Properties

Label 4080.2.m.o.2449.1
Level $4080$
Weight $2$
Character 4080.2449
Analytic conductor $32.579$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4080,2,Mod(2449,4080)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4080, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4080.2449");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4080 = 2^{4} \cdot 3 \cdot 5 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4080.m (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(32.5789640247\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{6})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 510)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 2449.1
Root \(1.22474 - 1.22474i\) of defining polynomial
Character \(\chi\) \(=\) 4080.2449
Dual form 4080.2.m.o.2449.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000i q^{3} +(-0.224745 - 2.22474i) q^{5} -2.44949i q^{7} -1.00000 q^{9} +4.89898 q^{11} +6.00000i q^{13} +(-2.22474 + 0.224745i) q^{15} -1.00000i q^{17} +6.89898 q^{19} -2.44949 q^{21} -6.44949i q^{23} +(-4.89898 + 1.00000i) q^{25} +1.00000i q^{27} +9.34847 q^{29} +6.44949 q^{31} -4.89898i q^{33} +(-5.44949 + 0.550510i) q^{35} +0.449490i q^{37} +6.00000 q^{39} -1.10102 q^{41} +2.89898i q^{43} +(0.224745 + 2.22474i) q^{45} +4.89898i q^{47} +1.00000 q^{49} -1.00000 q^{51} -1.10102i q^{53} +(-1.10102 - 10.8990i) q^{55} -6.89898i q^{57} +5.79796 q^{59} +13.3485 q^{61} +2.44949i q^{63} +(13.3485 - 1.34847i) q^{65} +4.00000i q^{67} -6.44949 q^{69} -2.44949 q^{71} +14.8990i q^{73} +(1.00000 + 4.89898i) q^{75} -12.0000i q^{77} -1.55051 q^{79} +1.00000 q^{81} -2.89898i q^{83} +(-2.22474 + 0.224745i) q^{85} -9.34847i q^{87} +1.79796 q^{89} +14.6969 q^{91} -6.44949i q^{93} +(-1.55051 - 15.3485i) q^{95} +3.79796i q^{97} -4.89898 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{5} - 4 q^{9} - 4 q^{15} + 8 q^{19} + 8 q^{29} + 16 q^{31} - 12 q^{35} + 24 q^{39} - 24 q^{41} - 4 q^{45} + 4 q^{49} - 4 q^{51} - 24 q^{55} - 16 q^{59} + 24 q^{61} + 24 q^{65} - 16 q^{69} + 4 q^{75}+ \cdots - 16 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/4080\mathbb{Z}\right)^\times\).

\(n\) \(241\) \(511\) \(817\) \(1361\) \(3061\)
\(\chi(n)\) \(1\) \(1\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.00000i 0.577350i
\(4\) 0 0
\(5\) −0.224745 2.22474i −0.100509 0.994936i
\(6\) 0 0
\(7\) 2.44949i 0.925820i −0.886405 0.462910i \(-0.846805\pi\)
0.886405 0.462910i \(-0.153195\pi\)
\(8\) 0 0
\(9\) −1.00000 −0.333333
\(10\) 0 0
\(11\) 4.89898 1.47710 0.738549 0.674200i \(-0.235511\pi\)
0.738549 + 0.674200i \(0.235511\pi\)
\(12\) 0 0
\(13\) 6.00000i 1.66410i 0.554700 + 0.832050i \(0.312833\pi\)
−0.554700 + 0.832050i \(0.687167\pi\)
\(14\) 0 0
\(15\) −2.22474 + 0.224745i −0.574427 + 0.0580289i
\(16\) 0 0
\(17\) 1.00000i 0.242536i
\(18\) 0 0
\(19\) 6.89898 1.58273 0.791367 0.611341i \(-0.209370\pi\)
0.791367 + 0.611341i \(0.209370\pi\)
\(20\) 0 0
\(21\) −2.44949 −0.534522
\(22\) 0 0
\(23\) 6.44949i 1.34481i −0.740183 0.672406i \(-0.765261\pi\)
0.740183 0.672406i \(-0.234739\pi\)
\(24\) 0 0
\(25\) −4.89898 + 1.00000i −0.979796 + 0.200000i
\(26\) 0 0
\(27\) 1.00000i 0.192450i
\(28\) 0 0
\(29\) 9.34847 1.73597 0.867984 0.496593i \(-0.165416\pi\)
0.867984 + 0.496593i \(0.165416\pi\)
\(30\) 0 0
\(31\) 6.44949 1.15836 0.579181 0.815199i \(-0.303372\pi\)
0.579181 + 0.815199i \(0.303372\pi\)
\(32\) 0 0
\(33\) 4.89898i 0.852803i
\(34\) 0 0
\(35\) −5.44949 + 0.550510i −0.921132 + 0.0930532i
\(36\) 0 0
\(37\) 0.449490i 0.0738957i 0.999317 + 0.0369478i \(0.0117635\pi\)
−0.999317 + 0.0369478i \(0.988236\pi\)
\(38\) 0 0
\(39\) 6.00000 0.960769
\(40\) 0 0
\(41\) −1.10102 −0.171951 −0.0859753 0.996297i \(-0.527401\pi\)
−0.0859753 + 0.996297i \(0.527401\pi\)
\(42\) 0 0
\(43\) 2.89898i 0.442090i 0.975264 + 0.221045i \(0.0709468\pi\)
−0.975264 + 0.221045i \(0.929053\pi\)
\(44\) 0 0
\(45\) 0.224745 + 2.22474i 0.0335030 + 0.331645i
\(46\) 0 0
\(47\) 4.89898i 0.714590i 0.933992 + 0.357295i \(0.116301\pi\)
−0.933992 + 0.357295i \(0.883699\pi\)
\(48\) 0 0
\(49\) 1.00000 0.142857
\(50\) 0 0
\(51\) −1.00000 −0.140028
\(52\) 0 0
\(53\) 1.10102i 0.151237i −0.997137 0.0756184i \(-0.975907\pi\)
0.997137 0.0756184i \(-0.0240931\pi\)
\(54\) 0 0
\(55\) −1.10102 10.8990i −0.148462 1.46962i
\(56\) 0 0
\(57\) 6.89898i 0.913792i
\(58\) 0 0
\(59\) 5.79796 0.754830 0.377415 0.926044i \(-0.376813\pi\)
0.377415 + 0.926044i \(0.376813\pi\)
\(60\) 0 0
\(61\) 13.3485 1.70910 0.854548 0.519372i \(-0.173834\pi\)
0.854548 + 0.519372i \(0.173834\pi\)
\(62\) 0 0
\(63\) 2.44949i 0.308607i
\(64\) 0 0
