Properties

Label 1530.2.a.p.1.1
Level $1530$
Weight $2$
Character 1530.1
Self dual yes
Analytic conductor $12.217$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1530,2,Mod(1,1530)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1530, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1530.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1530 = 2 \cdot 3^{2} \cdot 5 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1530.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(12.2171115093\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 510)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 1530.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{2} +1.00000 q^{4} +1.00000 q^{5} +2.00000 q^{7} +1.00000 q^{8} +1.00000 q^{10} +4.00000 q^{11} +4.00000 q^{13} +2.00000 q^{14} +1.00000 q^{16} -1.00000 q^{17} -4.00000 q^{19} +1.00000 q^{20} +4.00000 q^{22} -8.00000 q^{23} +1.00000 q^{25} +4.00000 q^{26} +2.00000 q^{28} -2.00000 q^{29} +4.00000 q^{31} +1.00000 q^{32} -1.00000 q^{34} +2.00000 q^{35} +6.00000 q^{37} -4.00000 q^{38} +1.00000 q^{40} -8.00000 q^{41} +6.00000 q^{43} +4.00000 q^{44} -8.00000 q^{46} -8.00000 q^{47} -3.00000 q^{49} +1.00000 q^{50} +4.00000 q^{52} +2.00000 q^{53} +4.00000 q^{55} +2.00000 q^{56} -2.00000 q^{58} +6.00000 q^{59} +14.0000 q^{61} +4.00000 q^{62} +1.00000 q^{64} +4.00000 q^{65} -2.00000 q^{67} -1.00000 q^{68} +2.00000 q^{70} -2.00000 q^{71} +4.00000 q^{73} +6.00000 q^{74} -4.00000 q^{76} +8.00000 q^{77} +1.00000 q^{80} -8.00000 q^{82} +16.0000 q^{83} -1.00000 q^{85} +6.00000 q^{86} +4.00000 q^{88} +2.00000 q^{89} +8.00000 q^{91} -8.00000 q^{92} -8.00000 q^{94} -4.00000 q^{95} -3.00000 q^{98} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107
\(3\) 0 0
\(4\) 1.00000 0.500000
\(5\) 1.00000 0.447214
\(6\) 0 0
\(7\) 2.00000 0.755929 0.377964 0.925820i \(-0.376624\pi\)
0.377964 + 0.925820i \(0.376624\pi\)
\(8\) 1.00000 0.353553
\(9\) 0 0
\(10\) 1.00000 0.316228
\(11\) 4.00000 1.20605 0.603023 0.797724i \(-0.293963\pi\)
0.603023 + 0.797724i \(0.293963\pi\)
\(12\) 0 0
\(13\) 4.00000 1.10940 0.554700 0.832050i \(-0.312833\pi\)
0.554700 + 0.832050i \(0.312833\pi\)
\(14\) 2.00000 0.534522
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) −1.00000 −0.242536
\(18\) 0 0
\(19\) −4.00000 −0.917663 −0.458831 0.888523i \(-0.651732\pi\)
−0.458831 + 0.888523i \(0.651732\pi\)
\(20\) 1.00000 0.223607
\(21\) 0 0
\(22\) 4.00000 0.852803
\(23\) −8.00000 −1.66812 −0.834058 0.551677i \(-0.813988\pi\)
−0.834058 + 0.551677i \(0.813988\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 4.00000 0.784465
\(27\) 0 0
\(28\) 2.00000 0.377964
\(29\) −2.00000 −0.371391 −0.185695 0.982607i \(-0.559454\pi\)
−0.185695 + 0.982607i \(0.559454\pi\)
\(30\) 0 0
\(31\) 4.00000 0.718421 0.359211 0.933257i \(-0.383046\pi\)
0.359211 + 0.933257i \(0.383046\pi\)
\(32\) 1.00000 0.176777
\(33\) 0 0
\(34\) −1.00000 −0.171499
\(35\) 2.00000 0.338062
\(36\) 0 0
\(37\) 6.00000 0.986394 0.493197 0.869918i \(-0.335828\pi\)
0.493197 + 0.869918i \(0.335828\pi\)
\(38\) −4.00000 −0.648886
\(39\) 0 0
\(40\) 1.00000 0.158114
\(41\) −8.00000 −1.24939 −0.624695 0.780869i \(-0.714777\pi\)
−0.624695 + 0.780869i \(0.714777\pi\)
\(42\) 0 0
\(43\) 6.00000 0.914991 0.457496 0.889212i \(-0.348747\pi\)
0.457496 + 0.889212i \(0.348747\pi\)
\(44\) 4.00000 0.603023
\(45\) 0 0
\(46\) −8.00000 −1.17954
\(47\) −8.00000 −1.16692 −0.583460 0.812142i \(-0.698301\pi\)
−0.583460 + 0.812142i \(0.698301\pi\)
\(48\) 0 0
\(49\) −3.00000 −0.428571
\(50\) 1.00000 0.141421
\(51\) 0 0
\(52\) 4.00000 0.554700
\(53\) 2.00000 0.274721 0.137361 0.990521i \(-0.456138\pi\)
0.137361 + 0.990521i \(0.456138\pi\)
\(54\) 0 0
\(55\) 4.00000 0.539360
\(56\) 2.00000 0.267261
\(57\) 0 0
\(58\) −2.00000 −0.262613
\(59\) 6.00000 0.781133 0.390567 0.920575i \(-0.372279\pi\)
0.390567 + 0.920575i \(0.372279\pi\)
\(60\) 0 0
\(61\) 14.0000 1.79252 0.896258 0.443533i \(-0.146275\pi\)
0.896258 + 0.443533i \(0.146275\pi\)
\(62\) 4.00000 0.508001
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) 4.00000 0.496139
\(66\) 0 0
\(67\) −2.00000 −0.244339 −0.122169 0.992509i \(-0.538985\pi\)
−0.122169 + 0.992509i \(0.538985\pi\)
\(68\) −1.00000 −0.121268
\(69\) 0 0
\(70\) 2.00000 0.239046
\(71\) −2.00000 −0.237356 −0.118678 0.992933i \(-0.537866\pi\)
−0.118678 + 0.992933i \(0.537866\pi\)
\(72\) 0 0
\(73\) 4.00000 0.468165 0.234082 0.972217i \(-0.424791\pi\)
