Properties

Label 2550.2.a.bi.1.1
Level $2550$
Weight $2$
Character 2550.1
Self dual yes
Analytic conductor $20.362$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2550,2,Mod(1,2550)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2550, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2550.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2550 = 2 \cdot 3 \cdot 5^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2550.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(20.3618525154\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{6}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 6 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 510)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-2.44949\) of defining polynomial
Character \(\chi\) \(=\) 2550.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{2} +1.00000 q^{3} +1.00000 q^{4} -1.00000 q^{6} -2.44949 q^{7} -1.00000 q^{8} +1.00000 q^{9} -4.89898 q^{11} +1.00000 q^{12} +6.00000 q^{13} +2.44949 q^{14} +1.00000 q^{16} +1.00000 q^{17} -1.00000 q^{18} +6.89898 q^{19} -2.44949 q^{21} +4.89898 q^{22} +6.44949 q^{23} -1.00000 q^{24} -6.00000 q^{26} +1.00000 q^{27} -2.44949 q^{28} -9.34847 q^{29} -6.44949 q^{31} -1.00000 q^{32} -4.89898 q^{33} -1.00000 q^{34} +1.00000 q^{36} -0.449490 q^{37} -6.89898 q^{38} +6.00000 q^{39} -1.10102 q^{41} +2.44949 q^{42} -2.89898 q^{43} -4.89898 q^{44} -6.44949 q^{46} +4.89898 q^{47} +1.00000 q^{48} -1.00000 q^{49} +1.00000 q^{51} +6.00000 q^{52} -1.10102 q^{53} -1.00000 q^{54} +2.44949 q^{56} +6.89898 q^{57} +9.34847 q^{58} +5.79796 q^{59} +13.3485 q^{61} +6.44949 q^{62} -2.44949 q^{63} +1.00000 q^{64} +4.89898 q^{66} +4.00000 q^{67} +1.00000 q^{68} +6.44949 q^{69} +2.44949 q^{71} -1.00000 q^{72} +14.8990 q^{73} +0.449490 q^{74} +6.89898 q^{76} +12.0000 q^{77} -6.00000 q^{78} -1.55051 q^{79} +1.00000 q^{81} +1.10102 q^{82} +2.89898 q^{83} -2.44949 q^{84} +2.89898 q^{86} -9.34847 q^{87} +4.89898 q^{88} -1.79796 q^{89} -14.6969 q^{91} +6.44949 q^{92} -6.44949 q^{93} -4.89898 q^{94} -1.00000 q^{96} -3.79796 q^{97} +1.00000 q^{98} -4.89898 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{2} + 2 q^{3} + 2 q^{4} - 2 q^{6} - 2 q^{8} + 2 q^{9} + 2 q^{12} + 12 q^{13} + 2 q^{16} + 2 q^{17} - 2 q^{18} + 4 q^{19} + 8 q^{23} - 2 q^{24} - 12 q^{26} + 2 q^{27} - 4 q^{29} - 8 q^{31} - 2 q^{32}+ \cdots + 2 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 −0.707107
\(3\) 1.00000 0.577350
\(4\) 1.00000 0.500000
\(5\) 0 0
\(6\) −1.00000 −0.408248
\(7\) −2.44949 −0.925820 −0.462910 0.886405i \(-0.653195\pi\)
−0.462910 + 0.886405i \(0.653195\pi\)
\(8\) −1.00000 −0.353553
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) −4.89898 −1.47710 −0.738549 0.674200i \(-0.764489\pi\)
−0.738549 + 0.674200i \(0.764489\pi\)
\(12\) 1.00000 0.288675
\(13\) 6.00000 1.66410 0.832050 0.554700i \(-0.187167\pi\)
0.832050 + 0.554700i \(0.187167\pi\)
\(14\) 2.44949 0.654654
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) 1.00000 0.242536
\(18\) −1.00000 −0.235702
\(19\) 6.89898 1.58273 0.791367 0.611341i \(-0.209370\pi\)
0.791367 + 0.611341i \(0.209370\pi\)
\(20\) 0 0
\(21\) −2.44949 −0.534522
\(22\) 4.89898 1.04447
\(23\) 6.44949 1.34481 0.672406 0.740183i \(-0.265261\pi\)
0.672406 + 0.740183i \(0.265261\pi\)
\(24\) −1.00000 −0.204124
\(25\) 0 0
\(26\) −6.00000 −1.17670
\(27\) 1.00000 0.192450
\(28\) −2.44949 −0.462910
\(29\) −9.34847 −1.73597 −0.867984 0.496593i \(-0.834584\pi\)
−0.867984 + 0.496593i \(0.834584\pi\)
\(30\) 0 0
\(31\) −6.44949 −1.15836 −0.579181 0.815199i \(-0.696628\pi\)
−0.579181 + 0.815199i \(0.696628\pi\)
\(32\) −1.00000 −0.176777
\(33\) −4.89898 −0.852803
\(34\) −1.00000 −0.171499
\(35\) 0 0
\(36\) 1.00000 0.166667
\(37\) −0.449490 −0.0738957 −0.0369478 0.999317i \(-0.511764\pi\)
−0.0369478 + 0.999317i \(0.511764\pi\)
\(38\) −6.89898 −1.11916
\(39\) 6.00000 0.960769
\(40\) 0 0
\(41\) −1.10102 −0.171951 −0.0859753 0.996297i \(-0.527401\pi\)
−0.0859753 + 0.996297i \(0.527401\pi\)
\(42\) 2.44949 0.377964
\(43\) −2.89898 −0.442090 −0.221045 0.975264i \(-0.570947\pi\)
−0.221045 + 0.975264i \(0.570947\pi\)
\(44\) −4.89898 −0.738549
\(45\) 0 0
\(46\) −6.44949 −0.950925
\(47\) 4.89898 0.714590 0.357295 0.933992i \(-0.383699\pi\)
0.357295 + 0.933992i \(0.383699\pi\)
\(48\) 1.00000 0.144338
\(49\) −1.00000 −0.142857
\(50\) 0 0
\(51\) 1.00000 0.140028
\(52\) 6.00000 0.832050
\(53\) −1.10102 −0.151237 −0.0756184 0.997137i \(-0.524093\pi\)
−0.0756184 + 0.997137i \(0.524093\pi\)
\(54\) −1.00000 −0.136083
\(55\) 0 0
\(56\) 2.44949 0.327327
\(57\) 6.89898 0.913792
\(58\) 9.34847 1.22751
\(59\) 5.79796 0.754830 0.377415 0.926044i \(-0.376813\pi\)
0.377415 + 0.926044i \(0.376813\pi\)
\(60\) 0 0
\(61\) 13.3485 1.70910 0.854548 0.519372i \(-0.173834\pi\)
0.854548 + 0.519372i \(0.173834\pi\)
\(62\) 6.44949 0.819086