\(65\) 13.3485 1.34847i 1.65567 0.167257i
\(66\) 0 0
\(67\) 4.00000i 0.488678i 0.969690 + 0.244339i \(0.0785709\pi\)
−0.969690 + 0.244339i \(0.921429\pi\)
\(68\) 0 0
\(69\) −6.44949 −0.776427
\(70\) 0 0
\(71\) −2.44949 −0.290701 −0.145350 0.989380i \(-0.546431\pi\)
−0.145350 + 0.989380i \(0.546431\pi\)
\(72\) 0 0
\(73\) 14.8990i 1.74379i 0.489690 + 0.871897i \(0.337110\pi\)
−0.489690 + 0.871897i \(0.662890\pi\)
\(74\) 0 0
\(75\) 1.00000 + 4.89898i 0.115470 + 0.565685i
\(76\) 0 0
\(77\) 12.0000i 1.36753i
\(78\) 0 0
\(79\) −1.55051 −0.174446 −0.0872230 0.996189i \(-0.527799\pi\)
−0.0872230 + 0.996189i \(0.527799\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) 2.89898i 0.318204i −0.987262 0.159102i \(-0.949140\pi\)
0.987262 0.159102i \(-0.0508599\pi\)
\(84\) 0 0
\(85\) −2.22474 + 0.224745i −0.241307 + 0.0243770i
\(86\) 0 0
\(87\) 9.34847i 1.00226i
\(88\) 0 0
\(89\) 1.79796 0.190583 0.0952916 0.995449i \(-0.469622\pi\)
0.0952916 + 0.995449i \(0.469622\pi\)
\(90\) 0 0
\(91\) 14.6969 1.54066
\(92\) 0 0
\(93\) 6.44949i 0.668781i
\(94\) 0 0
\(95\) −1.55051 15.3485i −0.159079 1.57472i
\(96\) 0 0
\(97\) 3.79796i 0.385624i 0.981236 + 0.192812i \(0.0617608\pi\)
−0.981236 + 0.192812i \(0.938239\pi\)
\(98\) 0 0
\(99\) −4.89898 −0.492366
\(100\) 0 0
\(101\) 3.79796 0.377911 0.188956 0.981986i \(-0.439490\pi\)
0.188956 + 0.981986i \(0.439490\pi\)
\(102\) 0 0
\(103\) 16.8990i 1.66511i −0.553945 0.832553i \(-0.686878\pi\)
0.553945 0.832553i \(-0.313122\pi\)
\(104\) 0 0
\(105\) 0.550510 + 5.44949i 0.0537243 + 0.531816i
\(106\) 0 0
\(107\) 3.10102i 0.299787i 0.988702 + 0.149893i \(0.0478931\pi\)
−0.988702 + 0.149893i \(0.952107\pi\)
\(108\) 0 0
\(109\) −18.2474 −1.74779 −0.873894 0.486116i \(-0.838413\pi\)
−0.873894 + 0.486116i \(0.838413\pi\)
\(110\) 0 0
\(111\) 0.449490 0.0426637
\(112\) 0 0
\(113\) 16.6969i 1.57072i 0.619042 + 0.785358i \(0.287521\pi\)
−0.619042 + 0.785358i \(0.712479\pi\)
\(114\) 0 0
\(115\) −14.3485 + 1.44949i −1.33800 + 0.135166i
\(116\) 0 0
\(117\) 6.00000i 0.554700i
\(118\) 0 0
\(119\) −2.44949 −0.224544
\(120\) 0 0
\(121\) 13.0000 1.18182
\(122\) 0 0
\(123\) 1.10102i 0.0992757i
\(124\) 0 0
\(125\) 3.32577 + 10.6742i 0.297465 + 0.954733i
\(126\) 0 0
\(127\) 8.00000i 0.709885i −0.934888 0.354943i \(-0.884500\pi\)
0.934888 0.354943i \(-0.115500\pi\)
\(128\) 0 0
\(129\) 2.89898 0.255241
\(130\) 0 0
\(131\) −4.89898 −0.428026 −0.214013 0.976831i \(-0.568653\pi\)
−0.214013 + 0.976831i \(0.568653\pi\)
\(132\) 0 0
\(133\) 16.8990i 1.46533i
\(134\) 0 0
\(135\) 2.22474 0.224745i 0.191476 0.0193430i
\(136\) 0 0
\(137\) 12.0000i 1.02523i −0.858619 0.512615i \(-0.828677\pi\)
0.858619 0.512615i \(-0.171323\pi\)
\(138\) 0 0
\(139\) −16.8990 −1.43335 −0.716676 0.697406i \(-0.754338\pi\)
−0.716676 + 0.697406i \(0.754338\pi\)
\(140\) 0 0
\(141\) 4.89898 0.412568
\(142\) 0 0
\(143\) 29.3939i 2.45804i
\(144\) 0 0
\(145\) −2.10102 20.7980i −0.174480 1.72718i
\(146\) 0 0
\(147\) 1.00000i 0.0824786i
\(148\) 0 0
\(149\) −12.6969 −1.04017 −0.520087 0.854113i \(-0.674100\pi\)
−0.520087 + 0.854113i \(0.674100\pi\)
\(150\) 0 0
\(151\) −13.7980 −1.12286 −0.561431 0.827524i \(-0.689749\pi\)
−0.561431 + 0.827524i \(0.689749\pi\)
\(152\) 0 0
\(153\) 1.00000i 0.0808452i
\(154\) 0 0
\(155\) −1.44949 14.3485i −0.116426 1.15250i
\(156\) 0 0
\(157\) 16.6969i 1.33256i −0.745701 0.666280i \(-0.767885\pi\)
0.745701 0.666280i \(-0.232115\pi\)
\(158\) 0 0
\(159\) −1.10102 −0.0873166
\(160\) 0 0
\(161\) −15.7980 −1.24505
\(162\) 0 0
\(163\) 5.79796i 0.454131i −0.973879 0.227066i \(-0.927087\pi\)
0.973879 0.227066i \(-0.0729132\pi\)
\(164\) 0 0
\(165\) −10.8990 + 1.10102i −0.848484 + 0.0857143i
\(166\) 0 0
\(167\) 4.65153i 0.359946i 0.983672 + 0.179973i \(0.0576011\pi\)
−0.983672 + 0.179973i \(0.942399\pi\)
\(168\) 0 0
\(169\) −23.0000 −1.76923
\(170\) 0 0
\(171\) −6.89898 −0.527578
\(172\) 0 0
\(173\) 13.3485i 1.01487i −0.861691 0.507433i \(-0.830595\pi\)
0.861691 0.507433i \(-0.169405\pi\)
\(174\) 0 0
\(175\) 2.44949 + 12.0000i 0.185164 + 0.907115i
\(176\) 0 0
\(177\) 5.79796i 0.435801i
\(178\) 0 0
\(179\) −20.6969 −1.54696 −0.773481 0.633820i \(-0.781486\pi\)
−0.773481 + 0.633820i \(0.781486\pi\)
\(180\) 0 0
\(181\) 4.44949 0.330728 0.165364 0.986233i \(-0.447120\pi\)
0.165364 + 0.986233i \(0.447120\pi\)
\(182\) 0 0
\(183\) 13.3485i 0.986747i
\(184\) 0 0
\(185\) 1.00000 0.101021i 0.0735215 0.00742718i
\(186\) 0 0
\(187\) 4.89898i 0.358249i
\(188\) 0 0
\(189\) 2.44949 0.178174
\(190\) 0 0
\(191\) 16.8990 1.22277 0.611384 0.791334i \(-0.290613\pi\)
0.611384 + 0.791334i \(0.290613\pi\)
\(192\) 0 0
