Properties

Label 256.4.a.l.1.2
Level $256$
Weight $4$
Character 256.1
Self dual yes
Analytic conductor $15.104$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [256,4,Mod(1,256)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(256, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("256.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 256 = 2^{8} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 256.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(15.1044889615\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{7}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 7 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 8)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(2.64575\) of defining polynomial
Character \(\chi\) \(=\) 256.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+5.29150 q^{3} +10.5830 q^{5} +8.00000 q^{7} +1.00000 q^{9} +O(q^{10})\) \(q+5.29150 q^{3} +10.5830 q^{5} +8.00000 q^{7} +1.00000 q^{9} +15.8745 q^{11} +52.9150 q^{13} +56.0000 q^{15} -14.0000 q^{17} -37.0405 q^{19} +42.3320 q^{21} +152.000 q^{23} -13.0000 q^{25} -137.579 q^{27} -158.745 q^{29} +224.000 q^{31} +84.0000 q^{33} +84.6640 q^{35} -243.409 q^{37} +280.000 q^{39} +70.0000 q^{41} +439.195 q^{43} +10.5830 q^{45} +336.000 q^{47} -279.000 q^{49} -74.0810 q^{51} -31.7490 q^{53} +168.000 q^{55} -196.000 q^{57} -534.442 q^{59} +95.2470 q^{61} +8.00000 q^{63} +560.000 q^{65} +174.620 q^{67} +804.308 q^{69} +72.0000 q^{71} +294.000 q^{73} -68.7895 q^{75} +126.996 q^{77} -464.000 q^{79} -755.000 q^{81} -545.025 q^{83} -148.162 q^{85} -840.000 q^{87} -266.000 q^{89} +423.320 q^{91} +1185.30 q^{93} -392.000 q^{95} +994.000 q^{97} +15.8745 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 16 q^{7} + 2 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q + 16 q^{7} + 2 q^{9} + 112 q^{15} - 28 q^{17} + 304 q^{23} - 26 q^{25} + 448 q^{31} + 168 q^{33} + 560 q^{39} + 140 q^{41} + 672 q^{47} - 558 q^{49} + 336 q^{55} - 392 q^{57} + 16 q^{63} + 1120 q^{65} + 144 q^{71} + 588 q^{73} - 928 q^{79} - 1510 q^{81} - 1680 q^{87} - 532 q^{89} - 784 q^{95} + 1988 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 5.29150 1.01835 0.509175 0.860663i \(-0.329951\pi\)
0.509175 + 0.860663i \(0.329951\pi\)
\(4\) 0 0
\(5\) 10.5830 0.946573 0.473286 0.880909i \(-0.343068\pi\)
0.473286 + 0.880909i \(0.343068\pi\)
\(6\) 0 0
\(7\) 8.00000 0.431959 0.215980 0.976398i \(-0.430705\pi\)
0.215980 + 0.976398i \(0.430705\pi\)
\(8\) 0 0
\(9\) 1.00000 0.0370370
\(10\) 0 0
\(11\) 15.8745 0.435122 0.217561 0.976047i \(-0.430190\pi\)
0.217561 + 0.976047i \(0.430190\pi\)
\(12\) 0 0
\(13\) 52.9150 1.12892 0.564461 0.825460i \(-0.309084\pi\)
0.564461 + 0.825460i \(0.309084\pi\)
\(14\) 0 0
\(15\) 56.0000 0.963943
\(16\) 0 0
\(17\) −14.0000 −0.199735 −0.0998676 0.995001i \(-0.531842\pi\)
−0.0998676 + 0.995001i \(0.531842\pi\)
\(18\) 0 0
\(19\) −37.0405 −0.447246 −0.223623 0.974676i \(-0.571788\pi\)
−0.223623 + 0.974676i \(0.571788\pi\)
\(20\) 0 0
\(21\) 42.3320 0.439886
\(22\) 0 0
\(23\) 152.000 1.37801 0.689004 0.724757i \(-0.258048\pi\)
0.689004 + 0.724757i \(0.258048\pi\)
\(24\) 0 0
\(25\) −13.0000 −0.104000
\(26\) 0 0
\(27\) −137.579 −0.980633
\(28\) 0 0
\(29\) −158.745 −1.01649 −0.508245 0.861212i \(-0.669706\pi\)
−0.508245 + 0.861212i \(0.669706\pi\)
\(30\) 0 0
\(31\) 224.000 1.29779 0.648897 0.760877i \(-0.275231\pi\)
0.648897 + 0.760877i \(0.275231\pi\)
\(32\) 0 0
\(33\) 84.0000 0.443107
\(34\) 0 0
\(35\) 84.6640 0.408881
\(36\) 0 0
\(37\) −243.409 −1.08152 −0.540760 0.841177i \(-0.681863\pi\)
−0.540760 + 0.841177i \(0.681863\pi\)
\(38\) 0 0
\(39\) 280.000 1.14964
\(40\) 0 0
\(41\) 70.0000 0.266638 0.133319 0.991073i \(-0.457436\pi\)
0.133319 + 0.991073i \(0.457436\pi\)
\(42\) 0 0
\(43\) 439.195 1.55759 0.778797 0.627276i \(-0.215830\pi\)
0.778797 + 0.627276i \(0.215830\pi\)
\(44\) 0 0
\(45\) 10.5830 0.0350583
\(46\) 0 0
\(47\) 336.000 1.04278 0.521390 0.853319i \(-0.325414\pi\)
0.521390 + 0.853319i \(0.325414\pi\)
\(48\) 0 0
\(49\) −279.000 −0.813411
\(50\) 0 0
\(51\) −74.0810 −0.203400
\(52\) 0 0
\(53\) −31.7490 −0.0822842 −0.0411421 0.999153i \(-0.513100\pi\)
−0.0411421 + 0.999153i \(0.513100\pi\)
\(54\) 0 0
\(55\) 168.000 0.411875
\(56\) 0 0
\(57\) −196.000 −0.455453
\(58\) 0 0
\(59\) −534.442 −1.17929 −0.589647 0.807661i \(-0.700733\pi\)
−0.589647 + 0.807661i \(0.700733\pi\)
\(60\) 0 0
