Properties

Label 256.3.c.a.255.1
Level 256256
Weight 33
Character 256.255
Self dual yes
Analytic conductor 6.9756.975
Analytic rank 00
Dimension 11
CM discriminant -4
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [256,3,Mod(255,256)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(256, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("256.255");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: N N == 256=28 256 = 2^{8}
Weight: k k == 3 3
Character orbit: [χ][\chi] == 256.c (of order 22, degree 11, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 6.975494767626.97549476762
Analytic rank: 00
Dimension: 11
Coefficient field: Q\mathbb{Q}
Coefficient ring: Z\mathbb{Z}
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 128)
Sato-Tate group: U(1)[D2]\mathrm{U}(1)[D_{2}]

Embedding invariants

Embedding label 255.1
Character χ\chi == 256.255

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q8.00000q5+9.00000q9+24.0000q13+30.0000q17+39.0000q2540.0000q29+24.0000q3718.0000q4172.0000q45+49.0000q49+56.0000q53+120.000q61192.000q65110.000q73+81.0000q81240.000q8578.0000q89130.000q97+O(q100)q-8.00000 q^{5} +9.00000 q^{9} +24.0000 q^{13} +30.0000 q^{17} +39.0000 q^{25} -40.0000 q^{29} +24.0000 q^{37} -18.0000 q^{41} -72.0000 q^{45} +49.0000 q^{49} +56.0000 q^{53} +120.000 q^{61} -192.000 q^{65} -110.000 q^{73} +81.0000 q^{81} -240.000 q^{85} -78.0000 q^{89} -130.000 q^{97} +O(q^{100})

Character values

We give the values of χ\chi on generators for (Z/256Z)×\left(\mathbb{Z}/256\mathbb{Z}\right)^\times.

nn 55 255255
χ(n)\chi(n) 11 1-1

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 0 0
33 0 0 1.00000 00
−1.00000 π\pi
44 0 0
55 −8.00000 −1.60000 −0.800000 0.600000i 0.795167π-0.795167\pi
−0.800000 + 0.600000i 0.795167π0.795167\pi
66 0 0
77 0 0 1.00000 00
−1.00000 π\pi
88 0 0
99 9.00000 1.00000
1010 0 0
1111 0 0 1.00000 00
−1.00000 π\pi
1212 0 0
1313 24.0000 1.84615 0.923077 0.384615i 0.125666π-0.125666\pi
0.923077 + 0.384615i 0.125666π0.125666\pi
1414 0 0
1515 0 0
1616 0 0
1717 30.0000 1.76471 0.882353 0.470588i 0.155958π-0.155958\pi
0.882353 + 0.470588i 0.155958π0.155958\pi
1818 0 0
1919 0 0 1.00000 00
−1.00000 π\pi
2020 0 0
2121 0 0
2222 0 0
2323 0 0 1.00000 00
−1.00000 π\pi
2424 0 0
2525 39.0000 1.56000
2626 0 0
2727 0 0
2828 0 0
2929 −40.0000 −1.37931 −0.689655 0.724138i 0.742238π-0.742238\pi
−0.689655 + 0.724138i 0.742238π0.742238\pi
3030 0 0
3131 0 0 1.00000 00
−1.00000 π\pi
3232 0 0
3333 0 0
3434 0 0
3535 0 0
3636 0 0
3737 24.0000 0.648649 0.324324 0.945946i 0.394863π-0.394863\pi
0.324324 + 0.945946i 0.394863π0.394863\pi
3838 0 0
3939 0 0
4040 0 0
4141 −18.0000 −0.439024 −0.219512 0.975610i 0.570447π-0.570447\pi
−0.219512 + 0.975610i 0.570447π0.570447\pi
4242 0 0
4343 0 0 1.00000 00
−1.00000 π\pi
4444 0 0
4545 −72.0000 −1.60000
4646 0 0
4747 0 0 1.00000 00
−1.00000 π\pi
4848 0 0
4949 49.0000 1.00000
5050 0 0
5151 0 0
5252 0 0
5353 56.0000 1.05660 0.528302 0.849057i 0.322829π-0.322829\pi
0.528302 + 0.849057i 0.322829π0.322829\pi
5454 0 0
5555 0 0
5656 0 0
5757 0 0
5858 0 0
