Properties

Label 256.2.i.a.113.6
Level $256$
Weight $2$
Character 256.113
Analytic conductor $2.044$
Analytic rank $0$
Dimension $56$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [256,2,Mod(17,256)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(256, base_ring=CyclotomicField(16))
 
chi = DirichletCharacter(H, H._module([0, 7]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("256.17");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 256 = 2^{8} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 256.i (of order \(16\), degree \(8\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.04417029174\)
Analytic rank: \(0\)
Dimension: \(56\)
Relative dimension: \(7\) over \(\Q(\zeta_{16})\)
Twist minimal: no (minimal twist has level 64)
Sato-Tate group: $\mathrm{SU}(2)[C_{16}]$

Embedding invariants

Embedding label 113.6
Character \(\chi\) \(=\) 256.113
Dual form 256.2.i.a.145.6

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(2.00147 + 1.33734i) q^{3} +(0.756852 + 0.150547i) q^{5} +(1.69148 - 4.08359i) q^{7} +(1.06935 + 2.58163i) q^{9} +(-0.290161 - 0.434257i) q^{11} +(-1.79553 + 0.357153i) q^{13} +(1.31348 + 1.31348i) q^{15} +(-3.04259 + 3.04259i) q^{17} +(1.26776 + 6.37347i) q^{19} +(8.84657 - 5.91109i) q^{21} +(-7.32197 + 3.03286i) q^{23} +(-4.06924 - 1.68553i) q^{25} +(0.0965796 - 0.485538i) q^{27} +(-0.690042 + 1.03272i) q^{29} -1.55847i q^{31} -1.25719i q^{33} +(1.89497 - 2.83602i) q^{35} +(0.371584 - 1.86808i) q^{37} +(-4.07133 - 1.68640i) q^{39} +(6.15380 - 2.54899i) q^{41} +(7.03859 - 4.70304i) q^{43} +(0.420680 + 2.11490i) q^{45} +(-1.12515 + 1.12515i) q^{47} +(-8.86483 - 8.86483i) q^{49} +(-10.1586 + 2.02068i) q^{51} +(3.92962 + 5.88109i) q^{53} +(-0.154233 - 0.372351i) q^{55} +(-5.98610 + 14.4517i) q^{57} +(-0.738882 - 0.146973i) q^{59} +(-3.34952 - 2.23808i) q^{61} +12.3511 q^{63} -1.41272 q^{65} +(-3.05271 - 2.03976i) q^{67} +(-18.7106 - 3.72178i) q^{69} +(0.317495 - 0.766500i) q^{71} +(0.292843 + 0.706986i) q^{73} +(-5.89032 - 8.81548i) q^{75} +(-2.26413 + 0.450363i) q^{77} +(-6.17863 - 6.17863i) q^{79} +(6.77032 - 6.77032i) q^{81} +(0.663054 + 3.33340i) q^{83} +(-2.76085 + 1.84474i) q^{85} +(-2.76219 + 1.14414i) q^{87} +(12.3740 + 5.12547i) q^{89} +(-1.57863 + 7.93632i) q^{91} +(2.08420 - 3.11923i) q^{93} +5.01463i q^{95} -3.44120i q^{97} +(0.810809 - 1.21346i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 56 q + 8 q^{3} - 8 q^{5} + 8 q^{7} - 8 q^{9} + 8 q^{11} - 8 q^{13} + 8 q^{15} - 8 q^{17} + 8 q^{19} - 8 q^{21} + 8 q^{23} - 8 q^{25} + 8 q^{27} - 8 q^{29} + 8 q^{35} - 8 q^{37} + 8 q^{39} - 8 q^{41} + 8 q^{43}+ \cdots - 16 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/256\mathbb{Z}\right)^\times\).

\(n\) \(5\) \(255\)
\(\chi(n)\) \(e\left(\frac{1}{16}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 2.00147 + 1.33734i 1.15555 + 0.772112i 0.977297 0.211873i \(-0.0679563\pi\)
0.178250 + 0.983985i \(0.442956\pi\)
\(4\) 0 0
\(5\) 0.756852 + 0.150547i 0.338474 + 0.0673268i 0.361401 0.932410i \(-0.382298\pi\)
−0.0229268 + 0.999737i \(0.507298\pi\)
\(6\) 0 0
\(7\) 1.69148 4.08359i 0.639318 1.54345i −0.188272 0.982117i \(-0.560289\pi\)
0.827590 0.561333i \(-0.189711\pi\)
\(8\) 0 0
\(9\) 1.06935 + 2.58163i 0.356449 + 0.860545i
\(10\) 0 0
\(11\) −0.290161 0.434257i −0.0874869 0.130933i 0.785145 0.619312i \(-0.212588\pi\)
−0.872632 + 0.488379i \(0.837588\pi\)
\(12\) 0 0
\(13\) −1.79553 + 0.357153i −0.497991 + 0.0990565i −0.437694 0.899124i \(-0.644205\pi\)
−0.0602967 + 0.998180i \(0.519205\pi\)
\(14\) 0 0
\(15\) 1.31348 + 1.31348i 0.339140 + 0.339140i
\(16\) 0 0
\(17\) −3.04259 + 3.04259i −0.737937 + 0.737937i −0.972179 0.234241i \(-0.924739\pi\)
0.234241 + 0.972179i \(0.424739\pi\)
\(18\) 0 0
\(19\) 1.26776 + 6.37347i 0.290845 + 1.46217i 0.799220 + 0.601039i \(0.205246\pi\)
−0.508375 + 0.861136i \(0.669754\pi\)
\(20\) 0 0
\(21\) 8.84657 5.91109i 1.93048 1.28990i
\(22\) 0 0
\(23\) −7.32197 + 3.03286i −1.52674 + 0.632395i −0.978928 0.204208i \(-0.934538\pi\)
−0.547810 + 0.836603i \(0.684538\pi\)
\(24\) 0 0
\(25\) −4.06924 1.68553i −0.813847 0.337107i
\(26\) 0 0
\(27\) 0.0965796 0.485538i 0.0185867 0.0934419i
\(28\) 0 0
\(29\) −0.690042 + 1.03272i −0.128138 + 0.191771i −0.889991 0.455978i \(-0.849290\pi\)
0.761854 + 0.647749i \(0.224290\pi\)
\(30\) 0 0
\(31\) 1.55847i 0.279910i −0.990158 0.139955i \(-0.955304\pi\)
0.990158 0.139955i \(-0.0446957\pi\)
\(32\) 0 0
\(33\) 1.25719i 0.218849i
\(34\) 0 0
\(35\) 1.89497 2.83602i 0.320308 0.479375i
\(36\) 0 0
\(37\) 0.371584 1.86808i 0.0610880 0.307110i −0.938146 0.346239i \(-0.887458\pi\)
0.999234 + 0.0391295i \(0.0124585\pi\)
\(38\) 0 0
\(39\) −4.07133 1.68640i −0.651935 0.270040i
\(40\) 0 0
\(41\) 6.15380 2.54899i 0.961062 0.398085i 0.153685 0.988120i \(-0.450886\pi\)
0.807378 + 0.590035i \(0.200886\pi\)
\(42\) 0 0
\(43\) 7.03859 4.70304i 1.07338 0.717206i 0.112350 0.993669i \(-0.464162\pi\)
0.961025 + 0.276462i \(0.0891621\pi\)
\(44\) 0 0
\(45\) 0.420680 + 2.11490i 0.0627113 + 0.315271i
\(46\) 0 0
\(47\) −1.12515 + 1.12515i −0.164120 + 0.164120i −0.784389 0.620269i \(-0.787023\pi\)
0.620269 + 0.784389i \(0.287023\pi\)
\(48\) 0 0
\(49\) −8.86483 8.86483i −1.26640 1.26640i
\(50\) 0 0
\(51\) −10.1586 + 2.02068i −1.42249 + 0.282951i
\(52\) 0 0
\(53\) 3.92962 + 5.88109i 0.539775 + 0.807830i 0.996657 0.0816971i \(-0.0260340\pi\)
−0.456882 + 0.889527i \(0.651034\pi\)
\(54\) 0 0
\(55\) −0.154233 0.372351i −0.0207968 0.0502078i
\(56\) 0 0
\(57\) −5.98610 + 14.4517i −0.792878 + 1.91418i
\(58\) 0 0