\(193\) 14.0000i 1.00774i 0.863779 + 0.503871i \(0.168091\pi\)
−0.863779 + 0.503871i \(0.831909\pi\)
\(194\) 0 0
\(195\) −1.34847 13.3485i −0.0965659 0.955904i
\(196\) 0 0
\(197\) 19.1464i 1.36413i −0.731293 0.682063i \(-0.761083\pi\)
0.731293 0.682063i \(-0.238917\pi\)
\(198\) 0 0
\(199\) −18.0454 −1.27921 −0.639603 0.768706i \(-0.720901\pi\)
−0.639603 + 0.768706i \(0.720901\pi\)
\(200\) 0 0
\(201\) 4.00000 0.282138
\(202\) 0 0
\(203\) 22.8990i 1.60719i
\(204\) 0 0
\(205\) 0.247449 + 2.44949i 0.0172826 + 0.171080i
\(206\) 0 0
\(207\) 6.44949i 0.448271i
\(208\) 0 0
\(209\) 33.7980 2.33785
\(210\) 0 0
\(211\) 3.10102 0.213483 0.106742 0.994287i \(-0.465958\pi\)
0.106742 + 0.994287i \(0.465958\pi\)
\(212\) 0 0
\(213\) 2.44949i 0.167836i
\(214\) 0 0
\(215\) 6.44949 0.651531i 0.439852 0.0444340i
\(216\) 0 0
\(217\) 15.7980i 1.07244i
\(218\) 0 0
\(219\) 14.8990 1.00678
\(220\) 0 0
\(221\) 6.00000 0.403604
\(222\) 0 0
\(223\) 4.89898i 0.328060i −0.986455 0.164030i \(-0.947551\pi\)
0.986455 0.164030i \(-0.0524494\pi\)
\(224\) 0 0
\(225\) 4.89898 1.00000i 0.326599 0.0666667i
\(226\) 0 0
\(227\) 19.5959i 1.30063i −0.759666 0.650313i \(-0.774638\pi\)
0.759666 0.650313i \(-0.225362\pi\)
\(228\) 0 0
\(229\) −18.0000 −1.18947 −0.594737 0.803921i \(-0.702744\pi\)
−0.594737 + 0.803921i \(0.702744\pi\)
\(230\) 0 0
\(231\) −12.0000 −0.789542
\(232\) 0 0
\(233\) 1.10102i 0.0721303i −0.999349 0.0360651i \(-0.988518\pi\)
0.999349 0.0360651i \(-0.0114824\pi\)
\(234\) 0 0
\(235\) 10.8990 1.10102i 0.710971 0.0718227i
\(236\) 0 0
\(237\) 1.55051i 0.100716i
\(238\) 0 0
\(239\) 8.89898 0.575627 0.287814 0.957686i \(-0.407072\pi\)
0.287814 + 0.957686i \(0.407072\pi\)
\(240\) 0 0
\(241\) −6.89898 −0.444402 −0.222201 0.975001i \(-0.571324\pi\)
−0.222201 + 0.975001i \(0.571324\pi\)
\(242\) 0 0
\(243\) 1.00000i 0.0641500i
\(244\) 0 0
\(245\) −0.224745 2.22474i −0.0143584 0.142134i
\(246\) 0 0
\(247\) 41.3939i 2.63383i
\(248\) 0 0
\(249\) −2.89898 −0.183715
\(250\) 0 0
\(251\) 20.6969 1.30638 0.653190 0.757194i \(-0.273430\pi\)
0.653190 + 0.757194i \(0.273430\pi\)
\(252\) 0 0
\(253\) 31.5959i 1.98642i
\(254\) 0 0
\(255\) 0.224745 + 2.22474i 0.0140741 + 0.139319i
\(256\) 0 0
\(257\) 20.0000i 1.24757i 0.781598 + 0.623783i \(0.214405\pi\)
−0.781598 + 0.623783i \(0.785595\pi\)
\(258\) 0 0
\(259\) 1.10102 0.0684141
\(260\) 0 0
\(261\) −9.34847 −0.578656
\(262\) 0 0
\(263\) 26.6969i 1.64620i 0.567894 + 0.823102i \(0.307758\pi\)
−0.567894 + 0.823102i \(0.692242\pi\)
\(264\) 0 0
\(265\) −2.44949 + 0.247449i −0.150471 + 0.0152007i
\(266\) 0 0
\(267\) 1.79796i 0.110033i
\(268\) 0 0
\(269\) −23.5505 −1.43590 −0.717950 0.696095i \(-0.754919\pi\)
−0.717950 + 0.696095i \(0.754919\pi\)
\(270\) 0 0
\(271\) 7.59592 0.461419 0.230710 0.973023i \(-0.425895\pi\)
0.230710 + 0.973023i \(0.425895\pi\)
\(272\) 0 0
\(273\) 14.6969i 0.889499i
\(274\) 0 0
\(275\) −24.0000 + 4.89898i −1.44725 + 0.295420i
\(276\) 0 0
\(277\) 28.4495i 1.70936i 0.519152 + 0.854682i \(0.326248\pi\)
−0.519152 + 0.854682i \(0.673752\pi\)
\(278\) 0 0
\(279\) −6.44949 −0.386121
\(280\) 0 0
\(281\) 9.79796 0.584497 0.292249 0.956342i \(-0.405597\pi\)
0.292249 + 0.956342i \(0.405597\pi\)
\(282\) 0 0
\(283\) 6.69694i 0.398092i 0.979990 + 0.199046i \(0.0637843\pi\)
−0.979990 + 0.199046i \(0.936216\pi\)
\(284\) 0 0
\(285\) −15.3485 + 1.55051i −0.909165 + 0.0918443i
\(286\) 0 0
\(287\) 2.69694i 0.159195i
\(288\) 0 0
\(289\) −1.00000 −0.0588235
\(290\) 0 0
\(291\) 3.79796 0.222640
\(292\) 0 0
\(293\) 10.0000i 0.584206i −0.956387 0.292103i \(-0.905645\pi\)
0.956387 0.292103i \(-0.0943550\pi\)
\(294\) 0 0
\(295\) −1.30306 12.8990i −0.0758672 0.751008i
\(296\) 0 0
\(297\) 4.89898i 0.284268i
\(298\) 0 0
\(299\) 38.6969 2.23790
\(300\) 0 0
\(301\) 7.10102 0.409296
\(302\) 0 0
\(303\) 3.79796i 0.218187i
\(304\) 0 0
\(305\) −3.00000 29.6969i −0.171780 1.70044i
\(306\) 0 0
\(307\) 10.8990i 0.622038i 0.950404 + 0.311019i \(0.100670\pi\)
−0.950404 + 0.311019i \(0.899330\pi\)
\(308\) 0 0
\(309\) −16.8990 −0.961349
\(310\) 0 0
\(311\) 23.3485 1.32397 0.661985 0.749517i \(-0.269714\pi\)
0.661985 + 0.749517i \(0.269714\pi\)
\(312\) 0 0
\(313\) 2.00000i 0.113047i 0.998401 + 0.0565233i \(0.0180015\pi\)
−0.998401 + 0.0565233i \(0.981998\pi\)
\(314\) 0 0
\(315\) 5.44949 0.550510i 0.307044 0.0310177i
\(316\) 0 0
\(317\) 8.44949i 0.474571i 0.971440 + 0.237285i \(0.0762576\pi\)
−0.971440 + 0.237285i \(0.923742\pi\)
\(318\) 0 0
\(319\) 45.7980 2.56419
\(320\) 0 0
\(321\) 3.10102 0.173082
\(322\) 0 0
\(323\) 6.89898i 0.383869i
\(324\) 0 0
\(325\) −6.00000 29.3939i −0.332820 1.63048i