\(61\) 95.2470 0.199920 0.0999601 0.994991i \(-0.468128\pi\)
0.0999601 + 0.994991i \(0.468128\pi\)
\(62\) 0 0
\(63\) 8.00000 0.0159985
\(64\) 0 0
\(65\) 560.000 1.06861
\(66\) 0 0
\(67\) 174.620 0.318406 0.159203 0.987246i \(-0.449108\pi\)
0.159203 + 0.987246i \(0.449108\pi\)
\(68\) 0 0
\(69\) 804.308 1.40329
\(70\) 0 0
\(71\) 72.0000 0.120350 0.0601748 0.998188i \(-0.480834\pi\)
0.0601748 + 0.998188i \(0.480834\pi\)
\(72\) 0 0
\(73\) 294.000 0.471371 0.235686 0.971829i \(-0.424266\pi\)
0.235686 + 0.971829i \(0.424266\pi\)
\(74\) 0 0
\(75\) −68.7895 −0.105908
\(76\) 0 0
\(77\) 126.996 0.187955
\(78\) 0 0
\(79\) −464.000 −0.660811 −0.330406 0.943839i \(-0.607186\pi\)
−0.330406 + 0.943839i \(0.607186\pi\)
\(80\) 0 0
\(81\) −755.000 −1.03567
\(82\) 0 0
\(83\) −545.025 −0.720774 −0.360387 0.932803i \(-0.617355\pi\)
−0.360387 + 0.932803i \(0.617355\pi\)
\(84\) 0 0
\(85\) −148.162 −0.189064
\(86\) 0 0
\(87\) −840.000 −1.03514
\(88\) 0 0
\(89\) −266.000 −0.316808 −0.158404 0.987374i \(-0.550635\pi\)
−0.158404 + 0.987374i \(0.550635\pi\)
\(90\) 0 0
\(91\) 423.320 0.487649
\(92\) 0 0
\(93\) 1185.30 1.32161
\(94\) 0 0
\(95\) −392.000 −0.423351
\(96\) 0 0
\(97\) 994.000 1.04047 0.520234 0.854024i \(-0.325845\pi\)
0.520234 + 0.854024i \(0.325845\pi\)
\(98\) 0 0
\(99\) 15.8745 0.0161156
\(100\) 0 0
\(101\) −751.393 −0.740262 −0.370131 0.928980i \(-0.620687\pi\)
−0.370131 + 0.928980i \(0.620687\pi\)
\(102\) 0 0
\(103\) −1176.00 −1.12500 −0.562499 0.826798i \(-0.690160\pi\)
−0.562499 + 0.826798i \(0.690160\pi\)
\(104\) 0 0
\(105\) 448.000 0.416384
\(106\) 0 0
\(107\) 269.867 0.243822 0.121911 0.992541i \(-0.461098\pi\)
0.121911 + 0.992541i \(0.461098\pi\)
\(108\) 0 0
\(109\) −1894.36 −1.66465 −0.832324 0.554290i \(-0.812990\pi\)
−0.832324 + 0.554290i \(0.812990\pi\)
\(110\) 0 0
\(111\) −1288.00 −1.10137
\(112\) 0 0
\(113\) −1710.00 −1.42357 −0.711784 0.702398i \(-0.752113\pi\)
−0.711784 + 0.702398i \(0.752113\pi\)
\(114\) 0 0
\(115\) 1608.62 1.30439
\(116\) 0 0
\(117\) 52.9150 0.0418119
\(118\) 0 0
\(119\) −112.000 −0.0862775
\(120\) 0 0
\(121\) −1079.00 −0.810669
\(122\) 0 0
\(123\) 370.405 0.271531
\(124\) 0 0
\(125\) −1460.45 −1.04502
\(126\) 0 0
\(127\) −1664.00 −1.16265 −0.581323 0.813673i \(-0.697465\pi\)
−0.581323 + 0.813673i \(0.697465\pi\)
\(128\) 0 0
\(129\) 2324.00 1.58618
\(130\) 0 0
\(131\) −672.021 −0.448204 −0.224102 0.974566i \(-0.571945\pi\)
−0.224102 + 0.974566i \(0.571945\pi\)
\(132\) 0 0
\(133\) −296.324 −0.193192
\(134\) 0 0
\(135\) −1456.00 −0.928241
\(136\) 0 0
\(137\) 1062.00 0.662283 0.331142 0.943581i \(-0.392566\pi\)
0.331142 + 0.943581i \(0.392566\pi\)
\(138\) 0 0
\(139\) −2693.37 −1.64352 −0.821759 0.569835i \(-0.807007\pi\)
−0.821759 + 0.569835i \(0.807007\pi\)
\(140\) 0 0
\(141\) 1777.94 1.06191
\(142\) 0 0
\(143\) 840.000 0.491219
\(144\) 0 0
\(145\) −1680.00 −0.962182
\(146\) 0 0
\(147\) −1476.33 −0.828337
\(148\) 0 0
\(149\) −793.725 −0.436406 −0.218203 0.975903i \(-0.570020\pi\)
−0.218203 + 0.975903i \(0.570020\pi\)
\(150\) 0 0
\(151\) −744.000 −0.400966 −0.200483 0.979697i \(-0.564251\pi\)
−0.200483 + 0.979697i \(0.564251\pi\)
\(152\) 0 0
\(153\) −14.0000 −0.00739760
\(154\) 0 0
\(155\) 2370.59 1.22846
\(156\) 0 0
\(157\) 179.911 0.0914552 0.0457276 0.998954i \(-0.485439\pi\)
0.0457276 + 0.998954i \(0.485439\pi\)
\(158\) 0 0
\(159\) −168.000 −0.0837941
\(160\) 0 0
\(161\) 1216.00 0.595244
\(162\) 0 0
\(163\) −1772.65 −0.851809 −0.425905 0.904768i \(-0.640044\pi\)
−0.425905 + 0.904768i \(0.640044\pi\)
\(164\) 0 0
\(165\) 888.972 0.419433
\(166\) 0 0
\(167\) 1960.00 0.908200 0.454100 0.890951i \(-0.349961\pi\)
0.454100 + 0.890951i \(0.349961\pi\)
\(168\) 0 0
\(169\) 603.000 0.274465
\(170\) 0 0
\(171\) −37.0405 −0.0165647
\(172\) 0 0
\(173\) 2000.19 0.879026 0.439513 0.898236i \(-0.355151\pi\)
0.439513 + 0.898236i \(0.355151\pi\)
\(174\) 0 0
\(175\) −104.000 −0.0449238
\(176\) 0 0
\(177\) −2828.00 −1.20094
\(178\) 0 0
\(179\) 3264.86 1.36328 0.681639 0.731688i \(-0.261267\pi\)
0.681639 + 0.731688i \(0.261267\pi\)
\(180\) 0 0
\(181\) 2338.84 0.960469 0.480235 0.877140i \(-0.340552\pi\)
0.480235 + 0.877140i \(0.340552\pi\)
\(182\) 0 0
\(183\) 504.000 0.203589
\(184\) 0 0
\(185\) −2576.00 −1.02374
\(186\) 0 0
\(187\) −222.243 −0.0869092
\(188\) 0 0
\(189\) −1100.63 −0.423594
\(190\) 0 0
\(191\) 3904.00 1.47897 0.739486 0.673172i \(-0.235069\pi\)
0.739486 + 0.673172i \(0.235069\pi\)
\(192\) 0 0