0.234082 + 0.972217i \(0.424791\pi\)
\(74\) 6.00000 0.697486
\(75\) 0 0
\(76\) −4.00000 −0.458831
\(77\) 8.00000 0.911685
\(78\) 0 0
\(79\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(80\) 1.00000 0.111803
\(81\) 0 0
\(82\) −8.00000 −0.883452
\(83\) 16.0000 1.75623 0.878114 0.478451i \(-0.158802\pi\)
0.878114 + 0.478451i \(0.158802\pi\)
\(84\) 0 0
\(85\) −1.00000 −0.108465
\(86\) 6.00000 0.646997
\(87\) 0 0
\(88\) 4.00000 0.426401
\(89\) 2.00000 0.212000 0.106000 0.994366i \(-0.466196\pi\)
0.106000 + 0.994366i \(0.466196\pi\)
\(90\) 0 0
\(91\) 8.00000 0.838628
\(92\) −8.00000 −0.834058
\(93\) 0 0
\(94\) −8.00000 −0.825137
\(95\) −4.00000 −0.410391
\(96\) 0 0
\(97\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(98\) −3.00000 −0.303046
\(99\) 0 0
\(100\) 1.00000 0.100000
\(101\) −8.00000 −0.796030 −0.398015 0.917379i \(-0.630301\pi\)
−0.398015 + 0.917379i \(0.630301\pi\)
\(102\) 0 0
\(103\) −12.0000 −1.18240 −0.591198 0.806527i \(-0.701345\pi\)
−0.591198 + 0.806527i \(0.701345\pi\)
\(104\) 4.00000 0.392232
\(105\) 0 0
\(106\) 2.00000 0.194257
\(107\) −12.0000 −1.16008 −0.580042 0.814587i \(-0.696964\pi\)
−0.580042 + 0.814587i \(0.696964\pi\)
\(108\) 0 0
\(109\) −14.0000 −1.34096 −0.670478 0.741929i \(-0.733911\pi\)
−0.670478 + 0.741929i \(0.733911\pi\)
\(110\) 4.00000 0.381385
\(111\) 0 0
\(112\) 2.00000 0.188982
\(113\) −6.00000 −0.564433 −0.282216 0.959351i \(-0.591070\pi\)
−0.282216 + 0.959351i \(0.591070\pi\)
\(114\) 0 0
\(115\) −8.00000 −0.746004
\(116\) −2.00000 −0.185695
\(117\) 0 0
\(118\) 6.00000 0.552345
\(119\) −2.00000 −0.183340
\(120\) 0 0
\(121\) 5.00000 0.454545
\(122\) 14.0000 1.26750
\(123\) 0 0
\(124\) 4.00000 0.359211
\(125\) 1.00000 0.0894427
\(126\) 0 0
\(127\) −4.00000 −0.354943 −0.177471 0.984126i \(-0.556792\pi\)
−0.177471 + 0.984126i \(0.556792\pi\)
\(128\) 1.00000 0.0883883
\(129\) 0 0
\(130\) 4.00000 0.350823
\(131\) 16.0000 1.39793 0.698963 0.715158i \(-0.253645\pi\)
0.698963 + 0.715158i \(0.253645\pi\)
\(132\) 0 0
\(133\) −8.00000 −0.693688
\(134\) −2.00000 −0.172774
\(135\) 0 0
\(136\) −1.00000 −0.0857493
\(137\) 6.00000 0.512615 0.256307 0.966595i \(-0.417494\pi\)
0.256307 + 0.966595i \(0.417494\pi\)
\(138\) 0 0
\(139\) −20.0000 −1.69638 −0.848189 0.529694i \(-0.822307\pi\)
−0.848189 + 0.529694i \(0.822307\pi\)
\(140\) 2.00000 0.169031
\(141\) 0 0
\(142\) −2.00000 −0.167836
\(143\) 16.0000 1.33799
\(144\) 0 0
\(145\) −2.00000 −0.166091
\(146\) 4.00000 0.331042
\(147\) 0 0
\(148\) 6.00000 0.493197
\(149\) −16.0000 −1.31077 −0.655386 0.755295i \(-0.727494\pi\)
−0.655386 + 0.755295i \(0.727494\pi\)
\(150\) 0 0
\(151\) −8.00000 −0.651031 −0.325515 0.945537i \(-0.605538\pi\)
−0.325515 + 0.945537i \(0.605538\pi\)
\(152\) −4.00000 −0.324443
\(153\) 0 0
\(154\) 8.00000 0.644658
\(155\) 4.00000 0.321288
\(156\) 0 0
\(157\) −4.00000 −0.319235 −0.159617 0.987179i \(-0.551026\pi\)
−0.159617 + 0.987179i \(0.551026\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 1.00000 0.0790569
\(161\) −16.0000 −1.26098
\(162\) 0 0
\(163\) −8.00000 −0.626608 −0.313304 0.949653i \(-0.601436\pi\)
−0.313304 + 0.949653i \(0.601436\pi\)
\(164\) −8.00000 −0.624695
\(165\) 0 0
\(166\) 16.0000 1.24184
\(167\) 12.0000 0.928588 0.464294 0.885681i \(-0.346308\pi\)
0.464294 + 0.885681i \(0.346308\pi\)
\(168\) 0 0
\(169\) 3.00000 0.230769
\(170\) −1.00000 −0.0766965
\(171\) 0 0
\(172\) 6.00000 0.457496
\(173\) −22.0000 −1.67263 −0.836315 0.548250i \(-0.815294\pi\)
−0.836315 + 0.548250i \(0.815294\pi\)
\(174\) 0 0
\(175\) 2.00000 0.151186
\(176\) 4.00000 0.301511
\(177\) 0 0
\(178\) 2.00000 0.149906
\(179\) −6.00000 −0.448461 −0.224231 0.974536i \(-0.571987\pi\)
−0.224231 + 0.974536i \(0.571987\pi\)
\(180\) 0 0
\(181\) 26.0000 1.93256 0.966282 0.257485i \(-0.0828937\pi\)
0.966282 + 0.257485i \(0.0828937\pi\)
\(182\) 8.00000 0.592999
\(183\) 0 0
\(184\) −8.00000 −0.589768
\(185\) 6.00000 0.441129
\(186\) 0 0
\(187\) −4.00000 −0.292509
\(188\) −8.00000 −0.583460
\(189\) 0 0
\(190\) −4.00000 −0.290191
\(191\) −4.00000 −0.289430 −0.144715 0.989473i \(-0.546227\pi\)
−0.144715 + 0.989473i \(0.546227\pi\)
\(192\) 0 0
\(193\) 24.0000 1.72756 0.863779 0.503871i \(-0.168091\pi\)
0.863779 + 0.503871i \(0.168091\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) −3.00000 −0.214286
\(197\) 26.0000 1.85242 0.926212 0.377004i \(-0.123046\pi\)
0.926212 + 0.377004i \(0.123046\pi\)
\(198\) 0 0
\(199\) −20.0000 −1.41776 −0.708881 0.705328i \(-0.750800\pi\)