\(326\) 0 0
\(327\) 18.2474i 1.00909i
\(328\) 0 0
\(329\) 12.0000 0.661581
\(330\) 0 0
\(331\) −33.3939 −1.83549 −0.917747 0.397166i \(-0.869994\pi\)
−0.917747 + 0.397166i \(0.869994\pi\)
\(332\) 0 0
\(333\) 0.449490i 0.0246319i
\(334\) 0 0
\(335\) 8.89898 0.898979i 0.486203 0.0491165i
\(336\) 0 0
\(337\) 2.89898i 0.157917i −0.996878 0.0789587i \(-0.974840\pi\)
0.996878 0.0789587i \(-0.0251595\pi\)
\(338\) 0 0
\(339\) 16.6969 0.906853
\(340\) 0 0
\(341\) 31.5959 1.71101
\(342\) 0 0
\(343\) 19.5959i 1.05808i
\(344\) 0 0
\(345\) 1.44949 + 14.3485i 0.0780379 + 0.772496i
\(346\) 0 0
\(347\) 13.7980i 0.740713i −0.928890 0.370357i \(-0.879235\pi\)
0.928890 0.370357i \(-0.120765\pi\)
\(348\) 0 0
\(349\) −7.30306 −0.390924 −0.195462 0.980711i \(-0.562621\pi\)
−0.195462 + 0.980711i \(0.562621\pi\)
\(350\) 0 0
\(351\) −6.00000 −0.320256
\(352\) 0 0
\(353\) 10.0000i 0.532246i 0.963939 + 0.266123i \(0.0857428\pi\)
−0.963939 + 0.266123i \(0.914257\pi\)
\(354\) 0 0
\(355\) 0.550510 + 5.44949i 0.0292181 + 0.289229i
\(356\) 0 0
\(357\) 2.44949i 0.129641i
\(358\) 0 0
\(359\) −6.20204 −0.327331 −0.163666 0.986516i \(-0.552332\pi\)
−0.163666 + 0.986516i \(0.552332\pi\)
\(360\) 0 0
\(361\) 28.5959 1.50505
\(362\) 0 0
\(363\) 13.0000i 0.682323i
\(364\) 0 0
\(365\) 33.1464 3.34847i 1.73496 0.175267i
\(366\) 0 0
\(367\) 14.0454i 0.733164i −0.930386 0.366582i \(-0.880528\pi\)
0.930386 0.366582i \(-0.119472\pi\)
\(368\) 0 0
\(369\) 1.10102 0.0573168
\(370\) 0 0
\(371\) −2.69694 −0.140018
\(372\) 0 0
\(373\) 11.7980i 0.610875i −0.952212 0.305438i \(-0.901197\pi\)
0.952212 0.305438i \(-0.0988027\pi\)
\(374\) 0 0
\(375\) 10.6742 3.32577i 0.551215 0.171742i
\(376\) 0 0
\(377\) 56.0908i 2.88882i
\(378\) 0 0
\(379\) −10.2020 −0.524044 −0.262022 0.965062i \(-0.584389\pi\)
−0.262022 + 0.965062i \(0.584389\pi\)
\(380\) 0 0
\(381\) −8.00000 −0.409852
\(382\) 0 0
\(383\) 16.8990i 0.863498i −0.901994 0.431749i \(-0.857897\pi\)
0.901994 0.431749i \(-0.142103\pi\)
\(384\) 0 0
\(385\) −26.6969 + 2.69694i −1.36060 + 0.137449i
\(386\) 0 0
\(387\) 2.89898i 0.147363i
\(388\) 0 0
\(389\) −3.30306 −0.167472 −0.0837359 0.996488i \(-0.526685\pi\)
−0.0837359 + 0.996488i \(0.526685\pi\)
\(390\) 0 0
\(391\) −6.44949 −0.326165
\(392\) 0 0
\(393\) 4.89898i 0.247121i
\(394\) 0 0
\(395\) 0.348469 + 3.44949i 0.0175334 + 0.173563i
\(396\) 0 0
\(397\) 36.0454i 1.80907i 0.426402 + 0.904534i \(0.359781\pi\)
−0.426402 + 0.904534i \(0.640219\pi\)
\(398\) 0 0
\(399\) −16.8990 −0.846007
\(400\) 0 0
\(401\) −0.696938 −0.0348034 −0.0174017 0.999849i \(-0.505539\pi\)
−0.0174017 + 0.999849i \(0.505539\pi\)
\(402\) 0 0
\(403\) 38.6969i 1.92763i
\(404\) 0 0
\(405\) −0.224745 2.22474i −0.0111677 0.110548i
\(406\) 0 0
\(407\) 2.20204i 0.109151i
\(408\) 0 0
\(409\) −15.5959 −0.771169 −0.385584 0.922673i \(-0.626000\pi\)
−0.385584 + 0.922673i \(0.626000\pi\)
\(410\) 0 0
\(411\) −12.0000 −0.591916
\(412\) 0 0
\(413\) 14.2020i 0.698837i
\(414\) 0 0
\(415\) −6.44949 + 0.651531i −0.316593 + 0.0319824i
\(416\) 0 0
\(417\) 16.8990i 0.827547i
\(418\) 0 0
\(419\) 7.59592 0.371085 0.185542 0.982636i \(-0.440596\pi\)
0.185542 + 0.982636i \(0.440596\pi\)
\(420\) 0 0
\(421\) −0.696938 −0.0339667 −0.0169834 0.999856i \(-0.505406\pi\)
−0.0169834 + 0.999856i \(0.505406\pi\)
\(422\) 0 0
\(423\) 4.89898i 0.238197i
\(424\) 0 0
\(425\) 1.00000 + 4.89898i 0.0485071 + 0.237635i
\(426\) 0 0
\(427\) 32.6969i 1.58232i
\(428\) 0 0
\(429\) 29.3939 1.41915
\(430\) 0 0
\(431\) −25.1464 −1.21126 −0.605630 0.795746i \(-0.707079\pi\)
−0.605630 + 0.795746i \(0.707079\pi\)
\(432\) 0 0
\(433\) 10.0000i 0.480569i −0.970702 0.240285i \(-0.922759\pi\)
0.970702 0.240285i \(-0.0772408\pi\)
\(434\) 0 0
\(435\) −20.7980 + 2.10102i −0.997186 + 0.100736i
\(436\) 0 0
\(437\) 44.4949i 2.12848i
\(438\) 0 0
\(439\) −27.3485 −1.30527 −0.652636 0.757672i \(-0.726337\pi\)
−0.652636 + 0.757672i \(0.726337\pi\)
\(440\) 0 0
\(441\) −1.00000 −0.0476190
\(442\) 0 0
\(443\) 10.2020i 0.484714i 0.970187 + 0.242357i \(0.0779205\pi\)
−0.970187 + 0.242357i \(0.922080\pi\)
\(444\) 0 0
\(445\) −0.404082 4.00000i −0.0191553 0.189618i
\(446\) 0 0
\(447\) 12.6969i 0.600545i
\(448\) 0 0
\(449\) 32.6969 1.54306 0.771532 0.636191i \(-0.219491\pi\)
0.771532 + 0.636191i \(0.219491\pi\)
\(450\) 0 0
\(451\) −5.39388 −0.253988
\(452\) 0 0
\(453\) 13.7980i 0.648285i
\(454\) 0 0
\(455\) −3.30306 32.6969i −0.154850 1.53286i
\(456\) 0 0
\(457\) 1.59592i 0.0746539i −0.999303 0.0373269i \(-0.988116\pi\)
0.999303 0.0373269i \(-0.0118843\pi\)
\(458\) 0 0
\(459\) 1.00000 0.0466760
\(460\) 0 0