\(193\) 3330.00 1.24196 0.620981 0.783826i \(-0.286734\pi\)
0.620981 + 0.783826i \(0.286734\pi\)
\(194\) 0 0
\(195\) 2963.24 1.08822
\(196\) 0 0
\(197\) 1195.88 0.432502 0.216251 0.976338i \(-0.430617\pi\)
0.216251 + 0.976338i \(0.430617\pi\)
\(198\) 0 0
\(199\) 1736.00 0.618401 0.309200 0.950997i \(-0.399939\pi\)
0.309200 + 0.950997i \(0.399939\pi\)
\(200\) 0 0
\(201\) 924.000 0.324248
\(202\) 0 0
\(203\) −1269.96 −0.439083
\(204\) 0 0
\(205\) 740.810 0.252392
\(206\) 0 0
\(207\) 152.000 0.0510373
\(208\) 0 0
\(209\) −588.000 −0.194607
\(210\) 0 0
\(211\) −2915.62 −0.951277 −0.475638 0.879641i \(-0.657783\pi\)
−0.475638 + 0.879641i \(0.657783\pi\)
\(212\) 0 0
\(213\) 380.988 0.122558
\(214\) 0 0
\(215\) 4648.00 1.47438
\(216\) 0 0
\(217\) 1792.00 0.560594
\(218\) 0 0
\(219\) 1555.70 0.480021
\(220\) 0 0
\(221\) −740.810 −0.225486
\(222\) 0 0
\(223\) 1568.00 0.470857 0.235428 0.971892i \(-0.424351\pi\)
0.235428 + 0.971892i \(0.424351\pi\)
\(224\) 0 0
\(225\) −13.0000 −0.00385185
\(226\) 0 0
\(227\) −1264.67 −0.369775 −0.184888 0.982760i \(-0.559192\pi\)
−0.184888 + 0.982760i \(0.559192\pi\)
\(228\) 0 0
\(229\) −5153.92 −1.48725 −0.743626 0.668595i \(-0.766896\pi\)
−0.743626 + 0.668595i \(0.766896\pi\)
\(230\) 0 0
\(231\) 672.000 0.191404
\(232\) 0 0
\(233\) 838.000 0.235619 0.117809 0.993036i \(-0.462413\pi\)
0.117809 + 0.993036i \(0.462413\pi\)
\(234\) 0 0
\(235\) 3555.89 0.987067
\(236\) 0 0
\(237\) −2455.26 −0.672937
\(238\) 0 0
\(239\) 6288.00 1.70183 0.850914 0.525305i \(-0.176049\pi\)
0.850914 + 0.525305i \(0.176049\pi\)
\(240\) 0 0
\(241\) −2926.00 −0.782076 −0.391038 0.920375i \(-0.627884\pi\)
−0.391038 + 0.920375i \(0.627884\pi\)
\(242\) 0 0
\(243\) −280.450 −0.0740364
\(244\) 0 0
\(245\) −2952.66 −0.769953
\(246\) 0 0
\(247\) −1960.00 −0.504906
\(248\) 0 0
\(249\) −2884.00 −0.734000
\(250\) 0 0
\(251\) −5444.96 −1.36925 −0.684627 0.728894i \(-0.740035\pi\)
−0.684627 + 0.728894i \(0.740035\pi\)
\(252\) 0 0
\(253\) 2412.93 0.599602
\(254\) 0 0
\(255\) −784.000 −0.192533
\(256\) 0 0
\(257\) 2562.00 0.621841 0.310921 0.950436i \(-0.399363\pi\)
0.310921 + 0.950436i \(0.399363\pi\)
\(258\) 0 0
\(259\) −1947.27 −0.467172
\(260\) 0 0
\(261\) −158.745 −0.0376478
\(262\) 0 0
\(263\) 5896.00 1.38237 0.691184 0.722679i \(-0.257089\pi\)
0.691184 + 0.722679i \(0.257089\pi\)
\(264\) 0 0
\(265\) −336.000 −0.0778880
\(266\) 0 0
\(267\) −1407.54 −0.322622
\(268\) 0 0
\(269\) −5365.58 −1.21615 −0.608077 0.793878i \(-0.708059\pi\)
−0.608077 + 0.793878i \(0.708059\pi\)
\(270\) 0 0
\(271\) −1680.00 −0.376578 −0.188289 0.982114i \(-0.560294\pi\)
−0.188289 + 0.982114i \(0.560294\pi\)
\(272\) 0 0
\(273\) 2240.00 0.496597
\(274\) 0 0
\(275\) −206.369 −0.0452527
\(276\) 0 0
\(277\) 1576.87 0.342039 0.171019 0.985268i \(-0.445294\pi\)
0.171019 + 0.985268i \(0.445294\pi\)
\(278\) 0 0
\(279\) 224.000 0.0480664
\(280\) 0 0
\(281\) 2742.00 0.582114 0.291057 0.956706i \(-0.405993\pi\)
0.291057 + 0.956706i \(0.405993\pi\)
\(282\) 0 0
\(283\) −2989.70 −0.627983 −0.313991 0.949426i \(-0.601666\pi\)
−0.313991 + 0.949426i \(0.601666\pi\)
\(284\) 0 0
\(285\) −2074.27 −0.431120
\(286\) 0 0
\(287\) 560.000 0.115177
\(288\) 0 0
\(289\) −4717.00 −0.960106
\(290\) 0 0
\(291\) 5259.75 1.05956
\(292\) 0 0
\(293\) 9238.96 1.84214 0.921068 0.389401i \(-0.127318\pi\)
0.921068 + 0.389401i \(0.127318\pi\)
\(294\) 0 0
\(295\) −5656.00 −1.11629
\(296\) 0 0
\(297\) −2184.00 −0.426695
\(298\) 0 0
\(299\) 8043.08 1.55566
\(300\) 0 0
\(301\) 3513.56 0.672818
\(302\) 0 0
\(303\) −3976.00 −0.753846
\(304\) 0 0
\(305\) 1008.00 0.189239
\(306\) 0 0
\(307\) 2587.54 0.481039 0.240520 0.970644i \(-0.422682\pi\)
0.240520 + 0.970644i \(0.422682\pi\)
\(308\) 0 0
\(309\) −6222.81 −1.14564
\(310\) 0 0
\(311\) 2744.00 0.500315 0.250157 0.968205i \(-0.419518\pi\)
0.250157 + 0.968205i \(0.419518\pi\)
\(312\) 0 0
\(313\) −2282.00 −0.412097 −0.206048 0.978542i \(-0.566060\pi\)
−0.206048 + 0.978542i \(0.566060\pi\)
\(314\) 0 0
\(315\) 84.6640 0.0151437
\(316\) 0 0
\(317\) 9577.62 1.69695 0.848474 0.529237i \(-0.177522\pi\)
0.848474 + 0.529237i \(0.177522\pi\)
\(318\) 0 0
\(319\) −2520.00 −0.442298
\(320\) 0 0
\(321\) 1428.00 0.248297
\(322\) 0 0
\(323\) 518.567 0.0893308
\(324\) 0 0
\(325\) −687.895 −0.117408
\(326\) 0 0
\(327\) −10024.0 −1.69519
\(328\) 0 0
\(329\) 2688.00 0.450438
\(330\) 0 0
\(331\) 4249.08 0.705590 0.352795 0.935701i \(-0.385231\pi\)
0.352795 + 0.935701i \(0.385231\pi\)