\(59\) −0.738882 0.146973i −0.0961942 0.0191342i 0.146758 0.989172i \(-0.453116\pi\)
−0.242953 + 0.970038i \(0.578116\pi\)
\(60\) 0 0
\(61\) −3.34952 2.23808i −0.428862 0.286556i 0.322346 0.946622i \(-0.395529\pi\)
−0.751208 + 0.660065i \(0.770529\pi\)
\(62\) 0 0
\(63\) 12.3511 1.55609
\(64\) 0 0
\(65\) −1.41272 −0.175226
\(66\) 0 0
\(67\) −3.05271 2.03976i −0.372948 0.249196i 0.354944 0.934888i \(-0.384500\pi\)
−0.727892 + 0.685692i \(0.759500\pi\)
\(68\) 0 0
\(69\) −18.7106 3.72178i −2.25250 0.448050i
\(70\) 0 0
\(71\) 0.317495 0.766500i 0.0376797 0.0909668i −0.903919 0.427703i \(-0.859323\pi\)
0.941599 + 0.336736i \(0.109323\pi\)
\(72\) 0 0
\(73\) 0.292843 + 0.706986i 0.0342747 + 0.0827464i 0.940090 0.340926i \(-0.110741\pi\)
−0.905815 + 0.423673i \(0.860741\pi\)
\(74\) 0 0
\(75\) −5.89032 8.81548i −0.680155 1.01792i
\(76\) 0 0
\(77\) −2.26413 + 0.450363i −0.258021 + 0.0513236i
\(78\) 0 0
\(79\) −6.17863 6.17863i −0.695150 0.695150i 0.268210 0.963360i \(-0.413568\pi\)
−0.963360 + 0.268210i \(0.913568\pi\)
\(80\) 0 0
\(81\) 6.77032 6.77032i 0.752258 0.752258i
\(82\) 0 0
\(83\) 0.663054 + 3.33340i 0.0727796 + 0.365888i 0.999962 0.00872251i \(-0.00277650\pi\)
−0.927182 + 0.374610i \(0.877776\pi\)
\(84\) 0 0
\(85\) −2.76085 + 1.84474i −0.299456 + 0.200090i
\(86\) 0 0
\(87\) −2.76219 + 1.14414i −0.296138 + 0.122664i
\(88\) 0 0
\(89\) 12.3740 + 5.12547i 1.31164 + 0.543299i 0.925362 0.379084i \(-0.123761\pi\)
0.386277 + 0.922383i \(0.373761\pi\)
\(90\) 0 0
\(91\) −1.57863 + 7.93632i −0.165486 + 0.831953i
\(92\) 0 0
\(93\) 2.08420 3.11923i 0.216122 0.323449i
\(94\) 0 0
\(95\) 5.01463i 0.514490i
\(96\) 0 0
\(97\) 3.44120i 0.349401i −0.984622 0.174700i \(-0.944104\pi\)
0.984622 0.174700i \(-0.0558956\pi\)
\(98\) 0 0
\(99\) 0.810809 1.21346i 0.0814894 0.121958i
\(100\) 0 0
\(101\) −0.978121 + 4.91735i −0.0973267 + 0.489294i 0.901120 + 0.433571i \(0.142747\pi\)
−0.998446 + 0.0557237i \(0.982253\pi\)
\(102\) 0 0
\(103\) 1.88632 + 0.781338i 0.185864 + 0.0769875i 0.473675 0.880700i \(-0.342927\pi\)
−0.287810 + 0.957687i \(0.592927\pi\)
\(104\) 0 0
\(105\) 7.58544 3.14199i 0.740263 0.306627i
\(106\) 0 0
\(107\) −3.54710 + 2.37010i −0.342911 + 0.229126i −0.715086 0.699037i \(-0.753612\pi\)
0.372174 + 0.928163i \(0.378612\pi\)
\(108\) 0 0
\(109\) 2.58869 + 13.0142i 0.247952 + 1.24654i 0.881258 + 0.472636i \(0.156697\pi\)
−0.633306 + 0.773901i \(0.718303\pi\)
\(110\) 0 0
\(111\) 3.24196 3.24196i 0.307713 0.307713i
\(112\) 0 0
\(113\) −0.380557 0.380557i −0.0357998 0.0357998i 0.688980 0.724780i \(-0.258059\pi\)
−0.724780 + 0.688980i \(0.758059\pi\)
\(114\) 0 0
\(115\) −5.99824 + 1.19312i −0.559339 + 0.111259i
\(116\) 0 0
\(117\) −2.84209 4.25348i −0.262751 0.393235i
\(118\) 0 0
\(119\) 7.27821 + 17.5712i 0.667193 + 1.61075i
\(120\) 0 0
\(121\) 4.10513 9.91067i 0.373194 0.900970i
\(122\) 0 0
\(123\) 15.7255 + 3.12799i 1.41792 + 0.282042i
\(124\) 0 0
\(125\) −6.03420 4.03192i −0.539715 0.360626i
\(126\) 0 0
\(127\) 10.5330 0.934651 0.467325 0.884085i \(-0.345218\pi\)
0.467325 + 0.884085i \(0.345218\pi\)
\(128\) 0 0
\(129\) 20.3771 1.79410
\(130\) 0 0
\(131\) 13.0608 + 8.72693i 1.14112 + 0.762475i 0.974686 0.223577i \(-0.0717733\pi\)
0.166438 + 0.986052i \(0.446773\pi\)
\(132\) 0 0
\(133\) 28.1710 + 5.60356i 2.44274 + 0.485890i
\(134\) 0 0
\(135\) 0.146193 0.352941i 0.0125823 0.0303763i
\(136\) 0 0
\(137\) −5.91955 14.2911i −0.505742 1.22097i −0.946313 0.323251i \(-0.895224\pi\)
0.440572 0.897717i \(-0.354776\pi\)
\(138\) 0 0
\(139\) −7.35516 11.0078i −0.623856 0.933667i −0.999975 0.00709534i \(-0.997741\pi\)
0.376119 0.926572i \(-0.377259\pi\)
\(140\) 0 0
\(141\) −3.75665 + 0.747245i −0.316367 + 0.0629294i
\(142\) 0 0
\(143\) 0.676090 + 0.676090i 0.0565375 + 0.0565375i
\(144\) 0 0
\(145\) −0.677733 + 0.677733i −0.0562826 + 0.0562826i
\(146\) 0 0
\(147\) −5.88739 29.5979i −0.485584 2.44120i
\(148\) 0 0
\(149\) −4.87958 + 3.26043i −0.399751 + 0.267105i −0.739155 0.673536i \(-0.764775\pi\)
0.339404 + 0.940641i \(0.389775\pi\)
\(150\) 0 0
\(151\) 10.8095 4.47745i 0.879666 0.364369i 0.103298 0.994650i \(-0.467060\pi\)
0.776367 + 0.630281i \(0.217060\pi\)
\(152\) 0 0
\(153\) −11.1085 4.60127i −0.898065 0.371991i
\(154\) 0 0
\(155\) 0.234623 1.17953i 0.0188454 0.0947423i
\(156\) 0 0
\(157\) 8.18769 12.2537i 0.653449 0.977955i −0.345766 0.938321i \(-0.612381\pi\)
0.999214 0.0396342i \(-0.0126193\pi\)
\(158\) 0 0
\(159\) 17.0260i 1.35025i
\(160\) 0 0
\(161\) 35.0299i 2.76074i
\(162\) 0 0
\(163\) 2.55092 3.81772i 0.199803 0.299027i −0.718015 0.696028i \(-0.754949\pi\)
0.917818 + 0.397001i \(0.129949\pi\)
\(164\) 0 0
\(165\) 0.189267 0.951510i 0.0147344 0.0740749i
\(166\) 0 0
\(167\) 6.64505 + 2.75247i 0.514209 + 0.212992i 0.624671 0.780888i \(-0.285233\pi\)
−0.110462 + 0.993880i \(0.535233\pi\)
\(168\) 0 0
\(169\) −8.91406 + 3.69232i −0.685697 + 0.284025i
\(170\) 0 0
\(171\) −15.0983 + 10.0884i −1.15460 + 0.771476i
\(172\) 0 0
\(173\) 3.19519 + 16.0633i 0.242926 + 1.22127i 0.888968 + 0.457970i \(0.151423\pi\)
−0.646042 + 0.763302i \(0.723577\pi\)
\(174\) 0 0
\(175\) −13.7660 + 13.7660i −1.04061 + 1.04061i
\(176\) 0 0
\(177\) −1.28230 1.28230i −0.0963832 0.0963832i
\(178\) 0 0
\(179\) 9.80775 1.95088i 0.733066 0.145816i 0.185578 0.982630i \(-0.440584\pi\)
0.547488 + 0.836814i \(0.315584\pi\)
\(180\) 0 0
\(181\) 2.78837 + 4.17310i 0.207258 + 0.310184i 0.920506 0.390728i \(-0.127777\pi\)
−0.713248 + 0.700912i \(0.752777\pi\)
\(182\) 0 0
\(183\) −3.71089 8.95888i −0.274317 0.662259i
\(184\) 0 0
\(185\) 0.562468 1.35792i 0.0413534 0.0998360i
\(186\) 0 0
\(187\) 2.20411 + 0.438425i 0.161180 + 0.0320608i