\(461\) −21.5959 −1.00582 −0.502911 0.864338i \(-0.667738\pi\)
−0.502911 + 0.864338i \(0.667738\pi\)
\(462\) 0 0
\(463\) 5.30306i 0.246454i 0.992378 + 0.123227i \(0.0393244\pi\)
−0.992378 + 0.123227i \(0.960676\pi\)
\(464\) 0 0
\(465\) −14.3485 + 1.44949i −0.665394 + 0.0672185i
\(466\) 0 0
\(467\) 0.404082i 0.0186987i −0.999956 0.00934934i \(-0.997024\pi\)
0.999956 0.00934934i \(-0.00297603\pi\)
\(468\) 0 0
\(469\) 9.79796 0.452428
\(470\) 0 0
\(471\) −16.6969 −0.769354
\(472\) 0 0
\(473\) 14.2020i 0.653011i
\(474\) 0 0
\(475\) −33.7980 + 6.89898i −1.55076 + 0.316547i
\(476\) 0 0
\(477\) 1.10102i 0.0504123i
\(478\) 0 0
\(479\) 15.3485 0.701289 0.350645 0.936509i \(-0.385962\pi\)
0.350645 + 0.936509i \(0.385962\pi\)
\(480\) 0 0
\(481\) −2.69694 −0.122970
\(482\) 0 0
\(483\) 15.7980i 0.718832i
\(484\) 0 0
\(485\) 8.44949 0.853572i 0.383672 0.0387587i
\(486\) 0 0
\(487\) 15.3485i 0.695506i −0.937586 0.347753i \(-0.886945\pi\)
0.937586 0.347753i \(-0.113055\pi\)
\(488\) 0 0
\(489\) −5.79796 −0.262193
\(490\) 0 0
\(491\) 14.8990 0.672382 0.336191 0.941794i \(-0.390861\pi\)
0.336191 + 0.941794i \(0.390861\pi\)
\(492\) 0 0
\(493\) 9.34847i 0.421034i
\(494\) 0 0
\(495\) 1.10102 + 10.8990i 0.0494872 + 0.489873i
\(496\) 0 0
\(497\) 6.00000i 0.269137i
\(498\) 0 0
\(499\) 0.898979 0.0402438 0.0201219 0.999798i \(-0.493595\pi\)
0.0201219 + 0.999798i \(0.493595\pi\)
\(500\) 0 0
\(501\) 4.65153 0.207815
\(502\) 0 0
\(503\) 33.5505i 1.49594i −0.663731 0.747972i \(-0.731028\pi\)
0.663731 0.747972i \(-0.268972\pi\)
\(504\) 0 0
\(505\) −0.853572 8.44949i −0.0379834 0.375997i
\(506\) 0 0
\(507\) 23.0000i 1.02147i
\(508\) 0 0
\(509\) 10.8990 0.483089 0.241544 0.970390i \(-0.422346\pi\)
0.241544 + 0.970390i \(0.422346\pi\)
\(510\) 0 0
\(511\) 36.4949 1.61444
\(512\) 0 0
\(513\) 6.89898i 0.304597i
\(514\) 0 0
\(515\) −37.5959 + 3.79796i −1.65667 + 0.167358i
\(516\) 0 0
\(517\) 24.0000i 1.05552i
\(518\) 0 0
\(519\) −13.3485 −0.585933
\(520\) 0 0
\(521\) −16.6969 −0.731506 −0.365753 0.930712i \(-0.619189\pi\)
−0.365753 + 0.930712i \(0.619189\pi\)
\(522\) 0 0
\(523\) 4.00000i 0.174908i 0.996169 + 0.0874539i \(0.0278730\pi\)
−0.996169 + 0.0874539i \(0.972127\pi\)
\(524\) 0 0
\(525\) 12.0000 2.44949i 0.523723 0.106904i
\(526\) 0 0
\(527\) 6.44949i 0.280944i
\(528\) 0 0
\(529\) −18.5959 −0.808518
\(530\) 0 0
\(531\) −5.79796 −0.251610
\(532\) 0 0
\(533\) 6.60612i 0.286143i
\(534\) 0 0
\(535\) 6.89898 0.696938i 0.298269 0.0301313i
\(536\) 0 0
\(537\) 20.6969i 0.893139i
\(538\) 0 0
\(539\) 4.89898 0.211014
\(540\) 0 0
\(541\) 31.1464 1.33909 0.669545 0.742772i \(-0.266489\pi\)
0.669545 + 0.742772i \(0.266489\pi\)
\(542\) 0 0
\(543\) 4.44949i 0.190946i
\(544\) 0 0
\(545\) 4.10102 + 40.5959i 0.175668 + 1.73894i
\(546\) 0 0
\(547\) 18.6969i 0.799423i 0.916641 + 0.399712i \(0.130890\pi\)
−0.916641 + 0.399712i \(0.869110\pi\)
\(548\) 0 0
\(549\) −13.3485 −0.569699
\(550\) 0 0
\(551\) 64.4949 2.74758
\(552\) 0 0
\(553\) 3.79796i 0.161506i
\(554\) 0 0
\(555\) −0.101021 1.00000i −0.00428808 0.0424476i
\(556\) 0 0
\(557\) 2.89898i 0.122834i 0.998112 + 0.0614169i \(0.0195619\pi\)
−0.998112 + 0.0614169i \(0.980438\pi\)
\(558\) 0 0
\(559\) −17.3939 −0.735683
\(560\) 0 0
\(561\) −4.89898 −0.206835
\(562\) 0 0
\(563\) 6.89898i 0.290757i −0.989376 0.145379i \(-0.953560\pi\)
0.989376 0.145379i \(-0.0464400\pi\)
\(564\) 0 0
\(565\) 37.1464 3.75255i 1.56276 0.157871i
\(566\) 0 0
\(567\) 2.44949i 0.102869i
\(568\) 0 0
\(569\) −30.0000 −1.25767 −0.628833 0.777541i \(-0.716467\pi\)
−0.628833 + 0.777541i \(0.716467\pi\)
\(570\) 0 0
\(571\) 21.3939 0.895306 0.447653 0.894207i \(-0.352260\pi\)
0.447653 + 0.894207i \(0.352260\pi\)
\(572\) 0 0
\(573\) 16.8990i 0.705965i
\(574\) 0 0
\(575\) 6.44949 + 31.5959i 0.268962 + 1.31764i
\(576\) 0 0
\(577\) 10.2020i 0.424717i 0.977192 + 0.212358i \(0.0681144\pi\)
−0.977192 + 0.212358i \(0.931886\pi\)
\(578\) 0 0
\(579\) 14.0000 0.581820
\(580\) 0 0
\(581\) −7.10102 −0.294600
\(582\) 0 0
\(583\) 5.39388i 0.223392i
\(584\) 0 0
\(585\) −13.3485 + 1.34847i −0.551891 + 0.0557523i
\(586\) 0 0
\(587\) 12.0000i 0.495293i 0.968850 + 0.247647i \(0.0796572\pi\)
−0.968850 + 0.247647i \(0.920343\pi\)
\(588\) 0 0
\(589\) 44.4949 1.83338
\(590\) 0 0
\(591\) −19.1464 −0.787579
\(592\) 0 0
\(593\) 1.79796i 0.0738333i 0.999318 + 0.0369167i \(0.0117536\pi\)
−0.999318 + 0.0369167i \(0.988246\pi\)
\(594\) 0 0
\(595\) 0.550510 + 5.44949i 0.0225687 + 0.223407i
\(596\) 0 0
\(597\) 18.0454i 0.738549i
\(598\) 0 0
\(599\) 13.7980 0.563769 0.281885 0.959448i \(-0.409040\pi\)
0.281885 + 0.959448i \(0.409040\pi\)
\(600\) 0 0