5959 0 0 1.00000 00
−1.00000 π\pi
6060 0 0
6161 120.000 1.96721 0.983607 0.180328i 0.0577159π-0.0577159\pi
0.983607 + 0.180328i 0.0577159π0.0577159\pi
6262 0 0
6363 0 0
6464 0 0
6565 −192.000 −2.95385
6666 0 0
6767 0 0 1.00000 00
−1.00000 π\pi
6868 0 0
6969 0 0
7070 0 0
7171 0 0 1.00000 00
−1.00000 π\pi
7272 0 0
7373 −110.000 −1.50685 −0.753425 0.657534i 0.771599π-0.771599\pi
−0.753425 + 0.657534i 0.771599π0.771599\pi
7474 0 0
7575 0 0
7676 0 0
7777 0 0
7878 0 0
7979 0 0 1.00000 00
−1.00000 π\pi
8080 0 0
8181 81.0000 1.00000
8282 0 0
8383 0 0 1.00000 00
−1.00000 π\pi
8484 0 0
8585 −240.000 −2.82353
8686 0 0
8787 0 0
8888 0 0
8989 −78.0000 −0.876404 −0.438202 0.898876i 0.644385π-0.644385\pi
−0.438202 + 0.898876i 0.644385π0.644385\pi
9090 0 0
9191 0 0
9292 0 0
9393 0 0
9494 0 0
9595 0 0
9696 0 0
9797 −130.000 −1.34021 −0.670103 0.742268i 0.733750π-0.733750\pi
−0.670103 + 0.742268i 0.733750π0.733750\pi
9898 0 0
9999 0 0
100100 0 0
101101 −40.0000 −0.396040 −0.198020 0.980198i 0.563451π-0.563451\pi
−0.198020 + 0.980198i 0.563451π0.563451\pi
102102 0 0
103103 0 0 1.00000 00
−1.00000 π\pi
104104 0 0
105105 0 0
106106 0 0
107107 0 0 1.00000 00
−1.00000 π\pi
108108 0 0
109109 120.000 1.10092 0.550459 0.834862i 0.314453π-0.314453\pi
0.550459 + 0.834862i 0.314453π0.314453\pi
110110 0 0
111111 0 0
112112 0 0
113113 −30.0000 −0.265487 −0.132743 0.991150i 0.542379π-0.542379\pi
−0.132743 + 0.991150i 0.542379π0.542379\pi
114114 0 0
115115 0 0
116116 0 0
117117 216.000 1.84615
118118 0 0
119119 0 0
120120 0 0
121121 121.000 1.00000
122122 0 0
123123 0 0
124124 0 0
125125 −112.000 −0.896000
126126 0 0
127127 0 0 1.00000 00
−1.00000 π\pi
128128 0 0
129129 0 0
130130 0 0
131131 0 0 1.00000 00
−1.00000 π\pi
132132 0 0
133133 0 0
134134 0 0
135135 0 0
136136 0 0
137137 −210.000 −1.53285 −0.766423 0.642336i 0.777965π-0.777965\pi
−0.766423 + 0.642336i 0.777965π0.777965\pi
138138 0 0
139139 0 0 1.00000 00
−1.00000 π\pi
140140 0 0
141141 0 0
142142 0 0
143143 0 0
144144 0 0
145145 320.000 2.20690
146146 0 0
147147 0 0
148148 0 0
149149 280.000 1.87919 0.939597 0.342282i 0.111200π-0.111200\pi
0.939597 + 0.342282i 0.111200π0.111200\pi
150150 0 0
151151 0 0 1.00000 00
−1.00000 π\pi
152152 0 0
153153 270.000 1.76471
154154 0 0
155155 0 0
156156 0 0
157157 −264.000 −1.68153 −0.840764 0.541401i 0.817894π-0.817894\pi
−0.840764 + 0.541401i 0.817894π0.817894\pi
158158 0 0
159159 0 0
160160 0 0
161161 0 0
162162 0 0
163163 0 0 1.00000 00
−1.00000 π\pi
164164 0 0
165165 0 0
166166 0 0
167167 0 0 1.00000 00
−1.00000 π\pi
168168 0 0
169169 407.000 2.40828
170170 0 0
171171 0 0
172172 0 0
173173 −104.000 −0.601156 −0.300578 0.953757i 0.597180π-0.597180\pi
−0.300578 + 0.953757i 0.597180π0.597180\pi
174174 0 0
175175 0 0
176176 0 0
177177 0 0
178178 0 0
179179 0 0 1.00000 00
−1.00000 π\pi
180180 0 0
181181 −360.000 −1.98895 −0.994475 0.104972i 0.966525π-0.966525\pi
−0.994475 + 0.104972i 0.966525π0.966525\pi
182182 0 0
183183 0 0
184184 0 0
185185 −192.000 −1.03784
186186 0 0
187187 0 0
188188 0 0
189189 0 0
190190 0 0
191191 0 0 1.00000 00