\(332\) 0 0
\(333\) −243.409 −0.0400563
\(334\) 0 0
\(335\) 1848.00 0.301394
\(336\) 0 0
\(337\) 6130.00 0.990868 0.495434 0.868646i \(-0.335009\pi\)
0.495434 + 0.868646i \(0.335009\pi\)
\(338\) 0 0
\(339\) −9048.47 −1.44969
\(340\) 0 0
\(341\) 3555.89 0.564699
\(342\) 0 0
\(343\) −4976.00 −0.783320
\(344\) 0 0
\(345\) 8512.00 1.32832
\(346\) 0 0
\(347\) −2481.71 −0.383935 −0.191967 0.981401i \(-0.561487\pi\)
−0.191967 + 0.981401i \(0.561487\pi\)
\(348\) 0 0
\(349\) −328.073 −0.0503191 −0.0251595 0.999683i \(-0.508009\pi\)
−0.0251595 + 0.999683i \(0.508009\pi\)
\(350\) 0 0
\(351\) −7280.00 −1.10706
\(352\) 0 0
\(353\) −10206.0 −1.53884 −0.769420 0.638743i \(-0.779455\pi\)
−0.769420 + 0.638743i \(0.779455\pi\)
\(354\) 0 0
\(355\) 761.976 0.113920
\(356\) 0 0
\(357\) −592.648 −0.0878607
\(358\) 0 0
\(359\) 3176.00 0.466916 0.233458 0.972367i \(-0.424996\pi\)
0.233458 + 0.972367i \(0.424996\pi\)
\(360\) 0 0
\(361\) −5487.00 −0.799971
\(362\) 0 0
\(363\) −5709.53 −0.825545
\(364\) 0 0
\(365\) 3111.40 0.446187
\(366\) 0 0
\(367\) −11760.0 −1.67266 −0.836331 0.548225i \(-0.815304\pi\)
−0.836331 + 0.548225i \(0.815304\pi\)
\(368\) 0 0
\(369\) 70.0000 0.00987549
\(370\) 0 0
\(371\) −253.992 −0.0355434
\(372\) 0 0
\(373\) 10974.6 1.52344 0.761719 0.647908i \(-0.224356\pi\)
0.761719 + 0.647908i \(0.224356\pi\)
\(374\) 0 0
\(375\) −7728.00 −1.06419
\(376\) 0 0
\(377\) −8400.00 −1.14754
\(378\) 0 0
\(379\) −3074.36 −0.416674 −0.208337 0.978057i \(-0.566805\pi\)
−0.208337 + 0.978057i \(0.566805\pi\)
\(380\) 0 0
\(381\) −8805.06 −1.18398
\(382\) 0 0
\(383\) 2688.00 0.358617 0.179309 0.983793i \(-0.442614\pi\)
0.179309 + 0.983793i \(0.442614\pi\)
\(384\) 0 0
\(385\) 1344.00 0.177913
\(386\) 0 0
\(387\) 439.195 0.0576887
\(388\) 0 0
\(389\) −10487.8 −1.36697 −0.683484 0.729966i \(-0.739536\pi\)
−0.683484 + 0.729966i \(0.739536\pi\)
\(390\) 0 0
\(391\) −2128.00 −0.275237
\(392\) 0 0
\(393\) −3556.00 −0.456429
\(394\) 0 0
\(395\) −4910.51 −0.625506
\(396\) 0 0
\(397\) −5704.24 −0.721127 −0.360564 0.932735i \(-0.617416\pi\)
−0.360564 + 0.932735i \(0.617416\pi\)
\(398\) 0 0
\(399\) −1568.00 −0.196737
\(400\) 0 0
\(401\) 12402.0 1.54445 0.772227 0.635346i \(-0.219143\pi\)
0.772227 + 0.635346i \(0.219143\pi\)
\(402\) 0 0
\(403\) 11853.0 1.46511
\(404\) 0 0
\(405\) −7990.17 −0.980333
\(406\) 0 0
\(407\) −3864.00 −0.470593
\(408\) 0 0
\(409\) 12278.0 1.48437 0.742186 0.670194i \(-0.233789\pi\)
0.742186 + 0.670194i \(0.233789\pi\)
\(410\) 0 0
\(411\) 5619.58 0.674436
\(412\) 0 0
\(413\) −4275.53 −0.509407
\(414\) 0 0
\(415\) −5768.00 −0.682265
\(416\) 0 0
\(417\) −14252.0 −1.67368
\(418\) 0 0
\(419\) −8207.12 −0.956907 −0.478454 0.878113i \(-0.658802\pi\)
−0.478454 + 0.878113i \(0.658802\pi\)
\(420\) 0 0
\(421\) 1449.87 0.167844 0.0839221 0.996472i \(-0.473255\pi\)
0.0839221 + 0.996472i \(0.473255\pi\)
\(422\) 0 0
\(423\) 336.000 0.0386215
\(424\) 0 0
\(425\) 182.000 0.0207725
\(426\) 0 0
\(427\) 761.976 0.0863574
\(428\) 0 0
\(429\) 4444.86 0.500233
\(430\) 0 0
\(431\) 7632.00 0.852948 0.426474 0.904500i \(-0.359756\pi\)
0.426474 + 0.904500i \(0.359756\pi\)
\(432\) 0 0
\(433\) 3794.00 0.421081 0.210540 0.977585i \(-0.432478\pi\)
0.210540 + 0.977585i \(0.432478\pi\)
\(434\) 0 0
\(435\) −8889.72 −0.979838
\(436\) 0 0
\(437\) −5630.16 −0.616309
\(438\) 0 0
\(439\) 1848.00 0.200912 0.100456 0.994942i \(-0.467970\pi\)
0.100456 + 0.994942i \(0.467970\pi\)
\(440\) 0 0
\(441\) −279.000 −0.0301263
\(442\) 0 0
\(443\) 12334.5 1.32287 0.661433 0.750004i \(-0.269949\pi\)
0.661433 + 0.750004i \(0.269949\pi\)
\(444\) 0 0
\(445\) −2815.08 −0.299882
\(446\) 0 0
\(447\) −4200.00 −0.444414
\(448\) 0 0
\(449\) −3582.00 −0.376492 −0.188246 0.982122i \(-0.560280\pi\)
−0.188246 + 0.982122i \(0.560280\pi\)
\(450\) 0 0
\(451\) 1111.22 0.116020
\(452\) 0 0
\(453\) −3936.88 −0.408324
\(454\) 0 0
\(455\) 4480.00 0.461595
\(456\) 0 0
\(457\) −2714.00 −0.277802 −0.138901 0.990306i \(-0.544357\pi\)
−0.138901 + 0.990306i \(0.544357\pi\)
\(458\) 0 0
\(459\) 1926.11 0.195867
\(460\) 0 0
\(461\) 8349.99 0.843596 0.421798 0.906690i \(-0.361399\pi\)
0.421798 + 0.906690i \(0.361399\pi\)
\(462\) 0 0
\(463\) 2224.00 0.223236 0.111618 0.993751i \(-0.464397\pi\)
0.111618 + 0.993751i \(0.464397\pi\)
\(464\) 0 0
\(465\) 12544.0 1.25100
\(466\) 0 0
\(467\) 10292.0 1.01982 0.509910 0.860228i \(-0.329679\pi\)
0.509910 + 0.860228i \(0.329679\pi\)
\(468\) 0 0