\(63\) −2.44949 −0.308607
\(64\) 1.00000 0.125000
\(65\) 0 0
\(66\) 4.89898 0.603023
\(67\) 4.00000 0.488678 0.244339 0.969690i \(-0.421429\pi\)
0.244339 + 0.969690i \(0.421429\pi\)
\(68\) 1.00000 0.121268
\(69\) 6.44949 0.776427
\(70\) 0 0
\(71\) 2.44949 0.290701 0.145350 0.989380i \(-0.453569\pi\)
0.145350 + 0.989380i \(0.453569\pi\)
\(72\) −1.00000 −0.117851
\(73\) 14.8990 1.74379 0.871897 0.489690i \(-0.162890\pi\)
0.871897 + 0.489690i \(0.162890\pi\)
\(74\) 0.449490 0.0522521
\(75\) 0 0
\(76\) 6.89898 0.791367
\(77\) 12.0000 1.36753
\(78\) −6.00000 −0.679366
\(79\) −1.55051 −0.174446 −0.0872230 0.996189i \(-0.527799\pi\)
−0.0872230 + 0.996189i \(0.527799\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 1.10102 0.121587
\(83\) 2.89898 0.318204 0.159102 0.987262i \(-0.449140\pi\)
0.159102 + 0.987262i \(0.449140\pi\)
\(84\) −2.44949 −0.267261
\(85\) 0 0
\(86\) 2.89898 0.312605
\(87\) −9.34847 −1.00226
\(88\) 4.89898 0.522233
\(89\) −1.79796 −0.190583 −0.0952916 0.995449i \(-0.530378\pi\)
−0.0952916 + 0.995449i \(0.530378\pi\)
\(90\) 0 0
\(91\) −14.6969 −1.54066
\(92\) 6.44949 0.672406
\(93\) −6.44949 −0.668781
\(94\) −4.89898 −0.505291
\(95\) 0 0
\(96\) −1.00000 −0.102062
\(97\) −3.79796 −0.385624 −0.192812 0.981236i \(-0.561761\pi\)
−0.192812 + 0.981236i \(0.561761\pi\)
\(98\) 1.00000 0.101015
\(99\) −4.89898 −0.492366
\(100\) 0 0
\(101\) 3.79796 0.377911 0.188956 0.981986i \(-0.439490\pi\)
0.188956 + 0.981986i \(0.439490\pi\)
\(102\) −1.00000 −0.0990148
\(103\) 16.8990 1.66511 0.832553 0.553945i \(-0.186878\pi\)
0.832553 + 0.553945i \(0.186878\pi\)
\(104\) −6.00000 −0.588348
\(105\) 0 0
\(106\) 1.10102 0.106941
\(107\) 3.10102 0.299787 0.149893 0.988702i \(-0.452107\pi\)
0.149893 + 0.988702i \(0.452107\pi\)
\(108\) 1.00000 0.0962250
\(109\) 18.2474 1.74779 0.873894 0.486116i \(-0.161587\pi\)
0.873894 + 0.486116i \(0.161587\pi\)
\(110\) 0 0
\(111\) −0.449490 −0.0426637
\(112\) −2.44949 −0.231455
\(113\) 16.6969 1.57072 0.785358 0.619042i \(-0.212479\pi\)
0.785358 + 0.619042i \(0.212479\pi\)
\(114\) −6.89898 −0.646149
\(115\) 0 0
\(116\) −9.34847 −0.867984
\(117\) 6.00000 0.554700
\(118\) −5.79796 −0.533745
\(119\) −2.44949 −0.224544
\(120\) 0 0
\(121\) 13.0000 1.18182
\(122\) −13.3485 −1.20851
\(123\) −1.10102 −0.0992757
\(124\) −6.44949 −0.579181
\(125\) 0 0
\(126\) 2.44949 0.218218
\(127\) −8.00000 −0.709885 −0.354943 0.934888i \(-0.615500\pi\)
−0.354943 + 0.934888i \(0.615500\pi\)
\(128\) −1.00000 −0.0883883
\(129\) −2.89898 −0.255241
\(130\) 0 0
\(131\) 4.89898 0.428026 0.214013 0.976831i \(-0.431347\pi\)
0.214013 + 0.976831i \(0.431347\pi\)
\(132\) −4.89898 −0.426401
\(133\) −16.8990 −1.46533
\(134\) −4.00000 −0.345547
\(135\) 0 0
\(136\) −1.00000 −0.0857493
\(137\) 12.0000 1.02523 0.512615 0.858619i \(-0.328677\pi\)
0.512615 + 0.858619i \(0.328677\pi\)
\(138\) −6.44949 −0.549017
\(139\) −16.8990 −1.43335 −0.716676 0.697406i \(-0.754338\pi\)
−0.716676 + 0.697406i \(0.754338\pi\)
\(140\) 0 0
\(141\) 4.89898 0.412568
\(142\) −2.44949 −0.205557
\(143\) −29.3939 −2.45804
\(144\) 1.00000 0.0833333
\(145\) 0 0
\(146\) −14.8990 −1.23305
\(147\) −1.00000 −0.0824786
\(148\) −0.449490 −0.0369478
\(149\) 12.6969 1.04017 0.520087 0.854113i \(-0.325900\pi\)
0.520087 + 0.854113i \(0.325900\pi\)
\(150\) 0 0
\(151\) 13.7980 1.12286 0.561431 0.827524i \(-0.310251\pi\)
0.561431 + 0.827524i \(0.310251\pi\)
\(152\) −6.89898 −0.559581
\(153\) 1.00000 0.0808452
\(154\) −12.0000 −0.966988
\(155\) 0 0
\(156\) 6.00000 0.480384
\(157\) 16.6969 1.33256 0.666280 0.745701i \(-0.267885\pi\)
0.666280 + 0.745701i \(0.267885\pi\)
\(158\) 1.55051 0.123352
\(159\) −1.10102 −0.0873166
\(160\) 0 0
\(161\) −15.7980 −1.24505
\(162\) −1.00000 −0.0785674
\(163\) 5.79796 0.454131 0.227066 0.973879i \(-0.427087\pi\)
0.227066 + 0.973879i \(0.427087\pi\)
\(164\) −1.10102 −0.0859753
\(165\) 0 0
\(166\) −2.89898 −0.225004
\(167\) 4.65153 0.359946 0.179973 0.983672i \(-0.442399\pi\)
0.179973 + 0.983672i \(0.442399\pi\)
\(168\) 2.44949 0.188982
\(169\) 23.0000 1.76923
\(170\) 0 0
\(171\) 6.89898 0.527578
\(172\) −2.89898 −0.221045
\(173\) −13.3485 −1.01487 −0.507433 0.861691i \(-0.669405\pi\)
−0.507433 + 0.861691i \(0.669405\pi\)
\(174\) 9.34847 0.708706
\(175\) 0 0
\(176\) −4.89898 −0.369274
\(177\) 5.79796 0.435801
\(178\) 1.79796 0.134763
\(179\) −20.6969 −1.54696 −0.773481 0.633820i \(-0.781486\pi\)
−0.773481 + 0.633820i \(0.781486\pi\)
\(180\) 0 0
\(181\) 4.44949 0.330728 0.165364 0.986233i \(-0.447120\pi\)
0.165364 + 0.986233i \(0.447120\pi\)
\(182\) 14.6969 1.08941
\(183\) 13.3485 0.986747
\(184\) −6.44949 −0.475463
\(185\) 0 0
\(186\) 6.44949 0.472900
\(187\) −4.89898 −0.358249
\(188\) 4.89898 0.357295
\(189\) −2.44949 −0.178174
\(190\) 0 0
\(191\) −16.8990 −1.22277 −0.611384 0.791334i \(-0.709387\pi\)
−0.611384 + 0.791334i \(0.709387\pi\)