\(601\) 0.202041 0.00824143 0.00412071 0.999992i \(-0.498688\pi\)
0.00412071 + 0.999992i \(0.498688\pi\)
\(602\) 0 0
\(603\) 4.00000i 0.162893i
\(604\) 0 0
\(605\) −2.92168 28.9217i −0.118783 1.17583i
\(606\) 0 0
\(607\) 26.4495i 1.07355i −0.843725 0.536776i \(-0.819642\pi\)
0.843725 0.536776i \(-0.180358\pi\)
\(608\) 0 0
\(609\) −22.8990 −0.927913
\(610\) 0 0
\(611\) −29.3939 −1.18915
\(612\) 0 0
\(613\) 48.2929i 1.95053i −0.221039 0.975265i \(-0.570945\pi\)
0.221039 0.975265i \(-0.429055\pi\)
\(614\) 0 0
\(615\) 2.44949 0.247449i 0.0987730 0.00997810i
\(616\) 0 0
\(617\) 26.4949i 1.06664i 0.845912 + 0.533322i \(0.179057\pi\)
−0.845912 + 0.533322i \(0.820943\pi\)
\(618\) 0 0
\(619\) −16.0000 −0.643094 −0.321547 0.946894i \(-0.604203\pi\)
−0.321547 + 0.946894i \(0.604203\pi\)
\(620\) 0 0
\(621\) 6.44949 0.258809
\(622\) 0 0
\(623\) 4.40408i 0.176446i
\(624\) 0 0
\(625\) 23.0000 9.79796i 0.920000 0.391918i
\(626\) 0 0
\(627\) 33.7980i 1.34976i
\(628\) 0 0
\(629\) 0.449490 0.0179223
\(630\) 0 0
\(631\) −24.4949 −0.975126 −0.487563 0.873088i \(-0.662114\pi\)
−0.487563 + 0.873088i \(0.662114\pi\)
\(632\) 0 0
\(633\) 3.10102i 0.123255i
\(634\) 0 0
\(635\) −17.7980 + 1.79796i −0.706290 + 0.0713498i
\(636\) 0 0
\(637\) 6.00000i 0.237729i
\(638\) 0 0
\(639\) 2.44949 0.0969003
\(640\) 0 0
\(641\) 8.69694 0.343508 0.171754 0.985140i \(-0.445057\pi\)
0.171754 + 0.985140i \(0.445057\pi\)
\(642\) 0 0
\(643\) 8.00000i 0.315489i 0.987480 + 0.157745i \(0.0504223\pi\)
−0.987480 + 0.157745i \(0.949578\pi\)
\(644\) 0 0
\(645\) −0.651531 6.44949i −0.0256540 0.253948i
\(646\) 0 0
\(647\) 30.2929i 1.19094i 0.803379 + 0.595468i \(0.203033\pi\)
−0.803379 + 0.595468i \(0.796967\pi\)
\(648\) 0 0
\(649\) 28.4041 1.11496
\(650\) 0 0
\(651\) −15.7980 −0.619171
\(652\) 0 0
\(653\) 20.4495i 0.800250i 0.916460 + 0.400125i \(0.131033\pi\)
−0.916460 + 0.400125i \(0.868967\pi\)
\(654\) 0 0
\(655\) 1.10102 + 10.8990i 0.0430204 + 0.425858i
\(656\) 0 0
\(657\) 14.8990i 0.581265i
\(658\) 0 0
\(659\) −15.5959 −0.607531 −0.303765 0.952747i \(-0.598244\pi\)
−0.303765 + 0.952747i \(0.598244\pi\)
\(660\) 0 0
\(661\) −46.4949 −1.80844 −0.904221 0.427065i \(-0.859548\pi\)
−0.904221 + 0.427065i \(0.859548\pi\)
\(662\) 0 0
\(663\) 6.00000i 0.233021i
\(664\) 0 0
\(665\) −37.5959 + 3.79796i −1.45791 + 0.147279i
\(666\) 0 0
\(667\) 60.2929i 2.33455i
\(668\) 0 0
\(669\) −4.89898 −0.189405
\(670\) 0 0
\(671\) 65.3939 2.52450
\(672\) 0 0
\(673\) 34.0000i 1.31060i 0.755367 + 0.655302i \(0.227459\pi\)
−0.755367 + 0.655302i \(0.772541\pi\)
\(674\) 0 0
\(675\) −1.00000 4.89898i −0.0384900 0.188562i
\(676\) 0 0
\(677\) 47.6413i 1.83100i −0.402312 0.915502i \(-0.631793\pi\)
0.402312 0.915502i \(-0.368207\pi\)
\(678\) 0 0
\(679\) 9.30306 0.357019
\(680\) 0 0
\(681\) −19.5959 −0.750917
\(682\) 0 0
\(683\) 9.79796i 0.374908i 0.982273 + 0.187454i \(0.0600236\pi\)
−0.982273 + 0.187454i \(0.939976\pi\)
\(684\) 0 0
\(685\) −26.6969 + 2.69694i −1.02004 + 0.103045i
\(686\) 0 0
\(687\) 18.0000i 0.686743i
\(688\) 0 0
\(689\) 6.60612 0.251673
\(690\) 0 0
\(691\) 50.2929 1.91323 0.956615 0.291354i \(-0.0941059\pi\)
0.956615 + 0.291354i \(0.0941059\pi\)
\(692\) 0 0
\(693\) 12.0000i 0.455842i
\(694\) 0 0
\(695\) 3.79796 + 37.5959i 0.144065 + 1.42609i
\(696\) 0 0
\(697\) 1.10102i 0.0417041i
\(698\) 0 0
\(699\) −1.10102 −0.0416444
\(700\) 0 0
\(701\) 30.0000 1.13308 0.566542 0.824033i \(-0.308281\pi\)
0.566542 + 0.824033i \(0.308281\pi\)
\(702\) 0 0
\(703\) 3.10102i 0.116957i
\(704\) 0 0
\(705\) −1.10102 10.8990i −0.0414668 0.410479i
\(706\) 0 0
\(707\) 9.30306i 0.349878i
\(708\) 0 0
\(709\) 24.4495 0.918220 0.459110 0.888379i \(-0.348168\pi\)
0.459110 + 0.888379i \(0.348168\pi\)
\(710\) 0 0
\(711\) 1.55051 0.0581487
\(712\) 0 0
\(713\) 41.5959i 1.55778i
\(714\) 0 0
\(715\) 65.3939 6.60612i 2.44559 0.247055i
\(716\) 0 0
\(717\) 8.89898i 0.332338i
\(718\) 0 0
\(719\) 12.2474 0.456753 0.228376 0.973573i \(-0.426658\pi\)
0.228376 + 0.973573i \(0.426658\pi\)
\(720\) 0 0
\(721\) −41.3939 −1.54159
\(722\) 0 0
\(723\) 6.89898i 0.256576i
\(724\) 0 0
\(725\) −45.7980 + 9.34847i −1.70089 + 0.347193i
\(726\) 0 0
\(727\) 32.0000i 1.18681i −0.804902 0.593407i \(-0.797782\pi\)
0.804902 0.593407i \(-0.202218\pi\)
\(728\) 0 0
\(729\) −1.00000 −0.0370370
\(730\) 0 0
\(731\) 2.89898 0.107223
\(732\) 0 0
\(733\) 19.7980i 0.731254i 0.930761 + 0.365627i \(0.119145\pi\)
−0.930761 + 0.365627i \(0.880855\pi\)
\(734\) 0 0
\(735\) −2.22474 + 0.224745i −0.0820610 + 0.00828984i
\(736\) 0 0
\(737\) 19.5959i 0.721825i
\(738\) 0 0
\(739\) −17.1010 −0.629071 −0.314536 0.949246i \(-0.601849\pi\)