\(188\) 0 0
\(189\) −1.81937 1.21567i −0.132340 0.0884268i
\(190\) 0 0
\(191\) −20.5971 −1.49035 −0.745176 0.666868i \(-0.767634\pi\)
−0.745176 + 0.666868i \(0.767634\pi\)
\(192\) 0 0
\(193\) −15.8384 −1.14008 −0.570038 0.821618i \(-0.693072\pi\)
−0.570038 + 0.821618i \(0.693072\pi\)
\(194\) 0 0
\(195\) −2.82751 1.88928i −0.202482 0.135294i
\(196\) 0 0
\(197\) −25.5976 5.09169i −1.82376 0.362768i −0.840044 0.542518i \(-0.817471\pi\)
−0.983712 + 0.179750i \(0.942471\pi\)
\(198\) 0 0
\(199\) 5.61103 13.5462i 0.397756 0.960267i −0.590442 0.807080i \(-0.701046\pi\)
0.988197 0.153187i \(-0.0489536\pi\)
\(200\) 0 0
\(201\) −3.38206 8.16501i −0.238552 0.575916i
\(202\) 0 0
\(203\) 3.05001 + 4.56467i 0.214069 + 0.320377i
\(204\) 0 0
\(205\) 5.04126 1.00277i 0.352097 0.0700364i
\(206\) 0 0
\(207\) −15.6595 15.6595i −1.08841 1.08841i
\(208\) 0 0
\(209\) 2.39987 2.39987i 0.166002 0.166002i
\(210\) 0 0
\(211\) 3.71581 + 18.6806i 0.255807 + 1.28603i 0.868493 + 0.495701i \(0.165089\pi\)
−0.612686 + 0.790326i \(0.709911\pi\)
\(212\) 0 0
\(213\) 1.66052 1.10953i 0.113777 0.0760235i
\(214\) 0 0
\(215\) 6.03520 2.49986i 0.411597 0.170489i
\(216\) 0 0
\(217\) −6.36415 2.63612i −0.432027 0.178951i
\(218\) 0 0
\(219\) −0.359363 + 1.80664i −0.0242835 + 0.122081i
\(220\) 0 0
\(221\) 4.37640 6.54974i 0.294388 0.440583i
\(222\) 0 0
\(223\) 9.71045i 0.650260i −0.945669 0.325130i \(-0.894592\pi\)
0.945669 0.325130i \(-0.105408\pi\)
\(224\) 0 0
\(225\) 12.3077i 0.820514i
\(226\) 0 0
\(227\) −2.12248 + 3.17651i −0.140874 + 0.210833i −0.895197 0.445671i \(-0.852965\pi\)
0.754323 + 0.656503i \(0.227965\pi\)
\(228\) 0 0
\(229\) −1.76419 + 8.86919i −0.116581 + 0.586093i 0.877692 + 0.479225i \(0.159082\pi\)
−0.994273 + 0.106868i \(0.965918\pi\)
\(230\) 0 0
\(231\) −5.13386 2.12651i −0.337783 0.139914i
\(232\) 0 0
\(233\) −2.54691 + 1.05496i −0.166854 + 0.0691130i −0.464547 0.885549i \(-0.653783\pi\)
0.297693 + 0.954662i \(0.403783\pi\)
\(234\) 0 0
\(235\) −1.02096 + 0.682183i −0.0666000 + 0.0445007i
\(236\) 0 0
\(237\) −4.10341 20.6292i −0.266545 1.34001i
\(238\) 0 0
\(239\) 8.73109 8.73109i 0.564767 0.564767i −0.365891 0.930658i \(-0.619236\pi\)
0.930658 + 0.365891i \(0.119236\pi\)
\(240\) 0 0
\(241\) 16.1373 + 16.1373i 1.03949 + 1.03949i 0.999187 + 0.0403070i \(0.0128336\pi\)
0.0403070 + 0.999187i \(0.487166\pi\)
\(242\) 0 0
\(243\) 21.1482 4.20663i 1.35666 0.269856i
\(244\) 0 0
\(245\) −5.37479 8.04394i −0.343383 0.513908i
\(246\) 0 0
\(247\) −4.55261 10.9910i −0.289676 0.699339i
\(248\) 0 0
\(249\) −3.13080 + 7.55841i −0.198406 + 0.478995i
\(250\) 0 0
\(251\) −23.2770 4.63008i −1.46923 0.292248i −0.605355 0.795956i \(-0.706969\pi\)
−0.863874 + 0.503708i \(0.831969\pi\)
\(252\) 0 0
\(253\) 3.44159 + 2.29960i 0.216371 + 0.144575i
\(254\) 0 0
\(255\) −7.99278 −0.500527
\(256\) 0 0
\(257\) 0.938259 0.0585270 0.0292635 0.999572i \(-0.490684\pi\)
0.0292635 + 0.999572i \(0.490684\pi\)
\(258\) 0 0
\(259\) −6.99993 4.67720i −0.434954 0.290627i
\(260\) 0 0
\(261\) −3.40400 0.677098i −0.210702 0.0419113i
\(262\) 0 0
\(263\) −4.19405 + 10.1253i −0.258616 + 0.624354i −0.998847 0.0479979i \(-0.984716\pi\)
0.740231 + 0.672352i \(0.234716\pi\)
\(264\) 0 0
\(265\) 2.08876 + 5.04271i 0.128311 + 0.309771i
\(266\) 0 0
\(267\) 17.9116 + 26.8066i 1.09617 + 1.64054i
\(268\) 0 0
\(269\) 23.0601 4.58694i 1.40600 0.279671i 0.566963 0.823744i \(-0.308118\pi\)
0.839038 + 0.544073i \(0.183118\pi\)
\(270\) 0 0
\(271\) 2.19673 + 2.19673i 0.133442 + 0.133442i 0.770673 0.637231i \(-0.219920\pi\)
−0.637231 + 0.770673i \(0.719920\pi\)
\(272\) 0 0
\(273\) −13.7731 + 13.7731i −0.833587 + 0.833587i
\(274\) 0 0
\(275\) 0.448780 + 2.25617i 0.0270625 + 0.136052i
\(276\) 0 0
\(277\) −7.16558 + 4.78789i −0.430538 + 0.287676i −0.751896 0.659281i \(-0.770861\pi\)
0.321358 + 0.946958i \(0.395861\pi\)
\(278\) 0 0
\(279\) 4.02340 1.66655i 0.240875 0.0997736i
\(280\) 0 0
\(281\) 2.11464 + 0.875914i 0.126149 + 0.0522527i 0.444865 0.895598i \(-0.353252\pi\)
−0.318716 + 0.947850i \(0.603252\pi\)
\(282\) 0 0
\(283\) −4.65354 + 23.3949i −0.276624 + 1.39068i 0.553381 + 0.832928i \(0.313337\pi\)
−0.830005 + 0.557755i \(0.811663\pi\)
\(284\) 0 0
\(285\) −6.70626 + 10.0366i −0.397244 + 0.594518i
\(286\) 0 0
\(287\) 29.4411i 1.73785i
\(288\) 0 0
\(289\) 1.51475i 0.0891029i
\(290\) 0 0
\(291\) 4.60204 6.88744i 0.269776 0.403749i
\(292\) 0 0
\(293\) 5.30837 26.6870i 0.310118 1.55907i −0.440142 0.897928i \(-0.645072\pi\)
0.750260 0.661143i \(-0.229928\pi\)
\(294\) 0 0
\(295\) −0.537098 0.222473i −0.0312710 0.0129529i
\(296\) 0 0
\(297\) −0.238872 + 0.0989440i −0.0138608 + 0.00574131i
\(298\) 0 0
\(299\) 12.0636 8.06067i 0.697658 0.466160i
\(300\) 0 0
\(301\) −7.29964 36.6978i −0.420744 2.11522i
\(302\) 0 0
\(303\) −8.53383 + 8.53383i −0.490256 + 0.490256i
\(304\) 0 0
\(305\) −2.19815 2.19815i −0.125866 0.125866i
\(306\) 0 0
\(307\) −32.1099 + 6.38706i −1.83261 + 0.364529i −0.985874 0.167486i \(-0.946435\pi\)
−0.846735 + 0.532015i \(0.821435\pi\)
\(308\) 0 0
\(309\) 2.73049 + 4.08646i 0.155332 + 0.232471i
\(310\) 0 0
\(311\) 4.28733 + 10.3505i 0.243112 + 0.586924i 0.997589 0.0694024i \(-0.0221092\pi\)
−0.754477 + 0.656327i \(0.772109\pi\)
\(312\) 0 0
\(313\) 3.78250 9.13175i 0.213799 0.516157i −0.780202 0.625528i \(-0.784884\pi\)
0.994001 + 0.109371i \(0.0348836\pi\)
\(314\) 0 0
\(315\) 9.34796 + 1.85942i 0.526698 + 0.104767i
\(316\) 0 0
\(317\) 14.8080 + 9.89442i 0.831703 + 0.555726i 0.896944 0.442143i \(-0.145782\pi\)
−0.0652416 + 0.997869i \(0.520782\pi\)
\(318\) 0 0
\(319\) 0.648689 0.0363196