−0.708881 + 0.705328i \(0.750800\pi\)
\(200\) 1.00000 0.0707107
\(201\) 0 0
\(202\) −8.00000 −0.562878
\(203\) −4.00000 −0.280745
\(204\) 0 0
\(205\) −8.00000 −0.558744
\(206\) −12.0000 −0.836080
\(207\) 0 0
\(208\) 4.00000 0.277350
\(209\) −16.0000 −1.10674
\(210\) 0 0
\(211\) 4.00000 0.275371 0.137686 0.990476i \(-0.456034\pi\)
0.137686 + 0.990476i \(0.456034\pi\)
\(212\) 2.00000 0.137361
\(213\) 0 0
\(214\) −12.0000 −0.820303
\(215\) 6.00000 0.409197
\(216\) 0 0
\(217\) 8.00000 0.543075
\(218\) −14.0000 −0.948200
\(219\) 0 0
\(220\) 4.00000 0.269680
\(221\) −4.00000 −0.269069
\(222\) 0 0
\(223\) 28.0000 1.87502 0.937509 0.347960i \(-0.113126\pi\)
0.937509 + 0.347960i \(0.113126\pi\)
\(224\) 2.00000 0.133631
\(225\) 0 0
\(226\) −6.00000 −0.399114
\(227\) −28.0000 −1.85843 −0.929213 0.369546i \(-0.879513\pi\)
−0.929213 + 0.369546i \(0.879513\pi\)
\(228\) 0 0
\(229\) 6.00000 0.396491 0.198246 0.980152i \(-0.436476\pi\)
0.198246 + 0.980152i \(0.436476\pi\)
\(230\) −8.00000 −0.527504
\(231\) 0 0
\(232\) −2.00000 −0.131306
\(233\) −18.0000 −1.17922 −0.589610 0.807688i \(-0.700718\pi\)
−0.589610 + 0.807688i \(0.700718\pi\)
\(234\) 0 0
\(235\) −8.00000 −0.521862
\(236\) 6.00000 0.390567
\(237\) 0 0
\(238\) −2.00000 −0.129641
\(239\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(240\) 0 0
\(241\) −14.0000 −0.901819 −0.450910 0.892570i \(-0.648900\pi\)
−0.450910 + 0.892570i \(0.648900\pi\)
\(242\) 5.00000 0.321412
\(243\) 0 0
\(244\) 14.0000 0.896258
\(245\) −3.00000 −0.191663
\(246\) 0 0
\(247\) −16.0000 −1.01806
\(248\) 4.00000 0.254000
\(249\) 0 0
\(250\) 1.00000 0.0632456
\(251\) −26.0000 −1.64111 −0.820553 0.571571i \(-0.806334\pi\)
−0.820553 + 0.571571i \(0.806334\pi\)
\(252\) 0 0
\(253\) −32.0000 −2.01182
\(254\) −4.00000 −0.250982
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) 18.0000 1.12281 0.561405 0.827541i \(-0.310261\pi\)
0.561405 + 0.827541i \(0.310261\pi\)
\(258\) 0 0
\(259\) 12.0000 0.745644
\(260\) 4.00000 0.248069
\(261\) 0 0
\(262\) 16.0000 0.988483
\(263\) −8.00000 −0.493301 −0.246651 0.969104i \(-0.579330\pi\)
−0.246651 + 0.969104i \(0.579330\pi\)
\(264\) 0 0
\(265\) 2.00000 0.122859
\(266\) −8.00000 −0.490511
\(267\) 0 0
\(268\) −2.00000 −0.122169
\(269\) 30.0000 1.82913 0.914566 0.404436i \(-0.132532\pi\)
0.914566 + 0.404436i \(0.132532\pi\)
\(270\) 0 0
\(271\) −24.0000 −1.45790 −0.728948 0.684569i \(-0.759990\pi\)
−0.728948 + 0.684569i \(0.759990\pi\)
\(272\) −1.00000 −0.0606339
\(273\) 0 0
\(274\) 6.00000 0.362473
\(275\) 4.00000 0.241209
\(276\) 0 0
\(277\) 2.00000 0.120168 0.0600842 0.998193i \(-0.480863\pi\)
0.0600842 + 0.998193i \(0.480863\pi\)
\(278\) −20.0000 −1.19952
\(279\) 0 0
\(280\) 2.00000 0.119523
\(281\) 2.00000 0.119310 0.0596550 0.998219i \(-0.481000\pi\)
0.0596550 + 0.998219i \(0.481000\pi\)
\(282\) 0 0
\(283\) −20.0000 −1.18888 −0.594438 0.804141i \(-0.702626\pi\)
−0.594438 + 0.804141i \(0.702626\pi\)
\(284\) −2.00000 −0.118678
\(285\) 0 0
\(286\) 16.0000 0.946100
\(287\) −16.0000 −0.944450
\(288\) 0 0
\(289\) 1.00000 0.0588235
\(290\) −2.00000 −0.117444
\(291\) 0 0
\(292\) 4.00000 0.234082
\(293\) 14.0000 0.817889 0.408944 0.912559i \(-0.365897\pi\)
0.408944 + 0.912559i \(0.365897\pi\)
\(294\) 0 0
\(295\) 6.00000 0.349334
\(296\) 6.00000 0.348743
\(297\) 0 0
\(298\) −16.0000 −0.926855
\(299\) −32.0000 −1.85061
\(300\) 0 0
\(301\) 12.0000 0.691669
\(302\) −8.00000 −0.460348
\(303\) 0 0
\(304\) −4.00000 −0.229416
\(305\) 14.0000 0.801638
\(306\) 0 0
\(307\) −10.0000 −0.570730 −0.285365 0.958419i \(-0.592115\pi\)
−0.285365 + 0.958419i \(0.592115\pi\)
\(308\) 8.00000 0.455842
\(309\) 0 0
\(310\) 4.00000 0.227185
\(311\) −14.0000 −0.793867 −0.396934 0.917847i \(-0.629926\pi\)
−0.396934 + 0.917847i \(0.629926\pi\)
\(312\) 0 0
\(313\) 16.0000 0.904373 0.452187 0.891923i \(-0.350644\pi\)
0.452187 + 0.891923i \(0.350644\pi\)
\(314\) −4.00000 −0.225733
\(315\) 0 0
\(316\) 0 0
\(317\) 2.00000 0.112331 0.0561656 0.998421i \(-0.482113\pi\)
0.0561656 + 0.998421i \(0.482113\pi\)
\(318\) 0 0
\(319\) −8.00000 −0.447914
\(320\) 1.00000 0.0559017
\(321\) 0 0
\(322\) −16.0000 −0.891645
\(323\) 4.00000 0.222566
\(324\) 0 0
\(325\) 4.00000 0.221880
\(326\) −8.00000 −0.443079
\(327\) 0 0
\(328\) −8.00000 −0.441726
\(329\) −16.0000 −0.882109
\(330\) 0 0
\(331\) −8.00000 −0.439720 −0.219860 0.975531i \(-0.570560\pi\)
−0.219860 + 0.975531i \(0.570560\pi\)
