\(986\) −2.00000 −0.0636930
\(987\) 16.0000 0.509286
\(988\) 16.0000 0.509028
\(989\) 48.0000 1.52631
\(990\) 0 0
\(991\) 20.0000 0.635321 0.317660 0.948205i \(-0.397103\pi\)
0.317660 + 0.948205i \(0.397103\pi\)
\(992\) 4.00000 0.127000
\(993\) −8.00000 −0.253872
\(994\) −4.00000 −0.126872
\(995\) 0 0
\(996\) 16.0000 0.506979
\(997\) 50.0000 1.58352 0.791758 0.610835i \(-0.209166\pi\)
0.791758 + 0.610835i \(0.209166\pi\)
\(998\) 4.00000 0.126618
\(999\) −6.00000 −0.189832
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2550.2.a.bc.1.1 1
3.2 odd 2 7650.2.a.k.1.1 1
5.2 odd 4 2550.2.d.n.2449.2 2
5.3 odd 4 2550.2.d.n.2449.1 2
5.4 even 2 510.2.a.a.1.1 1
15.14 odd 2 1530.2.a.p.1.1 1
20.19 odd 2 4080.2.a.s.1.1 1
85.84 even 2 8670.2.a.k.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
510.2.a.a.1.1 1 5.4 even 2
1530.2.a.p.1.1 1 15.14 odd 2
2550.2.a.bc.1.1 1 1.1 even 1 trivial
2550.2.d.n.2449.1 2 5.3 odd 4
2550.2.d.n.2449.2 2 5.2 odd 4
4080.2.a.s.1.1 1 20.19 odd 2
7650.2.a.k.1.1 1 3.2 odd 2
8670.2.a.k.1.1 1 85.84 even 2