\(320\) 0 0
\(321\) −10.2690 −0.573161
\(322\) 0 0
\(323\) −23.2492 15.5346i −1.29362 0.864368i
\(324\) 0 0
\(325\) 7.90844 + 1.57309i 0.438681 + 0.0872591i
\(326\) 0 0
\(327\) −12.2232 + 29.5095i −0.675946 + 1.63188i
\(328\) 0 0
\(329\) 2.69148 + 6.49781i 0.148386 + 0.358236i
\(330\) 0 0
\(331\) 9.69258 + 14.5060i 0.532752 + 0.797320i 0.996042 0.0888869i \(-0.0283310\pi\)
−0.463289 + 0.886207i \(0.653331\pi\)
\(332\) 0 0
\(333\) 5.22004 1.03833i 0.286057 0.0569002i
\(334\) 0 0
\(335\) −2.00337 2.00337i −0.109456 0.109456i
\(336\) 0 0
\(337\) 8.62689 8.62689i 0.469937 0.469937i −0.431957 0.901894i \(-0.642177\pi\)
0.901894 + 0.431957i \(0.142177\pi\)
\(338\) 0 0
\(339\) −0.252739 1.27061i −0.0137269 0.0690099i
\(340\) 0 0
\(341\) −0.676777 + 0.452208i −0.0366495 + 0.0244884i
\(342\) 0 0
\(343\) −22.6098 + 9.36530i −1.22082 + 0.505679i
\(344\) 0 0
\(345\) −13.6009 5.63367i −0.732247 0.303307i
\(346\) 0 0
\(347\) 2.46321 12.3834i 0.132232 0.664776i −0.856629 0.515933i \(-0.827445\pi\)
0.988861 0.148843i \(-0.0475548\pi\)
\(348\) 0 0
\(349\) −9.48101 + 14.1893i −0.507507 + 0.759538i −0.993427 0.114465i \(-0.963485\pi\)
0.485920 + 0.874003i \(0.338485\pi\)
\(350\) 0 0
\(351\) 0.906293i 0.0483743i
\(352\) 0 0
\(353\) 23.9464i 1.27454i −0.770641 0.637270i \(-0.780064\pi\)
0.770641 0.637270i \(-0.219936\pi\)
\(354\) 0 0
\(355\) 0.355691 0.532329i 0.0188781 0.0282531i
\(356\) 0 0
\(357\) −8.93147 + 44.9015i −0.472704 + 2.37644i
\(358\) 0 0
\(359\) 23.0491 + 9.54726i 1.21649 + 0.503885i 0.896291 0.443467i \(-0.146252\pi\)
0.320195 + 0.947352i \(0.396252\pi\)
\(360\) 0 0
\(361\) −21.4602 + 8.88911i −1.12948 + 0.467848i
\(362\) 0 0
\(363\) 21.4702 14.3459i 1.12689 0.752966i
\(364\) 0 0
\(365\) 0.115204 + 0.579170i 0.00603006 + 0.0303152i
\(366\) 0 0
\(367\) 23.6652 23.6652i 1.23532 1.23532i 0.273421 0.961894i \(-0.411845\pi\)
0.961894 0.273421i \(-0.0881553\pi\)
\(368\) 0 0
\(369\) 13.1611 + 13.1611i 0.685140 + 0.685140i
\(370\) 0 0
\(371\) 30.6628 6.09921i 1.59193 0.316655i
\(372\) 0 0
\(373\) 10.0109 + 14.9823i 0.518343 + 0.775755i 0.994626 0.103537i \(-0.0330160\pi\)
−0.476283 + 0.879292i \(0.658016\pi\)
\(374\) 0 0
\(375\) −6.68521 16.1395i −0.345223 0.833441i
\(376\) 0 0
\(377\) 0.870152 2.10073i 0.0448151 0.108193i
\(378\) 0 0
\(379\) 0.376618 + 0.0749139i 0.0193455 + 0.00384807i 0.204754 0.978814i \(-0.434361\pi\)
−0.185408 + 0.982662i \(0.559361\pi\)
\(380\) 0 0
\(381\) 21.0814 + 14.0861i 1.08003 + 0.721655i
\(382\) 0 0
\(383\) −17.7262 −0.905768 −0.452884 0.891569i \(-0.649605\pi\)
−0.452884 + 0.891569i \(0.649605\pi\)
\(384\) 0 0
\(385\) −1.78141 −0.0907890
\(386\) 0 0
\(387\) 19.6682 + 13.1419i 0.999792 + 0.668040i
\(388\) 0 0
\(389\) 7.58645 + 1.50904i 0.384648 + 0.0765113i 0.383627 0.923488i \(-0.374675\pi\)
0.00102139 + 0.999999i \(0.499675\pi\)
\(390\) 0 0
\(391\) 13.0500 31.5056i 0.659968 1.59330i
\(392\) 0 0
\(393\) 14.4699 + 34.9333i 0.729907 + 1.76215i
\(394\) 0 0
\(395\) −3.74613 5.60649i −0.188488 0.282093i
\(396\) 0 0
\(397\) −8.20788 + 1.63265i −0.411942 + 0.0819403i −0.396711 0.917944i \(-0.629848\pi\)
−0.0152310 + 0.999884i \(0.504848\pi\)
\(398\) 0 0
\(399\) 48.8895 + 48.8895i 2.44754 + 2.44754i
\(400\) 0 0
\(401\) −18.5993 + 18.5993i −0.928802 + 0.928802i −0.997629 0.0688263i \(-0.978075\pi\)
0.0688263 + 0.997629i \(0.478075\pi\)
\(402\) 0 0
\(403\) 0.556613 + 2.79828i 0.0277269 + 0.139392i
\(404\) 0 0
\(405\) 6.14338 4.10488i 0.305267 0.203973i
\(406\) 0 0
\(407\) −0.919044 + 0.380681i −0.0455553 + 0.0188696i
\(408\) 0 0
\(409\) 23.4672 + 9.72045i 1.16038 + 0.480645i 0.878001 0.478658i \(-0.158877\pi\)
0.282378 + 0.959303i \(0.408877\pi\)
\(410\) 0 0
\(411\) 7.26419 36.5195i 0.358316 1.80138i
\(412\) 0 0
\(413\) −1.84998 + 2.76869i −0.0910314 + 0.136238i
\(414\) 0 0
\(415\) 2.62271i 0.128744i
\(416\) 0 0
\(417\) 31.8680i 1.56058i
\(418\) 0 0
\(419\) 7.06866 10.5790i 0.345326 0.516818i −0.617632 0.786467i \(-0.711908\pi\)
0.962959 + 0.269650i \(0.0869079\pi\)
\(420\) 0 0
\(421\) 5.87200 29.5205i 0.286184 1.43874i −0.523575 0.851980i \(-0.675402\pi\)
0.809758 0.586763i \(-0.199598\pi\)
\(422\) 0 0
\(423\) −4.10790 1.70155i −0.199733 0.0827321i
\(424\) 0 0
\(425\) 17.5094 7.25264i 0.849332 0.351805i
\(426\) 0 0
\(427\) −14.8050 + 9.89240i −0.716465 + 0.478727i
\(428\) 0 0
\(429\) 0.449011 + 2.25733i 0.0216785 + 0.108985i
\(430\) 0 0
\(431\) −6.82858 + 6.82858i −0.328921 + 0.328921i −0.852176 0.523255i \(-0.824718\pi\)
0.523255 + 0.852176i \(0.324718\pi\)
\(432\) 0 0
\(433\) −4.84377 4.84377i −0.232777 0.232777i 0.581074 0.813851i \(-0.302633\pi\)
−0.813851 + 0.581074i \(0.802633\pi\)
\(434\) 0 0
\(435\) −2.26282 + 0.450102i −0.108494 + 0.0215807i
\(436\) 0 0
\(437\) −28.6124 42.8214i −1.36872 2.04843i
\(438\) 0 0
\(439\) 11.2574 + 27.1777i 0.537286 + 1.29712i 0.926611 + 0.376022i \(0.122708\pi\)
−0.389325 + 0.921101i \(0.627292\pi\)
\(440\) 0 0
\(441\) 13.4062 32.3653i 0.638389 1.54121i
\(442\) 0 0
\(443\) −31.0716 6.18053i −1.47626 0.293646i −0.609663 0.792661i \(-0.708695\pi\)
−0.866593 + 0.499015i \(0.833695\pi\)
\(444\) 0 0
\(445\) 8.59364 + 5.74209i 0.407378 + 0.272201i
\(446\) 0 0
\(447\) −14.1266 −0.668166
\(448\) 0 0
\(449\) 15.3871 0.726163 0.363082 0.931757i \(-0.381725\pi\)
0.363082 + 0.931757i \(0.381725\pi\)
\(450\) 0 0
\(451\) −2.89251 1.93271i −0.136203 0.0910079i
\(452\) 0 0
\(453\) 27.6227 + 5.49450i 1.29783 + 0.258154i
\(454\) 0 0
\(455\) −2.38958 + 5.76896i −0.112025 + 0.270453i
\(456\) 0 0
\(457\) 3.24557 + 7.83549i 0.151821 + 0.366529i 0.981431 0.191814i \(-0.0614372\pi\)