\(192\) 1.00000 0.0721688
\(193\) 14.0000 1.00774 0.503871 0.863779i \(-0.331909\pi\)
0.503871 + 0.863779i \(0.331909\pi\)
\(194\) 3.79796 0.272678
\(195\) 0 0
\(196\) −1.00000 −0.0714286
\(197\) 19.1464 1.36413 0.682063 0.731293i \(-0.261083\pi\)
0.682063 + 0.731293i \(0.261083\pi\)
\(198\) 4.89898 0.348155
\(199\) −18.0454 −1.27921 −0.639603 0.768706i \(-0.720901\pi\)
−0.639603 + 0.768706i \(0.720901\pi\)
\(200\) 0 0
\(201\) 4.00000 0.282138
\(202\) −3.79796 −0.267223
\(203\) 22.8990 1.60719
\(204\) 1.00000 0.0700140
\(205\) 0 0
\(206\) −16.8990 −1.17741
\(207\) 6.44949 0.448271
\(208\) 6.00000 0.416025
\(209\) −33.7980 −2.33785
\(210\) 0 0
\(211\) −3.10102 −0.213483 −0.106742 0.994287i \(-0.534042\pi\)
−0.106742 + 0.994287i \(0.534042\pi\)
\(212\) −1.10102 −0.0756184
\(213\) 2.44949 0.167836
\(214\) −3.10102 −0.211981
\(215\) 0 0
\(216\) −1.00000 −0.0680414
\(217\) 15.7980 1.07244
\(218\) −18.2474 −1.23587
\(219\) 14.8990 1.00678
\(220\) 0 0
\(221\) 6.00000 0.403604
\(222\) 0.449490 0.0301678
\(223\) 4.89898 0.328060 0.164030 0.986455i \(-0.447551\pi\)
0.164030 + 0.986455i \(0.447551\pi\)
\(224\) 2.44949 0.163663
\(225\) 0 0
\(226\) −16.6969 −1.11066
\(227\) −19.5959 −1.30063 −0.650313 0.759666i \(-0.725362\pi\)
−0.650313 + 0.759666i \(0.725362\pi\)
\(228\) 6.89898 0.456896
\(229\) 18.0000 1.18947 0.594737 0.803921i \(-0.297256\pi\)
0.594737 + 0.803921i \(0.297256\pi\)
\(230\) 0 0
\(231\) 12.0000 0.789542
\(232\) 9.34847 0.613757
\(233\) −1.10102 −0.0721303 −0.0360651 0.999349i \(-0.511482\pi\)
−0.0360651 + 0.999349i \(0.511482\pi\)
\(234\) −6.00000 −0.392232
\(235\) 0 0
\(236\) 5.79796 0.377415
\(237\) −1.55051 −0.100716
\(238\) 2.44949 0.158777
\(239\) 8.89898 0.575627 0.287814 0.957686i \(-0.407072\pi\)
0.287814 + 0.957686i \(0.407072\pi\)
\(240\) 0 0
\(241\) −6.89898 −0.444402 −0.222201 0.975001i \(-0.571324\pi\)
−0.222201 + 0.975001i \(0.571324\pi\)
\(242\) −13.0000 −0.835672
\(243\) 1.00000 0.0641500
\(244\) 13.3485 0.854548
\(245\) 0 0
\(246\) 1.10102 0.0701985
\(247\) 41.3939 2.63383
\(248\) 6.44949 0.409543
\(249\) 2.89898 0.183715
\(250\) 0 0
\(251\) −20.6969 −1.30638 −0.653190 0.757194i \(-0.726570\pi\)
−0.653190 + 0.757194i \(0.726570\pi\)
\(252\) −2.44949 −0.154303
\(253\) −31.5959 −1.98642
\(254\) 8.00000 0.501965
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) −20.0000 −1.24757 −0.623783 0.781598i \(-0.714405\pi\)
−0.623783 + 0.781598i \(0.714405\pi\)
\(258\) 2.89898 0.180483
\(259\) 1.10102 0.0684141
\(260\) 0 0
\(261\) −9.34847 −0.578656
\(262\) −4.89898 −0.302660
\(263\) −26.6969 −1.64620 −0.823102 0.567894i \(-0.807758\pi\)
−0.823102 + 0.567894i \(0.807758\pi\)
\(264\) 4.89898 0.301511
\(265\) 0 0
\(266\) 16.8990 1.03614
\(267\) −1.79796 −0.110033
\(268\) 4.00000 0.244339
\(269\) 23.5505 1.43590 0.717950 0.696095i \(-0.245081\pi\)
0.717950 + 0.696095i \(0.245081\pi\)
\(270\) 0 0
\(271\) −7.59592 −0.461419 −0.230710 0.973023i \(-0.574105\pi\)
−0.230710 + 0.973023i \(0.574105\pi\)
\(272\) 1.00000 0.0606339
\(273\) −14.6969 −0.889499
\(274\) −12.0000 −0.724947
\(275\) 0 0
\(276\) 6.44949 0.388214
\(277\) −28.4495 −1.70936 −0.854682 0.519152i \(-0.826248\pi\)
−0.854682 + 0.519152i \(0.826248\pi\)
\(278\) 16.8990 1.01353
\(279\) −6.44949 −0.386121
\(280\) 0 0
\(281\) 9.79796 0.584497 0.292249 0.956342i \(-0.405597\pi\)
0.292249 + 0.956342i \(0.405597\pi\)
\(282\) −4.89898 −0.291730
\(283\) −6.69694 −0.398092 −0.199046 0.979990i \(-0.563784\pi\)
−0.199046 + 0.979990i \(0.563784\pi\)
\(284\) 2.44949 0.145350
\(285\) 0 0
\(286\) 29.3939 1.73810
\(287\) 2.69694 0.159195
\(288\) −1.00000 −0.0589256
\(289\) 1.00000 0.0588235
\(290\) 0 0
\(291\) −3.79796 −0.222640
\(292\) 14.8990 0.871897
\(293\) −10.0000 −0.584206 −0.292103 0.956387i \(-0.594355\pi\)
−0.292103 + 0.956387i \(0.594355\pi\)
\(294\) 1.00000 0.0583212
\(295\) 0 0
\(296\) 0.449490 0.0261261
\(297\) −4.89898 −0.284268
\(298\) −12.6969 −0.735514
\(299\) 38.6969 2.23790
\(300\) 0 0
\(301\) 7.10102 0.409296
\(302\) −13.7980 −0.793983
\(303\) 3.79796 0.218187
\(304\) 6.89898 0.395684
\(305\) 0 0
\(306\) −1.00000 −0.0571662
\(307\) 10.8990 0.622038 0.311019 0.950404i \(-0.399330\pi\)
0.311019 + 0.950404i \(0.399330\pi\)
\(308\) 12.0000 0.683763
\(309\) 16.8990 0.961349
\(310\) 0 0
\(311\) −23.3485 −1.32397 −0.661985 0.749517i \(-0.730286\pi\)
−0.661985 + 0.749517i \(0.730286\pi\)
\(312\) −6.00000 −0.339683
\(313\) 2.00000 0.113047 0.0565233 0.998401i \(-0.481998\pi\)
0.0565233 + 0.998401i \(0.481998\pi\)
\(314\) −16.6969 −0.942263
\(315\) 0 0
\(316\) −1.55051 −0.0872230
\(317\) −8.44949 −0.474571 −0.237285 0.971440i \(-0.576258\pi\)
−0.237285 + 0.971440i \(0.576258\pi\)
\(318\) 1.10102 0.0617422
\(319\) 45.7980 2.56419
\(320\) 0 0
\(321\) 3.10102 0.173082
\(322\) 15.7980 0.880386
\(323\) 6.89898 0.383869
\(324\) 1.00000 0.0555556