−1.00000 π\pi
192192 0 0
193193 190.000 0.984456 0.492228 0.870466i 0.336183π-0.336183\pi
0.492228 + 0.870466i 0.336183π0.336183\pi
194194 0 0
195195 0 0
196196 0 0
197197 56.0000 0.284264 0.142132 0.989848i 0.454604π-0.454604\pi
0.142132 + 0.989848i 0.454604π0.454604\pi
198198 0 0
199199 0 0 1.00000 00
−1.00000 π\pi
200200 0 0
201201 0 0
202202 0 0
203203 0 0
204204 0 0
205205 144.000 0.702439
206206 0 0
207207 0 0
208208 0 0
209209 0 0
210210 0 0
211211 0 0 1.00000 00
−1.00000 π\pi
212212 0 0
213213 0 0
214214 0 0
215215 0 0
216216 0 0
217217 0 0
218218 0 0
219219 0 0
220220 0 0
221221 720.000 3.25792
222222 0 0
223223 0 0 1.00000 00
−1.00000 π\pi
224224 0 0
225225 351.000 1.56000
226226 0 0
227227 0 0 1.00000 00
−1.00000 π\pi
228228 0 0
229229 120.000 0.524017 0.262009 0.965066i 0.415615π-0.415615\pi
0.262009 + 0.965066i 0.415615π0.415615\pi
230230 0 0
231231 0 0
232232 0 0
233233 210.000 0.901288 0.450644 0.892704i 0.351194π-0.351194\pi
0.450644 + 0.892704i 0.351194π0.351194\pi
234234 0 0
235235 0 0
236236 0 0
237237 0 0
238238 0 0
239239 0 0 1.00000 00
−1.00000 π\pi
240240 0 0
241241 −418.000 −1.73444 −0.867220 0.497925i 0.834095π-0.834095\pi
−0.867220 + 0.497925i 0.834095π0.834095\pi
242242 0 0
243243 0 0
244244 0 0
245245 −392.000 −1.60000
246246 0 0
247247 0 0
248248 0 0
249249 0 0
250250 0 0
251251 0 0 1.00000 00
−1.00000 π\pi
252252 0 0
253253 0 0
254254 0 0
255255 0 0
256256 0 0
257257 −510.000 −1.98444 −0.992218 0.124514i 0.960263π-0.960263\pi
−0.992218 + 0.124514i 0.960263π0.960263\pi
258258 0 0
259259 0 0
260260 0 0
261261 −360.000 −1.37931
262262 0 0
263263 0 0 1.00000 00
−1.00000 π\pi
264264 0 0
265265 −448.000 −1.69057
266266 0 0
267267 0 0
268268 0 0
269269 −520.000 −1.93309 −0.966543 0.256506i 0.917429π-0.917429\pi
−0.966543 + 0.256506i 0.917429π0.917429\pi
270270 0 0
271271 0 0 1.00000 00
−1.00000 π\pi
272272 0 0
273273 0 0
274274 0 0
275275 0 0
276276 0 0
277277 504.000 1.81949 0.909747 0.415162i 0.136275π-0.136275\pi
0.909747 + 0.415162i 0.136275π0.136275\pi
278278 0 0
279279 0 0
280280 0 0
281281 −462.000 −1.64413 −0.822064 0.569395i 0.807178π-0.807178\pi
−0.822064 + 0.569395i 0.807178π0.807178\pi
282282 0 0
283283 0 0 1.00000 00
−1.00000 π\pi
284284 0 0
285285 0 0
286286 0 0
287287 0 0
288288 0 0
289289 611.000 2.11419
290290 0 0
291291 0 0
292292 0 0
293293 −136.000 −0.464164 −0.232082 0.972696i 0.574554π-0.574554\pi
−0.232082 + 0.972696i 0.574554π0.574554\pi
294294 0 0
295295 0 0
296296 0 0
297297 0 0
298298 0 0
299299 0 0
300300 0 0
301301 0 0
302302 0 0
303303 0 0
304304 0 0
305305 −960.000 −3.14754
306306 0 0
307307 0 0 1.00000 00
−1.00000 π\pi
308308 0 0
309309 0 0
310310 0 0
311311 0 0 1.00000 00
−1.00000 π\pi
312312 0 0
313313 −50.0000 −0.159744 −0.0798722 0.996805i 0.525451π-0.525451\pi
−0.0798722 + 0.996805i 0.525451π0.525451\pi
314314 0 0
315315 0 0
316316 0 0
317317 −616.000 −1.94322 −0.971609 0.236593i 0.923969π-0.923969\pi
−0.971609 + 0.236593i 0.923969π0.923969\pi
318318 0 0
319319 0 0
320320 0 0
321321 0 0
322322 0 0
323323 0 0
324324 0 0
325325 936.000 2.88000