\(332\) 16.0000 0.878114
\(333\) 0 0
\(334\) 12.0000 0.656611
\(335\) −2.00000 −0.109272
\(336\) 0 0
\(337\) 20.0000 1.08947 0.544735 0.838608i \(-0.316630\pi\)
0.544735 + 0.838608i \(0.316630\pi\)
\(338\) 3.00000 0.163178
\(339\) 0 0
\(340\) −1.00000 −0.0542326
\(341\) 16.0000 0.866449
\(342\) 0 0
\(343\) −20.0000 −1.07990
\(344\) 6.00000 0.323498
\(345\) 0 0
\(346\) −22.0000 −1.18273
\(347\) 28.0000 1.50312 0.751559 0.659665i \(-0.229302\pi\)
0.751559 + 0.659665i \(0.229302\pi\)
\(348\) 0 0
\(349\) −14.0000 −0.749403 −0.374701 0.927146i \(-0.622255\pi\)
−0.374701 + 0.927146i \(0.622255\pi\)
\(350\) 2.00000 0.106904
\(351\) 0 0
\(352\) 4.00000 0.213201
\(353\) 10.0000 0.532246 0.266123 0.963939i \(-0.414257\pi\)
0.266123 + 0.963939i \(0.414257\pi\)
\(354\) 0 0
\(355\) −2.00000 −0.106149
\(356\) 2.00000 0.106000
\(357\) 0 0
\(358\) −6.00000 −0.317110
\(359\) −36.0000 −1.90001 −0.950004 0.312239i \(-0.898921\pi\)
−0.950004 + 0.312239i \(0.898921\pi\)
\(360\) 0 0
\(361\) −3.00000 −0.157895
\(362\) 26.0000 1.36653
\(363\) 0 0
\(364\) 8.00000 0.419314
\(365\) 4.00000 0.209370
\(366\) 0 0
\(367\) 22.0000 1.14839 0.574195 0.818718i \(-0.305315\pi\)
0.574195 + 0.818718i \(0.305315\pi\)
\(368\) −8.00000 −0.417029
\(369\) 0 0
\(370\) 6.00000 0.311925
\(371\) 4.00000 0.207670
\(372\) 0 0
\(373\) −16.0000 −0.828449 −0.414224 0.910175i \(-0.635947\pi\)
−0.414224 + 0.910175i \(0.635947\pi\)
\(374\) −4.00000 −0.206835
\(375\) 0 0
\(376\) −8.00000 −0.412568
\(377\) −8.00000 −0.412021
\(378\) 0 0
\(379\) −4.00000 −0.205466 −0.102733 0.994709i \(-0.532759\pi\)
−0.102733 + 0.994709i \(0.532759\pi\)
\(380\) −4.00000 −0.205196
\(381\) 0 0
\(382\) −4.00000 −0.204658
\(383\) −8.00000 −0.408781 −0.204390 0.978889i \(-0.565521\pi\)
−0.204390 + 0.978889i \(0.565521\pi\)
\(384\) 0 0
\(385\) 8.00000 0.407718
\(386\) 24.0000 1.22157
\(387\) 0 0
\(388\) 0 0
\(389\) −24.0000 −1.21685 −0.608424 0.793612i \(-0.708198\pi\)
−0.608424 + 0.793612i \(0.708198\pi\)
\(390\) 0 0
\(391\) 8.00000 0.404577
\(392\) −3.00000 −0.151523
\(393\) 0 0
\(394\) 26.0000 1.30986
\(395\) 0 0
\(396\) 0 0
\(397\) 6.00000 0.301131 0.150566 0.988600i \(-0.451890\pi\)
0.150566 + 0.988600i \(0.451890\pi\)
\(398\) −20.0000 −1.00251
\(399\) 0 0
\(400\) 1.00000 0.0500000
\(401\) 12.0000 0.599251 0.299626 0.954057i \(-0.403138\pi\)
0.299626 + 0.954057i \(0.403138\pi\)
\(402\) 0 0
\(403\) 16.0000 0.797017
\(404\) −8.00000 −0.398015
\(405\) 0 0
\(406\) −4.00000 −0.198517
\(407\) 24.0000 1.18964
\(408\) 0 0
\(409\) −26.0000 −1.28562 −0.642809 0.766027i \(-0.722231\pi\)
−0.642809 + 0.766027i \(0.722231\pi\)
\(410\) −8.00000 −0.395092
\(411\) 0 0
\(412\) −12.0000 −0.591198
\(413\) 12.0000 0.590481
\(414\) 0 0
\(415\) 16.0000 0.785409
\(416\) 4.00000 0.196116
\(417\) 0 0
\(418\) −16.0000 −0.782586
\(419\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(420\) 0 0
\(421\) −18.0000 −0.877266 −0.438633 0.898666i \(-0.644537\pi\)
−0.438633 + 0.898666i \(0.644537\pi\)
\(422\) 4.00000 0.194717
\(423\) 0 0
\(424\) 2.00000 0.0971286
\(425\) −1.00000 −0.0485071
\(426\) 0 0
\(427\) 28.0000 1.35501
\(428\) −12.0000 −0.580042
\(429\) 0 0
\(430\) 6.00000 0.289346
\(431\) −14.0000 −0.674356 −0.337178 0.941441i \(-0.609472\pi\)
−0.337178 + 0.941441i \(0.609472\pi\)
\(432\) 0 0
\(433\) −26.0000 −1.24948 −0.624740 0.780833i \(-0.714795\pi\)
−0.624740 + 0.780833i \(0.714795\pi\)
\(434\) 8.00000 0.384012
\(435\) 0 0
\(436\) −14.0000 −0.670478
\(437\) 32.0000 1.53077
\(438\) 0 0
\(439\) −24.0000 −1.14546 −0.572729 0.819745i \(-0.694115\pi\)
−0.572729 + 0.819745i \(0.694115\pi\)
\(440\) 4.00000 0.190693
\(441\) 0 0
\(442\) −4.00000 −0.190261
\(443\) −24.0000 −1.14027 −0.570137 0.821549i \(-0.693110\pi\)
−0.570137 + 0.821549i \(0.693110\pi\)
\(444\) 0 0
\(445\) 2.00000 0.0948091
\(446\) 28.0000 1.32584
\(447\) 0 0
\(448\) 2.00000 0.0944911
\(449\) 12.0000 0.566315 0.283158 0.959073i \(-0.408618\pi\)
0.283158 + 0.959073i \(0.408618\pi\)
\(450\) 0 0
\(451\) −32.0000 −1.50682
\(452\) −6.00000 −0.282216
\(453\) 0 0
\(454\) −28.0000 −1.31411
\(455\) 8.00000 0.375046
\(456\) 0 0
\(457\) −2.00000 −0.0935561 −0.0467780 0.998905i \(-0.514895\pi\)
−0.0467780 + 0.998905i \(0.514895\pi\)
\(458\) 6.00000 0.280362
\(459\) 0 0
\(460\) −8.00000 −0.373002
\(461\) 28.0000 1.30409 0.652045 0.758180i \(-0.273911\pi\)
0.652045 + 0.758180i \(0.273911\pi\)
\(462\) 0 0
\(463\) 4.00000 0.185896 0.0929479 0.995671i \(-0.470371\pi\)
