Properties

Label 512.2.i.a.481.2
Level $512$
Weight $2$
Character 512.481
Analytic conductor $4.088$
Analytic rank $0$
Dimension $56$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [512,2,Mod(33,512)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(512, base_ring=CyclotomicField(16))
 
chi = DirichletCharacter(H, H._module([0, 15]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("512.33");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 512 = 2^{9} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 512.i (of order \(16\), degree \(8\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.08834058349\)
Analytic rank: \(0\)
Dimension: \(56\)
Relative dimension: \(7\) over \(\Q(\zeta_{16})\)
Twist minimal: no (minimal twist has level 64)
Sato-Tate group: $\mathrm{SU}(2)[C_{16}]$

Embedding invariants

Embedding label 481.2
Character \(\chi\) \(=\) 512.481
Dual form 512.2.i.a.33.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.00147 - 1.33734i) q^{3} +(-0.756852 - 0.150547i) q^{5} +(1.69148 - 4.08359i) q^{7} +(1.06935 + 2.58163i) q^{9} +(0.290161 + 0.434257i) q^{11} +(1.79553 - 0.357153i) q^{13} +(1.31348 + 1.31348i) q^{15} +(-3.04259 + 3.04259i) q^{17} +(-1.26776 - 6.37347i) q^{19} +(-8.84657 + 5.91109i) q^{21} +(-7.32197 + 3.03286i) q^{23} +(-4.06924 - 1.68553i) q^{25} +(-0.0965796 + 0.485538i) q^{27} +(0.690042 - 1.03272i) q^{29} -1.55847i q^{31} -1.25719i q^{33} +(-1.89497 + 2.83602i) q^{35} +(-0.371584 + 1.86808i) q^{37} +(-4.07133 - 1.68640i) q^{39} +(6.15380 - 2.54899i) q^{41} +(-7.03859 + 4.70304i) q^{43} +(-0.420680 - 2.11490i) q^{45} +(-1.12515 + 1.12515i) q^{47} +(-8.86483 - 8.86483i) q^{49} +(10.1586 - 2.02068i) q^{51} +(-3.92962 - 5.88109i) q^{53} +(-0.154233 - 0.372351i) q^{55} +(-5.98610 + 14.4517i) q^{57} +(0.738882 + 0.146973i) q^{59} +(3.34952 + 2.23808i) q^{61} +12.3511 q^{63} -1.41272 q^{65} +(3.05271 + 2.03976i) q^{67} +(18.7106 + 3.72178i) q^{69} +(0.317495 - 0.766500i) q^{71} +(0.292843 + 0.706986i) q^{73} +(5.89032 + 8.81548i) q^{75} +(2.26413 - 0.450363i) q^{77} +(-6.17863 - 6.17863i) q^{79} +(6.77032 - 6.77032i) q^{81} +(-0.663054 - 3.33340i) q^{83} +(2.76085 - 1.84474i) q^{85} +(-2.76219 + 1.14414i) q^{87} +(12.3740 + 5.12547i) q^{89} +(1.57863 - 7.93632i) q^{91} +(-2.08420 + 3.11923i) q^{93} +5.01463i q^{95} -3.44120i q^{97} +(-0.810809 + 1.21346i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 56 q - 8 q^{3} + 8 q^{5} + 8 q^{7} - 8 q^{9} - 8 q^{11} + 8 q^{13} + 8 q^{15} - 8 q^{17} - 8 q^{19} + 8 q^{21} + 8 q^{23} - 8 q^{25} - 8 q^{27} + 8 q^{29} - 8 q^{35} + 8 q^{37} + 8 q^{39} - 8 q^{41} - 8 q^{43}+ \cdots + 16 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/512\mathbb{Z}\right)^\times\).

\(n\) \(5\) \(511\)
\(\chi(n)\) \(e\left(\frac{1}{16}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −2.00147 1.33734i −1.15555 0.772112i −0.178250 0.983985i \(-0.557044\pi\)
−0.977297 + 0.211873i \(0.932044\pi\)
\(4\) 0 0
\(5\) −0.756852 0.150547i −0.338474 0.0673268i 0.0229268 0.999737i \(-0.492702\pi\)
−0.361401 + 0.932410i \(0.617702\pi\)
\(6\) 0 0
\(7\) 1.69148 4.08359i 0.639318 1.54345i −0.188272 0.982117i \(-0.560289\pi\)
0.827590 0.561333i \(-0.189711\pi\)
\(8\) 0 0
\(9\) 1.06935 + 2.58163i 0.356449 + 0.860545i
\(10\) 0 0
\(11\) 0.290161 + 0.434257i 0.0874869 + 0.130933i 0.872632 0.488379i \(-0.162412\pi\)
−0.785145 + 0.619312i \(0.787412\pi\)
\(12\) 0 0
\(13\) 1.79553 0.357153i 0.497991 0.0990565i 0.0602967 0.998180i \(-0.480795\pi\)
0.437694 + 0.899124i \(0.355795\pi\)
\(14\) 0 0
\(15\) 1.31348 + 1.31348i 0.339140 + 0.339140i
\(16\) 0 0
\(17\) −3.04259 + 3.04259i −0.737937 + 0.737937i −0.972179 0.234241i \(-0.924739\pi\)
0.234241 + 0.972179i \(0.424739\pi\)
\(18\) 0 0
\(19\) −1.26776 6.37347i −0.290845 1.46217i −0.799220 0.601039i \(-0.794754\pi\)
0.508375 0.861136i \(-0.330246\pi\)
\(20\) 0 0
\(21\) −8.84657 + 5.91109i −1.93048 + 1.28990i
\(22\) 0 0
\(23\) −7.32197 + 3.03286i −1.52674 + 0.632395i −0.978928 0.204208i \(-0.934538\pi\)
−0.547810 + 0.836603i \(0.684538\pi\)
\(24\) 0 0
\(25\) −4.06924 1.68553i −0.813847 0.337107i
\(26\) 0 0
\(27\) −0.0965796 + 0.485538i −0.0185867 + 0.0934419i
\(28\) 0 0
\(29\) 0.690042 1.03272i 0.128138 0.191771i −0.761854 0.647749i \(-0.775710\pi\)
0.889991 + 0.455978i \(0.150710\pi\)
\(30\) 0 0
\(31\) 1.55847i 0.279910i −0.990158 0.139955i \(-0.955304\pi\)
0.990158 0.139955i \(-0.0446957\pi\)
\(32\) 0 0
\(33\) 1.25719i 0.218849i
\(34\) 0 0
\(35\) −1.89497 + 2.83602i −0.320308 + 0.479375i
\(36\) 0 0
\(37\) −0.371584 + 1.86808i −0.0610880 + 0.307110i −0.999234 0.0391295i \(-0.987542\pi\)
0.938146 + 0.346239i \(0.112542\pi\)
\(38\) 0 0
\(39\) −4.07133 1.68640i −0.651935 0.270040i
\(40\) 0 0
\(41\) 6.15380 2.54899i 0.961062 0.398085i 0.153685 0.988120i \(-0.450886\pi\)
0.807378 + 0.590035i \(0.200886\pi\)
\(42\) 0 0
\(43\) −7.03859 + 4.70304i −1.07338 + 0.717206i −0.961025 0.276462i \(-0.910838\pi\)
−0.112350 + 0.993669i \(0.535838\pi\)
\(44\) 0 0
\(45\) −0.420680 2.11490i −0.0627113 0.315271i
\(46\) 0 0
\(47\) −1.12515 + 1.12515i −0.164120 + 0.164120i −0.784389 0.620269i \(-0.787023\pi\)
0.620269 + 0.784389i \(0.287023\pi\)
\(48\) 0 0
\(49\) −8.86483 8.86483i −1.26640 1.26640i
\(50\) 0 0
\(51\) 10.1586 2.02068i 1.42249 0.282951i
\(52\) 0 0
\(53\) −3.92962 5.88109i −0.539775 0.807830i 0.456882 0.889527i \(-0.348966\pi\)
−0.996657 + 0.0816971i \(0.973966\pi\)
\(54\) 0 0
\(55\) −0.154233 0.372351i −0.0207968 0.0502078i
\(56\) 0 0
\(57\) −5.98610 + 14.4517i −0.792878 + 1.91418i
\(58\) 0 0