−0.829610 + 0.558343i \(0.811437\pi\)
\(458\) 0 0
\(459\) 1.18344 + 1.77115i 0.0552384 + 0.0826701i
\(460\) 0 0
\(461\) −24.4880 + 4.87097i −1.14052 + 0.226864i −0.728985 0.684530i \(-0.760007\pi\)
−0.411536 + 0.911394i \(0.635007\pi\)
\(462\) 0 0
\(463\) 19.0846 + 19.0846i 0.886939 + 0.886939i 0.994228 0.107289i \(-0.0342170\pi\)
−0.107289 + 0.994228i \(0.534217\pi\)
\(464\) 0 0
\(465\) 2.04702 2.04702i 0.0949284 0.0949284i
\(466\) 0 0
\(467\) −0.264167 1.32806i −0.0122242 0.0614552i 0.974192 0.225722i \(-0.0724741\pi\)
−0.986416 + 0.164267i \(0.947474\pi\)
\(468\) 0 0
\(469\) −13.4931 + 9.01581i −0.623054 + 0.416311i
\(470\) 0 0
\(471\) 32.7748 13.5758i 1.51018 0.625538i
\(472\) 0 0
\(473\) −4.08465 1.69192i −0.187813 0.0777945i
\(474\) 0 0
\(475\) 5.58387 28.0720i 0.256206 1.28803i
\(476\) 0 0
\(477\) −10.9807 + 16.4338i −0.502772 + 0.752451i
\(478\) 0 0
\(479\) 3.51984i 0.160826i −0.996762 0.0804128i \(-0.974376\pi\)
0.996762 0.0804128i \(-0.0256239\pi\)
\(480\) 0 0
\(481\) 3.48690i 0.158989i
\(482\) 0 0
\(483\) −46.8468 + 70.1112i −2.13160 + 3.19017i
\(484\) 0 0
\(485\) 0.518062 2.60448i 0.0235240 0.118263i
\(486\) 0 0
\(487\) −25.4932 10.5596i −1.15521 0.478503i −0.278932 0.960311i \(-0.589980\pi\)
−0.876277 + 0.481808i \(0.839980\pi\)
\(488\) 0 0
\(489\) 10.2112 4.22960i 0.461764 0.191269i
\(490\) 0 0
\(491\) −18.5780 + 12.4134i −0.838412 + 0.560209i −0.898997 0.437954i \(-0.855703\pi\)
0.0605855 + 0.998163i \(0.480703\pi\)
\(492\) 0 0
\(493\) −1.04263 5.24166i −0.0469578 0.236073i
\(494\) 0 0
\(495\) 0.796346 0.796346i 0.0357931 0.0357931i
\(496\) 0 0
\(497\) −2.59303 2.59303i −0.116313 0.116313i
\(498\) 0 0
\(499\) 7.61559 1.51483i 0.340921 0.0678133i −0.0216610 0.999765i \(-0.506895\pi\)
0.362582 + 0.931952i \(0.381895\pi\)
\(500\) 0 0
\(501\) 9.61886 + 14.3956i 0.429739 + 0.643150i
\(502\) 0 0
\(503\) −16.2329 39.1897i −0.723789 1.74738i −0.662259 0.749275i \(-0.730402\pi\)
−0.0615295 0.998105i \(-0.519598\pi\)
\(504\) 0 0
\(505\) −1.48059 + 3.57445i −0.0658852 + 0.159061i
\(506\) 0 0
\(507\) −22.7791 4.53104i −1.01165 0.201231i
\(508\) 0 0
\(509\) −27.0838 18.0968i −1.20047 0.802126i −0.215777 0.976443i \(-0.569229\pi\)
−0.984690 + 0.174316i \(0.944229\pi\)
\(510\) 0 0
\(511\) 3.38237 0.149627
\(512\) 0 0
\(513\) 3.21700 0.142034
\(514\) 0 0
\(515\) 1.31003 + 0.875337i 0.0577270 + 0.0385719i
\(516\) 0 0
\(517\) 0.815078 + 0.162129i 0.0358471 + 0.00713043i
\(518\) 0 0
\(519\) −15.0870 + 36.4233i −0.662246 + 1.59880i
\(520\) 0 0
\(521\) −9.90054 23.9020i −0.433750 1.04717i −0.978068 0.208287i \(-0.933211\pi\)
0.544318 0.838879i \(-0.316789\pi\)
\(522\) 0 0
\(523\) −11.2609 16.8531i −0.492404 0.736935i 0.499166 0.866507i \(-0.333640\pi\)
−0.991570 + 0.129571i \(0.958640\pi\)
\(524\) 0 0
\(525\) −45.9621 + 9.14243i −2.00595 + 0.399008i
\(526\) 0 0
\(527\) 4.74179 + 4.74179i 0.206556 + 0.206556i
\(528\) 0 0
\(529\) 28.1496 28.1496i 1.22390 1.22390i
\(530\) 0 0
\(531\) −0.410692 2.06469i −0.0178225 0.0895998i
\(532\) 0 0
\(533\) −10.1390 + 6.77464i −0.439167 + 0.293442i
\(534\) 0 0
\(535\) −3.04144 + 1.25981i −0.131493 + 0.0544662i
\(536\) 0 0
\(537\) 22.2389 + 9.21165i 0.959678 + 0.397512i
\(538\) 0 0
\(539\) −1.27738 + 6.42184i −0.0550208 + 0.276608i
\(540\) 0 0
\(541\) −22.9671 + 34.3728i −0.987435 + 1.47780i −0.112445 + 0.993658i \(0.535868\pi\)
−0.874989 + 0.484142i \(0.839132\pi\)
\(542\) 0 0
\(543\) 12.0813i 0.518459i
\(544\) 0 0
\(545\) 10.2396i 0.438615i
\(546\) 0 0
\(547\) 7.05928 10.5650i 0.301833 0.451725i −0.649288 0.760542i \(-0.724933\pi\)
0.951121 + 0.308817i \(0.0999332\pi\)
\(548\) 0 0
\(549\) 2.19610 11.0405i 0.0937271 0.471198i
\(550\) 0 0
\(551\) −7.45682 3.08872i −0.317671 0.131584i
\(552\) 0 0
\(553\) −35.6820 + 14.7800i −1.51735 + 0.628508i
\(554\) 0 0
\(555\) 2.94175 1.96562i 0.124870 0.0834358i
\(556\) 0 0
\(557\) 3.09194 + 15.5442i 0.131010 + 0.658630i 0.989351 + 0.145551i \(0.0464954\pi\)
−0.858341 + 0.513079i \(0.828505\pi\)
\(558\) 0 0
\(559\) −10.9583 + 10.9583i −0.463487 + 0.463487i
\(560\) 0 0
\(561\) 3.82513 + 3.82513i 0.161497 + 0.161497i
\(562\) 0 0
\(563\) 4.98076 0.990736i 0.209914 0.0417545i −0.0890130 0.996030i \(-0.528371\pi\)
0.298927 + 0.954276i \(0.403371\pi\)
\(564\) 0 0
\(565\) −0.230734 0.345317i −0.00970704 0.0145276i
\(566\) 0 0
\(567\) −16.1953 39.0990i −0.680141 1.64200i
\(568\) 0 0
\(569\) 10.4799 25.3007i 0.439340 1.06066i −0.536837 0.843686i \(-0.680381\pi\)
0.976177 0.216975i \(-0.0696189\pi\)
\(570\) 0 0
\(571\) 26.9468 + 5.36006i 1.12769 + 0.224311i 0.723474 0.690352i \(-0.242544\pi\)
0.404216 + 0.914664i \(0.367544\pi\)
\(572\) 0 0
\(573\) −41.2243 27.5452i −1.72217 1.15072i
\(574\) 0 0
\(575\) 34.9068 1.45572
\(576\) 0 0
\(577\) −42.3036 −1.76112 −0.880560 0.473935i \(-0.842833\pi\)
−0.880560 + 0.473935i \(0.842833\pi\)
\(578\) 0 0
\(579\) −31.7001 21.1813i −1.31741 0.880267i
\(580\) 0 0
\(581\) 14.7337 + 2.93073i 0.611259 + 0.121587i
\(582\) 0 0
\(583\) 1.41368 3.41293i 0.0585487 0.141349i
\(584\) 0 0
\(585\) −1.51069 3.64713i −0.0624593 0.150790i
\(586\) 0 0
\(587\) 0.763948 + 1.14333i 0.0315315 + 0.0471902i 0.846901 0.531751i \(-0.178466\pi\)
−0.815369 + 0.578942i \(0.803466\pi\)
\(588\) 0 0
\(589\) 9.93287 1.97577i 0.409277 0.0814102i
\(590\) 0 0
\(591\) −44.4235 44.4235i −1.82734 1.82734i
\(592\) 0 0
\(593\) 5.66121 5.66121i 0.232478 0.232478i −0.581248 0.813726i \(-0.697436\pi\)
0.813726 + 0.581248i \(0.197436\pi\)
\(594\) 0 0
\(595\) 2.86324 + 14.3945i 0.117381 + 0.590116i
\(596\) 0 0
\(597\) 29.3462 19.6085i 1.20106 0.802522i
\(598\) 0 0