326326 0 0
327327 0 0
328328 0 0
329329 0 0
330330 0 0
331331 0 0 1.00000 00
−1.00000 π\pi
332332 0 0
333333 216.000 0.648649
334334 0 0
335335 0 0
336336 0 0
337337 −350.000 −1.03858 −0.519288 0.854599i 0.673803π-0.673803\pi
−0.519288 + 0.854599i 0.673803π0.673803\pi
338338 0 0
339339 0 0
340340 0 0
341341 0 0
342342 0 0
343343 0 0
344344 0 0
345345 0 0
346346 0 0
347347 0 0 1.00000 00
−1.00000 π\pi
348348 0 0
349349 −360.000 −1.03152 −0.515759 0.856734i 0.672490π-0.672490\pi
−0.515759 + 0.856734i 0.672490π0.672490\pi
350350 0 0
351351 0 0
352352 0 0
353353 450.000 1.27479 0.637394 0.770538i 0.280012π-0.280012\pi
0.637394 + 0.770538i 0.280012π0.280012\pi
354354 0 0
355355 0 0
356356 0 0
357357 0 0
358358 0 0
359359 0 0 1.00000 00
−1.00000 π\pi
360360 0 0
361361 361.000 1.00000
362362 0 0
363363 0 0
364364 0 0
365365 880.000 2.41096
366366 0 0
367367 0 0 1.00000 00
−1.00000 π\pi
368368 0 0
369369 −162.000 −0.439024
370370 0 0
371371 0 0
372372 0 0
373373 504.000 1.35121 0.675603 0.737265i 0.263883π-0.263883\pi
0.675603 + 0.737265i 0.263883π0.263883\pi
374374 0 0
375375 0 0
376376 0 0
377377 −960.000 −2.54642
378378 0 0
379379 0 0 1.00000 00
−1.00000 π\pi
380380 0 0
381381 0 0
382382 0 0
383383 0 0 1.00000 00
−1.00000 π\pi
384384 0 0
385385 0 0
386386 0 0
387387 0 0
388388 0 0
389389 −680.000 −1.74807 −0.874036 0.485861i 0.838506π-0.838506\pi
−0.874036 + 0.485861i 0.838506π0.838506\pi
390390 0 0
391391 0 0
392392 0 0
393393 0 0
394394 0 0
395395 0 0
396396 0 0
397397 −456.000 −1.14861 −0.574307 0.818640i 0.694729π-0.694729\pi
−0.574307 + 0.818640i 0.694729π0.694729\pi
398398 0 0
399399 0 0
400400 0 0
401401 798.000 1.99002 0.995012 0.0997506i 0.0318045π-0.0318045\pi
0.995012 + 0.0997506i 0.0318045π0.0318045\pi
402402 0 0
403403 0 0
404404 0 0
405405 −648.000 −1.60000
406406 0 0
407407 0 0
408408 0 0
409409 782.000 1.91198 0.955990 0.293399i 0.0947863π-0.0947863\pi
0.955990 + 0.293399i 0.0947863π0.0947863\pi
410410 0 0
411411 0 0
412412 0 0
413413 0 0
414414 0 0
415415 0 0
416416 0 0
417417 0 0
418418 0 0
419419 0 0 1.00000 00
−1.00000 π\pi
420420 0 0
421421 −840.000 −1.99525 −0.997625 0.0688836i 0.978056π-0.978056\pi
−0.997625 + 0.0688836i 0.978056π0.978056\pi
422422 0 0
423423 0 0
424424 0 0
425425 1170.00 2.75294
426426 0 0
427427 0 0
428428 0 0
429429 0 0
430430 0 0
431431 0 0 1.00000 00
−1.00000 π\pi
432432 0 0
433433 −290.000 −0.669746 −0.334873 0.942263i 0.608693π-0.608693\pi
−0.334873 + 0.942263i 0.608693π0.608693\pi
434434 0 0
435435 0 0
436436 0 0
437437 0 0
438438 0 0
439439 0 0 1.00000 00
−1.00000 π\pi
440440 0 0
441441 441.000 1.00000
442442 0 0
443443 0 0 1.00000 00
−1.00000 π\pi
444444 0 0
445445 624.000 1.40225
446446 0 0
447447 0 0
448448 0 0
449449 702.000 1.56347 0.781737 0.623608i 0.214334π-0.214334\pi
0.781737 + 0.623608i 0.214334π0.214334\pi
450450 0 0
451451 0 0
452452 0 0
453453 0 0
454454 0 0
455455 0 0
456456 0 0
457457 −850.000 −1.85996 −0.929978 0.367615i 0.880174π-0.880174\pi
−0.929978 + 0.367615i 0.880174π0.880174\pi
458458 0 0
459459 0 0
460460 0 0