0.0929479 + 0.995671i \(0.470371\pi\)
\(464\) −2.00000 −0.0928477
\(465\) 0 0
\(466\) −18.0000 −0.833834
\(467\) 12.0000 0.555294 0.277647 0.960683i \(-0.410445\pi\)
0.277647 + 0.960683i \(0.410445\pi\)
\(468\) 0 0
\(469\) −4.00000 −0.184703
\(470\) −8.00000 −0.369012
\(471\) 0 0
\(472\) 6.00000 0.276172
\(473\) 24.0000 1.10352
\(474\) 0 0
\(475\) −4.00000 −0.183533
\(476\) −2.00000 −0.0916698
\(477\) 0 0
\(478\) 0 0
\(479\) 22.0000 1.00521 0.502603 0.864517i \(-0.332376\pi\)
0.502603 + 0.864517i \(0.332376\pi\)
\(480\) 0 0
\(481\) 24.0000 1.09431
\(482\) −14.0000 −0.637683
\(483\) 0 0
\(484\) 5.00000 0.227273
\(485\) 0 0
\(486\) 0 0
\(487\) −22.0000 −0.996915 −0.498458 0.866914i \(-0.666100\pi\)
−0.498458 + 0.866914i \(0.666100\pi\)
\(488\) 14.0000 0.633750
\(489\) 0 0
\(490\) −3.00000 −0.135526
\(491\) 18.0000 0.812329 0.406164 0.913800i \(-0.366866\pi\)
0.406164 + 0.913800i \(0.366866\pi\)
\(492\) 0 0
\(493\) 2.00000 0.0900755
\(494\) −16.0000 −0.719874
\(495\) 0 0
\(496\) 4.00000 0.179605
\(497\) −4.00000 −0.179425
\(498\) 0 0
\(499\) 4.00000 0.179065 0.0895323 0.995984i \(-0.471463\pi\)
0.0895323 + 0.995984i \(0.471463\pi\)
\(500\) 1.00000 0.0447214
\(501\) 0 0
\(502\) −26.0000 −1.16044
\(503\) 16.0000 0.713405 0.356702 0.934218i \(-0.383901\pi\)
0.356702 + 0.934218i \(0.383901\pi\)
\(504\) 0 0
\(505\) −8.00000 −0.355995
\(506\) −32.0000 −1.42257
\(507\) 0 0
\(508\) −4.00000 −0.177471
\(509\) −8.00000 −0.354594 −0.177297 0.984157i \(-0.556735\pi\)
−0.177297 + 0.984157i \(0.556735\pi\)
\(510\) 0 0
\(511\) 8.00000 0.353899
\(512\) 1.00000 0.0441942
\(513\) 0 0
\(514\) 18.0000 0.793946
\(515\) −12.0000 −0.528783
\(516\) 0 0
\(517\) −32.0000 −1.40736
\(518\) 12.0000 0.527250
\(519\) 0 0
\(520\) 4.00000 0.175412
\(521\) 36.0000 1.57719 0.788594 0.614914i \(-0.210809\pi\)
0.788594 + 0.614914i \(0.210809\pi\)
\(522\) 0 0
\(523\) −14.0000 −0.612177 −0.306089 0.952003i \(-0.599020\pi\)
−0.306089 + 0.952003i \(0.599020\pi\)
\(524\) 16.0000 0.698963
\(525\) 0 0
\(526\) −8.00000 −0.348817
\(527\) −4.00000 −0.174243
\(528\) 0 0
\(529\) 41.0000 1.78261
\(530\) 2.00000 0.0868744
\(531\) 0 0
\(532\) −8.00000 −0.346844
\(533\) −32.0000 −1.38607
\(534\) 0 0
\(535\) −12.0000 −0.518805
\(536\) −2.00000 −0.0863868
\(537\) 0 0
\(538\) 30.0000 1.29339
\(539\) −12.0000 −0.516877
\(540\) 0 0
\(541\) 30.0000 1.28980 0.644900 0.764267i \(-0.276899\pi\)
0.644900 + 0.764267i \(0.276899\pi\)
\(542\) −24.0000 −1.03089
\(543\) 0 0
\(544\) −1.00000 −0.0428746
\(545\) −14.0000 −0.599694
\(546\) 0 0
\(547\) 44.0000 1.88130 0.940652 0.339372i \(-0.110215\pi\)
0.940652 + 0.339372i \(0.110215\pi\)
\(548\) 6.00000 0.256307
\(549\) 0 0
\(550\) 4.00000 0.170561
\(551\) 8.00000 0.340811
\(552\) 0 0
\(553\) 0 0
\(554\) 2.00000 0.0849719
\(555\) 0 0
\(556\) −20.0000 −0.848189
\(557\) 2.00000 0.0847427 0.0423714 0.999102i \(-0.486509\pi\)
0.0423714 + 0.999102i \(0.486509\pi\)
\(558\) 0 0
\(559\) 24.0000 1.01509
\(560\) 2.00000 0.0845154
\(561\) 0 0
\(562\) 2.00000 0.0843649
\(563\) 24.0000 1.01148 0.505740 0.862686i \(-0.331220\pi\)
0.505740 + 0.862686i \(0.331220\pi\)
\(564\) 0 0
\(565\) −6.00000 −0.252422
\(566\) −20.0000 −0.840663
\(567\) 0 0
\(568\) −2.00000 −0.0839181
\(569\) −42.0000 −1.76073 −0.880366 0.474295i \(-0.842703\pi\)
−0.880366 + 0.474295i \(0.842703\pi\)
\(570\) 0 0
\(571\) 28.0000 1.17176 0.585882 0.810397i \(-0.300748\pi\)
0.585882 + 0.810397i \(0.300748\pi\)
\(572\) 16.0000 0.668994
\(573\) 0 0
\(574\) −16.0000 −0.667827
\(575\) −8.00000 −0.333623
\(576\) 0 0
\(577\) 6.00000 0.249783 0.124892 0.992170i \(-0.460142\pi\)
0.124892 + 0.992170i \(0.460142\pi\)
\(578\) 1.00000 0.0415945
\(579\) 0 0
\(580\) −2.00000 −0.0830455
\(581\) 32.0000 1.32758
\(582\) 0 0
\(583\) 8.00000 0.331326
\(584\) 4.00000 0.165521
\(585\) 0 0
\(586\) 14.0000 0.578335
\(587\) −8.00000 −0.330195 −0.165098 0.986277i \(-0.552794\pi\)
−0.165098 + 0.986277i \(0.552794\pi\)
\(588\) 0 0
\(589\) −16.0000 −0.659269
\(590\) 6.00000 0.247016
\(591\) 0 0
\(592\) 6.00000 0.246598
\(593\) 18.0000 0.739171 0.369586 0.929197i \(-0.379500\pi\)
0.369586 + 0.929197i \(0.379500\pi\)
\(594\) 0 0
\(595\) −2.00000 −0.0819920
\(596\) −16.0000 −0.655386
\(597\) 0 0
\(598\) −32.0000 −1.30858
\(599\) −12.0000 −0.490307 −0.245153 0.969484i \(-0.578838\pi\)
−0.245153 + 0.969484i \(0.578838\pi\)
\(600\) 0 0
\(601\) 30.0000 1.22373 0.611863 0.790964i \(-0.290420\pi\)