\(59\) 0.738882 + 0.146973i 0.0961942 + 0.0191342i 0.242953 0.970038i \(-0.421884\pi\)
−0.146758 + 0.989172i \(0.546884\pi\)
\(60\) 0 0
\(61\) 3.34952 + 2.23808i 0.428862 + 0.286556i 0.751208 0.660065i \(-0.229471\pi\)
−0.322346 + 0.946622i \(0.604471\pi\)
\(62\) 0 0
\(63\) 12.3511 1.55609
\(64\) 0 0
\(65\) −1.41272 −0.175226
\(66\) 0 0
\(67\) 3.05271 + 2.03976i 0.372948 + 0.249196i 0.727892 0.685692i \(-0.240500\pi\)
−0.354944 + 0.934888i \(0.615500\pi\)
\(68\) 0 0
\(69\) 18.7106 + 3.72178i 2.25250 + 0.448050i
\(70\) 0 0
\(71\) 0.317495 0.766500i 0.0376797 0.0909668i −0.903919 0.427703i \(-0.859323\pi\)
0.941599 + 0.336736i \(0.109323\pi\)
\(72\) 0 0
\(73\) 0.292843 + 0.706986i 0.0342747 + 0.0827464i 0.940090 0.340926i \(-0.110741\pi\)
−0.905815 + 0.423673i \(0.860741\pi\)
\(74\) 0 0
\(75\) 5.89032 + 8.81548i 0.680155 + 1.01792i
\(76\) 0 0
\(77\) 2.26413 0.450363i 0.258021 0.0513236i
\(78\) 0 0
\(79\) −6.17863 6.17863i −0.695150 0.695150i 0.268210 0.963360i \(-0.413568\pi\)
−0.963360 + 0.268210i \(0.913568\pi\)
\(80\) 0 0
\(81\) 6.77032 6.77032i 0.752258 0.752258i
\(82\) 0 0
\(83\) −0.663054 3.33340i −0.0727796 0.365888i 0.927182 0.374610i \(-0.122224\pi\)
−0.999962 + 0.00872251i \(0.997224\pi\)
\(84\) 0 0
\(85\) 2.76085 1.84474i 0.299456 0.200090i
\(86\) 0 0
\(87\) −2.76219 + 1.14414i −0.296138 + 0.122664i
\(88\) 0 0
\(89\) 12.3740 + 5.12547i 1.31164 + 0.543299i 0.925362 0.379084i \(-0.123761\pi\)
0.386277 + 0.922383i \(0.373761\pi\)
\(90\) 0 0
\(91\) 1.57863 7.93632i 0.165486 0.831953i
\(92\) 0 0
\(93\) −2.08420 + 3.11923i −0.216122 + 0.323449i
\(94\) 0 0
\(95\) 5.01463i 0.514490i
\(96\) 0 0
\(97\) 3.44120i 0.349401i −0.984622 0.174700i \(-0.944104\pi\)
0.984622 0.174700i \(-0.0558956\pi\)
\(98\) 0 0
\(99\) −0.810809 + 1.21346i −0.0814894 + 0.121958i
\(100\) 0 0
\(101\) 0.978121 4.91735i 0.0973267 0.489294i −0.901120 0.433571i \(-0.857253\pi\)
0.998446 0.0557237i \(-0.0177466\pi\)
\(102\) 0 0
\(103\) 1.88632 + 0.781338i 0.185864 + 0.0769875i 0.473675 0.880700i \(-0.342927\pi\)
−0.287810 + 0.957687i \(0.592927\pi\)
\(104\) 0 0
\(105\) 7.58544 3.14199i 0.740263 0.306627i
\(106\) 0 0
\(107\) 3.54710 2.37010i 0.342911 0.229126i −0.372174 0.928163i \(-0.621388\pi\)
0.715086 + 0.699037i \(0.246388\pi\)
\(108\) 0 0
\(109\) −2.58869 13.0142i −0.247952 1.24654i −0.881258 0.472636i \(-0.843303\pi\)
0.633306 0.773901i \(-0.281697\pi\)
\(110\) 0 0
\(111\) 3.24196 3.24196i 0.307713 0.307713i
\(112\) 0 0
\(113\) −0.380557 0.380557i −0.0357998 0.0357998i 0.688980 0.724780i \(-0.258059\pi\)
−0.724780 + 0.688980i \(0.758059\pi\)
\(114\) 0 0
\(115\) 5.99824 1.19312i 0.559339 0.111259i
\(116\) 0 0
\(117\) 2.84209 + 4.25348i 0.262751 + 0.393235i
\(118\) 0 0
\(119\) 7.27821 + 17.5712i 0.667193 + 1.61075i
\(120\) 0 0
\(121\) 4.10513 9.91067i 0.373194 0.900970i
\(122\) 0 0
\(123\) −15.7255 3.12799i −1.41792 0.282042i
\(124\) 0 0
\(125\) 6.03420 + 4.03192i 0.539715 + 0.360626i
\(126\) 0 0
\(127\) 10.5330 0.934651 0.467325 0.884085i \(-0.345218\pi\)
0.467325 + 0.884085i \(0.345218\pi\)
\(128\) 0 0
\(129\) 20.3771 1.79410
\(130\) 0 0
\(131\) −13.0608 8.72693i −1.14112 0.762475i −0.166438 0.986052i \(-0.553227\pi\)
−0.974686 + 0.223577i \(0.928227\pi\)
\(132\) 0 0
\(133\) −28.1710 5.60356i −2.44274 0.485890i
\(134\) 0 0
\(135\) 0.146193 0.352941i 0.0125823 0.0303763i
\(136\) 0 0
\(137\) −5.91955 14.2911i −0.505742 1.22097i −0.946313 0.323251i \(-0.895224\pi\)
0.440572 0.897717i \(-0.354776\pi\)
\(138\) 0 0
\(139\) 7.35516 + 11.0078i 0.623856 + 0.933667i 0.999975 + 0.00709534i \(0.00225854\pi\)
−0.376119 + 0.926572i \(0.622741\pi\)
\(140\) 0 0
\(141\) 3.75665 0.747245i 0.316367 0.0629294i
\(142\) 0 0
\(143\) 0.676090 + 0.676090i 0.0565375 + 0.0565375i
\(144\) 0 0
\(145\) −0.677733 + 0.677733i −0.0562826 + 0.0562826i
\(146\) 0 0
\(147\) 5.88739 + 29.5979i 0.485584 + 2.44120i
\(148\) 0 0
\(149\) 4.87958 3.26043i 0.399751 0.267105i −0.339404 0.940641i \(-0.610225\pi\)
0.739155 + 0.673536i \(0.235225\pi\)
\(150\) 0 0
\(151\) 10.8095 4.47745i 0.879666 0.364369i 0.103298 0.994650i \(-0.467060\pi\)
0.776367 + 0.630281i \(0.217060\pi\)
\(152\) 0 0
\(153\) −11.1085 4.60127i −0.898065 0.371991i
\(154\) 0 0
\(155\) −0.234623 + 1.17953i −0.0188454 + 0.0947423i
\(156\) 0 0
\(157\) −8.18769 + 12.2537i −0.653449 + 0.977955i 0.345766 + 0.938321i \(0.387619\pi\)
−0.999214 + 0.0396342i \(0.987381\pi\)
\(158\) 0 0
\(159\) 17.0260i 1.35025i
\(160\) 0 0
\(161\) 35.0299i 2.76074i
\(162\) 0 0
\(163\) −2.55092 + 3.81772i −0.199803 + 0.299027i −0.917818 0.397001i \(-0.870051\pi\)
0.718015 + 0.696028i \(0.245051\pi\)
\(164\) 0 0
\(165\) −0.189267 + 0.951510i −0.0147344 + 0.0740749i
\(166\) 0 0
\(167\) 6.64505 + 2.75247i 0.514209 + 0.212992i 0.624671 0.780888i \(-0.285233\pi\)
−0.110462 + 0.993880i \(0.535233\pi\)
\(168\) 0 0
\(169\) −8.91406 + 3.69232i −0.685697 + 0.284025i
\(170\) 0 0
\(171\) 15.0983 10.0884i 1.15460 0.771476i
\(172\) 0 0
\(173\) −3.19519 16.0633i −0.242926 1.22127i −0.888968 0.457970i \(-0.848577\pi\)
0.646042 0.763302i \(-0.276423\pi\)
\(174\) 0 0
\(175\) −13.7660 + 13.7660i −1.04061 + 1.04061i
\(176\) 0 0
\(177\) −1.28230 1.28230i −0.0963832 0.0963832i
\(178\) 0 0
\(179\) −9.80775 + 1.95088i −0.733066 + 0.145816i −0.547488 0.836814i \(-0.684416\pi\)
−0.185578 + 0.982630i \(0.559416\pi\)
\(180\) 0 0
\(181\) −2.78837 4.17310i −0.207258 0.310184i 0.713248 0.700912i \(-0.247223\pi\)
−0.920506 + 0.390728i \(0.872223\pi\)
\(182\) 0 0
\(183\) −3.71089 8.95888i −0.274317 0.662259i
\(184\) 0 0
\(185\) 0.562468 1.35792i 0.0413534 0.0998360i
\(186\) 0 0
\(187\) −2.20411 0.438425i −0.161180 0.0320608i