461461 760.000 1.64859 0.824295 0.566161i 0.191572π-0.191572\pi
0.824295 + 0.566161i 0.191572π0.191572\pi
462462 0 0
463463 0 0 1.00000 00
−1.00000 π\pi
464464 0 0
465465 0 0
466466 0 0
467467 0 0 1.00000 00
−1.00000 π\pi
468468 0 0
469469 0 0
470470 0 0
471471 0 0
472472 0 0
473473 0 0
474474 0 0
475475 0 0
476476 0 0
477477 504.000 1.05660
478478 0 0
479479 0 0 1.00000 00
−1.00000 π\pi
480480 0 0
481481 576.000 1.19751
482482 0 0
483483 0 0
484484 0 0
485485 1040.00 2.14433
486486 0 0
487487 0 0 1.00000 00
−1.00000 π\pi
488488 0 0
489489 0 0
490490 0 0
491491 0 0 1.00000 00
−1.00000 π\pi
492492 0 0
493493 −1200.00 −2.43408
494494 0 0
495495 0 0
496496 0 0
497497 0 0
498498 0 0
499499 0 0 1.00000 00
−1.00000 π\pi
500500 0 0
501501 0 0
502502 0 0
503503 0 0 1.00000 00
−1.00000 π\pi
504504 0 0
505505 320.000 0.633663
506506 0 0
507507 0 0
508508 0 0
509509 440.000 0.864440 0.432220 0.901768i 0.357730π-0.357730\pi
0.432220 + 0.901768i 0.357730π0.357730\pi
510510 0 0
511511 0 0
512512 0 0
513513 0 0
514514 0 0
515515 0 0
516516 0 0
517517 0 0
518518 0 0
519519 0 0
520520 0 0
521521 558.000 1.07102 0.535509 0.844530i 0.320120π-0.320120\pi
0.535509 + 0.844530i 0.320120π0.320120\pi
522522 0 0
523523 0 0 1.00000 00
−1.00000 π\pi
524524 0 0
525525 0 0
526526 0 0
527527 0 0
528528 0 0
529529 529.000 1.00000
530530 0 0
531531 0 0
532532 0 0
533533 −432.000 −0.810507
534534 0 0
535535 0 0
536536 0 0
537537 0 0
538538 0 0
539539 0 0
540540 0 0
541541 −840.000 −1.55268 −0.776340 0.630314i 0.782926π-0.782926\pi
−0.776340 + 0.630314i 0.782926π0.782926\pi
542542 0 0
543543 0 0
544544 0 0
545545 −960.000 −1.76147
546546 0 0
547547 0 0 1.00000 00
−1.00000 π\pi
548548 0 0
549549 1080.00 1.96721
550550 0 0
551551 0 0
552552 0 0
553553 0 0
554554 0 0
555555 0 0
556556 0 0
557557 −1064.00 −1.91023 −0.955117 0.296230i 0.904271π-0.904271\pi
−0.955117 + 0.296230i 0.904271π0.904271\pi
558558 0 0
559559 0 0
560560 0 0
561561 0 0
562562 0 0
563563 0 0 1.00000 00
−1.00000 π\pi
564564 0 0
565565 240.000 0.424779
566566 0 0
567567 0 0
568568 0 0
569569 462.000 0.811951 0.405975 0.913884i 0.366932π-0.366932\pi
0.405975 + 0.913884i 0.366932π0.366932\pi
570570 0 0
571571 0 0 1.00000 00
−1.00000 π\pi
572572 0 0
573573 0 0
574574 0 0
575575 0 0
576576 0 0
577577 −1150.00 −1.99307 −0.996534 0.0831889i 0.973490π-0.973490\pi
−0.996534 + 0.0831889i 0.973490π0.973490\pi
578578 0 0
579579 0 0
580580 0 0
581581 0 0
582582 0 0
583583 0 0
584584 0 0
585585 −1728.00 −2.95385
586586 0 0
587587 0 0 1.00000 00
−1.00000 π\pi
588588 0 0
589589 0 0
590590 0 0
591591 0 0
592592 0 0
593593 930.000 1.56830 0.784148 0.620573i 0.213100π-0.213100\pi
0.784148 + 0.620573i 0.213100π0.213100\pi
594594 0 0
595595 0 0
596596 0 0
597597 0 0
598598 0 0
599599 0 0 1.00000 00
−1.00000 π\pi
600600 0 0
601601 −1102.00 −1.83361 −0.916805 0.399334i 0.869241π-0.869241\pi
−0.916805 + 0.399334i 0.869241π0.869241\pi
602602 0 0
603603 0 0
604604 0 0
605605 −968.000 −1.60000
606606 0 0
607607 0 0 1.00000 00
−1.00000 π\pi
608608 0 0
609609 0 0
610610 0 0
611611 0 0
612612 0 0