\(469\) 1396.96 0.137538
\(470\) 0 0
\(471\) 952.000 0.0931334
\(472\) 0 0
\(473\) 6972.00 0.677744
\(474\) 0 0
\(475\) 481.527 0.0465136
\(476\) 0 0
\(477\) −31.7490 −0.00304756
\(478\) 0 0
\(479\) 17696.0 1.68800 0.843999 0.536345i \(-0.180195\pi\)
0.843999 + 0.536345i \(0.180195\pi\)
\(480\) 0 0
\(481\) −12880.0 −1.22095
\(482\) 0 0
\(483\) 6434.47 0.606166
\(484\) 0 0
\(485\) 10519.5 0.984879
\(486\) 0 0
\(487\) −1304.00 −0.121334 −0.0606672 0.998158i \(-0.519323\pi\)
−0.0606672 + 0.998158i \(0.519323\pi\)
\(488\) 0 0
\(489\) −9380.00 −0.867440
\(490\) 0 0
\(491\) −16662.9 −1.53154 −0.765772 0.643112i \(-0.777643\pi\)
−0.765772 + 0.643112i \(0.777643\pi\)
\(492\) 0 0
\(493\) 2222.43 0.203029
\(494\) 0 0
\(495\) 168.000 0.0152546
\(496\) 0 0
\(497\) 576.000 0.0519862
\(498\) 0 0
\(499\) 3095.53 0.277705 0.138853 0.990313i \(-0.455659\pi\)
0.138853 + 0.990313i \(0.455659\pi\)
\(500\) 0 0
\(501\) 10371.3 0.924865
\(502\) 0 0
\(503\) 19320.0 1.71260 0.856298 0.516481i \(-0.172758\pi\)
0.856298 + 0.516481i \(0.172758\pi\)
\(504\) 0 0
\(505\) −7952.00 −0.700712
\(506\) 0 0
\(507\) 3190.78 0.279502
\(508\) 0 0
\(509\) −4476.61 −0.389828 −0.194914 0.980820i \(-0.562443\pi\)
−0.194914 + 0.980820i \(0.562443\pi\)
\(510\) 0 0
\(511\) 2352.00 0.203613
\(512\) 0 0
\(513\) 5096.00 0.438585
\(514\) 0 0
\(515\) −12445.6 −1.06489
\(516\) 0 0
\(517\) 5333.83 0.453737
\(518\) 0 0
\(519\) 10584.0 0.895156
\(520\) 0 0
\(521\) 2982.00 0.250756 0.125378 0.992109i \(-0.459986\pi\)
0.125378 + 0.992109i \(0.459986\pi\)
\(522\) 0 0
\(523\) −2016.06 −0.168559 −0.0842794 0.996442i \(-0.526859\pi\)
−0.0842794 + 0.996442i \(0.526859\pi\)
\(524\) 0 0
\(525\) −550.316 −0.0457481
\(526\) 0 0
\(527\) −3136.00 −0.259215
\(528\) 0 0
\(529\) 10937.0 0.898907
\(530\) 0 0
\(531\) −534.442 −0.0436776
\(532\) 0 0
\(533\) 3704.05 0.301014
\(534\) 0 0
\(535\) 2856.00 0.230796
\(536\) 0 0
\(537\) 17276.0 1.38830
\(538\) 0 0
\(539\) −4428.99 −0.353933
\(540\) 0 0
\(541\) 15419.4 1.22539 0.612693 0.790321i \(-0.290086\pi\)
0.612693 + 0.790321i \(0.290086\pi\)
\(542\) 0 0
\(543\) 12376.0 0.978094
\(544\) 0 0
\(545\) −20048.0 −1.57571
\(546\) 0 0
\(547\) −12609.7 −0.985649 −0.492824 0.870129i \(-0.664035\pi\)
−0.492824 + 0.870129i \(0.664035\pi\)
\(548\) 0 0
\(549\) 95.2470 0.00740445
\(550\) 0 0
\(551\) 5880.00 0.454621
\(552\) 0 0
\(553\) −3712.00 −0.285444
\(554\) 0 0
\(555\) −13630.9 −1.04252
\(556\) 0 0
\(557\) −7143.53 −0.543413 −0.271706 0.962380i \(-0.587588\pi\)
−0.271706 + 0.962380i \(0.587588\pi\)
\(558\) 0 0
\(559\) 23240.0 1.75840
\(560\) 0 0
\(561\) −1176.00 −0.0885040
\(562\) 0 0
\(563\) −7572.14 −0.566834 −0.283417 0.958997i \(-0.591468\pi\)
−0.283417 + 0.958997i \(0.591468\pi\)
\(564\) 0 0
\(565\) −18096.9 −1.34751
\(566\) 0 0
\(567\) −6040.00 −0.447365
\(568\) 0 0
\(569\) −15594.0 −1.14892 −0.574459 0.818533i \(-0.694788\pi\)
−0.574459 + 0.818533i \(0.694788\pi\)
\(570\) 0 0
\(571\) 16737.0 1.22666 0.613330 0.789827i \(-0.289830\pi\)
0.613330 + 0.789827i \(0.289830\pi\)
\(572\) 0 0
\(573\) 20658.0 1.50611
\(574\) 0 0
\(575\) −1976.00 −0.143313
\(576\) 0 0
\(577\) 6594.00 0.475757 0.237879 0.971295i \(-0.423548\pi\)
0.237879 + 0.971295i \(0.423548\pi\)
\(578\) 0 0
\(579\) 17620.7 1.26475
\(580\) 0 0
\(581\) −4360.20 −0.311345
\(582\) 0 0
\(583\) −504.000 −0.0358037
\(584\) 0 0
\(585\) 560.000 0.0395780
\(586\) 0 0
\(587\) 23213.8 1.63226 0.816130 0.577868i \(-0.196115\pi\)
0.816130 + 0.577868i \(0.196115\pi\)
\(588\) 0 0
\(589\) −8297.08 −0.580433
\(590\) 0 0
\(591\) 6328.00 0.440438
\(592\) 0 0
\(593\) 14322.0 0.991794 0.495897 0.868381i \(-0.334839\pi\)
0.495897 + 0.868381i \(0.334839\pi\)
\(594\) 0 0
\(595\) −1185.30 −0.0816679
\(596\) 0 0
\(597\) 9186.05 0.629749
\(598\) 0 0
\(599\) 16088.0 1.09739 0.548696 0.836022i \(-0.315124\pi\)
0.548696 + 0.836022i \(0.315124\pi\)
\(600\) 0 0
\(601\) 21238.0 1.44146 0.720729 0.693217i \(-0.243807\pi\)
0.720729 + 0.693217i \(0.243807\pi\)
\(602\) 0 0
\(603\) 174.620 0.0117928
\(604\) 0 0
\(605\) −11419.1 −0.767357
\(606\) 0 0
\(607\) −13664.0 −0.913681 −0.456841 0.889549i \(-0.651019\pi\)
−0.456841 + 0.889549i \(0.651019\pi\)
\(608\) 0 0
\(609\) −6720.00 −0.447140
\(610\) 0 0
\(611\) 17779.4 1.17722
\(612\) 0 0
\(613\) −20393.5 −1.34369 −0.671846 0.740690i \(-0.734499\pi\)
−0.671846 + 0.740690i \(0.734499\pi\)
\(614\) 0 0
\(615\) 3920.00 0.257024
\(616\) 0 0
\(617\) 3782.00 0.246771 0.123385 0.992359i \(-0.460625\pi\)