0.611863 + 0.790964i \(0.290420\pi\)
\(602\) 12.0000 0.489083
\(603\) 0 0
\(604\) −8.00000 −0.325515
\(605\) 5.00000 0.203279
\(606\) 0 0
\(607\) 34.0000 1.38002 0.690009 0.723801i \(-0.257607\pi\)
0.690009 + 0.723801i \(0.257607\pi\)
\(608\) −4.00000 −0.162221
\(609\) 0 0
\(610\) 14.0000 0.566843
\(611\) −32.0000 −1.29458
\(612\) 0 0
\(613\) 16.0000 0.646234 0.323117 0.946359i \(-0.395269\pi\)
0.323117 + 0.946359i \(0.395269\pi\)
\(614\) −10.0000 −0.403567
\(615\) 0 0
\(616\) 8.00000 0.322329
\(617\) 6.00000 0.241551 0.120775 0.992680i \(-0.461462\pi\)
0.120775 + 0.992680i \(0.461462\pi\)
\(618\) 0 0
\(619\) −4.00000 −0.160774 −0.0803868 0.996764i \(-0.525616\pi\)
−0.0803868 + 0.996764i \(0.525616\pi\)
\(620\) 4.00000 0.160644
\(621\) 0 0
\(622\) −14.0000 −0.561349
\(623\) 4.00000 0.160257
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 16.0000 0.639489
\(627\) 0 0
\(628\) −4.00000 −0.159617
\(629\) −6.00000 −0.239236
\(630\) 0 0
\(631\) −16.0000 −0.636950 −0.318475 0.947931i \(-0.603171\pi\)
−0.318475 + 0.947931i \(0.603171\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 2.00000 0.0794301
\(635\) −4.00000 −0.158735
\(636\) 0 0
\(637\) −12.0000 −0.475457
\(638\) −8.00000 −0.316723
\(639\) 0 0
\(640\) 1.00000 0.0395285
\(641\) −12.0000 −0.473972 −0.236986 0.971513i \(-0.576159\pi\)
−0.236986 + 0.971513i \(0.576159\pi\)
\(642\) 0 0
\(643\) 16.0000 0.630978 0.315489 0.948929i \(-0.397831\pi\)
0.315489 + 0.948929i \(0.397831\pi\)
\(644\) −16.0000 −0.630488
\(645\) 0 0
\(646\) 4.00000 0.157378
\(647\) 16.0000 0.629025 0.314512 0.949253i \(-0.398159\pi\)
0.314512 + 0.949253i \(0.398159\pi\)
\(648\) 0 0
\(649\) 24.0000 0.942082
\(650\) 4.00000 0.156893
\(651\) 0 0
\(652\) −8.00000 −0.313304
\(653\) 30.0000 1.17399 0.586995 0.809590i \(-0.300311\pi\)
0.586995 + 0.809590i \(0.300311\pi\)
\(654\) 0 0
\(655\) 16.0000 0.625172
\(656\) −8.00000 −0.312348
\(657\) 0 0
\(658\) −16.0000 −0.623745
\(659\) −14.0000 −0.545363 −0.272681 0.962104i \(-0.587910\pi\)
−0.272681 + 0.962104i \(0.587910\pi\)
\(660\) 0 0
\(661\) 2.00000 0.0777910 0.0388955 0.999243i \(-0.487616\pi\)
0.0388955 + 0.999243i \(0.487616\pi\)
\(662\) −8.00000 −0.310929
\(663\) 0 0
\(664\) 16.0000 0.620920
\(665\) −8.00000 −0.310227
\(666\) 0 0
\(667\) 16.0000 0.619522
\(668\) 12.0000 0.464294
\(669\) 0 0
\(670\) −2.00000 −0.0772667
\(671\) 56.0000 2.16186
\(672\) 0 0
\(673\) −8.00000 −0.308377 −0.154189 0.988041i \(-0.549276\pi\)
−0.154189 + 0.988041i \(0.549276\pi\)
\(674\) 20.0000 0.770371
\(675\) 0 0
\(676\) 3.00000 0.115385
\(677\) −6.00000 −0.230599 −0.115299 0.993331i \(-0.536783\pi\)
−0.115299 + 0.993331i \(0.536783\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) −1.00000 −0.0383482
\(681\) 0 0
\(682\) 16.0000 0.612672
\(683\) −36.0000 −1.37750 −0.688751 0.724998i \(-0.741841\pi\)
−0.688751 + 0.724998i \(0.741841\pi\)
\(684\) 0 0
\(685\) 6.00000 0.229248
\(686\) −20.0000 −0.763604
\(687\) 0 0
\(688\) 6.00000 0.228748
\(689\) 8.00000 0.304776
\(690\) 0 0
\(691\) −20.0000 −0.760836 −0.380418 0.924815i \(-0.624220\pi\)
−0.380418 + 0.924815i \(0.624220\pi\)
\(692\) −22.0000 −0.836315
\(693\) 0 0
\(694\) 28.0000 1.06287
\(695\) −20.0000 −0.758643
\(696\) 0 0
\(697\) 8.00000 0.303022
\(698\) −14.0000 −0.529908
\(699\) 0 0
\(700\) 2.00000 0.0755929
\(701\) −36.0000 −1.35970 −0.679851 0.733351i \(-0.737955\pi\)
−0.679851 + 0.733351i \(0.737955\pi\)
\(702\) 0 0
\(703\) −24.0000 −0.905177
\(704\) 4.00000 0.150756
\(705\) 0 0
\(706\) 10.0000 0.376355
\(707\) −16.0000 −0.601742
\(708\) 0 0
\(709\) 22.0000 0.826227 0.413114 0.910679i \(-0.364441\pi\)
0.413114 + 0.910679i \(0.364441\pi\)
\(710\) −2.00000 −0.0750587
\(711\) 0 0
\(712\) 2.00000 0.0749532
\(713\) −32.0000 −1.19841
\(714\) 0 0
\(715\) 16.0000 0.598366
\(716\) −6.00000 −0.224231
\(717\) 0 0
\(718\) −36.0000 −1.34351
\(719\) −10.0000 −0.372937 −0.186469 0.982461i \(-0.559704\pi\)
−0.186469 + 0.982461i \(0.559704\pi\)
\(720\) 0 0
\(721\) −24.0000 −0.893807
\(722\) −3.00000 −0.111648
\(723\) 0 0
\(724\) 26.0000 0.966282
\(725\) −2.00000 −0.0742781
\(726\) 0 0
\(727\) 44.0000 1.63187 0.815935 0.578144i \(-0.196223\pi\)
0.815935 + 0.578144i \(0.196223\pi\)
\(728\) 8.00000 0.296500
\(729\) 0 0
\(730\) 4.00000 0.148047
\(731\) −6.00000 −0.221918
\(732\) 0 0
\(733\) 48.0000 1.77292 0.886460 0.462805i \(-0.153157\pi\)
0.886460 + 0.462805i \(0.153157\pi\)
\(734\) 22.0000 0.812035
\(735\) 0 0
\(736\) −8.00000 −0.294884