\(599\) −12.4047 + 5.13818i −0.506841 + 0.209941i −0.621426 0.783473i \(-0.713446\pi\)
0.114585 + 0.993413i \(0.463446\pi\)
\(600\) 0 0
\(601\) −6.28652 2.60396i −0.256433 0.106218i 0.250764 0.968048i \(-0.419318\pi\)
−0.507197 + 0.861830i \(0.669318\pi\)
\(602\) 0 0
\(603\) 2.00150 10.0622i 0.0815072 0.409764i
\(604\) 0 0
\(605\) 4.59900 6.88289i 0.186976 0.279829i
\(606\) 0 0
\(607\) 31.2974i 1.27032i 0.772379 + 0.635161i \(0.219066\pi\)
−0.772379 + 0.635161i \(0.780934\pi\)
\(608\) 0 0
\(609\) 13.2149i 0.535496i
\(610\) 0 0
\(611\) 1.61839 2.42209i 0.0654730 0.0979873i
\(612\) 0 0
\(613\) 4.01591 20.1894i 0.162201 0.815441i −0.810922 0.585155i \(-0.801034\pi\)
0.973123 0.230286i \(-0.0739662\pi\)
\(614\) 0 0
\(615\) 11.4310 + 4.73486i 0.460941 + 0.190928i
\(616\) 0 0
\(617\) 0.720564 0.298468i 0.0290088 0.0120159i −0.368132 0.929774i \(-0.620002\pi\)
0.397141 + 0.917758i \(0.370002\pi\)
\(618\) 0 0
\(619\) 12.1862 8.14255i 0.489804 0.327277i −0.286022 0.958223i \(-0.592333\pi\)
0.775826 + 0.630946i \(0.217333\pi\)
\(620\) 0 0
\(621\) 0.765417 + 3.84801i 0.0307151 + 0.154415i
\(622\) 0 0
\(623\) 41.8606 41.8606i 1.67711 1.67711i
\(624\) 0 0
\(625\) 11.6123 + 11.6123i 0.464492 + 0.464492i
\(626\) 0 0
\(627\) 8.01269 1.59382i 0.319996 0.0636512i
\(628\) 0 0
\(629\) 4.55322 + 6.81438i 0.181549 + 0.271707i
\(630\) 0 0
\(631\) 14.7859 + 35.6964i 0.588619 + 1.42105i 0.884823 + 0.465927i \(0.154279\pi\)
−0.296204 + 0.955125i \(0.595721\pi\)
\(632\) 0 0
\(633\) −17.5452 + 42.3580i −0.697361 + 1.68358i
\(634\) 0 0
\(635\) 7.97191 + 1.58571i 0.316355 + 0.0629270i
\(636\) 0 0
\(637\) 19.0832 + 12.7510i 0.756103 + 0.505212i
\(638\) 0 0
\(639\) 2.31834 0.0917119
\(640\) 0 0
\(641\) −39.2736 −1.55121 −0.775607 0.631216i \(-0.782556\pi\)
−0.775607 + 0.631216i \(0.782556\pi\)
\(642\) 0 0
\(643\) 20.6027 + 13.7663i 0.812489 + 0.542888i 0.890988 0.454026i \(-0.150013\pi\)
−0.0784990 + 0.996914i \(0.525013\pi\)
\(644\) 0 0
\(645\) 15.4224 + 3.06771i 0.607257 + 0.120791i
\(646\) 0 0
\(647\) −15.7086 + 37.9240i −0.617570 + 1.49095i 0.236948 + 0.971522i \(0.423853\pi\)
−0.854517 + 0.519423i \(0.826147\pi\)
\(648\) 0 0
\(649\) 0.150571 + 0.363510i 0.00591042 + 0.0142690i
\(650\) 0 0
\(651\) −9.21225 13.7871i −0.361057 0.540360i
\(652\) 0 0
\(653\) 45.4088 9.03238i 1.77698 0.353464i 0.805873 0.592089i \(-0.201696\pi\)
0.971112 + 0.238624i \(0.0766965\pi\)
\(654\) 0 0
\(655\) 8.57125 + 8.57125i 0.334907 + 0.334907i
\(656\) 0 0
\(657\) −1.51203 + 1.51203i −0.0589898 + 0.0589898i
\(658\) 0 0
\(659\) −7.92659 39.8497i −0.308776 1.55232i −0.753983 0.656894i \(-0.771870\pi\)
0.445206 0.895428i \(-0.353130\pi\)
\(660\) 0 0
\(661\) −29.3540 + 19.6137i −1.14174 + 0.762886i −0.974800 0.223081i \(-0.928389\pi\)
−0.166940 + 0.985967i \(0.553389\pi\)
\(662\) 0 0
\(663\) 17.5184 7.25637i 0.680360 0.281814i
\(664\) 0 0
\(665\) 20.4777 + 8.48213i 0.794090 + 0.328923i
\(666\) 0 0
\(667\) 1.92037 9.65435i 0.0743570 0.373818i
\(668\) 0 0
\(669\) 12.9861 19.4351i 0.502073 0.751406i
\(670\) 0 0
\(671\) 2.10396i 0.0812223i
\(672\) 0 0
\(673\) 24.2851i 0.936122i −0.883696 0.468061i \(-0.844953\pi\)
0.883696 0.468061i \(-0.155047\pi\)
\(674\) 0 0
\(675\) −1.21140 + 1.81298i −0.0466266 + 0.0697817i
\(676\) 0 0
\(677\) −4.33107 + 21.7738i −0.166456 + 0.836833i 0.803827 + 0.594863i \(0.202794\pi\)
−0.970284 + 0.241970i \(0.922206\pi\)
\(678\) 0 0
\(679\) −14.0524 5.82070i −0.539282 0.223378i
\(680\) 0 0
\(681\) −8.49614 + 3.51922i −0.325573 + 0.134857i
\(682\) 0 0
\(683\) 12.0613 8.05912i 0.461514 0.308374i −0.302989 0.952994i \(-0.597985\pi\)
0.764503 + 0.644620i \(0.222985\pi\)
\(684\) 0 0
\(685\) −2.32875 11.7074i −0.0889768 0.447317i
\(686\) 0 0
\(687\) −15.3921 + 15.3921i −0.587244 + 0.587244i
\(688\) 0 0
\(689\) −9.15621 9.15621i −0.348824 0.348824i
\(690\) 0 0
\(691\) −3.89100 + 0.773968i −0.148021 + 0.0294431i −0.268544 0.963267i \(-0.586543\pi\)
0.120524 + 0.992710i \(0.461543\pi\)
\(692\) 0 0
\(693\) −3.58381 5.36355i −0.136138 0.203744i
\(694\) 0 0
\(695\) −3.90958 9.43855i −0.148299 0.358025i
\(696\) 0 0
\(697\) −10.9680 + 26.4791i −0.415442 + 1.00297i
\(698\) 0 0
\(699\) −6.50840 1.29460i −0.246170 0.0489663i
\(700\) 0 0
\(701\) 32.0550 + 21.4185i 1.21070 + 0.808965i 0.986208 0.165511i \(-0.0529272\pi\)
0.224494 + 0.974476i \(0.427927\pi\)
\(702\) 0 0
\(703\) 12.3772 0.466815
\(704\) 0 0
\(705\) −2.95573 −0.111319
\(706\) 0 0
\(707\) 18.4259 + 12.3118i 0.692979 + 0.463034i
\(708\) 0 0
\(709\) 14.3830 + 2.86095i 0.540164 + 0.107445i 0.457630 0.889143i \(-0.348699\pi\)
0.0825345 + 0.996588i \(0.473699\pi\)
\(710\) 0 0
\(711\) 9.34386 22.5581i 0.350422 0.845994i
\(712\) 0 0
\(713\) 4.72663 + 11.4111i 0.177014 + 0.427348i
\(714\) 0 0
\(715\) 0.409916 + 0.613483i 0.0153300 + 0.0229430i
\(716\) 0 0
\(717\) 29.1514 5.79857i 1.08868 0.216552i
\(718\) 0 0
\(719\) −16.4835 16.4835i −0.614730 0.614730i 0.329445 0.944175i \(-0.393138\pi\)
−0.944175 + 0.329445i \(0.893138\pi\)
\(720\) 0 0
\(721\) 6.38132 6.38132i 0.237653 0.237653i
\(722\) 0 0
\(723\) 10.7173 + 53.8793i 0.398579 + 2.00379i
\(724\) 0 0
\(725\) 4.54863 3.03930i 0.168932 0.112877i
\(726\) 0 0
\(727\) 1.94412 0.805280i 0.0721034 0.0298662i −0.346340 0.938109i \(-0.612576\pi\)
0.418444 + 0.908243i \(0.362576\pi\)
\(728\) 0 0
\(729\) 21.4155 + 8.87058i 0.793166 + 0.328540i
\(730\) 0 0
\(731\) −7.10614 + 35.7250i −0.262830 + 1.32134i
\(732\) 0 0
\(733\) 0.341596 0.511235i 0.0126171 0.0188829i −0.825107 0.564976i \(-0.808885\pi\)
0.837725 + 0.546093i \(0.183885\pi\)
\(734\) 0 0
\(735\) 23.2876i 0.858975i
\(736\) 0 0