0.123385 + 0.992359i \(0.460625\pi\)
\(618\) 0 0
\(619\) −5825.94 −0.378295 −0.189147 0.981949i \(-0.560572\pi\)
−0.189147 + 0.981949i \(0.560572\pi\)
\(620\) 0 0
\(621\) −20912.0 −1.35132
\(622\) 0 0
\(623\) −2128.00 −0.136848
\(624\) 0 0
\(625\) −13831.0 −0.885184
\(626\) 0 0
\(627\) −3111.40 −0.198178
\(628\) 0 0
\(629\) 3407.73 0.216017
\(630\) 0 0
\(631\) −2056.00 −0.129712 −0.0648558 0.997895i \(-0.520659\pi\)
−0.0648558 + 0.997895i \(0.520659\pi\)
\(632\) 0 0
\(633\) −15428.0 −0.968733
\(634\) 0 0
\(635\) −17610.1 −1.10053
\(636\) 0 0
\(637\) −14763.3 −0.918278
\(638\) 0 0
\(639\) 72.0000 0.00445740
\(640\) 0 0
\(641\) 11842.0 0.729689 0.364845 0.931068i \(-0.381122\pi\)
0.364845 + 0.931068i \(0.381122\pi\)
\(642\) 0 0
\(643\) −16250.2 −0.996649 −0.498325 0.866991i \(-0.666051\pi\)
−0.498325 + 0.866991i \(0.666051\pi\)
\(644\) 0 0
\(645\) 24594.9 1.50143
\(646\) 0 0
\(647\) −19320.0 −1.17395 −0.586976 0.809604i \(-0.699682\pi\)
−0.586976 + 0.809604i \(0.699682\pi\)
\(648\) 0 0
\(649\) −8484.00 −0.513137
\(650\) 0 0
\(651\) 9482.37 0.570881
\(652\) 0 0
\(653\) −2317.68 −0.138894 −0.0694470 0.997586i \(-0.522123\pi\)
−0.0694470 + 0.997586i \(0.522123\pi\)
\(654\) 0 0
\(655\) −7112.00 −0.424258
\(656\) 0 0
\(657\) 294.000 0.0174582
\(658\) 0 0
\(659\) 27732.8 1.63932 0.819662 0.572847i \(-0.194161\pi\)
0.819662 + 0.572847i \(0.194161\pi\)
\(660\) 0 0
\(661\) −22467.7 −1.32208 −0.661039 0.750352i \(-0.729884\pi\)
−0.661039 + 0.750352i \(0.729884\pi\)
\(662\) 0 0
\(663\) −3920.00 −0.229623
\(664\) 0 0
\(665\) −3136.00 −0.182870
\(666\) 0 0
\(667\) −24129.3 −1.40073
\(668\) 0 0
\(669\) 8297.08 0.479497
\(670\) 0 0
\(671\) 1512.00 0.0869897
\(672\) 0 0
\(673\) −10078.0 −0.577234 −0.288617 0.957445i \(-0.593195\pi\)
−0.288617 + 0.957445i \(0.593195\pi\)
\(674\) 0 0
\(675\) 1788.53 0.101986
\(676\) 0 0
\(677\) −16160.2 −0.917413 −0.458707 0.888588i \(-0.651687\pi\)
−0.458707 + 0.888588i \(0.651687\pi\)
\(678\) 0 0
\(679\) 7952.00 0.449440
\(680\) 0 0
\(681\) −6692.00 −0.376561
\(682\) 0 0
\(683\) 16356.0 0.916320 0.458160 0.888870i \(-0.348509\pi\)
0.458160 + 0.888870i \(0.348509\pi\)
\(684\) 0 0
\(685\) 11239.2 0.626899
\(686\) 0 0
\(687\) −27272.0 −1.51454
\(688\) 0 0
\(689\) −1680.00 −0.0928925
\(690\) 0 0
\(691\) −29246.1 −1.61009 −0.805047 0.593211i \(-0.797860\pi\)
−0.805047 + 0.593211i \(0.797860\pi\)
\(692\) 0 0
\(693\) 126.996 0.00696130
\(694\) 0 0
\(695\) −28504.0 −1.55571
\(696\) 0 0
\(697\) −980.000 −0.0532570
\(698\) 0 0
\(699\) 4434.28 0.239943
\(700\) 0 0
\(701\) 2465.84 0.132858 0.0664290 0.997791i \(-0.478839\pi\)
0.0664290 + 0.997791i \(0.478839\pi\)
\(702\) 0 0
\(703\) 9016.00 0.483705
\(704\) 0 0
\(705\) 18816.0 1.00518
\(706\) 0 0
\(707\) −6011.15 −0.319763
\(708\) 0 0
\(709\) 31674.9 1.67782 0.838912 0.544267i \(-0.183192\pi\)
0.838912 + 0.544267i \(0.183192\pi\)
\(710\) 0 0
\(711\) −464.000 −0.0244745
\(712\) 0 0
\(713\) 34048.0 1.78837
\(714\) 0 0
\(715\) 8889.72 0.464975
\(716\) 0 0
\(717\) 33273.0 1.73306
\(718\) 0 0
\(719\) −9296.00 −0.482173 −0.241086 0.970504i \(-0.577504\pi\)
−0.241086 + 0.970504i \(0.577504\pi\)
\(720\) 0 0
\(721\) −9408.00 −0.485953
\(722\) 0 0
\(723\) −15482.9 −0.796427
\(724\) 0 0
\(725\) 2063.69 0.105715
\(726\) 0 0
\(727\) −21672.0 −1.10560 −0.552799 0.833315i \(-0.686440\pi\)
−0.552799 + 0.833315i \(0.686440\pi\)
\(728\) 0 0
\(729\) 18901.0 0.960270
\(730\) 0 0
\(731\) −6148.73 −0.311106
\(732\) 0 0
\(733\) −9471.79 −0.477283 −0.238642 0.971108i \(-0.576702\pi\)
−0.238642 + 0.971108i \(0.576702\pi\)
\(734\) 0 0
\(735\) −15624.0 −0.784082
\(736\) 0 0
\(737\) 2772.00 0.138545
\(738\) 0 0
\(739\) 6863.08 0.341627 0.170814 0.985303i \(-0.445360\pi\)
0.170814 + 0.985303i \(0.445360\pi\)
\(740\) 0 0
\(741\) −10371.3 −0.514171
\(742\) 0 0
\(743\) −17432.0 −0.860724 −0.430362 0.902656i \(-0.641614\pi\)
−0.430362 + 0.902656i \(0.641614\pi\)
\(744\) 0 0
\(745\) −8400.00 −0.413090
\(746\) 0 0
\(747\) −545.025 −0.0266953
\(748\) 0 0
\(749\) 2158.93 0.105321
\(750\) 0 0
\(751\) −11632.0 −0.565190 −0.282595 0.959239i \(-0.591195\pi\)
−0.282595 + 0.959239i \(0.591195\pi\)
\(752\) 0 0
\(753\) −28812.0 −1.39438
\(754\) 0 0
\(755\) −7873.76 −0.379543
\(756\) 0 0
\(757\) 16731.7 0.803336 0.401668 0.915785i \(-0.368431\pi\)
0.401668 + 0.915785i \(0.368431\pi\)
\(758\) 0 0
\(759\) 12768.0 0.610605
\(760\) 0 0
\(761\) −39466.0 −1.87995 −0.939975 0.341244i \(-0.889152\pi\)