\(188\) 0 0
\(189\) 1.81937 + 1.21567i 0.132340 + 0.0884268i
\(190\) 0 0
\(191\) −20.5971 −1.49035 −0.745176 0.666868i \(-0.767634\pi\)
−0.745176 + 0.666868i \(0.767634\pi\)
\(192\) 0 0
\(193\) −15.8384 −1.14008 −0.570038 0.821618i \(-0.693072\pi\)
−0.570038 + 0.821618i \(0.693072\pi\)
\(194\) 0 0
\(195\) 2.82751 + 1.88928i 0.202482 + 0.135294i
\(196\) 0 0
\(197\) 25.5976 + 5.09169i 1.82376 + 0.362768i 0.983712 0.179750i \(-0.0575290\pi\)
0.840044 + 0.542518i \(0.182529\pi\)
\(198\) 0 0
\(199\) 5.61103 13.5462i 0.397756 0.960267i −0.590442 0.807080i \(-0.701046\pi\)
0.988197 0.153187i \(-0.0489536\pi\)
\(200\) 0 0
\(201\) −3.38206 8.16501i −0.238552 0.575916i
\(202\) 0 0
\(203\) −3.05001 4.56467i −0.214069 0.320377i
\(204\) 0 0
\(205\) −5.04126 + 1.00277i −0.352097 + 0.0700364i
\(206\) 0 0
\(207\) −15.6595 15.6595i −1.08841 1.08841i
\(208\) 0 0
\(209\) 2.39987 2.39987i 0.166002 0.166002i
\(210\) 0 0
\(211\) −3.71581 18.6806i −0.255807 1.28603i −0.868493 0.495701i \(-0.834911\pi\)
0.612686 0.790326i \(-0.290089\pi\)
\(212\) 0 0
\(213\) −1.66052 + 1.10953i −0.113777 + 0.0760235i
\(214\) 0 0
\(215\) 6.03520 2.49986i 0.411597 0.170489i
\(216\) 0 0
\(217\) −6.36415 2.63612i −0.432027 0.178951i
\(218\) 0 0
\(219\) 0.359363 1.80664i 0.0242835 0.122081i
\(220\) 0 0
\(221\) −4.37640 + 6.54974i −0.294388 + 0.440583i
\(222\) 0 0
\(223\) 9.71045i 0.650260i −0.945669 0.325130i \(-0.894592\pi\)
0.945669 0.325130i \(-0.105408\pi\)
\(224\) 0 0
\(225\) 12.3077i 0.820514i
\(226\) 0 0
\(227\) 2.12248 3.17651i 0.140874 0.210833i −0.754323 0.656503i \(-0.772035\pi\)
0.895197 + 0.445671i \(0.147035\pi\)
\(228\) 0 0
\(229\) 1.76419 8.86919i 0.116581 0.586093i −0.877692 0.479225i \(-0.840918\pi\)
0.994273 0.106868i \(-0.0340822\pi\)
\(230\) 0 0
\(231\) −5.13386 2.12651i −0.337783 0.139914i
\(232\) 0 0
\(233\) −2.54691 + 1.05496i −0.166854 + 0.0691130i −0.464547 0.885549i \(-0.653783\pi\)
0.297693 + 0.954662i \(0.403783\pi\)
\(234\) 0 0
\(235\) 1.02096 0.682183i 0.0666000 0.0445007i
\(236\) 0 0
\(237\) 4.10341 + 20.6292i 0.266545 + 1.34001i
\(238\) 0 0
\(239\) 8.73109 8.73109i 0.564767 0.564767i −0.365891 0.930658i \(-0.619236\pi\)
0.930658 + 0.365891i \(0.119236\pi\)
\(240\) 0 0
\(241\) 16.1373 + 16.1373i 1.03949 + 1.03949i 0.999187 + 0.0403070i \(0.0128336\pi\)
0.0403070 + 0.999187i \(0.487166\pi\)
\(242\) 0 0
\(243\) −21.1482 + 4.20663i −1.35666 + 0.269856i
\(244\) 0 0
\(245\) 5.37479 + 8.04394i 0.343383 + 0.513908i
\(246\) 0 0
\(247\) −4.55261 10.9910i −0.289676 0.699339i
\(248\) 0 0
\(249\) −3.13080 + 7.55841i −0.198406 + 0.478995i
\(250\) 0 0
\(251\) 23.2770 + 4.63008i 1.46923 + 0.292248i 0.863874 0.503708i \(-0.168031\pi\)
0.605355 + 0.795956i \(0.293031\pi\)
\(252\) 0 0
\(253\) −3.44159 2.29960i −0.216371 0.144575i
\(254\) 0 0
\(255\) −7.99278 −0.500527
\(256\) 0 0
\(257\) 0.938259 0.0585270 0.0292635 0.999572i \(-0.490684\pi\)
0.0292635 + 0.999572i \(0.490684\pi\)
\(258\) 0 0
\(259\) 6.99993 + 4.67720i 0.434954 + 0.290627i
\(260\) 0 0
\(261\) 3.40400 + 0.677098i 0.210702 + 0.0419113i
\(262\) 0 0
\(263\) −4.19405 + 10.1253i −0.258616 + 0.624354i −0.998847 0.0479979i \(-0.984716\pi\)
0.740231 + 0.672352i \(0.234716\pi\)
\(264\) 0 0
\(265\) 2.08876 + 5.04271i 0.128311 + 0.309771i
\(266\) 0 0
\(267\) −17.9116 26.8066i −1.09617 1.64054i
\(268\) 0 0
\(269\) −23.0601 + 4.58694i −1.40600 + 0.279671i −0.839038 0.544073i \(-0.816882\pi\)
−0.566963 + 0.823744i \(0.691882\pi\)
\(270\) 0 0
\(271\) 2.19673 + 2.19673i 0.133442 + 0.133442i 0.770673 0.637231i \(-0.219920\pi\)
−0.637231 + 0.770673i \(0.719920\pi\)
\(272\) 0 0
\(273\) −13.7731 + 13.7731i −0.833587 + 0.833587i
\(274\) 0 0
\(275\) −0.448780 2.25617i −0.0270625 0.136052i
\(276\) 0 0
\(277\) 7.16558 4.78789i 0.430538 0.287676i −0.321358 0.946958i \(-0.604139\pi\)
0.751896 + 0.659281i \(0.229139\pi\)
\(278\) 0 0
\(279\) 4.02340 1.66655i 0.240875 0.0997736i
\(280\) 0 0
\(281\) 2.11464 + 0.875914i 0.126149 + 0.0522527i 0.444865 0.895598i \(-0.353252\pi\)
−0.318716 + 0.947850i \(0.603252\pi\)
\(282\) 0 0
\(283\) 4.65354 23.3949i 0.276624 1.39068i −0.553381 0.832928i \(-0.686663\pi\)
0.830005 0.557755i \(-0.188337\pi\)
\(284\) 0 0
\(285\) 6.70626 10.0366i 0.397244 0.594518i
\(286\) 0 0
\(287\) 29.4411i 1.73785i
\(288\) 0 0
\(289\) 1.51475i 0.0891029i
\(290\) 0 0
\(291\) −4.60204 + 6.88744i −0.269776 + 0.403749i
\(292\) 0 0
\(293\) −5.30837 + 26.6870i −0.310118 + 1.55907i 0.440142 + 0.897928i \(0.354928\pi\)
−0.750260 + 0.661143i \(0.770072\pi\)
\(294\) 0 0
\(295\) −0.537098 0.222473i −0.0312710 0.0129529i
\(296\) 0 0
\(297\) −0.238872 + 0.0989440i −0.0138608 + 0.00574131i
\(298\) 0 0
\(299\) −12.0636 + 8.06067i −0.697658 + 0.466160i
\(300\) 0 0
\(301\) 7.29964 + 36.6978i 0.420744 + 2.11522i
\(302\) 0 0
\(303\) −8.53383 + 8.53383i −0.490256 + 0.490256i
\(304\) 0 0
\(305\) −2.19815 2.19815i −0.125866 0.125866i
\(306\) 0 0
\(307\) 32.1099 6.38706i 1.83261 0.364529i 0.846735 0.532015i \(-0.178565\pi\)
0.985874 + 0.167486i \(0.0535648\pi\)
\(308\) 0 0
\(309\) −2.73049 4.08646i −0.155332 0.232471i
\(310\) 0 0
\(311\) 4.28733 + 10.3505i 0.243112 + 0.586924i 0.997589 0.0694024i \(-0.0221092\pi\)
−0.754477 + 0.656327i \(0.772109\pi\)
\(312\) 0 0
\(313\) 3.78250 9.13175i 0.213799 0.516157i −0.780202 0.625528i \(-0.784884\pi\)
0.994001 + 0.109371i \(0.0348836\pi\)
\(314\) 0 0
\(315\) −9.34796 1.85942i −0.526698 0.104767i
\(316\) 0 0
\(317\) −14.8080 9.89442i −0.831703 0.555726i 0.0652416 0.997869i \(-0.479218\pi\)
−0.896944 + 0.442143i \(0.854218\pi\)
\(318\) 0 0
\(319\) 0.648689 0.0363196