\(325\) 0 0
\(326\) −5.79796 −0.321119
\(327\) 18.2474 1.00909
\(328\) 1.10102 0.0607937
\(329\) −12.0000 −0.661581
\(330\) 0 0
\(331\) 33.3939 1.83549 0.917747 0.397166i \(-0.130006\pi\)
0.917747 + 0.397166i \(0.130006\pi\)
\(332\) 2.89898 0.159102
\(333\) −0.449490 −0.0246319
\(334\) −4.65153 −0.254520
\(335\) 0 0
\(336\) −2.44949 −0.133631
\(337\) 2.89898 0.157917 0.0789587 0.996878i \(-0.474840\pi\)
0.0789587 + 0.996878i \(0.474840\pi\)
\(338\) −23.0000 −1.25104
\(339\) 16.6969 0.906853
\(340\) 0 0
\(341\) 31.5959 1.71101
\(342\) −6.89898 −0.373054
\(343\) 19.5959 1.05808
\(344\) 2.89898 0.156302
\(345\) 0 0
\(346\) 13.3485 0.717618
\(347\) −13.7980 −0.740713 −0.370357 0.928890i \(-0.620765\pi\)
−0.370357 + 0.928890i \(0.620765\pi\)
\(348\) −9.34847 −0.501131
\(349\) 7.30306 0.390924 0.195462 0.980711i \(-0.437379\pi\)
0.195462 + 0.980711i \(0.437379\pi\)
\(350\) 0 0
\(351\) 6.00000 0.320256
\(352\) 4.89898 0.261116
\(353\) 10.0000 0.532246 0.266123 0.963939i \(-0.414257\pi\)
0.266123 + 0.963939i \(0.414257\pi\)
\(354\) −5.79796 −0.308158
\(355\) 0 0
\(356\) −1.79796 −0.0952916
\(357\) −2.44949 −0.129641
\(358\) 20.6969 1.09387
\(359\) −6.20204 −0.327331 −0.163666 0.986516i \(-0.552332\pi\)
−0.163666 + 0.986516i \(0.552332\pi\)
\(360\) 0 0
\(361\) 28.5959 1.50505
\(362\) −4.44949 −0.233860
\(363\) 13.0000 0.682323
\(364\) −14.6969 −0.770329
\(365\) 0 0
\(366\) −13.3485 −0.697736
\(367\) −14.0454 −0.733164 −0.366582 0.930386i \(-0.619472\pi\)
−0.366582 + 0.930386i \(0.619472\pi\)
\(368\) 6.44949 0.336203
\(369\) −1.10102 −0.0573168
\(370\) 0 0
\(371\) 2.69694 0.140018
\(372\) −6.44949 −0.334390
\(373\) −11.7980 −0.610875 −0.305438 0.952212i \(-0.598803\pi\)
−0.305438 + 0.952212i \(0.598803\pi\)
\(374\) 4.89898 0.253320
\(375\) 0 0
\(376\) −4.89898 −0.252646
\(377\) −56.0908 −2.88882
\(378\) 2.44949 0.125988
\(379\) −10.2020 −0.524044 −0.262022 0.965062i \(-0.584389\pi\)
−0.262022 + 0.965062i \(0.584389\pi\)
\(380\) 0 0
\(381\) −8.00000 −0.409852
\(382\) 16.8990 0.864627
\(383\) 16.8990 0.863498 0.431749 0.901994i \(-0.357897\pi\)
0.431749 + 0.901994i \(0.357897\pi\)
\(384\) −1.00000 −0.0510310
\(385\) 0 0
\(386\) −14.0000 −0.712581
\(387\) −2.89898 −0.147363
\(388\) −3.79796 −0.192812
\(389\) 3.30306 0.167472 0.0837359 0.996488i \(-0.473315\pi\)
0.0837359 + 0.996488i \(0.473315\pi\)
\(390\) 0 0
\(391\) 6.44949 0.326165
\(392\) 1.00000 0.0505076
\(393\) 4.89898 0.247121
\(394\) −19.1464 −0.964583
\(395\) 0 0
\(396\) −4.89898 −0.246183
\(397\) −36.0454 −1.80907 −0.904534 0.426402i \(-0.859781\pi\)
−0.904534 + 0.426402i \(0.859781\pi\)
\(398\) 18.0454 0.904535
\(399\) −16.8990 −0.846007
\(400\) 0 0
\(401\) −0.696938 −0.0348034 −0.0174017 0.999849i \(-0.505539\pi\)
−0.0174017 + 0.999849i \(0.505539\pi\)
\(402\) −4.00000 −0.199502
\(403\) −38.6969 −1.92763
\(404\) 3.79796 0.188956
\(405\) 0 0
\(406\) −22.8990 −1.13646
\(407\) 2.20204 0.109151
\(408\) −1.00000 −0.0495074
\(409\) 15.5959 0.771169 0.385584 0.922673i \(-0.374000\pi\)
0.385584 + 0.922673i \(0.374000\pi\)
\(410\) 0 0
\(411\) 12.0000 0.591916
\(412\) 16.8990 0.832553
\(413\) −14.2020 −0.698837
\(414\) −6.44949 −0.316975
\(415\) 0 0
\(416\) −6.00000 −0.294174
\(417\) −16.8990 −0.827547
\(418\) 33.7980 1.65311
\(419\) 7.59592 0.371085 0.185542 0.982636i \(-0.440596\pi\)
0.185542 + 0.982636i \(0.440596\pi\)
\(420\) 0 0
\(421\) −0.696938 −0.0339667 −0.0169834 0.999856i \(-0.505406\pi\)
−0.0169834 + 0.999856i \(0.505406\pi\)
\(422\) 3.10102 0.150955
\(423\) 4.89898 0.238197
\(424\) 1.10102 0.0534703
\(425\) 0 0
\(426\) −2.44949 −0.118678
\(427\) −32.6969 −1.58232
\(428\) 3.10102 0.149893
\(429\) −29.3939 −1.41915
\(430\) 0 0
\(431\) 25.1464 1.21126 0.605630 0.795746i \(-0.292921\pi\)
0.605630 + 0.795746i \(0.292921\pi\)
\(432\) 1.00000 0.0481125
\(433\) −10.0000 −0.480569 −0.240285 0.970702i \(-0.577241\pi\)
−0.240285 + 0.970702i \(0.577241\pi\)
\(434\) −15.7980 −0.758326
\(435\) 0 0
\(436\) 18.2474 0.873894
\(437\) 44.4949 2.12848
\(438\) −14.8990 −0.711901
\(439\) −27.3485 −1.30527 −0.652636 0.757672i \(-0.726337\pi\)
−0.652636 + 0.757672i \(0.726337\pi\)
\(440\) 0 0
\(441\) −1.00000 −0.0476190
\(442\) −6.00000 −0.285391
\(443\) −10.2020 −0.484714 −0.242357 0.970187i \(-0.577920\pi\)
−0.242357 + 0.970187i \(0.577920\pi\)
\(444\) −0.449490 −0.0213318
\(445\) 0 0
\(446\) −4.89898 −0.231973
\(447\) 12.6969 0.600545
\(448\) −2.44949 −0.115728
\(449\) −32.6969 −1.54306 −0.771532 0.636191i \(-0.780509\pi\)
−0.771532 + 0.636191i \(0.780509\pi\)
\(450\) 0 0
\(451\) 5.39388 0.253988
\(452\) 16.6969 0.785358
\(453\) 13.7980 0.648285
\(454\) 19.5959 0.919682
\(455\) 0 0
\(456\) −6.89898 −0.323074
\(457\) 1.59592 0.0746539 0.0373269 0.999303i \(-0.488116\pi\)
0.0373269 + 0.999303i \(0.488116\pi\)
\(458\) −18.0000 −0.841085
\(459\) 1.00000 0.0466760