\(737\) −8.00000 −0.294684
\(738\) 0 0
\(739\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(740\) 6.00000 0.220564
\(741\) 0 0
\(742\) 4.00000 0.146845
\(743\) 20.0000 0.733729 0.366864 0.930274i \(-0.380431\pi\)
0.366864 + 0.930274i \(0.380431\pi\)
\(744\) 0 0
\(745\) −16.0000 −0.586195
\(746\) −16.0000 −0.585802
\(747\) 0 0
\(748\) −4.00000 −0.146254
\(749\) −24.0000 −0.876941
\(750\) 0 0
\(751\) −24.0000 −0.875772 −0.437886 0.899030i \(-0.644273\pi\)
−0.437886 + 0.899030i \(0.644273\pi\)
\(752\) −8.00000 −0.291730
\(753\) 0 0
\(754\) −8.00000 −0.291343
\(755\) −8.00000 −0.291150
\(756\) 0 0
\(757\) −28.0000 −1.01768 −0.508839 0.860862i \(-0.669925\pi\)
−0.508839 + 0.860862i \(0.669925\pi\)
\(758\) −4.00000 −0.145287
\(759\) 0 0
\(760\) −4.00000 −0.145095
\(761\) 6.00000 0.217500 0.108750 0.994069i \(-0.465315\pi\)
0.108750 + 0.994069i \(0.465315\pi\)
\(762\) 0 0
\(763\) −28.0000 −1.01367
\(764\) −4.00000 −0.144715
\(765\) 0 0
\(766\) −8.00000 −0.289052
\(767\) 24.0000 0.866590
\(768\) 0 0
\(769\) 14.0000 0.504853 0.252426 0.967616i \(-0.418771\pi\)
0.252426 + 0.967616i \(0.418771\pi\)
\(770\) 8.00000 0.288300
\(771\) 0 0
\(772\) 24.0000 0.863779
\(773\) 42.0000 1.51064 0.755318 0.655359i \(-0.227483\pi\)
0.755318 + 0.655359i \(0.227483\pi\)
\(774\) 0 0
\(775\) 4.00000 0.143684
\(776\) 0 0
\(777\) 0 0
\(778\) −24.0000 −0.860442
\(779\) 32.0000 1.14652
\(780\) 0 0
\(781\) −8.00000 −0.286263
\(782\) 8.00000 0.286079
\(783\) 0 0
\(784\) −3.00000 −0.107143
\(785\) −4.00000 −0.142766
\(786\) 0 0
\(787\) 24.0000 0.855508 0.427754 0.903895i \(-0.359305\pi\)
0.427754 + 0.903895i \(0.359305\pi\)
\(788\) 26.0000 0.926212
\(789\) 0 0
\(790\) 0 0
\(791\) −12.0000 −0.426671
\(792\) 0 0
\(793\) 56.0000 1.98862
\(794\) 6.00000 0.212932
\(795\) 0 0
\(796\) −20.0000 −0.708881
\(797\) 14.0000 0.495905 0.247953 0.968772i \(-0.420242\pi\)
0.247953 + 0.968772i \(0.420242\pi\)
\(798\) 0 0
\(799\) 8.00000 0.283020
\(800\) 1.00000 0.0353553
\(801\) 0 0
\(802\) 12.0000 0.423735
\(803\) 16.0000 0.564628
\(804\) 0 0
\(805\) −16.0000 −0.563926
\(806\) 16.0000 0.563576
\(807\) 0 0
\(808\) −8.00000 −0.281439
\(809\) 48.0000 1.68759 0.843795 0.536666i \(-0.180316\pi\)
0.843795 + 0.536666i \(0.180316\pi\)
\(810\) 0 0
\(811\) 20.0000 0.702295 0.351147 0.936320i \(-0.385792\pi\)
0.351147 + 0.936320i \(0.385792\pi\)
\(812\) −4.00000 −0.140372
\(813\) 0 0
\(814\) 24.0000 0.841200
\(815\) −8.00000 −0.280228
\(816\) 0 0
\(817\) −24.0000 −0.839654
\(818\) −26.0000 −0.909069
\(819\) 0 0
\(820\) −8.00000 −0.279372
\(821\) 18.0000 0.628204 0.314102 0.949389i \(-0.398297\pi\)
0.314102 + 0.949389i \(0.398297\pi\)
\(822\) 0 0
\(823\) 14.0000 0.488009 0.244005 0.969774i \(-0.421539\pi\)
0.244005 + 0.969774i \(0.421539\pi\)
\(824\) −12.0000 −0.418040
\(825\) 0 0
\(826\) 12.0000 0.417533
\(827\) −44.0000 −1.53003 −0.765015 0.644013i \(-0.777268\pi\)
−0.765015 + 0.644013i \(0.777268\pi\)
\(828\) 0 0
\(829\) −46.0000 −1.59765 −0.798823 0.601566i \(-0.794544\pi\)
−0.798823 + 0.601566i \(0.794544\pi\)
\(830\) 16.0000 0.555368
\(831\) 0 0
\(832\) 4.00000 0.138675
\(833\) 3.00000 0.103944
\(834\) 0 0
\(835\) 12.0000 0.415277
\(836\) −16.0000 −0.553372
\(837\) 0 0
\(838\) 0 0
\(839\) −6.00000 −0.207143 −0.103572 0.994622i \(-0.533027\pi\)
−0.103572 + 0.994622i \(0.533027\pi\)
\(840\) 0 0
\(841\) −25.0000 −0.862069
\(842\) −18.0000 −0.620321
\(843\) 0 0
\(844\) 4.00000 0.137686
\(845\) 3.00000 0.103203
\(846\) 0 0
\(847\) 10.0000 0.343604
\(848\) 2.00000 0.0686803
\(849\) 0 0
\(850\) −1.00000 −0.0342997
\(851\) −48.0000 −1.64542
\(852\) 0 0
\(853\) 2.00000 0.0684787 0.0342393 0.999414i \(-0.489099\pi\)
0.0342393 + 0.999414i \(0.489099\pi\)
\(854\) 28.0000 0.958140
\(855\) 0 0
\(856\) −12.0000 −0.410152
\(857\) 22.0000 0.751506 0.375753 0.926720i \(-0.377384\pi\)
0.375753 + 0.926720i \(0.377384\pi\)
\(858\) 0 0
\(859\) −32.0000 −1.09183 −0.545913 0.837842i \(-0.683817\pi\)
−0.545913 + 0.837842i \(0.683817\pi\)
\(860\) 6.00000 0.204598
\(861\) 0 0
\(862\) −14.0000 −0.476842
\(863\) 16.0000 0.544646 0.272323 0.962206i \(-0.412208\pi\)
0.272323 + 0.962206i \(0.412208\pi\)
\(864\) 0 0
\(865\) −22.0000 −0.748022
\(866\) −26.0000 −0.883516
\(867\) 0 0
\(868\) 8.00000 0.271538
\(869\) 0 0
\(870\) 0 0
\(871\) −8.00000 −0.271070
\(872\) −14.0000 −0.474100
\(873\) 0 0
\(874\) 32.0000 1.08242
\(875\) 2.00000 0.0676123
\(876\) 0 0
\(877\) 50.0000 1.68838 0.844190 0.536044i \(-0.180082\pi\)