613613 −1224.00 −1.99674 −0.998369 0.0570962i 0.981816π-0.981816\pi
−0.998369 + 0.0570962i 0.981816π0.981816\pi
614614 0 0
615615 0 0
616616 0 0
617617 210.000 0.340357 0.170178 0.985413i 0.445566π-0.445566\pi
0.170178 + 0.985413i 0.445566π0.445566\pi
618618 0 0
619619 0 0 1.00000 00
−1.00000 π\pi
620620 0 0
621621 0 0
622622 0 0
623623 0 0
624624 0 0
625625 −79.0000 −0.126400
626626 0 0
627627 0 0
628628 0 0
629629 720.000 1.14467
630630 0 0
631631 0 0 1.00000 00
−1.00000 π\pi
632632 0 0
633633 0 0
634634 0 0
635635 0 0
636636 0 0
637637 1176.00 1.84615
638638 0 0
639639 0 0
640640 0 0
641641 −1218.00 −1.90016 −0.950078 0.312012i 0.898997π-0.898997\pi
−0.950078 + 0.312012i 0.898997π0.898997\pi
642642 0 0
643643 0 0 1.00000 00
−1.00000 π\pi
644644 0 0
645645 0 0
646646 0 0
647647 0 0 1.00000 00
−1.00000 π\pi
648648 0 0
649649 0 0
650650 0 0
651651 0 0
652652 0 0
653653 1144.00 1.75191 0.875957 0.482389i 0.160231π-0.160231\pi
0.875957 + 0.482389i 0.160231π0.160231\pi
654654 0 0
655655 0 0
656656 0 0
657657 −990.000 −1.50685
658658 0 0
659659 0 0 1.00000 00
−1.00000 π\pi
660660 0 0
661661 600.000 0.907716 0.453858 0.891074i 0.350047π-0.350047\pi
0.453858 + 0.891074i 0.350047π0.350047\pi
662662 0 0
663663 0 0
664664 0 0
665665 0 0
666666 0 0
667667 0 0
668668 0 0
669669 0 0
670670 0 0
671671 0 0
672672 0 0
673673 −770.000 −1.14413 −0.572065 0.820208i 0.693858π-0.693858\pi
−0.572065 + 0.820208i 0.693858π0.693858\pi
674674 0 0
675675 0 0
676676 0 0
677677 −104.000 −0.153619 −0.0768095 0.997046i 0.524473π-0.524473\pi
−0.0768095 + 0.997046i 0.524473π0.524473\pi
678678 0 0
679679 0 0
680680 0 0
681681 0 0
682682 0 0
683683 0 0 1.00000 00
−1.00000 π\pi
684684 0 0
685685 1680.00 2.45255
686686 0 0
687687 0 0
688688 0 0
689689 1344.00 1.95065
690690 0 0
691691 0 0 1.00000 00
−1.00000 π\pi
692692 0 0
693693 0 0
694694 0 0
695695 0 0
696696 0 0
697697 −540.000 −0.774749
698698 0 0
699699 0 0
700700 0 0
701701 −520.000 −0.741797 −0.370899 0.928673i 0.620950π-0.620950\pi
−0.370899 + 0.928673i 0.620950π0.620950\pi
702702 0 0
703703 0 0
704704 0 0
705705 0 0
706706 0 0
707707 0 0
708708 0 0
709709 −1320.00 −1.86178 −0.930889 0.365303i 0.880965π-0.880965\pi
−0.930889 + 0.365303i 0.880965π0.880965\pi
710710 0 0
711711 0 0
712712 0 0
713713 0 0
714714 0 0
715715 0 0
716716 0 0
717717 0 0
718718 0 0
719719 0 0 1.00000 00
−1.00000 π\pi
720720 0 0
721721 0 0
722722 0 0
723723 0 0
724724 0 0
725725 −1560.00 −2.15172
726726 0 0
727727 0 0 1.00000 00
−1.00000 π\pi
728728 0 0
729729 729.000 1.00000
730730 0 0
731731 0 0
732732 0 0
733733 216.000 0.294679 0.147340 0.989086i 0.452929π-0.452929\pi
0.147340 + 0.989086i 0.452929π0.452929\pi
734734 0 0
735735 0 0
736736 0 0
737737 0 0
738738 0 0
739739 0 0 1.00000 00
−1.00000 π\pi
740740 0 0
741741 0 0
742742 0 0
743743 0 0 1.00000 00
−1.00000 π\pi
744744 0 0
745745 −2240.00 −3.00671
746746 0 0
747747 0 0
748748 0 0
749749 0 0
750750 0 0
751751 0 0 1.00000 00
−1.00000 π\pi
752752 0 0
753753 0 0
754754 0 0
755755 0 0
756756 0 0
757757 −936.000 −1.23646 −0.618230 0.785997i 0.712150π-0.712150\pi