\(460\) 0 0
\(461\) −21.5959 −1.00582 −0.502911 0.864338i \(-0.667738\pi\)
−0.502911 + 0.864338i \(0.667738\pi\)
\(462\) −12.0000 −0.558291
\(463\) −5.30306 −0.246454 −0.123227 0.992378i \(-0.539324\pi\)
−0.123227 + 0.992378i \(0.539324\pi\)
\(464\) −9.34847 −0.433992
\(465\) 0 0
\(466\) 1.10102 0.0510038
\(467\) −0.404082 −0.0186987 −0.00934934 0.999956i \(-0.502976\pi\)
−0.00934934 + 0.999956i \(0.502976\pi\)
\(468\) 6.00000 0.277350
\(469\) −9.79796 −0.452428
\(470\) 0 0
\(471\) 16.6969 0.769354
\(472\) −5.79796 −0.266873
\(473\) 14.2020 0.653011
\(474\) 1.55051 0.0712173
\(475\) 0 0
\(476\) −2.44949 −0.112272
\(477\) −1.10102 −0.0504123
\(478\) −8.89898 −0.407030
\(479\) 15.3485 0.701289 0.350645 0.936509i \(-0.385962\pi\)
0.350645 + 0.936509i \(0.385962\pi\)
\(480\) 0 0
\(481\) −2.69694 −0.122970
\(482\) 6.89898 0.314240
\(483\) −15.7980 −0.718832
\(484\) 13.0000 0.590909
\(485\) 0 0
\(486\) −1.00000 −0.0453609
\(487\) −15.3485 −0.695506 −0.347753 0.937586i \(-0.613055\pi\)
−0.347753 + 0.937586i \(0.613055\pi\)
\(488\) −13.3485 −0.604257
\(489\) 5.79796 0.262193
\(490\) 0 0
\(491\) −14.8990 −0.672382 −0.336191 0.941794i \(-0.609139\pi\)
−0.336191 + 0.941794i \(0.609139\pi\)
\(492\) −1.10102 −0.0496378
\(493\) −9.34847 −0.421034
\(494\) −41.3939 −1.86240
\(495\) 0 0
\(496\) −6.44949 −0.289591
\(497\) −6.00000 −0.269137
\(498\) −2.89898 −0.129906
\(499\) 0.898979 0.0402438 0.0201219 0.999798i \(-0.493595\pi\)
0.0201219 + 0.999798i \(0.493595\pi\)
\(500\) 0 0
\(501\) 4.65153 0.207815
\(502\) 20.6969 0.923750
\(503\) 33.5505 1.49594 0.747972 0.663731i \(-0.231028\pi\)
0.747972 + 0.663731i \(0.231028\pi\)
\(504\) 2.44949 0.109109
\(505\) 0 0
\(506\) 31.5959 1.40461
\(507\) 23.0000 1.02147
\(508\) −8.00000 −0.354943
\(509\) −10.8990 −0.483089 −0.241544 0.970390i \(-0.577654\pi\)
−0.241544 + 0.970390i \(0.577654\pi\)
\(510\) 0 0
\(511\) −36.4949 −1.61444
\(512\) −1.00000 −0.0441942
\(513\) 6.89898 0.304597
\(514\) 20.0000 0.882162
\(515\) 0 0
\(516\) −2.89898 −0.127620
\(517\) −24.0000 −1.05552
\(518\) −1.10102 −0.0483761
\(519\) −13.3485 −0.585933
\(520\) 0 0
\(521\) −16.6969 −0.731506 −0.365753 0.930712i \(-0.619189\pi\)
−0.365753 + 0.930712i \(0.619189\pi\)
\(522\) 9.34847 0.409171
\(523\) −4.00000 −0.174908 −0.0874539 0.996169i \(-0.527873\pi\)
−0.0874539 + 0.996169i \(0.527873\pi\)
\(524\) 4.89898 0.214013
\(525\) 0 0
\(526\) 26.6969 1.16404
\(527\) −6.44949 −0.280944
\(528\) −4.89898 −0.213201
\(529\) 18.5959 0.808518
\(530\) 0 0
\(531\) 5.79796 0.251610
\(532\) −16.8990 −0.732664
\(533\) −6.60612 −0.286143
\(534\) 1.79796 0.0778053
\(535\) 0 0
\(536\) −4.00000 −0.172774
\(537\) −20.6969 −0.893139
\(538\) −23.5505 −1.01533
\(539\) 4.89898 0.211014
\(540\) 0 0
\(541\) 31.1464 1.33909 0.669545 0.742772i \(-0.266489\pi\)
0.669545 + 0.742772i \(0.266489\pi\)
\(542\) 7.59592 0.326273
\(543\) 4.44949 0.190946
\(544\) −1.00000 −0.0428746
\(545\) 0 0
\(546\) 14.6969 0.628971
\(547\) 18.6969 0.799423 0.399712 0.916641i \(-0.369110\pi\)
0.399712 + 0.916641i \(0.369110\pi\)
\(548\) 12.0000 0.512615
\(549\) 13.3485 0.569699
\(550\) 0 0
\(551\) −64.4949 −2.74758
\(552\) −6.44949 −0.274509
\(553\) 3.79796 0.161506
\(554\) 28.4495 1.20870
\(555\) 0 0
\(556\) −16.8990 −0.716676
\(557\) −2.89898 −0.122834 −0.0614169 0.998112i \(-0.519562\pi\)
−0.0614169 + 0.998112i \(0.519562\pi\)
\(558\) 6.44949 0.273029
\(559\) −17.3939 −0.735683
\(560\) 0 0
\(561\) −4.89898 −0.206835
\(562\) −9.79796 −0.413302
\(563\) 6.89898 0.290757 0.145379 0.989376i \(-0.453560\pi\)
0.145379 + 0.989376i \(0.453560\pi\)
\(564\) 4.89898 0.206284
\(565\) 0 0
\(566\) 6.69694 0.281493
\(567\) −2.44949 −0.102869
\(568\) −2.44949 −0.102778
\(569\) 30.0000 1.25767 0.628833 0.777541i \(-0.283533\pi\)
0.628833 + 0.777541i \(0.283533\pi\)
\(570\) 0 0
\(571\) −21.3939 −0.895306 −0.447653 0.894207i \(-0.647740\pi\)
−0.447653 + 0.894207i \(0.647740\pi\)
\(572\) −29.3939 −1.22902
\(573\) −16.8990 −0.705965
\(574\) −2.69694 −0.112568
\(575\) 0 0
\(576\) 1.00000 0.0416667
\(577\) −10.2020 −0.424717 −0.212358 0.977192i \(-0.568114\pi\)
−0.212358 + 0.977192i \(0.568114\pi\)
\(578\) −1.00000 −0.0415945
\(579\) 14.0000 0.581820
\(580\) 0 0
\(581\) −7.10102 −0.294600
\(582\) 3.79796 0.157430
\(583\) 5.39388 0.223392
\(584\) −14.8990 −0.616524
\(585\) 0 0
\(586\) 10.0000 0.413096
\(587\) 12.0000 0.495293 0.247647 0.968850i \(-0.420343\pi\)
0.247647 + 0.968850i \(0.420343\pi\)
\(588\) −1.00000 −0.0412393
\(589\) −44.4949 −1.83338
\(590\) 0 0
\(591\) 19.1464 0.787579
\(592\) −0.449490 −0.0184739
\(593\) 1.79796 0.0738333 0.0369167 0.999318i \(-0.488246\pi\)
0.0369167 + 0.999318i \(0.488246\pi\)
\(594\) 4.89898 0.201008
\(595\) 0 0
\(596\) 12.6969 0.520087
\(597\) −18.0454 −0.738549
\(598\) −38.6969 −1.58244
\(599\) 13.7980 0.563769 0.281885 0.959448i \(-0.409040\pi\)
