Properties

Label 4080.2.m.o
Level 40804080
Weight 22
Character orbit 4080.m
Analytic conductor 32.57932.579
Analytic rank 00
Dimension 44
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4080,2,Mod(2449,4080)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4080, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4080.2449");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 4080=243517 4080 = 2^{4} \cdot 3 \cdot 5 \cdot 17
Weight: k k == 2 2
Character orbit: [χ][\chi] == 4080.m (of order 22, degree 11, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 32.578964024732.5789640247
Analytic rank: 00
Dimension: 44
Coefficient field: Q(i,6)\Q(i, \sqrt{6})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x4+9 x^{4} + 9 Copy content Toggle raw display
Coefficient ring: Z[a1,,a5]\Z[a_1, \ldots, a_{5}]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 510)
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,β2,β31,\beta_1,\beta_2,\beta_3 for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+β2q3+(β3+β2+1)q5+(β3+β1)q7q9+(2β3+2β1)q116β2q13+(β2β11)q15+β2q17++(2β32β1)q99+O(q100) q + \beta_{2} q^{3} + (\beta_{3} + \beta_{2} + 1) q^{5} + (\beta_{3} + \beta_1) q^{7} - q^{9} + ( - 2 \beta_{3} + 2 \beta_1) q^{11} - 6 \beta_{2} q^{13} + (\beta_{2} - \beta_1 - 1) q^{15} + \beta_{2} q^{17}+ \cdots + (2 \beta_{3} - 2 \beta_1) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q+4q54q94q15+8q19+8q29+16q3112q35+24q3924q414q45+4q494q5124q5516q59+24q61+24q6516q69+4q75+16q95+O(q100) 4 q + 4 q^{5} - 4 q^{9} - 4 q^{15} + 8 q^{19} + 8 q^{29} + 16 q^{31} - 12 q^{35} + 24 q^{39} - 24 q^{41} - 4 q^{45} + 4 q^{49} - 4 q^{51} - 24 q^{55} - 16 q^{59} + 24 q^{61} + 24 q^{65} - 16 q^{69} + 4 q^{75}+ \cdots - 16 q^{95}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x4+9 x^{4} + 9 : Copy content Toggle raw display

β1\beta_{1}== ν \nu Copy content Toggle raw display
β2\beta_{2}== (ν2)/3 ( \nu^{2} ) / 3 Copy content Toggle raw display
β3\beta_{3}== (ν3)/3 ( \nu^{3} ) / 3 Copy content Toggle raw display
ν\nu== β1 \beta_1 Copy content Toggle raw display
ν2\nu^{2}== 3β2 3\beta_{2} Copy content Toggle raw display
ν3\nu^{3}== 3β3 3\beta_{3} Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/4080Z)×\left(\mathbb{Z}/4080\mathbb{Z}\right)^\times.

nn 241241 511511 817817 13611361 30613061
χ(n)\chi(n) 11 11 1-1 11 11

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
2449.1
1.22474 1.22474i
−1.22474 + 1.22474i
1.22474 + 1.22474i
−1.22474 1.22474i
0 1.00000i 0 −0.224745 2.22474i 0 2.44949i 0 −1.00000 0
2449.2 0 1.00000i 0 2.22474 + 0.224745i 0 2.44949i 0 −1.00000 0
2449.3 0 1.00000i 0 −0.224745 + 2.22474i 0 2.44949i 0 −1.00000 0
2449.4 0 1.00000i 0 2.22474 0.224745i 0 2.44949i 0 −1.00000 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 4080.2.m.o 4
4.b odd 2 1 510.2.d.c 4
5.b even 2 1 inner 4080.2.m.o 4
12.b even 2 1 1530.2.d.e 4
20.d odd 2 1 510.2.d.c 4
20.e even 4 1 2550.2.a.bi 2
20.e even 4 1 2550.2.a.bj 2
60.h even 2 1 1530.2.d.e 4
60.l odd 4 1 7650.2.a.ct 2
60.l odd 4 1 7650.2.a.dg 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
510.2.d.c 4 4.b odd 2 1
510.2.d.c 4 20.d odd 2 1
1530.2.d.e 4 12.b even 2 1
1530.2.d.e 4 60.h even 2 1
2550.2.a.bi 2 20.e even 4 1
2550.2.a.bj 2 20.e even 4 1
4080.2.m.o 4 1.a even 1 1 trivial
4080.2.m.o 4 5.b even 2 1 inner
7650.2.a.ct 2 60.l odd 4 1
7650.2.a.dg 2 60.l odd 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(4080,[χ])S_{2}^{\mathrm{new}}(4080, [\chi]):

T72+6 T_{7}^{2} + 6 Copy content Toggle raw display
T11224 T_{11}^{2} - 24 Copy content Toggle raw display
T234+44T232+100 T_{23}^{4} + 44T_{23}^{2} + 100 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T4 T^{4} Copy content Toggle raw display
33 (T2+1)2 (T^{2} + 1)^{2} Copy content Toggle raw display
55 T44T3++25 T^{4} - 4 T^{3} + \cdots + 25 Copy content Toggle raw display
77 (T2+6)2 (T^{2} + 6)^{2} Copy content Toggle raw display
1111 (T224)2 (T^{2} - 24)^{2} Copy content Toggle raw display
1313 (T2+36)2 (T^{2} + 36)^{2} Copy content Toggle raw display
1717 (T2+1)2 (T^{2} + 1)^{2} Copy content Toggle raw display
1919 (T24T20)2 (T^{2} - 4 T - 20)^{2} Copy content Toggle raw display
2323 T4+44T2+100 T^{4} + 44T^{2} + 100 Copy content Toggle raw display
2929 (T24T50)2 (T^{2} - 4 T - 50)^{2} Copy content Toggle raw display
3131 (T28T+10)2 (T^{2} - 8 T + 10)^{2} Copy content Toggle raw display
3737 T4+20T2+4 T^{4} + 20T^{2} + 4 Copy content Toggle raw display
4141 (T2+12T+12)2 (T^{2} + 12 T + 12)^{2} Copy content Toggle raw display
4343 T4+56T2+400 T^{4} + 56T^{2} + 400 Copy content Toggle raw display
4747 (T2+24)2 (T^{2} + 24)^{2} Copy content Toggle raw display
5353 T4+120T2+144 T^{4} + 120T^{2} + 144 Copy content Toggle raw display
5959 (T2+8T80)2 (T^{2} + 8 T - 80)^{2} Copy content Toggle raw display
6161 (T212T18)2 (T^{2} - 12 T - 18)^{2} Copy content Toggle raw display
6767 (T2+16)2 (T^{2} + 16)^{2} Copy content Toggle raw display
7171 (T26)2 (T^{2} - 6)^{2} Copy content Toggle raw display
7373 T4+248T2+5776 T^{4} + 248T^{2} + 5776 Copy content Toggle raw display
7979 (T2+8T+10)2 (T^{2} + 8 T + 10)^{2} Copy content Toggle raw display
8383 T4+56T2+400 T^{4} + 56T^{2} + 400 Copy content Toggle raw display
8989 (T2+16T32)2 (T^{2} + 16 T - 32)^{2} Copy content Toggle raw display
9797 T4+264T2+3600 T^{4} + 264T^{2} + 3600 Copy content Toggle raw display
show more
show less