\(320\) 0 0
\(321\) −10.2690 −0.573161
\(322\) 0 0
\(323\) 23.2492 + 15.5346i 1.29362 + 0.864368i
\(324\) 0 0
\(325\) −7.90844 1.57309i −0.438681 0.0872591i
\(326\) 0 0
\(327\) −12.2232 + 29.5095i −0.675946 + 1.63188i
\(328\) 0 0
\(329\) 2.69148 + 6.49781i 0.148386 + 0.358236i
\(330\) 0 0
\(331\) −9.69258 14.5060i −0.532752 0.797320i 0.463289 0.886207i \(-0.346669\pi\)
−0.996042 + 0.0888869i \(0.971669\pi\)
\(332\) 0 0
\(333\) −5.22004 + 1.03833i −0.286057 + 0.0569002i
\(334\) 0 0
\(335\) −2.00337 2.00337i −0.109456 0.109456i
\(336\) 0 0
\(337\) 8.62689 8.62689i 0.469937 0.469937i −0.431957 0.901894i \(-0.642177\pi\)
0.901894 + 0.431957i \(0.142177\pi\)
\(338\) 0 0
\(339\) 0.252739 + 1.27061i 0.0137269 + 0.0690099i
\(340\) 0 0
\(341\) 0.676777 0.452208i 0.0366495 0.0244884i
\(342\) 0 0
\(343\) −22.6098 + 9.36530i −1.22082 + 0.505679i
\(344\) 0 0
\(345\) −13.6009 5.63367i −0.732247 0.303307i
\(346\) 0 0
\(347\) −2.46321 + 12.3834i −0.132232 + 0.664776i 0.856629 + 0.515933i \(0.172555\pi\)
−0.988861 + 0.148843i \(0.952445\pi\)
\(348\) 0 0
\(349\) 9.48101 14.1893i 0.507507 0.759538i −0.485920 0.874003i \(-0.661515\pi\)
0.993427 + 0.114465i \(0.0365155\pi\)
\(350\) 0 0
\(351\) 0.906293i 0.0483743i
\(352\) 0 0
\(353\) 23.9464i 1.27454i −0.770641 0.637270i \(-0.780064\pi\)
0.770641 0.637270i \(-0.219936\pi\)
\(354\) 0 0
\(355\) −0.355691 + 0.532329i −0.0188781 + 0.0282531i
\(356\) 0 0
\(357\) 8.93147 44.9015i 0.472704 2.37644i
\(358\) 0 0
\(359\) 23.0491 + 9.54726i 1.21649 + 0.503885i 0.896291 0.443467i \(-0.146252\pi\)
0.320195 + 0.947352i \(0.396252\pi\)
\(360\) 0 0
\(361\) −21.4602 + 8.88911i −1.12948 + 0.467848i
\(362\) 0 0
\(363\) −21.4702 + 14.3459i −1.12689 + 0.752966i
\(364\) 0 0
\(365\) −0.115204 0.579170i −0.00603006 0.0303152i
\(366\) 0 0
\(367\) 23.6652 23.6652i 1.23532 1.23532i 0.273421 0.961894i \(-0.411845\pi\)
0.961894 0.273421i \(-0.0881553\pi\)
\(368\) 0 0
\(369\) 13.1611 + 13.1611i 0.685140 + 0.685140i
\(370\) 0 0
\(371\) −30.6628 + 6.09921i −1.59193 + 0.316655i
\(372\) 0 0
\(373\) −10.0109 14.9823i −0.518343 0.775755i 0.476283 0.879292i \(-0.341984\pi\)
−0.994626 + 0.103537i \(0.966984\pi\)
\(374\) 0 0
\(375\) −6.68521 16.1395i −0.345223 0.833441i
\(376\) 0 0
\(377\) 0.870152 2.10073i 0.0448151 0.108193i
\(378\) 0 0
\(379\) −0.376618 0.0749139i −0.0193455 0.00384807i 0.185408 0.982662i \(-0.440639\pi\)
−0.204754 + 0.978814i \(0.565639\pi\)
\(380\) 0 0
\(381\) −21.0814 14.0861i −1.08003 0.721655i
\(382\) 0 0
\(383\) −17.7262 −0.905768 −0.452884 0.891569i \(-0.649605\pi\)
−0.452884 + 0.891569i \(0.649605\pi\)
\(384\) 0 0
\(385\) −1.78141 −0.0907890
\(386\) 0 0
\(387\) −19.6682 13.1419i −0.999792 0.668040i
\(388\) 0 0
\(389\) −7.58645 1.50904i −0.384648 0.0765113i −0.00102139 0.999999i \(-0.500325\pi\)
−0.383627 + 0.923488i \(0.625325\pi\)
\(390\) 0 0
\(391\) 13.0500 31.5056i 0.659968 1.59330i
\(392\) 0 0
\(393\) 14.4699 + 34.9333i 0.729907 + 1.76215i
\(394\) 0 0
\(395\) 3.74613 + 5.60649i 0.188488 + 0.282093i
\(396\) 0 0
\(397\) 8.20788 1.63265i 0.411942 0.0819403i 0.0152310 0.999884i \(-0.495152\pi\)
0.396711 + 0.917944i \(0.370152\pi\)
\(398\) 0 0
\(399\) 48.8895 + 48.8895i 2.44754 + 2.44754i
\(400\) 0 0
\(401\) −18.5993 + 18.5993i −0.928802 + 0.928802i −0.997629 0.0688263i \(-0.978075\pi\)
0.0688263 + 0.997629i \(0.478075\pi\)
\(402\) 0 0
\(403\) −0.556613 2.79828i −0.0277269 0.139392i
\(404\) 0 0
\(405\) −6.14338 + 4.10488i −0.305267 + 0.203973i
\(406\) 0 0
\(407\) −0.919044 + 0.380681i −0.0455553 + 0.0188696i
\(408\) 0 0
\(409\) 23.4672 + 9.72045i 1.16038 + 0.480645i 0.878001 0.478658i \(-0.158877\pi\)
0.282378 + 0.959303i \(0.408877\pi\)
\(410\) 0 0
\(411\) −7.26419 + 36.5195i −0.358316 + 1.80138i
\(412\) 0 0
\(413\) 1.84998 2.76869i 0.0910314 0.136238i
\(414\) 0 0
\(415\) 2.62271i 0.128744i
\(416\) 0 0
\(417\) 31.8680i 1.56058i
\(418\) 0 0
\(419\) −7.06866 + 10.5790i −0.345326 + 0.516818i −0.962959 0.269650i \(-0.913092\pi\)
0.617632 + 0.786467i \(0.288092\pi\)
\(420\) 0 0
\(421\) −5.87200 + 29.5205i −0.286184 + 1.43874i 0.523575 + 0.851980i \(0.324598\pi\)
−0.809758 + 0.586763i \(0.800402\pi\)
\(422\) 0 0
\(423\) −4.10790 1.70155i −0.199733 0.0827321i
\(424\) 0 0
\(425\) 17.5094 7.25264i 0.849332 0.351805i
\(426\) 0 0
\(427\) 14.8050 9.89240i 0.716465 0.478727i
\(428\) 0 0
\(429\) −0.449011 2.25733i −0.0216785 0.108985i
\(430\) 0 0
\(431\) −6.82858 + 6.82858i −0.328921 + 0.328921i −0.852176 0.523255i \(-0.824718\pi\)
0.523255 + 0.852176i \(0.324718\pi\)
\(432\) 0 0
\(433\) −4.84377 4.84377i −0.232777 0.232777i 0.581074 0.813851i \(-0.302633\pi\)
−0.813851 + 0.581074i \(0.802633\pi\)
\(434\) 0 0
\(435\) 2.26282 0.450102i 0.108494 0.0215807i
\(436\) 0 0
\(437\) 28.6124 + 42.8214i 1.36872 + 2.04843i
\(438\) 0 0
\(439\) 11.2574 + 27.1777i 0.537286 + 1.29712i 0.926611 + 0.376022i \(0.122708\pi\)
−0.389325 + 0.921101i \(0.627292\pi\)
\(440\) 0 0
\(441\) 13.4062 32.3653i 0.638389 1.54121i
\(442\) 0 0
\(443\) 31.0716 + 6.18053i 1.47626 + 0.293646i 0.866593 0.499015i \(-0.166305\pi\)
0.609663 + 0.792661i \(0.291305\pi\)
\(444\) 0 0
\(445\) −8.59364 5.74209i −0.407378 0.272201i
\(446\) 0 0
\(447\) −14.1266 −0.668166
\(448\) 0 0
\(449\) 15.3871 0.726163 0.363082 0.931757i \(-0.381725\pi\)
0.363082 + 0.931757i \(0.381725\pi\)
\(450\) 0 0
\(451\) 2.89251 + 1.93271i 0.136203 + 0.0910079i
\(452\) 0 0
\(453\) −27.6227 5.49450i −1.29783 0.258154i
\(454\) 0 0
\(455\) −2.38958 + 5.76896i −0.112025 + 0.270453i
\(456\) 0 0
\(457\) 3.24557 + 7.83549i 0.151821 + 0.366529i 0.981431 0.191814i \(-0.0614372\pi\)