0.281885 + 0.959448i \(0.409040\pi\)
\(600\) 0 0
\(601\) 0.202041 0.00824143 0.00412071 0.999992i \(-0.498688\pi\)
0.00412071 + 0.999992i \(0.498688\pi\)
\(602\) −7.10102 −0.289416
\(603\) 4.00000 0.162893
\(604\) 13.7980 0.561431
\(605\) 0 0
\(606\) −3.79796 −0.154282
\(607\) −26.4495 −1.07355 −0.536776 0.843725i \(-0.680358\pi\)
−0.536776 + 0.843725i \(0.680358\pi\)
\(608\) −6.89898 −0.279791
\(609\) 22.8990 0.927913
\(610\) 0 0
\(611\) 29.3939 1.18915
\(612\) 1.00000 0.0404226
\(613\) −48.2929 −1.95053 −0.975265 0.221039i \(-0.929055\pi\)
−0.975265 + 0.221039i \(0.929055\pi\)
\(614\) −10.8990 −0.439847
\(615\) 0 0
\(616\) −12.0000 −0.483494
\(617\) −26.4949 −1.06664 −0.533322 0.845912i \(-0.679057\pi\)
−0.533322 + 0.845912i \(0.679057\pi\)
\(618\) −16.8990 −0.679777
\(619\) −16.0000 −0.643094 −0.321547 0.946894i \(-0.604203\pi\)
−0.321547 + 0.946894i \(0.604203\pi\)
\(620\) 0 0
\(621\) 6.44949 0.258809
\(622\) 23.3485 0.936188
\(623\) 4.40408 0.176446
\(624\) 6.00000 0.240192
\(625\) 0 0
\(626\) −2.00000 −0.0799361
\(627\) −33.7980 −1.34976
\(628\) 16.6969 0.666280
\(629\) −0.449490 −0.0179223
\(630\) 0 0
\(631\) 24.4949 0.975126 0.487563 0.873088i \(-0.337886\pi\)
0.487563 + 0.873088i \(0.337886\pi\)
\(632\) 1.55051 0.0616760
\(633\) −3.10102 −0.123255
\(634\) 8.44949 0.335572
\(635\) 0 0
\(636\) −1.10102 −0.0436583
\(637\) −6.00000 −0.237729
\(638\) −45.7980 −1.81316
\(639\) 2.44949 0.0969003
\(640\) 0 0
\(641\) 8.69694 0.343508 0.171754 0.985140i \(-0.445057\pi\)
0.171754 + 0.985140i \(0.445057\pi\)
\(642\) −3.10102 −0.122388
\(643\) −8.00000 −0.315489 −0.157745 0.987480i \(-0.550422\pi\)
−0.157745 + 0.987480i \(0.550422\pi\)
\(644\) −15.7980 −0.622527
\(645\) 0 0
\(646\) −6.89898 −0.271437
\(647\) 30.2929 1.19094 0.595468 0.803379i \(-0.296967\pi\)
0.595468 + 0.803379i \(0.296967\pi\)
\(648\) −1.00000 −0.0392837
\(649\) −28.4041 −1.11496
\(650\) 0 0
\(651\) 15.7980 0.619171
\(652\) 5.79796 0.227066
\(653\) 20.4495 0.800250 0.400125 0.916460i \(-0.368967\pi\)
0.400125 + 0.916460i \(0.368967\pi\)
\(654\) −18.2474 −0.713532
\(655\) 0 0
\(656\) −1.10102 −0.0429876
\(657\) 14.8990 0.581265
\(658\) 12.0000 0.467809
\(659\) −15.5959 −0.607531 −0.303765 0.952747i \(-0.598244\pi\)
−0.303765 + 0.952747i \(0.598244\pi\)
\(660\) 0 0
\(661\) −46.4949 −1.80844 −0.904221 0.427065i \(-0.859548\pi\)
−0.904221 + 0.427065i \(0.859548\pi\)
\(662\) −33.3939 −1.29789
\(663\) 6.00000 0.233021
\(664\) −2.89898 −0.112502
\(665\) 0 0
\(666\) 0.449490 0.0174174
\(667\) −60.2929 −2.33455
\(668\) 4.65153 0.179973
\(669\) 4.89898 0.189405
\(670\) 0 0
\(671\) −65.3939 −2.52450
\(672\) 2.44949 0.0944911
\(673\) 34.0000 1.31060 0.655302 0.755367i \(-0.272541\pi\)
0.655302 + 0.755367i \(0.272541\pi\)
\(674\) −2.89898 −0.111665
\(675\) 0 0
\(676\) 23.0000 0.884615
\(677\) 47.6413 1.83100 0.915502 0.402312i \(-0.131793\pi\)
0.915502 + 0.402312i \(0.131793\pi\)
\(678\) −16.6969 −0.641242
\(679\) 9.30306 0.357019
\(680\) 0 0
\(681\) −19.5959 −0.750917
\(682\) −31.5959 −1.20987
\(683\) −9.79796 −0.374908 −0.187454 0.982273i \(-0.560024\pi\)
−0.187454 + 0.982273i \(0.560024\pi\)
\(684\) 6.89898 0.263789
\(685\) 0 0
\(686\) −19.5959 −0.748176
\(687\) 18.0000 0.686743
\(688\) −2.89898 −0.110523
\(689\) −6.60612 −0.251673
\(690\) 0 0
\(691\) −50.2929 −1.91323 −0.956615 0.291354i \(-0.905894\pi\)
−0.956615 + 0.291354i \(0.905894\pi\)
\(692\) −13.3485 −0.507433
\(693\) 12.0000 0.455842
\(694\) 13.7980 0.523763
\(695\) 0 0
\(696\) 9.34847 0.354353
\(697\) −1.10102 −0.0417041
\(698\) −7.30306 −0.276425
\(699\) −1.10102 −0.0416444
\(700\) 0 0
\(701\) 30.0000 1.13308 0.566542 0.824033i \(-0.308281\pi\)
0.566542 + 0.824033i \(0.308281\pi\)
\(702\) −6.00000 −0.226455
\(703\) −3.10102 −0.116957
\(704\) −4.89898 −0.184637
\(705\) 0 0
\(706\) −10.0000 −0.376355
\(707\) −9.30306 −0.349878
\(708\) 5.79796 0.217901
\(709\) −24.4495 −0.918220 −0.459110 0.888379i \(-0.651832\pi\)
−0.459110 + 0.888379i \(0.651832\pi\)
\(710\) 0 0
\(711\) −1.55051 −0.0581487
\(712\) 1.79796 0.0673814
\(713\) −41.5959 −1.55778
\(714\) 2.44949 0.0916698
\(715\) 0 0
\(716\) −20.6969 −0.773481
\(717\) 8.89898 0.332338
\(718\) 6.20204 0.231458
\(719\) 12.2474 0.456753 0.228376 0.973573i \(-0.426658\pi\)
0.228376 + 0.973573i \(0.426658\pi\)
\(720\) 0 0
\(721\) −41.3939 −1.54159
\(722\) −28.5959 −1.06423
\(723\) −6.89898 −0.256576
\(724\) 4.44949 0.165364
\(725\) 0 0
\(726\) −13.0000 −0.482475
\(727\) −32.0000 −1.18681 −0.593407 0.804902i \(-0.702218\pi\)
−0.593407 + 0.804902i \(0.702218\pi\)
\(728\) 14.6969 0.544705
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) −2.89898 −0.107223
\(732\) 13.3485 0.493374
\(733\) 19.7980 0.731254 0.365627 0.930761i \(-0.380855\pi\)
0.365627 + 0.930761i \(0.380855\pi\)
\(734\) 14.0454 0.518425
\(735\) 0 0
\(736\) −6.44949 −0.237731