0.844190 + 0.536044i \(0.180082\pi\)
\(878\) −24.0000 −0.809961
\(879\) 0 0
\(880\) 4.00000 0.134840
\(881\) −36.0000 −1.21287 −0.606435 0.795133i \(-0.707401\pi\)
−0.606435 + 0.795133i \(0.707401\pi\)
\(882\) 0 0
\(883\) −46.0000 −1.54802 −0.774012 0.633171i \(-0.781753\pi\)
−0.774012 + 0.633171i \(0.781753\pi\)
\(884\) −4.00000 −0.134535
\(885\) 0 0
\(886\) −24.0000 −0.806296
\(887\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(888\) 0 0
\(889\) −8.00000 −0.268311
\(890\) 2.00000 0.0670402
\(891\) 0 0
\(892\) 28.0000 0.937509
\(893\) 32.0000 1.07084
\(894\) 0 0
\(895\) −6.00000 −0.200558
\(896\) 2.00000 0.0668153
\(897\) 0 0
\(898\) 12.0000 0.400445
\(899\) −8.00000 −0.266815
\(900\) 0 0
\(901\) −2.00000 −0.0666297
\(902\) −32.0000 −1.06548
\(903\) 0 0
\(904\) −6.00000 −0.199557
\(905\) 26.0000 0.864269
\(906\) 0 0
\(907\) −32.0000 −1.06254 −0.531271 0.847202i \(-0.678286\pi\)
−0.531271 + 0.847202i \(0.678286\pi\)
\(908\) −28.0000 −0.929213
\(909\) 0 0
\(910\) 8.00000 0.265197
\(911\) −50.0000 −1.65657 −0.828287 0.560304i \(-0.810684\pi\)
−0.828287 + 0.560304i \(0.810684\pi\)
\(912\) 0 0
\(913\) 64.0000 2.11809
\(914\) −2.00000 −0.0661541
\(915\) 0 0
\(916\) 6.00000 0.198246
\(917\) 32.0000 1.05673
\(918\) 0 0
\(919\) −8.00000 −0.263896 −0.131948 0.991257i \(-0.542123\pi\)
−0.131948 + 0.991257i \(0.542123\pi\)
\(920\) −8.00000 −0.263752
\(921\) 0 0
\(922\) 28.0000 0.922131
\(923\) −8.00000 −0.263323
\(924\) 0 0
\(925\) 6.00000 0.197279
\(926\) 4.00000 0.131448
\(927\) 0 0
\(928\) −2.00000 −0.0656532
\(929\) 48.0000 1.57483 0.787414 0.616424i \(-0.211419\pi\)
0.787414 + 0.616424i \(0.211419\pi\)
\(930\) 0 0
\(931\) 12.0000 0.393284
\(932\) −18.0000 −0.589610
\(933\) 0 0
\(934\) 12.0000 0.392652
\(935\) −4.00000 −0.130814
\(936\) 0 0
\(937\) −34.0000 −1.11073 −0.555366 0.831606i \(-0.687422\pi\)
−0.555366 + 0.831606i \(0.687422\pi\)
\(938\) −4.00000 −0.130605
\(939\) 0 0
\(940\) −8.00000 −0.260931
\(941\) 2.00000 0.0651981 0.0325991 0.999469i \(-0.489622\pi\)
0.0325991 + 0.999469i \(0.489622\pi\)
\(942\) 0 0
\(943\) 64.0000 2.08413
\(944\) 6.00000 0.195283
\(945\) 0 0
\(946\) 24.0000 0.780307
\(947\) 4.00000 0.129983 0.0649913 0.997886i \(-0.479298\pi\)
0.0649913 + 0.997886i \(0.479298\pi\)
\(948\) 0 0
\(949\) 16.0000 0.519382
\(950\) −4.00000 −0.129777
\(951\) 0 0
\(952\) −2.00000 −0.0648204
\(953\) −42.0000 −1.36051 −0.680257 0.732974i \(-0.738132\pi\)
−0.680257 + 0.732974i \(0.738132\pi\)
\(954\) 0 0
\(955\) −4.00000 −0.129437
\(956\) 0 0
\(957\) 0 0
\(958\) 22.0000 0.710788
\(959\) 12.0000 0.387500
\(960\) 0 0
\(961\) −15.0000 −0.483871
\(962\) 24.0000 0.773791
\(963\) 0 0
\(964\) −14.0000 −0.450910
\(965\) 24.0000 0.772587
\(966\) 0 0
\(967\) 56.0000 1.80084 0.900419 0.435023i \(-0.143260\pi\)
0.900419 + 0.435023i \(0.143260\pi\)
\(968\) 5.00000 0.160706
\(969\) 0 0
\(970\) 0 0
\(971\) 50.0000 1.60458 0.802288 0.596937i \(-0.203616\pi\)
0.802288 + 0.596937i \(0.203616\pi\)
\(972\) 0 0
\(973\) −40.0000 −1.28234
\(974\) −22.0000 −0.704925
\(975\) 0 0
\(976\) 14.0000 0.448129
\(977\) 42.0000 1.34370 0.671850 0.740688i \(-0.265500\pi\)
0.671850 + 0.740688i \(0.265500\pi\)
\(978\) 0 0
\(979\) 8.00000 0.255681
\(980\) −3.00000 −0.0958315
\(981\) 0 0
\(982\) 18.0000 0.574403
\(983\) 52.0000 1.65854 0.829271 0.558846i \(-0.188756\pi\)
0.829271 + 0.558846i \(0.188756\pi\)
\(984\) 0 0
\(985\) 26.0000 0.828429
\(986\) 2.00000 0.0636930
\(987\) 0 0
\(988\) −16.0000 −0.509028
\(989\) −48.0000 −1.52631
\(990\) 0 0
\(991\) 20.0000 0.635321 0.317660 0.948205i \(-0.397103\pi\)
0.317660 + 0.948205i \(0.397103\pi\)
\(992\) 4.00000 0.127000
\(993\) 0 0
\(994\) −4.00000 −0.126872
\(995\) −20.0000 −0.634043
\(996\) 0 0
\(997\) −50.0000 −1.58352 −0.791758 0.610835i \(-0.790834\pi\)
−0.791758 + 0.610835i \(0.790834\pi\)
\(998\) 4.00000 0.126618
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1530.2.a.p.1.1 1
3.2 odd 2 510.2.a.a.1.1 1
5.4 even 2 7650.2.a.k.1.1 1
12.11 even 2 4080.2.a.s.1.1 1
15.2 even 4 2550.2.d.n.2449.1 2
15.8 even 4 2550.2.d.n.2449.2 2
15.14 odd 2 2550.2.a.bc.1.1 1
51.50 odd 2 8670.2.a.k.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
510.2.a.a.1.1 1 3.2 odd 2
1530.2.a.p.1.1 1 1.1 even 1 trivial
2550.2.a.bc.1.1 1 15.14 odd 2
2550.2.d.n.2449.1 2 15.2 even 4
2550.2.d.n.2449.2 2 15.8 even 4
4080.2.a.s.1.1 1 12.11 even 2
7650.2.a.k.1.1 1 5.4 even 2
8670.2.a.k.1.1 1 51.50 odd 2