\(737\) 1.91752i 0.0706327i
\(738\) 0 0
\(739\) −5.04853 + 7.55566i −0.185713 + 0.277939i −0.912630 0.408786i \(-0.865952\pi\)
0.726917 + 0.686725i \(0.240952\pi\)
\(740\) 0 0
\(741\) 5.58675 28.0865i 0.205234 1.03178i
\(742\) 0 0
\(743\) −38.3032 15.8657i −1.40521 0.582056i −0.454109 0.890946i \(-0.650042\pi\)
−0.951098 + 0.308890i \(0.900042\pi\)
\(744\) 0 0
\(745\) −4.18397 + 1.73306i −0.153289 + 0.0634943i
\(746\) 0 0
\(747\) −7.89658 + 5.27632i −0.288921 + 0.193051i
\(748\) 0 0
\(749\) 3.67865 + 18.4938i 0.134415 + 0.675750i
\(750\) 0 0
\(751\) −24.7263 + 24.7263i −0.902275 + 0.902275i −0.995633 0.0933574i \(-0.970240\pi\)
0.0933574 + 0.995633i \(0.470240\pi\)
\(752\) 0 0
\(753\) −40.3961 40.3961i −1.47212 1.47212i
\(754\) 0 0
\(755\) 8.85527 1.76142i 0.322276 0.0641047i
\(756\) 0 0
\(757\) −15.3171 22.9237i −0.556710 0.833175i 0.441226 0.897396i \(-0.354544\pi\)
−0.997936 + 0.0642212i \(0.979544\pi\)
\(758\) 0 0
\(759\) 3.81290 + 9.20514i 0.138399 + 0.334126i
\(760\) 0 0
\(761\) 2.39831 5.79004i 0.0869388 0.209889i −0.874430 0.485151i \(-0.838765\pi\)
0.961369 + 0.275262i \(0.0887646\pi\)
\(762\) 0 0
\(763\) 57.5234 + 11.4421i 2.08249 + 0.414232i
\(764\) 0 0
\(765\) −7.71475 5.15483i −0.278927 0.186373i
\(766\) 0 0
\(767\) 1.37918 0.0497992
\(768\) 0 0
\(769\) 13.9845 0.504295 0.252147 0.967689i \(-0.418863\pi\)
0.252147 + 0.967689i \(0.418863\pi\)
\(770\) 0 0
\(771\) 1.87790 + 1.25477i 0.0676307 + 0.0451894i
\(772\) 0 0
\(773\) −37.5256 7.46432i −1.34970 0.268473i −0.533286 0.845935i \(-0.679043\pi\)
−0.816418 + 0.577462i \(0.804043\pi\)
\(774\) 0 0
\(775\) −2.62685 + 6.34179i −0.0943594 + 0.227804i
\(776\) 0 0
\(777\) −7.75513 18.7225i −0.278214 0.671667i
\(778\) 0 0
\(779\) 24.0475 + 35.9896i 0.861590 + 1.28946i
\(780\) 0 0
\(781\) −0.424983 + 0.0845343i −0.0152071 + 0.00302488i
\(782\) 0 0
\(783\) 0.434781 + 0.434781i 0.0155378 + 0.0155378i
\(784\) 0 0
\(785\) 8.04164 8.04164i 0.287018 0.287018i
\(786\) 0 0
\(787\) −9.74437 48.9883i −0.347349 1.74624i −0.620439 0.784255i \(-0.713046\pi\)
0.273090 0.961989i \(-0.411954\pi\)
\(788\) 0 0
\(789\) −21.9352 + 14.6566i −0.780914 + 0.521790i
\(790\) 0 0
\(791\) −2.19774 + 0.910335i −0.0781427 + 0.0323678i
\(792\) 0 0
\(793\) 6.81351 + 2.82225i 0.241955 + 0.100221i
\(794\) 0 0
\(795\) −2.56322 + 12.8862i −0.0909081 + 0.457026i
\(796\) 0 0
\(797\) 24.7495 37.0403i 0.876674 1.31203i −0.0725281 0.997366i \(-0.523107\pi\)
0.949202 0.314668i \(-0.101893\pi\)
\(798\) 0 0
\(799\) 6.84674i 0.242220i
\(800\) 0 0
\(801\) 37.4260i 1.32238i
\(802\) 0 0
\(803\) 0.222042 0.332309i 0.00783568 0.0117269i
\(804\) 0 0
\(805\) −5.27366 + 26.5125i −0.185872 + 0.934442i
\(806\) 0 0
\(807\) 52.2884 + 21.6586i 1.84064 + 0.762417i
\(808\) 0 0
\(809\) 5.38797 2.23177i 0.189431 0.0784649i −0.285952 0.958244i \(-0.592310\pi\)
0.475383 + 0.879779i \(0.342310\pi\)
\(810\) 0 0
\(811\) −8.53124 + 5.70039i −0.299572 + 0.200168i −0.696267 0.717783i \(-0.745157\pi\)
0.396695 + 0.917951i \(0.370157\pi\)
\(812\) 0 0
\(813\) 1.45891 + 7.33444i 0.0511662 + 0.257230i
\(814\) 0 0
\(815\) 2.50541 2.50541i 0.0877608 0.0877608i
\(816\) 0 0
\(817\) 38.8979 + 38.8979i 1.36087 + 1.36087i
\(818\) 0 0
\(819\) −22.1768 + 4.41124i −0.774920 + 0.154141i
\(820\) 0 0
\(821\) 19.7190 + 29.5116i 0.688199 + 1.02996i 0.996890 + 0.0788007i \(0.0251091\pi\)
−0.308691 + 0.951162i \(0.599891\pi\)
\(822\) 0 0
\(823\) −0.550722 1.32956i −0.0191970 0.0463456i 0.913990 0.405736i \(-0.132985\pi\)
−0.933187 + 0.359390i \(0.882985\pi\)
\(824\) 0 0
\(825\) −2.11904 + 5.11582i −0.0737756 + 0.178110i
\(826\) 0 0
\(827\) 13.6122 + 2.70763i 0.473341 + 0.0941534i 0.425996 0.904725i \(-0.359924\pi\)
0.0473454 + 0.998879i \(0.484924\pi\)
\(828\) 0 0
\(829\) −8.09646 5.40988i −0.281202 0.187893i 0.406969 0.913442i \(-0.366586\pi\)
−0.688170 + 0.725549i \(0.741586\pi\)
\(830\) 0 0
\(831\) −20.7447 −0.719625
\(832\) 0 0
\(833\) 53.9441 1.86905
\(834\) 0 0
\(835\) 4.61494 + 3.08361i 0.159707 + 0.106713i
\(836\) 0 0
\(837\) −0.756697 0.150516i −0.0261553 0.00520261i
\(838\) 0 0
\(839\) 3.39992 8.20812i 0.117378 0.283376i −0.854261 0.519844i \(-0.825990\pi\)
0.971639 + 0.236468i \(0.0759900\pi\)
\(840\) 0 0
\(841\) 10.5075 + 25.3673i 0.362326 + 0.874733i
\(842\) 0 0
\(843\) 3.06100 + 4.58111i 0.105426 + 0.157782i
\(844\) 0 0
\(845\) −7.30249 + 1.45256i −0.251213 + 0.0499694i
\(846\) 0 0
\(847\) −33.5273 33.5273i −1.15201 1.15201i
\(848\) 0 0
\(849\) −40.6008 + 40.6008i −1.39342 + 1.39342i
\(850\) 0 0
\(851\) 2.94489 + 14.8050i 0.100950 + 0.507508i
\(852\) 0 0
\(853\) 18.5526 12.3964i 0.635228 0.424446i −0.195825 0.980639i \(-0.562738\pi\)
0.831053 + 0.556193i \(0.187738\pi\)
\(854\) 0 0
\(855\) −12.9459 + 5.36239i −0.442742 + 0.183390i
\(856\) 0 0
\(857\) −34.9162 14.4628i −1.19272 0.494039i −0.304077 0.952647i \(-0.598348\pi\)
−0.888639 + 0.458608i \(0.848348\pi\)
\(858\) 0 0
\(859\) −5.27751 + 26.5318i −0.180066 + 0.905255i 0.780063 + 0.625700i \(0.215187\pi\)
−0.960130 + 0.279554i \(0.909813\pi\)
\(860\) 0 0
\(861\) 39.3727 58.9254i 1.34182 2.00817i
\(862\) 0 0
\(863\) 21.2314i 0.722726i −0.932425 0.361363i \(-0.882311\pi\)
0.932425 0.361363i \(-0.117689\pi\)
\(864\) 0 0
\(865\) 12.6386i 0.429725i
\(866\) 0 0
\(867\) 2.02573 3.03172i 0.0687974 0.102963i
\(868\) 0 0
\(869\) −0.890314 + 4.47591i −0.0302019 + 0.151835i
\(870\) 0 0
\(871\) 6.20975 + 2.57216i 0.210409 + 0.0871544i
\(872\) 0 0
\(873\) 8.88391 3.67984i 0.300675 0.124544i
\(874\) 0 0
\(875\) −26.6714 + 17.8213i −0.901658 + 0.602469i
\(876\) 0 0
\(877\) −2.10738 10.5945i −0.0711613 0.357752i 0.928755 0.370694i \(-0.120880\pi\)