−0.829610 + 0.558343i \(0.811437\pi\)
\(458\) 0 0
\(459\) −1.18344 1.77115i −0.0552384 0.0826701i
\(460\) 0 0
\(461\) 24.4880 4.87097i 1.14052 0.226864i 0.411536 0.911394i \(-0.364993\pi\)
0.728985 + 0.684530i \(0.239993\pi\)
\(462\) 0 0
\(463\) 19.0846 + 19.0846i 0.886939 + 0.886939i 0.994228 0.107289i \(-0.0342170\pi\)
−0.107289 + 0.994228i \(0.534217\pi\)
\(464\) 0 0
\(465\) 2.04702 2.04702i 0.0949284 0.0949284i
\(466\) 0 0
\(467\) 0.264167 + 1.32806i 0.0122242 + 0.0614552i 0.986416 0.164267i \(-0.0525259\pi\)
−0.974192 + 0.225722i \(0.927526\pi\)
\(468\) 0 0
\(469\) 13.4931 9.01581i 0.623054 0.416311i
\(470\) 0 0
\(471\) 32.7748 13.5758i 1.51018 0.625538i
\(472\) 0 0
\(473\) −4.08465 1.69192i −0.187813 0.0777945i
\(474\) 0 0
\(475\) −5.58387 + 28.0720i −0.256206 + 1.28803i
\(476\) 0 0
\(477\) 10.9807 16.4338i 0.502772 0.752451i
\(478\) 0 0
\(479\) 3.51984i 0.160826i −0.996762 0.0804128i \(-0.974376\pi\)
0.996762 0.0804128i \(-0.0256239\pi\)
\(480\) 0 0
\(481\) 3.48690i 0.158989i
\(482\) 0 0
\(483\) 46.8468 70.1112i 2.13160 3.19017i
\(484\) 0 0
\(485\) −0.518062 + 2.60448i −0.0235240 + 0.118263i
\(486\) 0 0
\(487\) −25.4932 10.5596i −1.15521 0.478503i −0.278932 0.960311i \(-0.589980\pi\)
−0.876277 + 0.481808i \(0.839980\pi\)
\(488\) 0 0
\(489\) 10.2112 4.22960i 0.461764 0.191269i
\(490\) 0 0
\(491\) 18.5780 12.4134i 0.838412 0.560209i −0.0605855 0.998163i \(-0.519297\pi\)
0.898997 + 0.437954i \(0.144297\pi\)
\(492\) 0 0
\(493\) 1.04263 + 5.24166i 0.0469578 + 0.236073i
\(494\) 0 0
\(495\) 0.796346 0.796346i 0.0357931 0.0357931i
\(496\) 0 0
\(497\) −2.59303 2.59303i −0.116313 0.116313i
\(498\) 0 0
\(499\) −7.61559 + 1.51483i −0.340921 + 0.0678133i −0.362582 0.931952i \(-0.618105\pi\)
0.0216610 + 0.999765i \(0.493105\pi\)
\(500\) 0 0
\(501\) −9.61886 14.3956i −0.429739 0.643150i
\(502\) 0 0
\(503\) −16.2329 39.1897i −0.723789 1.74738i −0.662259 0.749275i \(-0.730402\pi\)
−0.0615295 0.998105i \(-0.519598\pi\)
\(504\) 0 0
\(505\) −1.48059 + 3.57445i −0.0658852 + 0.159061i
\(506\) 0 0
\(507\) 22.7791 + 4.53104i 1.01165 + 0.201231i
\(508\) 0 0
\(509\) 27.0838 + 18.0968i 1.20047 + 0.802126i 0.984690 0.174316i \(-0.0557715\pi\)
0.215777 + 0.976443i \(0.430771\pi\)
\(510\) 0 0
\(511\) 3.38237 0.149627
\(512\) 0 0
\(513\) 3.21700 0.142034
\(514\) 0 0
\(515\) −1.31003 0.875337i −0.0577270 0.0385719i
\(516\) 0 0
\(517\) −0.815078 0.162129i −0.0358471 0.00713043i
\(518\) 0 0
\(519\) −15.0870 + 36.4233i −0.662246 + 1.59880i
\(520\) 0 0
\(521\) −9.90054 23.9020i −0.433750 1.04717i −0.978068 0.208287i \(-0.933211\pi\)
0.544318 0.838879i \(-0.316789\pi\)
\(522\) 0 0
\(523\) 11.2609 + 16.8531i 0.492404 + 0.736935i 0.991570 0.129571i \(-0.0413601\pi\)
−0.499166 + 0.866507i \(0.666360\pi\)
\(524\) 0 0
\(525\) 45.9621 9.14243i 2.00595 0.399008i
\(526\) 0 0
\(527\) 4.74179 + 4.74179i 0.206556 + 0.206556i
\(528\) 0 0
\(529\) 28.1496 28.1496i 1.22390 1.22390i
\(530\) 0 0
\(531\) 0.410692 + 2.06469i 0.0178225 + 0.0895998i
\(532\) 0 0
\(533\) 10.1390 6.77464i 0.439167 0.293442i
\(534\) 0 0
\(535\) −3.04144 + 1.25981i −0.131493 + 0.0544662i
\(536\) 0 0
\(537\) 22.2389 + 9.21165i 0.959678 + 0.397512i
\(538\) 0 0
\(539\) 1.27738 6.42184i 0.0550208 0.276608i
\(540\) 0 0
\(541\) 22.9671 34.3728i 0.987435 1.47780i 0.112445 0.993658i \(-0.464132\pi\)
0.874989 0.484142i \(-0.160868\pi\)
\(542\) 0 0
\(543\) 12.0813i 0.518459i
\(544\) 0 0
\(545\) 10.2396i 0.438615i
\(546\) 0 0
\(547\) −7.05928 + 10.5650i −0.301833 + 0.451725i −0.951121 0.308817i \(-0.900067\pi\)
0.649288 + 0.760542i \(0.275067\pi\)
\(548\) 0 0
\(549\) −2.19610 + 11.0405i −0.0937271 + 0.471198i
\(550\) 0 0
\(551\) −7.45682 3.08872i −0.317671 0.131584i
\(552\) 0 0
\(553\) −35.6820 + 14.7800i −1.51735 + 0.628508i
\(554\) 0 0
\(555\) −2.94175 + 1.96562i −0.124870 + 0.0834358i
\(556\) 0 0
\(557\) −3.09194 15.5442i −0.131010 0.658630i −0.989351 0.145551i \(-0.953505\pi\)
0.858341 0.513079i \(-0.171495\pi\)
\(558\) 0 0
\(559\) −10.9583 + 10.9583i −0.463487 + 0.463487i
\(560\) 0 0
\(561\) 3.82513 + 3.82513i 0.161497 + 0.161497i
\(562\) 0 0
\(563\) −4.98076 + 0.990736i −0.209914 + 0.0417545i −0.298927 0.954276i \(-0.596629\pi\)
0.0890130 + 0.996030i \(0.471629\pi\)
\(564\) 0 0
\(565\) 0.230734 + 0.345317i 0.00970704 + 0.0145276i
\(566\) 0 0
\(567\) −16.1953 39.0990i −0.680141 1.64200i
\(568\) 0 0
\(569\) 10.4799 25.3007i 0.439340 1.06066i −0.536837 0.843686i \(-0.680381\pi\)
0.976177 0.216975i \(-0.0696189\pi\)
\(570\) 0 0
\(571\) −26.9468 5.36006i −1.12769 0.224311i −0.404216 0.914664i \(-0.632456\pi\)
−0.723474 + 0.690352i \(0.757456\pi\)
\(572\) 0 0
\(573\) 41.2243 + 27.5452i 1.72217 + 1.15072i
\(574\) 0 0
\(575\) 34.9068 1.45572
\(576\) 0 0
\(577\) −42.3036 −1.76112 −0.880560 0.473935i \(-0.842833\pi\)
−0.880560 + 0.473935i \(0.842833\pi\)
\(578\) 0 0
\(579\) 31.7001 + 21.1813i 1.31741 + 0.880267i
\(580\) 0 0
\(581\) −14.7337 2.93073i −0.611259 0.121587i
\(582\) 0 0
\(583\) 1.41368 3.41293i 0.0585487 0.141349i
\(584\) 0 0
\(585\) −1.51069 3.64713i −0.0624593 0.150790i
\(586\) 0 0
\(587\) −0.763948 1.14333i −0.0315315 0.0471902i 0.815369 0.578942i \(-0.196534\pi\)
−0.846901 + 0.531751i \(0.821534\pi\)
\(588\) 0 0
\(589\) −9.93287 + 1.97577i −0.409277 + 0.0814102i
\(590\) 0 0
\(591\) −44.4235 44.4235i −1.82734 1.82734i
\(592\) 0 0
\(593\) 5.66121 5.66121i 0.232478 0.232478i −0.581248 0.813726i \(-0.697436\pi\)
0.813726 + 0.581248i \(0.197436\pi\)
\(594\) 0 0
\(595\) −2.86324 14.3945i −0.117381 0.590116i
\(596\) 0 0
\(597\) −29.3462 + 19.6085i −1.20106 + 0.802522i
\(598\) 0 0