−0.939975 + 0.341244i \(0.889152\pi\)
\(762\) 0 0
\(763\) −15154.9 −0.719060
\(764\) 0 0
\(765\) −148.162 −0.00700237
\(766\) 0 0
\(767\) −28280.0 −1.33133
\(768\) 0 0
\(769\) 35266.0 1.65374 0.826869 0.562395i \(-0.190120\pi\)
0.826869 + 0.562395i \(0.190120\pi\)
\(770\) 0 0
\(771\) 13556.8 0.633252
\(772\) 0 0
\(773\) −16244.9 −0.755872 −0.377936 0.925832i \(-0.623366\pi\)
−0.377936 + 0.925832i \(0.623366\pi\)
\(774\) 0 0
\(775\) −2912.00 −0.134970
\(776\) 0 0
\(777\) −10304.0 −0.475745
\(778\) 0 0
\(779\) −2592.84 −0.119253
\(780\) 0 0
\(781\) 1142.96 0.0523668
\(782\) 0 0
\(783\) 21840.0 0.996805
\(784\) 0 0
\(785\) 1904.00 0.0865690
\(786\) 0 0
\(787\) 34844.5 1.57824 0.789119 0.614240i \(-0.210537\pi\)
0.789119 + 0.614240i \(0.210537\pi\)
\(788\) 0 0
\(789\) 31198.7 1.40774
\(790\) 0 0
\(791\) −13680.0 −0.614924
\(792\) 0 0
\(793\) 5040.00 0.225694
\(794\) 0 0
\(795\) −1777.94 −0.0793172
\(796\) 0 0
\(797\) 2550.50 0.113354 0.0566772 0.998393i \(-0.481949\pi\)
0.0566772 + 0.998393i \(0.481949\pi\)
\(798\) 0 0
\(799\) −4704.00 −0.208280
\(800\) 0 0
\(801\) −266.000 −0.0117336
\(802\) 0 0
\(803\) 4667.11 0.205104
\(804\) 0 0
\(805\) 12868.9 0.563441
\(806\) 0 0
\(807\) −28392.0 −1.23847
\(808\) 0 0
\(809\) 24390.0 1.05996 0.529979 0.848010i \(-0.322200\pi\)
0.529979 + 0.848010i \(0.322200\pi\)
\(810\) 0 0
\(811\) 9582.91 0.414922 0.207461 0.978243i \(-0.433480\pi\)
0.207461 + 0.978243i \(0.433480\pi\)
\(812\) 0 0
\(813\) −8889.72 −0.383489
\(814\) 0 0
\(815\) −18760.0 −0.806300
\(816\) 0 0
\(817\) −16268.0 −0.696628
\(818\) 0 0
\(819\) 423.320 0.0180611
\(820\) 0 0
\(821\) 8773.31 0.372948 0.186474 0.982460i \(-0.440294\pi\)
0.186474 + 0.982460i \(0.440294\pi\)
\(822\) 0 0
\(823\) 21688.0 0.918586 0.459293 0.888285i \(-0.348103\pi\)
0.459293 + 0.888285i \(0.348103\pi\)
\(824\) 0 0
\(825\) −1092.00 −0.0460831
\(826\) 0 0
\(827\) 19446.3 0.817670 0.408835 0.912608i \(-0.365935\pi\)
0.408835 + 0.912608i \(0.365935\pi\)
\(828\) 0 0
\(829\) −19546.8 −0.818925 −0.409462 0.912327i \(-0.634284\pi\)
−0.409462 + 0.912327i \(0.634284\pi\)
\(830\) 0 0
\(831\) 8344.00 0.348315
\(832\) 0 0
\(833\) 3906.00 0.162467
\(834\) 0 0
\(835\) 20742.7 0.859677
\(836\) 0 0
\(837\) −30817.7 −1.27266
\(838\) 0 0
\(839\) 18760.0 0.771951 0.385976 0.922509i \(-0.373865\pi\)
0.385976 + 0.922509i \(0.373865\pi\)
\(840\) 0 0
\(841\) 811.000 0.0332527
\(842\) 0 0
\(843\) 14509.3 0.592796
\(844\) 0 0
\(845\) 6381.55 0.259801
\(846\) 0 0
\(847\) −8632.00 −0.350176
\(848\) 0 0
\(849\) −15820.0 −0.639506
\(850\) 0 0
\(851\) −36998.2 −1.49034
\(852\) 0 0
\(853\) −28732.9 −1.15333 −0.576667 0.816979i \(-0.695647\pi\)
−0.576667 + 0.816979i \(0.695647\pi\)
\(854\) 0 0
\(855\) −392.000 −0.0156797
\(856\) 0 0
\(857\) −8778.00 −0.349884 −0.174942 0.984579i \(-0.555974\pi\)
−0.174942 + 0.984579i \(0.555974\pi\)
\(858\) 0 0
\(859\) 5646.03 0.224261 0.112130 0.993693i \(-0.464233\pi\)
0.112130 + 0.993693i \(0.464233\pi\)
\(860\) 0 0
\(861\) 2963.24 0.117290
\(862\) 0 0
\(863\) −9312.00 −0.367305 −0.183652 0.982991i \(-0.558792\pi\)
−0.183652 + 0.982991i \(0.558792\pi\)
\(864\) 0 0
\(865\) 21168.0 0.832062
\(866\) 0 0
\(867\) −24960.0 −0.977724
\(868\) 0 0
\(869\) −7365.77 −0.287534
\(870\) 0 0
\(871\) 9240.00 0.359455
\(872\) 0 0
\(873\) 994.000 0.0385359
\(874\) 0 0
\(875\) −11683.6 −0.451405
\(876\) 0 0
\(877\) 137.579 0.00529728 0.00264864 0.999996i \(-0.499157\pi\)
0.00264864 + 0.999996i \(0.499157\pi\)
\(878\) 0 0
\(879\) 48888.0 1.87594
\(880\) 0 0
\(881\) −31150.0 −1.19123 −0.595613 0.803272i \(-0.703091\pi\)
−0.595613 + 0.803272i \(0.703091\pi\)
\(882\) 0 0
\(883\) 12577.9 0.479366 0.239683 0.970851i \(-0.422957\pi\)
0.239683 + 0.970851i \(0.422957\pi\)
\(884\) 0 0
\(885\) −29928.7 −1.13677
\(886\) 0 0
\(887\) −37128.0 −1.40545 −0.702726 0.711460i \(-0.748034\pi\)
−0.702726 + 0.711460i \(0.748034\pi\)
\(888\) 0 0
\(889\) −13312.0 −0.502216
\(890\) 0 0
\(891\) −11985.3 −0.450641
\(892\) 0 0
\(893\) −12445.6 −0.466379
\(894\) 0 0
\(895\) 34552.0 1.29044
\(896\) 0 0
\(897\) 42560.0 1.58421
\(898\) 0 0
\(899\) −35558.9 −1.31919
\(900\) 0 0
\(901\) 444.486 0.0164351
\(902\) 0 0
\(903\) 18592.0 0.685164
\(904\) 0 0
\(905\) 24752.0 0.909154
\(906\) 0 0
\(907\) −35204.4 −1.28880 −0.644400 0.764688i \(-0.722893\pi\)
−0.644400 + 0.764688i \(0.722893\pi\)
\(908\) 0 0
\(909\) −751.393 −0.0274171
\(910\) 0 0