−0.618230 + 0.785997i 0.712150π0.712150\pi
758758 0 0
759759 0 0
760760 0 0
761761 78.0000 0.102497 0.0512484 0.998686i 0.483680π-0.483680\pi
0.0512484 + 0.998686i 0.483680π0.483680\pi
762762 0 0
763763 0 0
764764 0 0
765765 −2160.00 −2.82353
766766 0 0
767767 0 0
768768 0 0
769769 −962.000 −1.25098 −0.625488 0.780234i 0.715100π-0.715100\pi
−0.625488 + 0.780234i 0.715100π0.715100\pi
770770 0 0
771771 0 0
772772 0 0
773773 1496.00 1.93532 0.967658 0.252264i 0.0811751π-0.0811751\pi
0.967658 + 0.252264i 0.0811751π0.0811751\pi
774774 0 0
775775 0 0
776776 0 0
777777 0 0
778778 0 0
779779 0 0
780780 0 0
781781 0 0
782782 0 0
783783 0 0
784784 0 0
785785 2112.00 2.69045
786786 0 0
787787 0 0 1.00000 00
−1.00000 π\pi
788788 0 0
789789 0 0
790790 0 0
791791 0 0
792792 0 0
793793 2880.00 3.63178
794794 0 0
795795 0 0
796796 0 0
797797 1144.00 1.43538 0.717691 0.696361i 0.245199π-0.245199\pi
0.717691 + 0.696361i 0.245199π0.245199\pi
798798 0 0
799799 0 0
800800 0 0
801801 −702.000 −0.876404
802802 0 0
803803 0 0
804804 0 0
805805 0 0
806806 0 0
807807 0 0
808808 0 0
809809 1518.00 1.87639 0.938195 0.346106i 0.112496π-0.112496\pi
0.938195 + 0.346106i 0.112496π0.112496\pi
810810 0 0
811811 0 0 1.00000 00
−1.00000 π\pi
812812 0 0
813813 0 0
814814 0 0
815815 0 0
816816 0 0
817817 0 0
818818 0 0
819819 0 0
820820 0 0
821821 1400.00 1.70524 0.852619 0.522533i 0.175013π-0.175013\pi
0.852619 + 0.522533i 0.175013π0.175013\pi
822822 0 0
823823 0 0 1.00000 00
−1.00000 π\pi
824824 0 0
825825 0 0
826826 0 0
827827 0 0 1.00000 00
−1.00000 π\pi
828828 0 0
829829 1080.00 1.30277 0.651387 0.758745i 0.274187π-0.274187\pi
0.651387 + 0.758745i 0.274187π0.274187\pi
830830 0 0
831831 0 0
832832 0 0
833833 1470.00 1.76471
834834 0 0
835835 0 0
836836 0 0
837837 0 0
838838 0 0
839839 0 0 1.00000 00
−1.00000 π\pi
840840 0 0
841841 759.000 0.902497
842842 0 0
843843 0 0
844844 0 0
845845 −3256.00 −3.85325
846846 0 0
847847 0 0
848848 0 0
849849 0 0
850850 0 0
851851 0 0
852852 0 0
853853 1656.00 1.94138 0.970692 0.240328i 0.0772551π-0.0772551\pi
0.970692 + 0.240328i 0.0772551π0.0772551\pi
854854 0 0
855855 0 0
856856 0 0
857857 −1650.00 −1.92532 −0.962660 0.270712i 0.912741π-0.912741\pi
−0.962660 + 0.270712i 0.912741π0.912741\pi
858858 0 0
859859 0 0 1.00000 00
−1.00000 π\pi
860860 0 0
861861 0 0
862862 0 0
863863 0 0 1.00000 00
−1.00000 π\pi
864864 0 0
865865 832.000 0.961850
866866 0 0
867867 0 0
868868 0 0
869869 0 0
870870 0 0
871871 0 0
872872 0 0
873873 −1170.00 −1.34021
874874 0 0
875875 0 0
876876 0 0
877877 696.000 0.793615 0.396807 0.917902i 0.370118π-0.370118\pi
0.396807 + 0.917902i 0.370118π0.370118\pi
878878 0 0
879879 0 0
880880 0 0
881881 738.000 0.837684 0.418842 0.908059i 0.362436π-0.362436\pi
0.418842 + 0.908059i 0.362436π0.362436\pi
882882 0 0
883883 0 0 1.00000 00
−1.00000 π\pi
884884 0 0
885885 0 0
886886 0 0
887887 0 0 1.00000 00
−1.00000 π\pi
888888 0 0
889889 0 0
890890 0 0
891891 0 0
892892 0 0
893893 0 0
894894 0 0
895895 0 0
896896 0 0
897897 0 0
898898 0 0
899899 0 0
900900 0 0
901901 1680.00 1.86459
902902 0 0