\(599\) −12.4047 + 5.13818i −0.506841 + 0.209941i −0.621426 0.783473i \(-0.713446\pi\)
0.114585 + 0.993413i \(0.463446\pi\)
\(600\) 0 0
\(601\) −6.28652 2.60396i −0.256433 0.106218i 0.250764 0.968048i \(-0.419318\pi\)
−0.507197 + 0.861830i \(0.669318\pi\)
\(602\) 0 0
\(603\) −2.00150 + 10.0622i −0.0815072 + 0.409764i
\(604\) 0 0
\(605\) −4.59900 + 6.88289i −0.186976 + 0.279829i
\(606\) 0 0
\(607\) 31.2974i 1.27032i 0.772379 + 0.635161i \(0.219066\pi\)
−0.772379 + 0.635161i \(0.780934\pi\)
\(608\) 0 0
\(609\) 13.2149i 0.535496i
\(610\) 0 0
\(611\) −1.61839 + 2.42209i −0.0654730 + 0.0979873i
\(612\) 0 0
\(613\) −4.01591 + 20.1894i −0.162201 + 0.815441i 0.810922 + 0.585155i \(0.198966\pi\)
−0.973123 + 0.230286i \(0.926034\pi\)
\(614\) 0 0
\(615\) 11.4310 + 4.73486i 0.460941 + 0.190928i
\(616\) 0 0
\(617\) 0.720564 0.298468i 0.0290088 0.0120159i −0.368132 0.929774i \(-0.620002\pi\)
0.397141 + 0.917758i \(0.370002\pi\)
\(618\) 0 0
\(619\) −12.1862 + 8.14255i −0.489804 + 0.327277i −0.775826 0.630946i \(-0.782667\pi\)
0.286022 + 0.958223i \(0.407667\pi\)
\(620\) 0 0
\(621\) −0.765417 3.84801i −0.0307151 0.154415i
\(622\) 0 0
\(623\) 41.8606 41.8606i 1.67711 1.67711i
\(624\) 0 0
\(625\) 11.6123 + 11.6123i 0.464492 + 0.464492i
\(626\) 0 0
\(627\) −8.01269 + 1.59382i −0.319996 + 0.0636512i
\(628\) 0 0
\(629\) −4.55322 6.81438i −0.181549 0.271707i
\(630\) 0 0
\(631\) 14.7859 + 35.6964i 0.588619 + 1.42105i 0.884823 + 0.465927i \(0.154279\pi\)
−0.296204 + 0.955125i \(0.595721\pi\)
\(632\) 0 0
\(633\) −17.5452 + 42.3580i −0.697361 + 1.68358i
\(634\) 0 0
\(635\) −7.97191 1.58571i −0.316355 0.0629270i
\(636\) 0 0
\(637\) −19.0832 12.7510i −0.756103 0.505212i
\(638\) 0 0
\(639\) 2.31834 0.0917119
\(640\) 0 0
\(641\) −39.2736 −1.55121 −0.775607 0.631216i \(-0.782556\pi\)
−0.775607 + 0.631216i \(0.782556\pi\)
\(642\) 0 0
\(643\) −20.6027 13.7663i −0.812489 0.542888i 0.0784990 0.996914i \(-0.474987\pi\)
−0.890988 + 0.454026i \(0.849987\pi\)
\(644\) 0 0
\(645\) −15.4224 3.06771i −0.607257 0.120791i
\(646\) 0 0
\(647\) −15.7086 + 37.9240i −0.617570 + 1.49095i 0.236948 + 0.971522i \(0.423853\pi\)
−0.854517 + 0.519423i \(0.826147\pi\)
\(648\) 0 0
\(649\) 0.150571 + 0.363510i 0.00591042 + 0.0142690i
\(650\) 0 0
\(651\) 9.21225 + 13.7871i 0.361057 + 0.540360i
\(652\) 0 0
\(653\) −45.4088 + 9.03238i −1.77698 + 0.353464i −0.971112 0.238624i \(-0.923304\pi\)
−0.805873 + 0.592089i \(0.798304\pi\)
\(654\) 0 0
\(655\) 8.57125 + 8.57125i 0.334907 + 0.334907i
\(656\) 0 0
\(657\) −1.51203 + 1.51203i −0.0589898 + 0.0589898i
\(658\) 0 0
\(659\) 7.92659 + 39.8497i 0.308776 + 1.55232i 0.753983 + 0.656894i \(0.228130\pi\)
−0.445206 + 0.895428i \(0.646870\pi\)
\(660\) 0 0
\(661\) 29.3540 19.6137i 1.14174 0.762886i 0.166940 0.985967i \(-0.446611\pi\)
0.974800 + 0.223081i \(0.0716114\pi\)
\(662\) 0 0
\(663\) 17.5184 7.25637i 0.680360 0.281814i
\(664\) 0 0
\(665\) 20.4777 + 8.48213i 0.794090 + 0.328923i
\(666\) 0 0
\(667\) −1.92037 + 9.65435i −0.0743570 + 0.373818i
\(668\) 0 0
\(669\) −12.9861 + 19.4351i −0.502073 + 0.751406i
\(670\) 0 0
\(671\) 2.10396i 0.0812223i
\(672\) 0 0
\(673\) 24.2851i 0.936122i −0.883696 0.468061i \(-0.844953\pi\)
0.883696 0.468061i \(-0.155047\pi\)
\(674\) 0 0
\(675\) 1.21140 1.81298i 0.0466266 0.0697817i
\(676\) 0 0
\(677\) 4.33107 21.7738i 0.166456 0.836833i −0.803827 0.594863i \(-0.797206\pi\)
0.970284 0.241970i \(-0.0777937\pi\)
\(678\) 0 0
\(679\) −14.0524 5.82070i −0.539282 0.223378i
\(680\) 0 0
\(681\) −8.49614 + 3.51922i −0.325573 + 0.134857i
\(682\) 0 0
\(683\) −12.0613 + 8.05912i −0.461514 + 0.308374i −0.764503 0.644620i \(-0.777015\pi\)
0.302989 + 0.952994i \(0.402015\pi\)
\(684\) 0 0
\(685\) 2.32875 + 11.7074i 0.0889768 + 0.447317i
\(686\) 0 0
\(687\) −15.3921 + 15.3921i −0.587244 + 0.587244i
\(688\) 0 0
\(689\) −9.15621 9.15621i −0.348824 0.348824i
\(690\) 0 0
\(691\) 3.89100 0.773968i 0.148021 0.0294431i −0.120524 0.992710i \(-0.538457\pi\)
0.268544 + 0.963267i \(0.413457\pi\)
\(692\) 0 0
\(693\) 3.58381 + 5.36355i 0.136138 + 0.203744i
\(694\) 0 0
\(695\) −3.90958 9.43855i −0.148299 0.358025i
\(696\) 0 0
\(697\) −10.9680 + 26.4791i −0.415442 + 1.00297i
\(698\) 0 0
\(699\) 6.50840 + 1.29460i 0.246170 + 0.0489663i
\(700\) 0 0
\(701\) −32.0550 21.4185i −1.21070 0.808965i −0.224494 0.974476i \(-0.572073\pi\)
−0.986208 + 0.165511i \(0.947073\pi\)
\(702\) 0 0
\(703\) 12.3772 0.466815
\(704\) 0 0
\(705\) −2.95573 −0.111319
\(706\) 0 0
\(707\) −18.4259 12.3118i −0.692979 0.463034i
\(708\) 0 0
\(709\) −14.3830 2.86095i −0.540164 0.107445i −0.0825345 0.996588i \(-0.526301\pi\)
−0.457630 + 0.889143i \(0.651301\pi\)
\(710\) 0 0
\(711\) 9.34386 22.5581i 0.350422 0.845994i
\(712\) 0 0
\(713\) 4.72663 + 11.4111i 0.177014 + 0.427348i
\(714\) 0 0
\(715\) −0.409916 0.613483i −0.0153300 0.0229430i
\(716\) 0 0
\(717\) −29.1514 + 5.79857i −1.08868 + 0.216552i
\(718\) 0 0
\(719\) −16.4835 16.4835i −0.614730 0.614730i 0.329445 0.944175i \(-0.393138\pi\)
−0.944175 + 0.329445i \(0.893138\pi\)
\(720\) 0 0
\(721\) 6.38132 6.38132i 0.237653 0.237653i
\(722\) 0 0
\(723\) −10.7173 53.8793i −0.398579 2.00379i
\(724\) 0 0
\(725\) −4.54863 + 3.03930i −0.168932 + 0.112877i
\(726\) 0 0
\(727\) 1.94412 0.805280i 0.0721034 0.0298662i −0.346340 0.938109i \(-0.612576\pi\)
0.418444 + 0.908243i \(0.362576\pi\)
\(728\) 0 0
\(729\) 21.4155 + 8.87058i 0.793166 + 0.328540i
\(730\) 0 0
\(731\) 7.10614 35.7250i 0.262830 1.32134i
\(732\) 0 0
\(733\) −0.341596 + 0.511235i −0.0126171 + 0.0188829i −0.837725 0.546093i \(-0.816115\pi\)
0.825107 + 0.564976i \(0.191115\pi\)
\(734\) 0 0