\(737\) −19.5959 −0.721825
\(738\) 1.10102 0.0405291
\(739\) −17.1010 −0.629071 −0.314536 0.949246i \(-0.601849\pi\)
−0.314536 + 0.949246i \(0.601849\pi\)
\(740\) 0 0
\(741\) 41.3939 1.52064
\(742\) −2.69694 −0.0990077
\(743\) 14.4495 0.530100 0.265050 0.964235i \(-0.414611\pi\)
0.265050 + 0.964235i \(0.414611\pi\)
\(744\) 6.44949 0.236450
\(745\) 0 0
\(746\) 11.7980 0.431954
\(747\) 2.89898 0.106068
\(748\) −4.89898 −0.179124
\(749\) −7.59592 −0.277549
\(750\) 0 0
\(751\) 8.24745 0.300954 0.150477 0.988614i \(-0.451919\pi\)
0.150477 + 0.988614i \(0.451919\pi\)
\(752\) 4.89898 0.178647
\(753\) −20.6969 −0.754238
\(754\) 56.0908 2.04271
\(755\) 0 0
\(756\) −2.44949 −0.0890871
\(757\) 5.50510 0.200086 0.100043 0.994983i \(-0.468102\pi\)
0.100043 + 0.994983i \(0.468102\pi\)
\(758\) 10.2020 0.370555
\(759\) −31.5959 −1.14686
\(760\) 0 0
\(761\) 9.59592 0.347852 0.173926 0.984759i \(-0.444355\pi\)
0.173926 + 0.984759i \(0.444355\pi\)
\(762\) 8.00000 0.289809
\(763\) −44.6969 −1.61814
\(764\) −16.8990 −0.611384
\(765\) 0 0
\(766\) −16.8990 −0.610585
\(767\) 34.7878 1.25611
\(768\) 1.00000 0.0360844
\(769\) 27.3939 0.987848 0.493924 0.869505i \(-0.335562\pi\)
0.493924 + 0.869505i \(0.335562\pi\)
\(770\) 0 0
\(771\) −20.0000 −0.720282
\(772\) 14.0000 0.503871
\(773\) 42.0000 1.51064 0.755318 0.655359i \(-0.227483\pi\)
0.755318 + 0.655359i \(0.227483\pi\)
\(774\) 2.89898 0.104202
\(775\) 0 0
\(776\) 3.79796 0.136339
\(777\) 1.10102 0.0394989
\(778\) −3.30306 −0.118420
\(779\) −7.59592 −0.272152
\(780\) 0 0
\(781\) −12.0000 −0.429394
\(782\) −6.44949 −0.230633
\(783\) −9.34847 −0.334087
\(784\) −1.00000 −0.0357143
\(785\) 0 0
\(786\) −4.89898 −0.174741
\(787\) −17.3031 −0.616788 −0.308394 0.951259i \(-0.599791\pi\)
−0.308394 + 0.951259i \(0.599791\pi\)
\(788\) 19.1464 0.682063
\(789\) −26.6969 −0.950436
\(790\) 0 0
\(791\) −40.8990 −1.45420
\(792\) 4.89898 0.174078
\(793\) 80.0908 2.84411
\(794\) 36.0454 1.27920
\(795\) 0 0
\(796\) −18.0454 −0.639603
\(797\) −22.8990 −0.811123 −0.405562 0.914068i \(-0.632924\pi\)
−0.405562 + 0.914068i \(0.632924\pi\)
\(798\) 16.8990 0.598217
\(799\) 4.89898 0.173313
\(800\) 0 0
\(801\) −1.79796 −0.0635278
\(802\) 0.696938 0.0246098
\(803\) −72.9898 −2.57575
\(804\) 4.00000 0.141069
\(805\) 0 0
\(806\) 38.6969 1.36304
\(807\) 23.5505 0.829017
\(808\) −3.79796 −0.133612
\(809\) 42.0908 1.47983 0.739917 0.672698i \(-0.234865\pi\)
0.739917 + 0.672698i \(0.234865\pi\)
\(810\) 0 0
\(811\) 1.79796 0.0631349 0.0315674 0.999502i \(-0.489950\pi\)
0.0315674 + 0.999502i \(0.489950\pi\)
\(812\) 22.8990 0.803597
\(813\) −7.59592 −0.266400
\(814\) −2.20204 −0.0771815
\(815\) 0 0
\(816\) 1.00000 0.0350070
\(817\) −20.0000 −0.699711
\(818\) −15.5959 −0.545298
\(819\) −14.6969 −0.513553
\(820\) 0 0
\(821\) 35.6413 1.24389 0.621945 0.783061i \(-0.286343\pi\)
0.621945 + 0.783061i \(0.286343\pi\)
\(822\) −12.0000 −0.418548
\(823\) −26.4495 −0.921971 −0.460986 0.887408i \(-0.652504\pi\)
−0.460986 + 0.887408i \(0.652504\pi\)
\(824\) −16.8990 −0.588704
\(825\) 0 0
\(826\) 14.2020 0.494152
\(827\) 16.4949 0.573584 0.286792 0.957993i \(-0.407411\pi\)
0.286792 + 0.957993i \(0.407411\pi\)
\(828\) 6.44949 0.224135
\(829\) 8.20204 0.284869 0.142434 0.989804i \(-0.454507\pi\)
0.142434 + 0.989804i \(0.454507\pi\)
\(830\) 0 0
\(831\) −28.4495 −0.986902
\(832\) 6.00000 0.208013
\(833\) −1.00000 −0.0346479
\(834\) 16.8990 0.585164
\(835\) 0 0
\(836\) −33.7980 −1.16893
\(837\) −6.44949 −0.222927
\(838\) −7.59592 −0.262397
\(839\) −39.3485 −1.35846 −0.679230 0.733925i \(-0.737686\pi\)
−0.679230 + 0.733925i \(0.737686\pi\)
\(840\) 0 0
\(841\) 58.3939 2.01358
\(842\) 0.696938 0.0240181
\(843\) 9.79796 0.337460
\(844\) −3.10102 −0.106742
\(845\) 0 0
\(846\) −4.89898 −0.168430
\(847\) −31.8434 −1.09415
\(848\) −1.10102 −0.0378092
\(849\) −6.69694 −0.229838
\(850\) 0 0
\(851\) −2.89898 −0.0993757
\(852\) 2.44949 0.0839181
\(853\) 10.6515 0.364701 0.182351 0.983234i \(-0.441629\pi\)
0.182351 + 0.983234i \(0.441629\pi\)
\(854\) 32.6969 1.11887
\(855\) 0 0
\(856\) −3.10102 −0.105991
\(857\) 6.00000 0.204956 0.102478 0.994735i \(-0.467323\pi\)
0.102478 + 0.994735i \(0.467323\pi\)
\(858\) 29.3939 1.00349
\(859\) −26.2020 −0.894002 −0.447001 0.894533i \(-0.647508\pi\)
−0.447001 + 0.894533i \(0.647508\pi\)
\(860\) 0 0
\(861\) 2.69694 0.0919114
\(862\) −25.1464 −0.856491
\(863\) 23.5959 0.803214 0.401607 0.915812i \(-0.368452\pi\)
0.401607 + 0.915812i \(0.368452\pi\)
\(864\) −1.00000 −0.0340207
\(865\) 0 0
\(866\) 10.0000 0.339814
\(867\) 1.00000 0.0339618
\(868\) 15.7980 0.536218
\(869\) 7.59592 0.257674
\(870\) 0 0
\(871\) 24.0000 0.813209
\(872\) −18.2474 −0.617937
\(873\) −3.79796 −0.128541
\(874\) −44.4949 −1.50506
\(875\) 0 0
\(876\) 14.8990 0.503390
\(877\) 18.6515 0.629817 0.314909 0.949122i \(-0.398026\pi\)
0.314909 + 0.949122i \(0.398026\pi\)