903903 0 0
904904 0 0
905905 2880.00 3.18232
906906 0 0
907907 0 0 1.00000 00
−1.00000 π\pi
908908 0 0
909909 −360.000 −0.396040
910910 0 0
911911 0 0 1.00000 00
−1.00000 π\pi
912912 0 0
913913 0 0
914914 0 0
915915 0 0
916916 0 0
917917 0 0
918918 0 0
919919 0 0 1.00000 00
−1.00000 π\pi
920920 0 0
921921 0 0
922922 0 0
923923 0 0
924924 0 0
925925 936.000 1.01189
926926 0 0
927927 0 0
928928 0 0
929929 −258.000 −0.277718 −0.138859 0.990312i 0.544343π-0.544343\pi
−0.138859 + 0.990312i 0.544343π0.544343\pi
930930 0 0
931931 0 0
932932 0 0
933933 0 0
934934 0 0
935935 0 0
936936 0 0
937937 −430.000 −0.458911 −0.229456 0.973319i 0.573695π-0.573695\pi
−0.229456 + 0.973319i 0.573695π0.573695\pi
938938 0 0
939939 0 0
940940 0 0
941941 −1160.00 −1.23273 −0.616366 0.787460i 0.711396π-0.711396\pi
−0.616366 + 0.787460i 0.711396π0.711396\pi
942942 0 0
943943 0 0
944944 0 0
945945 0 0
946946 0 0
947947 0 0 1.00000 00
−1.00000 π\pi
948948 0 0
949949 −2640.00 −2.78188
950950 0 0
951951 0 0
952952 0 0
953953 1230.00 1.29066 0.645331 0.763903i 0.276720π-0.276720\pi
0.645331 + 0.763903i 0.276720π0.276720\pi
954954 0 0
955955 0 0
956956 0 0
957957 0 0
958958 0 0
959959 0 0
960960 0 0
961961 961.000 1.00000
962962 0 0
963963 0 0
964964 0 0
965965 −1520.00 −1.57513
966966 0 0
967967 0 0 1.00000 00
−1.00000 π\pi
968968 0 0
969969 0 0
970970 0 0
971971 0 0 1.00000 00
−1.00000 π\pi
972972 0 0
973973 0 0
974974 0 0
975975 0 0
976976 0 0
977977 −1890.00 −1.93449 −0.967247 0.253838i 0.918307π-0.918307\pi
−0.967247 + 0.253838i 0.918307π0.918307\pi
978978 0 0
979979 0 0
980980 0 0
981981 1080.00 1.10092
982982 0 0
983983 0 0 1.00000 00
−1.00000 π\pi
984984 0 0
985985 −448.000 −0.454822
986986 0 0
987987 0 0
988988 0 0
989989 0 0
990990 0 0
991991 0 0 1.00000 00
−1.00000 π\pi
992992 0 0
993993 0 0
994994 0 0
995995 0 0
996996 0 0
997997 −744.000 −0.746239 −0.373119 0.927783i 0.621712π-0.621712\pi
−0.373119 + 0.927783i 0.621712π0.621712\pi
998998 0 0
999999 0 0
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 256.3.c.a.255.1 1
3.2 odd 2 2304.3.g.f.1279.1 1
4.3 odd 2 CM 256.3.c.a.255.1 1
8.3 odd 2 256.3.c.b.255.1 1
8.5 even 2 256.3.c.b.255.1 1
12.11 even 2 2304.3.g.f.1279.1 1
16.3 odd 4 128.3.d.a.63.2 yes 2
16.5 even 4 128.3.d.a.63.1 2
16.11 odd 4 128.3.d.a.63.1 2
16.13 even 4 128.3.d.a.63.2 yes 2
24.5 odd 2 2304.3.g.a.1279.1 1
24.11 even 2 2304.3.g.a.1279.1 1
48.5 odd 4 1152.3.b.a.703.2 2
48.11 even 4 1152.3.b.a.703.2 2
48.29 odd 4 1152.3.b.a.703.1 2
48.35 even 4 1152.3.b.a.703.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
128.3.d.a.63.1 2 16.5 even 4
128.3.d.a.63.1 2 16.11 odd 4
128.3.d.a.63.2 yes 2 16.3 odd 4
128.3.d.a.63.2 yes 2 16.13 even 4
256.3.c.a.255.1 1 1.1 even 1 trivial
256.3.c.a.255.1 1 4.3 odd 2 CM
256.3.c.b.255.1 1 8.3 odd 2
256.3.c.b.255.1 1 8.5 even 2
1152.3.b.a.703.1 2 48.29 odd 4
1152.3.b.a.703.1 2 48.35 even 4
1152.3.b.a.703.2 2 48.5 odd 4
1152.3.b.a.703.2 2 48.11 even 4
2304.3.g.a.1279.1 1 24.5 odd 2
2304.3.g.a.1279.1 1 24.11 even 2
2304.3.g.f.1279.1 1 3.2 odd 2
2304.3.g.f.1279.1 1 12.11 even 2