\(735\) 23.2876i 0.858975i
\(736\) 0 0
\(737\) 1.91752i 0.0706327i
\(738\) 0 0
\(739\) 5.04853 7.55566i 0.185713 0.277939i −0.726917 0.686725i \(-0.759048\pi\)
0.912630 + 0.408786i \(0.134048\pi\)
\(740\) 0 0
\(741\) −5.58675 + 28.0865i −0.205234 + 1.03178i
\(742\) 0 0
\(743\) −38.3032 15.8657i −1.40521 0.582056i −0.454109 0.890946i \(-0.650042\pi\)
−0.951098 + 0.308890i \(0.900042\pi\)
\(744\) 0 0
\(745\) −4.18397 + 1.73306i −0.153289 + 0.0634943i
\(746\) 0 0
\(747\) 7.89658 5.27632i 0.288921 0.193051i
\(748\) 0 0
\(749\) −3.67865 18.4938i −0.134415 0.675750i
\(750\) 0 0
\(751\) −24.7263 + 24.7263i −0.902275 + 0.902275i −0.995633 0.0933574i \(-0.970240\pi\)
0.0933574 + 0.995633i \(0.470240\pi\)
\(752\) 0 0
\(753\) −40.3961 40.3961i −1.47212 1.47212i
\(754\) 0 0
\(755\) −8.85527 + 1.76142i −0.322276 + 0.0641047i
\(756\) 0 0
\(757\) 15.3171 + 22.9237i 0.556710 + 0.833175i 0.997936 0.0642212i \(-0.0204563\pi\)
−0.441226 + 0.897396i \(0.645456\pi\)
\(758\) 0 0
\(759\) 3.81290 + 9.20514i 0.138399 + 0.334126i
\(760\) 0 0
\(761\) 2.39831 5.79004i 0.0869388 0.209889i −0.874430 0.485151i \(-0.838765\pi\)
0.961369 + 0.275262i \(0.0887646\pi\)
\(762\) 0 0
\(763\) −57.5234 11.4421i −2.08249 0.414232i
\(764\) 0 0
\(765\) 7.71475 + 5.15483i 0.278927 + 0.186373i
\(766\) 0 0
\(767\) 1.37918 0.0497992
\(768\) 0 0
\(769\) 13.9845 0.504295 0.252147 0.967689i \(-0.418863\pi\)
0.252147 + 0.967689i \(0.418863\pi\)
\(770\) 0 0
\(771\) −1.87790 1.25477i −0.0676307 0.0451894i
\(772\) 0 0
\(773\) 37.5256 + 7.46432i 1.34970 + 0.268473i 0.816418 0.577462i \(-0.195957\pi\)
0.533286 + 0.845935i \(0.320957\pi\)
\(774\) 0 0
\(775\) −2.62685 + 6.34179i −0.0943594 + 0.227804i
\(776\) 0 0
\(777\) −7.75513 18.7225i −0.278214 0.671667i
\(778\) 0 0
\(779\) −24.0475 35.9896i −0.861590 1.28946i
\(780\) 0 0
\(781\) 0.424983 0.0845343i 0.0152071 0.00302488i
\(782\) 0 0
\(783\) 0.434781 + 0.434781i 0.0155378 + 0.0155378i
\(784\) 0 0
\(785\) 8.04164 8.04164i 0.287018 0.287018i
\(786\) 0 0
\(787\) 9.74437 + 48.9883i 0.347349 + 1.74624i 0.620439 + 0.784255i \(0.286954\pi\)
−0.273090 + 0.961989i \(0.588046\pi\)
\(788\) 0 0
\(789\) 21.9352 14.6566i 0.780914 0.521790i
\(790\) 0 0
\(791\) −2.19774 + 0.910335i −0.0781427 + 0.0323678i
\(792\) 0 0
\(793\) 6.81351 + 2.82225i 0.241955 + 0.100221i
\(794\) 0 0
\(795\) 2.56322 12.8862i 0.0909081 0.457026i
\(796\) 0 0
\(797\) −24.7495 + 37.0403i −0.876674 + 1.31203i 0.0725281 + 0.997366i \(0.476893\pi\)
−0.949202 + 0.314668i \(0.898107\pi\)
\(798\) 0 0
\(799\) 6.84674i 0.242220i
\(800\) 0 0
\(801\) 37.4260i 1.32238i
\(802\) 0 0
\(803\) −0.222042 + 0.332309i −0.00783568 + 0.0117269i
\(804\) 0 0
\(805\) 5.27366 26.5125i 0.185872 0.934442i
\(806\) 0 0
\(807\) 52.2884 + 21.6586i 1.84064 + 0.762417i
\(808\) 0 0
\(809\) 5.38797 2.23177i 0.189431 0.0784649i −0.285952 0.958244i \(-0.592310\pi\)
0.475383 + 0.879779i \(0.342310\pi\)
\(810\) 0 0
\(811\) 8.53124 5.70039i 0.299572 0.200168i −0.396695 0.917951i \(-0.629843\pi\)
0.696267 + 0.717783i \(0.254843\pi\)
\(812\) 0 0
\(813\) −1.45891 7.33444i −0.0511662 0.257230i
\(814\) 0 0
\(815\) 2.50541 2.50541i 0.0877608 0.0877608i
\(816\) 0 0
\(817\) 38.8979 + 38.8979i 1.36087 + 1.36087i
\(818\) 0 0
\(819\) 22.1768 4.41124i 0.774920 0.154141i
\(820\) 0 0
\(821\) −19.7190 29.5116i −0.688199 1.02996i −0.996890 0.0788007i \(-0.974891\pi\)
0.308691 0.951162i \(-0.400109\pi\)
\(822\) 0 0
\(823\) −0.550722 1.32956i −0.0191970 0.0463456i 0.913990 0.405736i \(-0.132985\pi\)
−0.933187 + 0.359390i \(0.882985\pi\)
\(824\) 0 0
\(825\) −2.11904 + 5.11582i −0.0737756 + 0.178110i
\(826\) 0 0
\(827\) −13.6122 2.70763i −0.473341 0.0941534i −0.0473454 0.998879i \(-0.515076\pi\)
−0.425996 + 0.904725i \(0.640076\pi\)
\(828\) 0 0
\(829\) 8.09646 + 5.40988i 0.281202 + 0.187893i 0.688170 0.725549i \(-0.258414\pi\)
−0.406969 + 0.913442i \(0.633414\pi\)
\(830\) 0 0
\(831\) −20.7447 −0.719625
\(832\) 0 0
\(833\) 53.9441 1.86905
\(834\) 0 0
\(835\) −4.61494 3.08361i −0.159707 0.106713i
\(836\) 0 0
\(837\) 0.756697 + 0.150516i 0.0261553 + 0.00520261i
\(838\) 0 0
\(839\) 3.39992 8.20812i 0.117378 0.283376i −0.854261 0.519844i \(-0.825990\pi\)
0.971639 + 0.236468i \(0.0759900\pi\)
\(840\) 0 0
\(841\) 10.5075 + 25.3673i 0.362326 + 0.874733i
\(842\) 0 0
\(843\) −3.06100 4.58111i −0.105426 0.157782i
\(844\) 0 0
\(845\) 7.30249 1.45256i 0.251213 0.0499694i
\(846\) 0 0
\(847\) −33.5273 33.5273i −1.15201 1.15201i
\(848\) 0 0
\(849\) −40.6008 + 40.6008i −1.39342 + 1.39342i
\(850\) 0 0
\(851\) −2.94489 14.8050i −0.100950 0.507508i
\(852\) 0 0
\(853\) −18.5526 + 12.3964i −0.635228 + 0.424446i −0.831053 0.556193i \(-0.812262\pi\)
0.195825 + 0.980639i \(0.437262\pi\)
\(854\) 0 0
\(855\) −12.9459 + 5.36239i −0.442742 + 0.183390i
\(856\) 0 0
\(857\) −34.9162 14.4628i −1.19272 0.494039i −0.304077 0.952647i \(-0.598348\pi\)
−0.888639 + 0.458608i \(0.848348\pi\)
\(858\) 0 0
\(859\) 5.27751 26.5318i 0.180066 0.905255i −0.780063 0.625700i \(-0.784813\pi\)
0.960130 0.279554i \(-0.0901867\pi\)
\(860\) 0 0
\(861\) −39.3727 + 58.9254i −1.34182 + 2.00817i
\(862\) 0 0
\(863\) 21.2314i 0.722726i −0.932425 0.361363i \(-0.882311\pi\)
0.932425 0.361363i \(-0.117689\pi\)
\(864\) 0 0
\(865\) 12.6386i 0.429725i
\(866\) 0 0
\(867\) −2.02573 + 3.03172i −0.0687974 + 0.102963i
\(868\) 0 0
\(869\) 0.890314 4.47591i 0.0302019 0.151835i
\(870\) 0 0
\(871\) 6.20975 + 2.57216i 0.210409 + 0.0871544i
\(872\) 0 0
\(873\) 8.88391 3.67984i 0.300675 0.124544i
\(874\) 0 0
\(875\) 26.6714 17.8213i 0.901658 0.602469i
\(876\) 0 0
\(877\) 2.10738 + 10.5945i 0.0711613 + 0.357752i 0.999916 0.0129422i \(-0.00411975\pi\)