\(878\) 27.3485 0.922966
\(879\) −10.0000 −0.337292
\(880\) 0 0
\(881\) −37.1918 −1.25302 −0.626512 0.779411i \(-0.715518\pi\)
−0.626512 + 0.779411i \(0.715518\pi\)
\(882\) 1.00000 0.0336718
\(883\) −10.2020 −0.343326 −0.171663 0.985156i \(-0.554914\pi\)
−0.171663 + 0.985156i \(0.554914\pi\)
\(884\) 6.00000 0.201802
\(885\) 0 0
\(886\) 10.2020 0.342744
\(887\) 40.2474 1.35138 0.675689 0.737187i \(-0.263846\pi\)
0.675689 + 0.737187i \(0.263846\pi\)
\(888\) 0.449490 0.0150839
\(889\) 19.5959 0.657226
\(890\) 0 0
\(891\) −4.89898 −0.164122
\(892\) 4.89898 0.164030
\(893\) 33.7980 1.13101
\(894\) −12.6969 −0.424649
\(895\) 0 0
\(896\) 2.44949 0.0818317
\(897\) 38.6969 1.29205
\(898\) 32.6969 1.09111
\(899\) 60.2929 2.01088
\(900\) 0 0
\(901\) −1.10102 −0.0366803
\(902\) −5.39388 −0.179596
\(903\) 7.10102 0.236307
\(904\) −16.6969 −0.555332
\(905\) 0 0
\(906\) −13.7980 −0.458406
\(907\) 50.6969 1.68336 0.841682 0.539973i \(-0.181566\pi\)
0.841682 + 0.539973i \(0.181566\pi\)
\(908\) −19.5959 −0.650313
\(909\) 3.79796 0.125970
\(910\) 0 0
\(911\) −32.6515 −1.08179 −0.540897 0.841089i \(-0.681915\pi\)
−0.540897 + 0.841089i \(0.681915\pi\)
\(912\) 6.89898 0.228448
\(913\) −14.2020 −0.470019
\(914\) −1.59592 −0.0527883
\(915\) 0 0
\(916\) 18.0000 0.594737
\(917\) −12.0000 −0.396275
\(918\) −1.00000 −0.0330049
\(919\) −24.0000 −0.791687 −0.395843 0.918318i \(-0.629548\pi\)
−0.395843 + 0.918318i \(0.629548\pi\)
\(920\) 0 0
\(921\) 10.8990 0.359134
\(922\) 21.5959 0.711224
\(923\) 14.6969 0.483756
\(924\) 12.0000 0.394771
\(925\) 0 0
\(926\) 5.30306 0.174269
\(927\) 16.8990 0.555035
\(928\) 9.34847 0.306879
\(929\) −36.6969 −1.20399 −0.601994 0.798501i \(-0.705627\pi\)
−0.601994 + 0.798501i \(0.705627\pi\)
\(930\) 0 0
\(931\) −6.89898 −0.226105
\(932\) −1.10102 −0.0360651
\(933\) −23.3485 −0.764395
\(934\) 0.404082 0.0132220
\(935\) 0 0
\(936\) −6.00000 −0.196116
\(937\) 22.0000 0.718709 0.359354 0.933201i \(-0.382997\pi\)
0.359354 + 0.933201i \(0.382997\pi\)
\(938\) 9.79796 0.319915
\(939\) 2.00000 0.0652675
\(940\) 0 0
\(941\) 9.75255 0.317924 0.158962 0.987285i \(-0.449185\pi\)
0.158962 + 0.987285i \(0.449185\pi\)
\(942\) −16.6969 −0.544016
\(943\) −7.10102 −0.231241
\(944\) 5.79796 0.188707
\(945\) 0 0
\(946\) −14.2020 −0.461748
\(947\) 31.1010 1.01065 0.505324 0.862930i \(-0.331373\pi\)
0.505324 + 0.862930i \(0.331373\pi\)
\(948\) −1.55051 −0.0503582
\(949\) 89.3939 2.90185
\(950\) 0 0
\(951\) −8.44949 −0.273993
\(952\) 2.44949 0.0793884
\(953\) −33.5959 −1.08828 −0.544139 0.838995i \(-0.683144\pi\)
−0.544139 + 0.838995i \(0.683144\pi\)
\(954\) 1.10102 0.0356469
\(955\) 0 0
\(956\) 8.89898 0.287814
\(957\) 45.7980 1.48044
\(958\) −15.3485 −0.495887
\(959\) −29.3939 −0.949178
\(960\) 0 0
\(961\) 10.5959 0.341804
\(962\) 2.69694 0.0869528
\(963\) 3.10102 0.0999290
\(964\) −6.89898 −0.222201
\(965\) 0 0
\(966\) 15.7980 0.508291
\(967\) −42.6969 −1.37304 −0.686520 0.727110i \(-0.740863\pi\)
−0.686520 + 0.727110i \(0.740863\pi\)
\(968\) −13.0000 −0.417836
\(969\) 6.89898 0.221627
\(970\) 0 0
\(971\) −44.0000 −1.41203 −0.706014 0.708198i \(-0.749508\pi\)
−0.706014 + 0.708198i \(0.749508\pi\)
\(972\) 1.00000 0.0320750
\(973\) 41.3939 1.32703
\(974\) 15.3485 0.491797
\(975\) 0 0
\(976\) 13.3485 0.427274
\(977\) 0.404082 0.0129277 0.00646387 0.999979i \(-0.497942\pi\)
0.00646387 + 0.999979i \(0.497942\pi\)
\(978\) −5.79796 −0.185398
\(979\) 8.80816 0.281510
\(980\) 0 0
\(981\) 18.2474 0.582596
\(982\) 14.8990 0.475446
\(983\) 18.8536 0.601336 0.300668 0.953729i \(-0.402790\pi\)
0.300668 + 0.953729i \(0.402790\pi\)
\(984\) 1.10102 0.0350993
\(985\) 0 0
\(986\) 9.34847 0.297716
\(987\) −12.0000 −0.381964
\(988\) 41.3939 1.31691
\(989\) −18.6969 −0.594528
\(990\) 0 0
\(991\) 32.2474 1.02437 0.512187 0.858874i \(-0.328835\pi\)
0.512187 + 0.858874i \(0.328835\pi\)
\(992\) 6.44949 0.204772
\(993\) 33.3939 1.05972
\(994\) 6.00000 0.190308
\(995\) 0 0
\(996\) 2.89898 0.0918577
\(997\) 46.7423 1.48034 0.740172 0.672417i \(-0.234744\pi\)
0.740172 + 0.672417i \(0.234744\pi\)
\(998\) −0.898979 −0.0284567
\(999\) −0.449490 −0.0142212
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2550.2.a.bi.1.1 2
3.2 odd 2 7650.2.a.dg.1.1 2
5.2 odd 4 510.2.d.c.409.1 4
5.3 odd 4 510.2.d.c.409.3 yes 4
5.4 even 2 2550.2.a.bj.1.2 2
15.2 even 4 1530.2.d.e.919.4 4
15.8 even 4 1530.2.d.e.919.2 4
15.14 odd 2 7650.2.a.ct.1.2 2
20.3 even 4 4080.2.m.o.2449.1 4
20.7 even 4 4080.2.m.o.2449.3 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
510.2.d.c.409.1 4 5.2 odd 4
510.2.d.c.409.3 yes 4 5.3 odd 4
1530.2.d.e.919.2 4 15.8 even 4
1530.2.d.e.919.4 4 15.2 even 4
2550.2.a.bi.1.1 2 1.1 even 1 trivial
2550.2.a.bj.1.2 2 5.4 even 2
4080.2.m.o.2449.1 4 20.3 even 4
4080.2.m.o.2449.3 4 20.7 even 4
7650.2.a.ct.1.2 2 15.14 odd 2
7650.2.a.dg.1.1 2 3.2 odd 2