\(911\) −10512.0 −0.382303 −0.191152 0.981561i \(-0.561222\pi\)
−0.191152 + 0.981561i \(0.561222\pi\)
\(912\) 0 0
\(913\) −8652.00 −0.313625
\(914\) 0 0
\(915\) 5333.83 0.192712
\(916\) 0 0
\(917\) −5376.17 −0.193606
\(918\) 0 0
\(919\) 46104.0 1.65488 0.827438 0.561557i \(-0.189798\pi\)
0.827438 + 0.561557i \(0.189798\pi\)
\(920\) 0 0
\(921\) 13692.0 0.489866
\(922\) 0 0
\(923\) 3809.88 0.135865
\(924\) 0 0
\(925\) 3164.32 0.112478
\(926\) 0 0
\(927\) −1176.00 −0.0416666
\(928\) 0 0
\(929\) −5726.00 −0.202222 −0.101111 0.994875i \(-0.532240\pi\)
−0.101111 + 0.994875i \(0.532240\pi\)
\(930\) 0 0
\(931\) 10334.3 0.363795
\(932\) 0 0
\(933\) 14519.9 0.509496
\(934\) 0 0
\(935\) −2352.00 −0.0822659
\(936\) 0 0
\(937\) −1274.00 −0.0444181 −0.0222091 0.999753i \(-0.507070\pi\)
−0.0222091 + 0.999753i \(0.507070\pi\)
\(938\) 0 0
\(939\) −12075.2 −0.419659
\(940\) 0 0
\(941\) −26446.9 −0.916201 −0.458101 0.888900i \(-0.651470\pi\)
−0.458101 + 0.888900i \(0.651470\pi\)
\(942\) 0 0
\(943\) 10640.0 0.367430
\(944\) 0 0
\(945\) −11648.0 −0.400962
\(946\) 0 0
\(947\) 23922.9 0.820897 0.410448 0.911884i \(-0.365372\pi\)
0.410448 + 0.911884i \(0.365372\pi\)
\(948\) 0 0
\(949\) 15557.0 0.532141
\(950\) 0 0
\(951\) 50680.0 1.72809
\(952\) 0 0
\(953\) −38250.0 −1.30015 −0.650073 0.759872i \(-0.725262\pi\)
−0.650073 + 0.759872i \(0.725262\pi\)
\(954\) 0 0
\(955\) 41316.1 1.39995
\(956\) 0 0
\(957\) −13334.6 −0.450414
\(958\) 0 0
\(959\) 8496.00 0.286079
\(960\) 0 0
\(961\) 20385.0 0.684267
\(962\) 0 0
\(963\) 269.867 0.00903046
\(964\) 0 0
\(965\) 35241.4 1.17561
\(966\) 0 0
\(967\) −4664.00 −0.155103 −0.0775513 0.996988i \(-0.524710\pi\)
−0.0775513 + 0.996988i \(0.524710\pi\)
\(968\) 0 0
\(969\) 2744.00 0.0909701
\(970\) 0 0
\(971\) −30971.2 −1.02360 −0.511798 0.859106i \(-0.671020\pi\)
−0.511798 + 0.859106i \(0.671020\pi\)
\(972\) 0 0
\(973\) −21547.0 −0.709933
\(974\) 0 0
\(975\) −3640.00 −0.119562
\(976\) 0 0
\(977\) −4814.00 −0.157639 −0.0788196 0.996889i \(-0.525115\pi\)
−0.0788196 + 0.996889i \(0.525115\pi\)
\(978\) 0 0
\(979\) −4222.62 −0.137850
\(980\) 0 0
\(981\) −1894.36 −0.0616536
\(982\) 0 0
\(983\) 12376.0 0.401560 0.200780 0.979636i \(-0.435652\pi\)
0.200780 + 0.979636i \(0.435652\pi\)
\(984\) 0 0
\(985\) 12656.0 0.409395
\(986\) 0 0
\(987\) 14223.6 0.458704
\(988\) 0 0
\(989\) 66757.6 2.14638
\(990\) 0 0
\(991\) 45344.0 1.45348 0.726740 0.686912i \(-0.241034\pi\)
0.726740 + 0.686912i \(0.241034\pi\)
\(992\) 0 0
\(993\) 22484.0 0.718538
\(994\) 0 0
\(995\) 18372.1 0.585361
\(996\) 0 0
\(997\) 26002.4 0.825984 0.412992 0.910735i \(-0.364484\pi\)
0.412992 + 0.910735i \(0.364484\pi\)
\(998\) 0 0
\(999\) 33488.0 1.06057
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 256.4.a.l.1.2 2
3.2 odd 2 2304.4.a.bn.1.1 2
4.3 odd 2 256.4.a.j.1.1 2
8.3 odd 2 256.4.a.j.1.2 2
8.5 even 2 inner 256.4.a.l.1.1 2
12.11 even 2 2304.4.a.v.1.1 2
16.3 odd 4 32.4.b.a.17.1 2
16.5 even 4 8.4.b.a.5.2 yes 2
16.11 odd 4 32.4.b.a.17.2 2
16.13 even 4 8.4.b.a.5.1 2
24.5 odd 2 2304.4.a.bn.1.2 2
24.11 even 2 2304.4.a.v.1.2 2
48.5 odd 4 72.4.d.b.37.1 2
48.11 even 4 288.4.d.a.145.1 2
48.29 odd 4 72.4.d.b.37.2 2
48.35 even 4 288.4.d.a.145.2 2
80.3 even 4 800.4.f.a.49.3 4
80.13 odd 4 200.4.f.a.149.2 4
80.19 odd 4 800.4.d.a.401.2 2
80.27 even 4 800.4.f.a.49.4 4
80.29 even 4 200.4.d.a.101.2 2
80.37 odd 4 200.4.f.a.149.1 4
80.43 even 4 800.4.f.a.49.1 4
80.53 odd 4 200.4.f.a.149.4 4
80.59 odd 4 800.4.d.a.401.1 2
80.67 even 4 800.4.f.a.49.2 4
80.69 even 4 200.4.d.a.101.1 2
80.77 odd 4 200.4.f.a.149.3 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
8.4.b.a.5.1 2 16.13 even 4
8.4.b.a.5.2 yes 2 16.5 even 4
32.4.b.a.17.1 2 16.3 odd 4
32.4.b.a.17.2 2 16.11 odd 4
72.4.d.b.37.1 2 48.5 odd 4
72.4.d.b.37.2 2 48.29 odd 4
200.4.d.a.101.1 2 80.69 even 4
200.4.d.a.101.2 2 80.29 even 4
200.4.f.a.149.1 4 80.37 odd 4
200.4.f.a.149.2 4 80.13 odd 4
200.4.f.a.149.3 4 80.77 odd 4
200.4.f.a.149.4 4 80.53 odd 4
256.4.a.j.1.1 2 4.3 odd 2
256.4.a.j.1.2 2 8.3 odd 2
256.4.a.l.1.1 2 8.5 even 2 inner
256.4.a.l.1.2 2 1.1 even 1 trivial
288.4.d.a.145.1 2 48.11 even 4
288.4.d.a.145.2 2 48.35 even 4
800.4.d.a.401.1 2 80.59 odd 4
800.4.d.a.401.2 2 80.19 odd 4
800.4.f.a.49.1 4 80.43 even 4
800.4.f.a.49.2 4 80.67 even 4
800.4.f.a.49.3 4 80.3 even 4
800.4.f.a.49.4 4 80.27 even 4
2304.4.a.v.1.1 2 12.11 even 2
2304.4.a.v.1.2 2 24.11 even 2
2304.4.a.bn.1.1 2 3.2 odd 2
2304.4.a.bn.1.2 2 24.5 odd 2