gp: [N,k,chi] = [4080,2,Mod(2449,4080)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(4080, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0, 0, 1, 0]))
N = Newforms(chi, 2, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("4080.2449");
S:= CuspForms(chi, 2);
N := Newforms(S);
Newform invariants
sage: traces = [4,0,0,0,4,0,0,0,-4,0,0,0,0,0,-4]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(15)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the q q q -expansion are expressed in terms of a basis 1 , β 1 , β 2 , β 3 1,\beta_1,\beta_2,\beta_3 1 , β 1 , β 2 , β 3 for the coefficient ring described below.
We also show the integral q q q -expansion of the trace form .
Basis of coefficient ring in terms of a root ν \nu ν of
x 4 + 9 x^{4} + 9 x 4 + 9
x^4 + 9
:
β 1 \beta_{1} β 1 = = =
ν \nu ν
v
β 2 \beta_{2} β 2 = = =
( ν 2 ) / 3 ( \nu^{2} ) / 3 ( ν 2 ) / 3
(v^2) / 3
β 3 \beta_{3} β 3 = = =
( ν 3 ) / 3 ( \nu^{3} ) / 3 ( ν 3 ) / 3
(v^3) / 3
ν \nu ν = = =
β 1 \beta_1 β 1
b1
ν 2 \nu^{2} ν 2 = = =
3 β 2 3\beta_{2} 3 β 2
3*b2
ν 3 \nu^{3} ν 3 = = =
3 β 3 3\beta_{3} 3 β 3
3*b3
Character values
We give the values of χ \chi χ on generators for ( Z / 4080 Z ) × \left(\mathbb{Z}/4080\mathbb{Z}\right)^\times ( Z / 4 0 8 0 Z ) × .
n n n
241 241 2 4 1
511 511 5 1 1
817 817 8 1 7
1361 1361 1 3 6 1
3061 3061 3 0 6 1
χ ( n ) \chi(n) χ ( n )
1 1 1
1 1 1
− 1 -1 − 1
1 1 1
1 1 1
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S 2 n e w ( 4080 , [ χ ] ) S_{2}^{\mathrm{new}}(4080, [\chi]) S 2 n e w ( 4 0 8 0 , [ χ ] ) :
T 7 2 + 6 T_{7}^{2} + 6 T 7 2 + 6
T7^2 + 6
T 11 2 − 24 T_{11}^{2} - 24 T 1 1 2 − 2 4
T11^2 - 24
T 23 4 + 44 T 23 2 + 100 T_{23}^{4} + 44T_{23}^{2} + 100 T 2 3 4 + 4 4 T 2 3 2 + 1 0 0
T23^4 + 44*T23^2 + 100
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T 4 T^{4} T 4
T^4
3 3 3
( T 2 + 1 ) 2 (T^{2} + 1)^{2} ( T 2 + 1 ) 2
(T^2 + 1)^2
5 5 5
T 4 − 4 T 3 + ⋯ + 25 T^{4} - 4 T^{3} + \cdots + 25 T 4 − 4 T 3 + ⋯ + 2 5
T^4 - 4*T^3 + 8*T^2 - 20*T + 25
7 7 7
( T 2 + 6 ) 2 (T^{2} + 6)^{2} ( T 2 + 6 ) 2
(T^2 + 6)^2
11 11 1 1
( T 2 − 24 ) 2 (T^{2} - 24)^{2} ( T 2 − 2 4 ) 2
(T^2 - 24)^2
13 13 1 3
( T 2 + 36 ) 2 (T^{2} + 36)^{2} ( T 2 + 3 6 ) 2
(T^2 + 36)^2
17 17 1 7
( T 2 + 1 ) 2 (T^{2} + 1)^{2} ( T 2 + 1 ) 2
(T^2 + 1)^2
19 19 1 9
( T 2 − 4 T − 20 ) 2 (T^{2} - 4 T - 20)^{2} ( T 2 − 4 T − 2 0 ) 2
(T^2 - 4*T - 20)^2
23 23 2 3
T 4 + 44 T 2 + 100 T^{4} + 44T^{2} + 100 T 4 + 4 4 T 2 + 1 0 0
T^4 + 44*T^2 + 100
29 29 2 9
( T 2 − 4 T − 50 ) 2 (T^{2} - 4 T - 50)^{2} ( T 2 − 4 T − 5 0 ) 2
(T^2 - 4*T - 50)^2
31 31 3 1
( T 2 − 8 T + 10 ) 2 (T^{2} - 8 T + 10)^{2} ( T 2 − 8 T + 1 0 ) 2
(T^2 - 8*T + 10)^2
37 37 3 7
T 4 + 20 T 2 + 4 T^{4} + 20T^{2} + 4 T 4 + 2 0 T 2 + 4
T^4 + 20*T^2 + 4
41 41 4 1
( T 2 + 12 T + 12 ) 2 (T^{2} + 12 T + 12)^{2} ( T 2 + 1 2 T + 1 2 ) 2
(T^2 + 12*T + 12)^2
43 43 4 3
T 4 + 56 T 2 + 400 T^{4} + 56T^{2} + 400 T 4 + 5 6 T 2 + 4 0 0
T^4 + 56*T^2 + 400
47 47 4 7
( T 2 + 24 ) 2 (T^{2} + 24)^{2} ( T 2 + 2 4 ) 2
(T^2 + 24)^2
53 53 5 3
T 4 + 120 T 2 + 144 T^{4} + 120T^{2} + 144 T 4 + 1 2 0 T 2 + 1 4 4
T^4 + 120*T^2 + 144
59 59 5 9
( T 2 + 8 T − 80 ) 2 (T^{2} + 8 T - 80)^{2} ( T 2 + 8 T − 8 0 ) 2
(T^2 + 8*T - 80)^2
61 61 6 1
( T 2 − 12 T − 18 ) 2 (T^{2} - 12 T - 18)^{2} ( T 2 − 1 2 T − 1 8 ) 2
(T^2 - 12*T - 18)^2
67 67 6 7
( T 2 + 16 ) 2 (T^{2} + 16)^{2} ( T 2 + 1 6 ) 2
(T^2 + 16)^2
71 71 7 1
( T 2 − 6 ) 2 (T^{2} - 6)^{2} ( T 2 − 6 ) 2
(T^2 - 6)^2
73 73 7 3
T 4 + 248 T 2 + 5776 T^{4} + 248T^{2} + 5776 T 4 + 2 4 8 T 2 + 5 7 7 6
T^4 + 248*T^2 + 5776
79 79 7 9
( T 2 + 8 T + 10 ) 2 (T^{2} + 8 T + 10)^{2} ( T 2 + 8 T + 1 0 ) 2
(T^2 + 8*T + 10)^2
83 83 8 3
T 4 + 56 T 2 + 400 T^{4} + 56T^{2} + 400 T 4 + 5 6 T 2 + 4 0 0
T^4 + 56*T^2 + 400
89 89 8 9
( T 2 + 16 T − 32 ) 2 (T^{2} + 16 T - 32)^{2} ( T 2 + 1 6 T − 3 2 ) 2
(T^2 + 16*T - 32)^2
97 97 9 7
T 4 + 264 T 2 + 3600 T^{4} + 264T^{2} + 3600 T 4 + 2 6 4 T 2 + 3 6 0 0
T^4 + 264*T^2 + 3600
show more
show less