−0.999916 + 0.0129422i \(0.995880\pi\)
\(878\) 0 0
\(879\) 46.3140 46.3140i 1.56213 1.56213i
\(880\) 0 0
\(881\) −15.1953 15.1953i −0.511944 0.511944i 0.403178 0.915122i \(-0.367906\pi\)
−0.915122 + 0.403178i \(0.867906\pi\)
\(882\) 0 0
\(883\) −16.8801 + 3.35767i −0.568062 + 0.112995i −0.470761 0.882261i \(-0.656021\pi\)
−0.0973004 + 0.995255i \(0.531021\pi\)
\(884\) 0 0
\(885\) −0.777462 1.16355i −0.0261341 0.0391124i
\(886\) 0 0
\(887\) 7.36626 + 17.7837i 0.247335 + 0.597119i 0.997976 0.0635908i \(-0.0202552\pi\)
−0.750641 + 0.660710i \(0.770255\pi\)
\(888\) 0 0
\(889\) 17.8163 43.0123i 0.597539 1.44259i
\(890\) 0 0
\(891\) −4.90454 0.975574i −0.164308 0.0326830i
\(892\) 0 0
\(893\) −8.59753 5.74468i −0.287705 0.192239i
\(894\) 0 0
\(895\) 7.71672 0.257941
\(896\) 0 0
\(897\) 34.9248 1.16611
\(898\) 0 0
\(899\) 1.60946 + 1.07541i 0.0536786 + 0.0358669i
\(900\) 0 0
\(901\) −29.8500 5.93754i −0.994448 0.197808i
\(902\) 0 0
\(903\) 34.4673 83.2114i 1.14700 2.76910i
\(904\) 0 0
\(905\) 1.48214 + 3.57820i 0.0492680 + 0.118943i
\(906\) 0 0
\(907\) −2.40873 3.60492i −0.0799806 0.119699i 0.789322 0.613979i \(-0.210432\pi\)
−0.869303 + 0.494279i \(0.835432\pi\)
\(908\) 0 0
\(909\) −13.7407 + 2.73320i −0.455752 + 0.0906547i
\(910\) 0 0
\(911\) 32.8907 + 32.8907i 1.08972 + 1.08972i 0.995557 + 0.0941591i \(0.0300162\pi\)
0.0941591 + 0.995557i \(0.469984\pi\)
\(912\) 0 0
\(913\) 1.25516 1.25516i 0.0415397 0.0415397i
\(914\) 0 0
\(915\) −1.45986 7.33921i −0.0482615 0.242627i
\(916\) 0 0
\(917\) 57.7291 38.5734i 1.90638 1.27381i
\(918\) 0 0
\(919\) −31.3195 + 12.9730i −1.03314 + 0.427939i −0.833843 0.552001i \(-0.813864\pi\)
−0.199292 + 0.979940i \(0.563864\pi\)
\(920\) 0 0
\(921\) −72.8086 30.1583i −2.39912 0.993750i
\(922\) 0 0
\(923\) −0.296314 + 1.48967i −0.00975328 + 0.0490331i
\(924\) 0 0
\(925\) −4.66077 + 6.97533i −0.153245 + 0.229347i
\(926\) 0 0
\(927\) 5.70530i 0.187387i
\(928\) 0 0
\(929\) 10.7407i 0.352390i 0.984355 + 0.176195i \(0.0563789\pi\)
−0.984355 + 0.176195i \(0.943621\pi\)
\(930\) 0 0
\(931\) 45.2612 67.7382i 1.48338 2.22003i
\(932\) 0 0
\(933\) −5.26120 + 26.4498i −0.172244 + 0.865929i
\(934\) 0 0
\(935\) 1.60218 + 0.663645i 0.0523969 + 0.0217035i
\(936\) 0 0
\(937\) 49.2806 20.4127i 1.60993 0.666853i 0.617151 0.786845i \(-0.288287\pi\)
0.992775 + 0.119992i \(0.0382869\pi\)
\(938\) 0 0
\(939\) 19.7828 13.2184i 0.645587 0.431367i
\(940\) 0 0
\(941\) 5.66109 + 28.4602i 0.184546 + 0.927777i 0.956418 + 0.292000i \(0.0943206\pi\)
−0.771872 + 0.635778i \(0.780679\pi\)
\(942\) 0 0
\(943\) −37.3273 + 37.3273i −1.21554 + 1.21554i
\(944\) 0 0
\(945\) −1.19398 1.19398i −0.0388402 0.0388402i
\(946\) 0 0
\(947\) −23.1134 + 4.59754i −0.751084 + 0.149400i −0.555764 0.831340i \(-0.687574\pi\)
−0.195319 + 0.980740i \(0.562574\pi\)
\(948\) 0 0
\(949\) −0.778311 1.16482i −0.0252651 0.0378118i
\(950\) 0 0
\(951\) 16.4056 + 39.6067i 0.531989 + 1.28434i
\(952\) 0 0
\(953\) −17.9673 + 43.3769i −0.582018 + 1.40512i 0.308963 + 0.951074i \(0.400018\pi\)
−0.890981 + 0.454041i \(0.849982\pi\)
\(954\) 0 0
\(955\) −15.5889 3.10083i −0.504446 0.100341i
\(956\) 0 0
\(957\) 1.29833 + 0.867516i 0.0419691 + 0.0280428i
\(958\) 0 0
\(959\) −68.3716 −2.20783
\(960\) 0 0
\(961\) 28.5712 0.921651
\(962\) 0 0
\(963\) −9.91181 6.62286i −0.319404 0.213419i
\(964\) 0 0
\(965\) −11.9874 2.38443i −0.385887 0.0767576i
\(966\) 0 0
\(967\) 4.97953 12.0217i 0.160131 0.386590i −0.823367 0.567509i \(-0.807907\pi\)
0.983498 + 0.180919i \(0.0579071\pi\)
\(968\) 0 0
\(969\) −25.7574 62.1840i −0.827448 1.99764i
\(970\) 0 0
\(971\) −20.1628 30.1758i −0.647055 0.968386i −0.999470 0.0325425i \(-0.989640\pi\)
0.352415 0.935844i \(-0.385360\pi\)
\(972\) 0 0
\(973\) −57.3922 + 11.4160i −1.83991 + 0.365981i
\(974\) 0 0
\(975\) 13.7247 + 13.7247i 0.439543 + 0.439543i
\(976\) 0 0
\(977\) −40.4140 + 40.4140i −1.29296 + 1.29296i −0.360009 + 0.932949i \(0.617226\pi\)
−0.932949 + 0.360009i \(0.882774\pi\)
\(978\) 0 0
\(979\) −1.36468 6.86070i −0.0436153 0.219269i
\(980\) 0 0
\(981\) −30.8298 + 20.5998i −0.984319 + 0.657701i
\(982\) 0 0
\(983\) 35.5045 14.7065i 1.13242 0.469063i 0.263816 0.964573i \(-0.415019\pi\)
0.868602 + 0.495510i \(0.165019\pi\)
\(984\) 0 0
\(985\) −18.6071 7.70731i −0.592871 0.245575i
\(986\) 0 0
\(987\) −3.30285 + 16.6046i −0.105131 + 0.528529i
\(988\) 0 0
\(989\) −37.2727 + 55.7826i −1.18520 + 1.77378i
\(990\) 0 0
\(991\) 16.3018i 0.517845i −0.965898 0.258922i \(-0.916633\pi\)
0.965898 0.258922i \(-0.0833674\pi\)
\(992\) 0 0
\(993\) 41.9955i 1.33269i
\(994\) 0 0
\(995\) 6.28607 9.40777i 0.199282 0.298246i
\(996\) 0 0
\(997\) 3.51164 17.6542i 0.111215 0.559114i −0.884493 0.466554i \(-0.845495\pi\)
0.995707 0.0925594i \(-0.0295048\pi\)
\(998\) 0 0
\(999\) −0.871135 0.360836i −0.0275615 0.0114163i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 256.2.i.a.113.6 56
4.3 odd 2 64.2.i.a.5.7 56
8.3 odd 2 512.2.i.b.481.6 56
8.5 even 2 512.2.i.a.481.2 56
12.11 even 2 576.2.bd.a.325.1 56
64.13 even 16 inner 256.2.i.a.145.6 56
64.19 odd 16 512.2.i.b.33.6 56
64.45 even 16 512.2.i.a.33.2 56
64.51 odd 16 64.2.i.a.13.7 yes 56
192.179 even 16 576.2.bd.a.397.1 56
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
64.2.i.a.5.7 56 4.3 odd 2
64.2.i.a.13.7 yes 56 64.51 odd 16
256.2.i.a.113.6 56 1.1 even 1 trivial
256.2.i.a.145.6 56 64.13 even 16 inner
512.2.i.a.33.2 56 64.45 even 16
512.2.i.a.481.2 56 8.5 even 2
512.2.i.b.33.6 56 64.19 odd 16
512.2.i.b.481.6 56 8.3 odd 2
576.2.bd.a.325.1 56 12.11 even 2
576.2.bd.a.397.1 56 192.179 even 16