−0.314536 + 0.949246i \(0.601849\pi\)
\(740\) 0 0
\(741\) 41.3939 1.52064
\(742\) 0 0
\(743\) 14.4495i 0.530100i −0.964235 0.265050i \(-0.914611\pi\)
0.964235 0.265050i \(-0.0853885\pi\)
\(744\) 0 0
\(745\) 2.85357 + 28.2474i 0.104547 + 1.03491i
\(746\) 0 0
\(747\) 2.89898i 0.106068i
\(748\) 0 0
\(749\) 7.59592 0.277549
\(750\) 0 0
\(751\) −8.24745 −0.300954 −0.150477 0.988614i \(-0.548081\pi\)
−0.150477 + 0.988614i \(0.548081\pi\)
\(752\) 0 0
\(753\) 20.6969i 0.754238i
\(754\) 0 0
\(755\) 3.10102 + 30.6969i 0.112858 + 1.11718i
\(756\) 0 0
\(757\) 5.50510i 0.200086i −0.994983 0.100043i \(-0.968102\pi\)
0.994983 0.100043i \(-0.0318981\pi\)
\(758\) 0 0
\(759\) −31.5959 −1.14686
\(760\) 0 0
\(761\) 9.59592 0.347852 0.173926 0.984759i \(-0.444355\pi\)
0.173926 + 0.984759i \(0.444355\pi\)
\(762\) 0 0
\(763\) 44.6969i 1.61814i
\(764\) 0 0
\(765\) 2.22474 0.224745i 0.0804358 0.00812567i
\(766\) 0 0
\(767\) 34.7878i 1.25611i
\(768\) 0 0
\(769\) −27.3939 −0.987848 −0.493924 0.869505i \(-0.664438\pi\)
−0.493924 + 0.869505i \(0.664438\pi\)
\(770\) 0 0
\(771\) 20.0000 0.720282
\(772\) 0 0
\(773\) 42.0000i 1.51064i 0.655359 + 0.755318i \(0.272517\pi\)
−0.655359 + 0.755318i \(0.727483\pi\)
\(774\) 0 0
\(775\) −31.5959 + 6.44949i −1.13496 + 0.231673i
\(776\) 0 0
\(777\) 1.10102i 0.0394989i
\(778\) 0 0
\(779\) −7.59592 −0.272152
\(780\) 0 0
\(781\) −12.0000 −0.429394
\(782\) 0 0
\(783\) 9.34847i 0.334087i
\(784\) 0 0
\(785\) −37.1464 + 3.75255i −1.32581 + 0.133934i
\(786\) 0 0
\(787\) 17.3031i 0.616788i −0.951259 0.308394i \(-0.900209\pi\)
0.951259 0.308394i \(-0.0997914\pi\)
\(788\) 0 0
\(789\) 26.6969 0.950436
\(790\) 0 0
\(791\) 40.8990 1.45420
\(792\) 0 0
\(793\) 80.0908i 2.84411i
\(794\) 0 0
\(795\) 0.247449 + 2.44949i 0.00877610 + 0.0868744i
\(796\) 0 0
\(797\) 22.8990i 0.811123i 0.914068 + 0.405562i \(0.132924\pi\)
−0.914068 + 0.405562i \(0.867076\pi\)
\(798\) 0 0
\(799\) 4.89898 0.173313
\(800\) 0 0
\(801\) −1.79796 −0.0635278
\(802\) 0 0
\(803\) 72.9898i 2.57575i
\(804\) 0 0
\(805\) 3.55051 + 35.1464i 0.125139 + 1.23875i
\(806\) 0 0
\(807\) 23.5505i 0.829017i
\(808\) 0 0
\(809\) −42.0908 −1.47983 −0.739917 0.672698i \(-0.765135\pi\)
−0.739917 + 0.672698i \(0.765135\pi\)
\(810\) 0 0
\(811\) −1.79796 −0.0631349 −0.0315674 0.999502i \(-0.510050\pi\)
−0.0315674 + 0.999502i \(0.510050\pi\)
\(812\) 0 0
\(813\) 7.59592i 0.266400i
\(814\) 0 0
\(815\) −12.8990 + 1.30306i −0.451832 + 0.0456443i
\(816\) 0 0
\(817\) 20.0000i 0.699711i
\(818\) 0 0
\(819\) −14.6969 −0.513553
\(820\) 0 0
\(821\) 35.6413 1.24389 0.621945 0.783061i \(-0.286343\pi\)
0.621945 + 0.783061i \(0.286343\pi\)
\(822\) 0 0
\(823\) 26.4495i 0.921971i 0.887408 + 0.460986i \(0.152504\pi\)
−0.887408 + 0.460986i \(0.847496\pi\)
\(824\) 0 0
\(825\) 4.89898 + 24.0000i 0.170561 + 0.835573i
\(826\) 0 0
\(827\) 16.4949i 0.573584i 0.957993 + 0.286792i \(0.0925888\pi\)
−0.957993 + 0.286792i \(0.907411\pi\)
\(828\) 0 0
\(829\) −8.20204 −0.284869 −0.142434 0.989804i \(-0.545493\pi\)
−0.142434 + 0.989804i \(0.545493\pi\)
\(830\) 0 0
\(831\) 28.4495 0.986902
\(832\) 0 0
\(833\) 1.00000i 0.0346479i
\(834\) 0 0
\(835\) 10.3485 1.04541i 0.358124 0.0361778i
\(836\) 0 0
\(837\) 6.44949i 0.222927i
\(838\) 0 0
\(839\) −39.3485 −1.35846 −0.679230 0.733925i \(-0.737686\pi\)
−0.679230 + 0.733925i \(0.737686\pi\)
\(840\) 0 0
\(841\) 58.3939 2.01358
\(842\) 0 0
\(843\) 9.79796i 0.337460i
\(844\) 0 0
\(845\) 5.16913 + 51.1691i 0.177824 + 1.76027i
\(846\) 0 0
\(847\) 31.8434i 1.09415i
\(848\) 0 0
\(849\) 6.69694 0.229838
\(850\) 0 0
\(851\) 2.89898 0.0993757
\(852\) 0 0
\(853\) 10.6515i 0.364701i 0.983234 + 0.182351i \(0.0583706\pi\)
−0.983234 + 0.182351i \(0.941629\pi\)
\(854\) 0 0
\(855\) 1.55051 + 15.3485i 0.0530263 + 0.524907i
\(856\) 0 0
\(857\) 6.00000i 0.204956i −0.994735 0.102478i \(-0.967323\pi\)
0.994735 0.102478i \(-0.0326771\pi\)
\(858\) 0 0
\(859\) −26.2020 −0.894002 −0.447001 0.894533i \(-0.647508\pi\)
−0.447001 + 0.894533i \(0.647508\pi\)
\(860\) 0 0
\(861\) 2.69694 0.0919114
\(862\) 0 0
\(863\) 23.5959i 0.803214i −0.915812 0.401607i \(-0.868452\pi\)
0.915812 0.401607i \(-0.131548\pi\)
\(864\) 0 0
\(865\) −29.6969 + 3.00000i −1.00973 + 0.102003i
\(866\) 0 0
\(867\) 1.00000i 0.0339618i
\(868\) 0 0
\(869\) −7.59592 −0.257674
\(870\) 0 0
\(871\) −24.0000 −0.813209
\(872\) 0 0
\(873\) 3.79796i 0.128541i
\(874\) 0 0
\(875\) 26.1464 8.14643i 0.883911 0.275400i
\(876\) 0 0
\(877\) 18.6515i 0.629817i −0.949122 0.314909i \(-0.898026\pi\)
0.949122 0.314909i \(-0.101974\pi\)
\(878\) 0 0
\(879\) −10.0000 −0.337292