−0.928755 + 0.370694i \(0.879120\pi\)
\(878\) 0 0
\(879\) 46.3140 46.3140i 1.56213 1.56213i
\(880\) 0 0
\(881\) −15.1953 15.1953i −0.511944 0.511944i 0.403178 0.915122i \(-0.367906\pi\)
−0.915122 + 0.403178i \(0.867906\pi\)
\(882\) 0 0
\(883\) 16.8801 3.35767i 0.568062 0.112995i 0.0973004 0.995255i \(-0.468979\pi\)
0.470761 + 0.882261i \(0.343979\pi\)
\(884\) 0 0
\(885\) 0.777462 + 1.16355i 0.0261341 + 0.0391124i
\(886\) 0 0
\(887\) 7.36626 + 17.7837i 0.247335 + 0.597119i 0.997976 0.0635908i \(-0.0202552\pi\)
−0.750641 + 0.660710i \(0.770255\pi\)
\(888\) 0 0
\(889\) 17.8163 43.0123i 0.597539 1.44259i
\(890\) 0 0
\(891\) 4.90454 + 0.975574i 0.164308 + 0.0326830i
\(892\) 0 0
\(893\) 8.59753 + 5.74468i 0.287705 + 0.192239i
\(894\) 0 0
\(895\) 7.71672 0.257941
\(896\) 0 0
\(897\) 34.9248 1.16611
\(898\) 0 0
\(899\) −1.60946 1.07541i −0.0536786 0.0358669i
\(900\) 0 0
\(901\) 29.8500 + 5.93754i 0.994448 + 0.197808i
\(902\) 0 0
\(903\) 34.4673 83.2114i 1.14700 2.76910i
\(904\) 0 0
\(905\) 1.48214 + 3.57820i 0.0492680 + 0.118943i
\(906\) 0 0
\(907\) 2.40873 + 3.60492i 0.0799806 + 0.119699i 0.869303 0.494279i \(-0.164568\pi\)
−0.789322 + 0.613979i \(0.789568\pi\)
\(908\) 0 0
\(909\) 13.7407 2.73320i 0.455752 0.0906547i
\(910\) 0 0
\(911\) 32.8907 + 32.8907i 1.08972 + 1.08972i 0.995557 + 0.0941591i \(0.0300162\pi\)
0.0941591 + 0.995557i \(0.469984\pi\)
\(912\) 0 0
\(913\) 1.25516 1.25516i 0.0415397 0.0415397i
\(914\) 0 0
\(915\) 1.45986 + 7.33921i 0.0482615 + 0.242627i
\(916\) 0 0
\(917\) −57.7291 + 38.5734i −1.90638 + 1.27381i
\(918\) 0 0
\(919\) −31.3195 + 12.9730i −1.03314 + 0.427939i −0.833843 0.552001i \(-0.813864\pi\)
−0.199292 + 0.979940i \(0.563864\pi\)
\(920\) 0 0
\(921\) −72.8086 30.1583i −2.39912 0.993750i
\(922\) 0 0
\(923\) 0.296314 1.48967i 0.00975328 0.0490331i
\(924\) 0 0
\(925\) 4.66077 6.97533i 0.153245 0.229347i
\(926\) 0 0
\(927\) 5.70530i 0.187387i
\(928\) 0 0
\(929\) 10.7407i 0.352390i 0.984355 + 0.176195i \(0.0563789\pi\)
−0.984355 + 0.176195i \(0.943621\pi\)
\(930\) 0 0
\(931\) −45.2612 + 67.7382i −1.48338 + 2.22003i
\(932\) 0 0
\(933\) 5.26120 26.4498i 0.172244 0.865929i
\(934\) 0 0
\(935\) 1.60218 + 0.663645i 0.0523969 + 0.0217035i
\(936\) 0 0
\(937\) 49.2806 20.4127i 1.60993 0.666853i 0.617151 0.786845i \(-0.288287\pi\)
0.992775 + 0.119992i \(0.0382869\pi\)
\(938\) 0 0
\(939\) −19.7828 + 13.2184i −0.645587 + 0.431367i
\(940\) 0 0
\(941\) −5.66109 28.4602i −0.184546 0.927777i −0.956418 0.292000i \(-0.905679\pi\)
0.771872 0.635778i \(-0.219321\pi\)
\(942\) 0 0
\(943\) −37.3273 + 37.3273i −1.21554 + 1.21554i
\(944\) 0 0
\(945\) −1.19398 1.19398i −0.0388402 0.0388402i
\(946\) 0 0
\(947\) 23.1134 4.59754i 0.751084 0.149400i 0.195319 0.980740i \(-0.437426\pi\)
0.555764 + 0.831340i \(0.312426\pi\)
\(948\) 0 0
\(949\) 0.778311 + 1.16482i 0.0252651 + 0.0378118i
\(950\) 0 0
\(951\) 16.4056 + 39.6067i 0.531989 + 1.28434i
\(952\) 0 0
\(953\) −17.9673 + 43.3769i −0.582018 + 1.40512i 0.308963 + 0.951074i \(0.400018\pi\)
−0.890981 + 0.454041i \(0.849982\pi\)
\(954\) 0 0
\(955\) 15.5889 + 3.10083i 0.504446 + 0.100341i
\(956\) 0 0
\(957\) −1.29833 0.867516i −0.0419691 0.0280428i
\(958\) 0 0
\(959\) −68.3716 −2.20783
\(960\) 0 0
\(961\) 28.5712 0.921651
\(962\) 0 0
\(963\) 9.91181 + 6.62286i 0.319404 + 0.213419i
\(964\) 0 0
\(965\) 11.9874 + 2.38443i 0.385887 + 0.0767576i
\(966\) 0 0
\(967\) 4.97953 12.0217i 0.160131 0.386590i −0.823367 0.567509i \(-0.807907\pi\)
0.983498 + 0.180919i \(0.0579071\pi\)
\(968\) 0 0
\(969\) −25.7574 62.1840i −0.827448 1.99764i
\(970\) 0 0
\(971\) 20.1628 + 30.1758i 0.647055 + 0.968386i 0.999470 + 0.0325425i \(0.0103604\pi\)
−0.352415 + 0.935844i \(0.614640\pi\)
\(972\) 0 0
\(973\) 57.3922 11.4160i 1.83991 0.365981i
\(974\) 0 0
\(975\) 13.7247 + 13.7247i 0.439543 + 0.439543i
\(976\) 0 0
\(977\) −40.4140 + 40.4140i −1.29296 + 1.29296i −0.360009 + 0.932949i \(0.617226\pi\)
−0.932949 + 0.360009i \(0.882774\pi\)
\(978\) 0 0
\(979\) 1.36468 + 6.86070i 0.0436153 + 0.219269i
\(980\) 0 0
\(981\) 30.8298 20.5998i 0.984319 0.657701i
\(982\) 0 0
\(983\) 35.5045 14.7065i 1.13242 0.469063i 0.263816 0.964573i \(-0.415019\pi\)
0.868602 + 0.495510i \(0.165019\pi\)
\(984\) 0 0
\(985\) −18.6071 7.70731i −0.592871 0.245575i
\(986\) 0 0
\(987\) 3.30285 16.6046i 0.105131 0.528529i
\(988\) 0 0
\(989\) 37.2727 55.7826i 1.18520 1.77378i
\(990\) 0 0
\(991\) 16.3018i 0.517845i −0.965898 0.258922i \(-0.916633\pi\)
0.965898 0.258922i \(-0.0833674\pi\)
\(992\) 0 0
\(993\) 41.9955i 1.33269i
\(994\) 0 0
\(995\) −6.28607 + 9.40777i −0.199282 + 0.298246i
\(996\) 0 0
\(997\) −3.51164 + 17.6542i −0.111215 + 0.559114i 0.884493 + 0.466554i \(0.154505\pi\)
−0.995707 + 0.0925594i \(0.970495\pi\)
\(998\) 0 0
\(999\) −0.871135 0.360836i −0.0275615 0.0114163i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 512.2.i.a.481.2 56
4.3 odd 2 512.2.i.b.481.6 56
8.3 odd 2 64.2.i.a.5.7 56
8.5 even 2 256.2.i.a.113.6 56
24.11 even 2 576.2.bd.a.325.1 56
64.13 even 16 inner 512.2.i.a.33.2 56
64.19 odd 16 64.2.i.a.13.7 yes 56
64.45 even 16 256.2.i.a.145.6 56
64.51 odd 16 512.2.i.b.33.6 56
192.83 even 16 576.2.bd.a.397.1 56
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
64.2.i.a.5.7 56 8.3 odd 2
64.2.i.a.13.7 yes 56 64.19 odd 16
256.2.i.a.113.6 56 8.5 even 2
256.2.i.a.145.6 56 64.45 even 16
512.2.i.a.33.2 56 64.13 even 16 inner
512.2.i.a.481.2 56 1.1 even 1 trivial
512.2.i.b.33.6 56 64.51 odd 16
512.2.i.b.481.6 56 4.3 odd 2
576.2.bd.a.325.1 56 24.11 even 2
576.2.bd.a.397.1 56 192.83 even 16