\(880\) 0 0
\(881\) −37.1918 −1.25302 −0.626512 0.779411i \(-0.715518\pi\)
−0.626512 + 0.779411i \(0.715518\pi\)
\(882\) 0 0
\(883\) 10.2020i 0.343326i 0.985156 + 0.171663i \(0.0549140\pi\)
−0.985156 + 0.171663i \(0.945086\pi\)
\(884\) 0 0
\(885\) −12.8990 + 1.30306i −0.433594 + 0.0438019i
\(886\) 0 0
\(887\) 40.2474i 1.35138i 0.737187 + 0.675689i \(0.236154\pi\)
−0.737187 + 0.675689i \(0.763846\pi\)
\(888\) 0 0
\(889\) −19.5959 −0.657226
\(890\) 0 0
\(891\) 4.89898 0.164122
\(892\) 0 0
\(893\) 33.7980i 1.13101i
\(894\) 0 0
\(895\) 4.65153 + 46.0454i 0.155484 + 1.53913i
\(896\) 0 0
\(897\) 38.6969i 1.29205i
\(898\) 0 0
\(899\) 60.2929 2.01088
\(900\) 0 0
\(901\) −1.10102 −0.0366803
\(902\) 0 0
\(903\) 7.10102i 0.236307i
\(904\) 0 0
\(905\) −1.00000 9.89898i −0.0332411 0.329053i
\(906\) 0 0
\(907\) 50.6969i 1.68336i 0.539973 + 0.841682i \(0.318434\pi\)
−0.539973 + 0.841682i \(0.681566\pi\)
\(908\) 0 0
\(909\) −3.79796 −0.125970
\(910\) 0 0
\(911\) 32.6515 1.08179 0.540897 0.841089i \(-0.318085\pi\)
0.540897 + 0.841089i \(0.318085\pi\)
\(912\) 0 0
\(913\) 14.2020i 0.470019i
\(914\) 0 0
\(915\) −29.6969 + 3.00000i −0.981751 + 0.0991769i
\(916\) 0 0
\(917\) 12.0000i 0.396275i
\(918\) 0 0
\(919\) −24.0000 −0.791687 −0.395843 0.918318i \(-0.629548\pi\)
−0.395843 + 0.918318i \(0.629548\pi\)
\(920\) 0 0
\(921\) 10.8990 0.359134
\(922\) 0 0
\(923\) 14.6969i 0.483756i
\(924\) 0 0
\(925\) −0.449490 2.20204i −0.0147791 0.0724027i
\(926\) 0 0
\(927\) 16.8990i 0.555035i
\(928\) 0 0
\(929\) 36.6969 1.20399 0.601994 0.798501i \(-0.294373\pi\)
0.601994 + 0.798501i \(0.294373\pi\)
\(930\) 0 0
\(931\) 6.89898 0.226105
\(932\) 0 0
\(933\) 23.3485i 0.764395i
\(934\) 0 0
\(935\) −10.8990 + 1.10102i −0.356435 + 0.0360072i
\(936\) 0 0
\(937\) 22.0000i 0.718709i −0.933201 0.359354i \(-0.882997\pi\)
0.933201 0.359354i \(-0.117003\pi\)
\(938\) 0 0
\(939\) 2.00000 0.0652675
\(940\) 0 0
\(941\) 9.75255 0.317924 0.158962 0.987285i \(-0.449185\pi\)
0.158962 + 0.987285i \(0.449185\pi\)
\(942\) 0 0
\(943\) 7.10102i 0.231241i
\(944\) 0 0
\(945\) −0.550510 5.44949i −0.0179081 0.177272i
\(946\) 0 0
\(947\) 31.1010i 1.01065i 0.862930 + 0.505324i \(0.168627\pi\)
−0.862930 + 0.505324i \(0.831373\pi\)
\(948\) 0 0
\(949\) −89.3939 −2.90185
\(950\) 0 0
\(951\) 8.44949 0.273993
\(952\) 0 0
\(953\) 33.5959i 1.08828i −0.838995 0.544139i \(-0.816856\pi\)
0.838995 0.544139i \(-0.183144\pi\)
\(954\) 0 0
\(955\) −3.79796 37.5959i −0.122899 1.21658i
\(956\) 0 0
\(957\) 45.7980i 1.48044i
\(958\) 0 0
\(959\) −29.3939 −0.949178
\(960\) 0 0
\(961\) 10.5959 0.341804
\(962\) 0 0
\(963\) 3.10102i 0.0999290i
\(964\) 0 0
\(965\) 31.1464 3.14643i 1.00264 0.101287i
\(966\) 0 0
\(967\) 42.6969i 1.37304i −0.727110 0.686520i \(-0.759137\pi\)
0.727110 0.686520i \(-0.240863\pi\)
\(968\) 0 0
\(969\) −6.89898 −0.221627
\(970\) 0 0
\(971\) 44.0000 1.41203 0.706014 0.708198i \(-0.250492\pi\)
0.706014 + 0.708198i \(0.250492\pi\)
\(972\) 0 0
\(973\) 41.3939i 1.32703i
\(974\) 0 0
\(975\) −29.3939 + 6.00000i −0.941357 + 0.192154i
\(976\) 0 0
\(977\) 0.404082i 0.0129277i −0.999979 0.00646387i \(-0.997942\pi\)
0.999979 0.00646387i \(-0.00205753\pi\)
\(978\) 0 0
\(979\) 8.80816 0.281510
\(980\) 0 0
\(981\) 18.2474 0.582596
\(982\) 0 0
\(983\) 18.8536i 0.601336i −0.953729 0.300668i \(-0.902790\pi\)
0.953729 0.300668i \(-0.0972095\pi\)
\(984\) 0 0
\(985\) −42.5959 + 4.30306i −1.35722 + 0.137107i
\(986\) 0 0
\(987\) 12.0000i 0.381964i
\(988\) 0 0
\(989\) 18.6969 0.594528
\(990\) 0 0
\(991\) −32.2474 −1.02437 −0.512187 0.858874i \(-0.671165\pi\)
−0.512187 + 0.858874i \(0.671165\pi\)
\(992\) 0 0
\(993\) 33.3939i 1.05972i
\(994\) 0 0
\(995\) 4.05561 + 40.1464i 0.128572 + 1.27273i
\(996\) 0 0
\(997\) 46.7423i 1.48034i −0.672417 0.740172i \(-0.734744\pi\)
0.672417 0.740172i \(-0.265256\pi\)
\(998\) 0 0
\(999\) −0.449490 −0.0142212
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4080.2.m.o.2449.1 4
4.3 odd 2 510.2.d.c.409.3 yes 4
5.4 even 2 inner 4080.2.m.o.2449.3 4
12.11 even 2 1530.2.d.e.919.2 4
20.3 even 4 2550.2.a.bj.1.2 2
20.7 even 4 2550.2.a.bi.1.1 2
20.19 odd 2 510.2.d.c.409.1 4
60.23 odd 4 7650.2.a.ct.1.2 2
60.47 odd 4 7650.2.a.dg.1.1 2
60.59 even 2 1530.2.d.e.919.4 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
510.2.d.c.409.1 4 20.19 odd 2
510.2.d.c.409.3 yes 4 4.3 odd 2
1530.2.d.e.919.2 4 12.11 even 2
1530.2.d.e.919.4 4 60.59 even 2
2550.2.a.bi.1.1 2 20.7 even 4
2550.2.a.bj.1.2 2 20.3 even 4
4080.2.m.o.2449.1 4 1.1 even 1 trivial
4080.2.m.o.2449.3 4 5.4 even 2 inner
7650.2.a.ct.1.2 2 60.23 odd 4
7650.2.a.dg.1.1 2 60.47 odd 4