Properties

Label 256.4.b.g.129.1
Level 256256
Weight 44
Character 256.129
Analytic conductor 15.10415.104
Analytic rank 00
Dimension 22
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [256,4,Mod(129,256)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(256, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("256.129");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: N N == 256=28 256 = 2^{8}
Weight: k k == 4 4
Character orbit: [χ][\chi] == 256.b (of order 22, degree 11, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 15.104488961515.1044889615
Analytic rank: 00
Dimension: 22
Coefficient field: Q(i)\Q(i)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x2+1 x^{2} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a5]\Z[a_1, \ldots, a_{5}]
Coefficient ring index: 2 2
Twist minimal: no (minimal twist has level 8)
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

Embedding invariants

Embedding label 129.1
Root 1.00000i-1.00000i of defining polynomial
Character χ\chi == 256.129
Dual form 256.4.b.g.129.2

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q4.00000iq32.00000iq5+24.0000q7+11.0000q9+44.0000iq1122.0000iq138.00000q15+50.0000q17+44.0000iq1996.0000iq2156.0000q23+121.000q25152.000iq27198.000iq29+160.000q31+176.000q3348.0000iq35162.000iq3788.0000q39+198.000q4152.0000iq4322.0000iq45528.000q47+233.000q49200.000iq51242.000iq53+88.0000q55+176.000q57+668.000iq59550.000iq61+264.000q6344.0000q65+188.000iq67+224.000iq69+728.000q71154.000q73484.000iq75+1056.00iq77+656.000q79311.000q81+236.000iq83100.000iq85792.000q87714.000q89528.000iq91640.000iq93+88.0000q95478.000q97+484.000iq99+O(q100)q-4.00000i q^{3} -2.00000i q^{5} +24.0000 q^{7} +11.0000 q^{9} +44.0000i q^{11} -22.0000i q^{13} -8.00000 q^{15} +50.0000 q^{17} +44.0000i q^{19} -96.0000i q^{21} -56.0000 q^{23} +121.000 q^{25} -152.000i q^{27} -198.000i q^{29} +160.000 q^{31} +176.000 q^{33} -48.0000i q^{35} -162.000i q^{37} -88.0000 q^{39} +198.000 q^{41} -52.0000i q^{43} -22.0000i q^{45} -528.000 q^{47} +233.000 q^{49} -200.000i q^{51} -242.000i q^{53} +88.0000 q^{55} +176.000 q^{57} +668.000i q^{59} -550.000i q^{61} +264.000 q^{63} -44.0000 q^{65} +188.000i q^{67} +224.000i q^{69} +728.000 q^{71} -154.000 q^{73} -484.000i q^{75} +1056.00i q^{77} +656.000 q^{79} -311.000 q^{81} +236.000i q^{83} -100.000i q^{85} -792.000 q^{87} -714.000 q^{89} -528.000i q^{91} -640.000i q^{93} +88.0000 q^{95} -478.000 q^{97} +484.000i q^{99} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q+48q7+22q916q15+100q17112q23+242q25+320q31+352q33176q39+396q411056q47+466q49+176q55+352q57+528q6388q65+956q97+O(q100) 2 q + 48 q^{7} + 22 q^{9} - 16 q^{15} + 100 q^{17} - 112 q^{23} + 242 q^{25} + 320 q^{31} + 352 q^{33} - 176 q^{39} + 396 q^{41} - 1056 q^{47} + 466 q^{49} + 176 q^{55} + 352 q^{57} + 528 q^{63} - 88 q^{65}+ \cdots - 956 q^{97}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/256Z)×\left(\mathbb{Z}/256\mathbb{Z}\right)^\times.

nn 55 255255
χ(n)\chi(n) 1-1 11

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 0 0
33 − 4.00000i − 0.769800i −0.922958 0.384900i 0.874236π-0.874236\pi
0.922958 0.384900i 0.125764π-0.125764\pi
44 0 0
55 − 2.00000i − 0.178885i −0.995992 0.0894427i 0.971491π-0.971491\pi
0.995992 0.0894427i 0.0285086π-0.0285086\pi
66 0 0
77 24.0000 1.29588 0.647939 0.761692i 0.275631π-0.275631\pi
0.647939 + 0.761692i 0.275631π0.275631\pi
88 0 0
99 11.0000 0.407407
1010 0 0
1111 44.0000i 1.20605i 0.797724 + 0.603023i 0.206037π0.206037\pi
−0.797724 + 0.603023i 0.793963π0.793963\pi
1212 0 0
1313 − 22.0000i − 0.469362i −0.972072 0.234681i 0.924595π-0.924595\pi
0.972072 0.234681i 0.0754045π-0.0754045\pi
1414 0 0
1515 −8.00000 −0.137706
1616 0 0
1717 50.0000 0.713340 0.356670 0.934230i 0.383912π-0.383912\pi
0.356670 + 0.934230i 0.383912π0.383912\pi
1818 0 0
1919 44.0000i 0.531279i 0.964072 + 0.265639i 0.0855830π0.0855830\pi
−0.964072 + 0.265639i 0.914417π0.914417\pi
2020 0 0
2121 − 96.0000i − 0.997567i
2222 0 0
2323 −56.0000 −0.507687 −0.253844 0.967245i 0.581695π-0.581695\pi
−0.253844 + 0.967245i 0.581695π0.581695\pi
2424 0 0
2525 121.000 0.968000
2626 0 0
2727 − 152.000i − 1.08342i
2828 0 0
2929 − 198.000i − 1.26785i −0.773394 0.633925i 0.781443π-0.781443\pi
0.773394 0.633925i 0.218557π-0.218557\pi
3030 0 0
3131 160.000 0.926995 0.463498 0.886098i 0.346594π-0.346594\pi
0.463498 + 0.886098i 0.346594π0.346594\pi
3232 0 0
3333 176.000 0.928414
3434 0 0
3535 − 48.0000i − 0.231814i
3636 0 0
3737 − 162.000i − 0.719801i −0.932991 0.359900i 0.882811π-0.882811\pi
0.932991 0.359900i 0.117189π-0.117189\pi
3838 0 0
3939 −88.0000 −0.361315
4040 0 0
4141 198.000 0.754205 0.377102 0.926172i 0.376920π-0.376920\pi
0.377102 + 0.926172i 0.376920π0.376920\pi
4242 0 0
4343 − 52.0000i − 0.184417i −0.995740 0.0922084i 0.970607π-0.970607\pi
0.995740 0.0922084i 0.0293926π-0.0293926\pi
4444 0 0
4545 − 22.0000i − 0.0728793i
4646 0 0
4747 −528.000 −1.63865 −0.819327 0.573327i 0.805653π-0.805653\pi
−0.819327 + 0.573327i 0.805653π0.805653\pi
4848 0 0
4949 233.000 0.679300
5050 0 0
5151 − 200.000i − 0.549129i
5252 0 0
5353 − 242.000i − 0.627194i −0.949556 0.313597i 0.898466π-0.898466\pi
0.949556 0.313597i 0.101534π-0.101534\pi
5454 0 0
5555 88.0000 0.215744
5656 0 0
5757 176.000 0.408978
5858 0 0
5959 668.000i 1.47400i 0.675891 + 0.737002i 0.263759π0.263759\pi
−0.675891 + 0.737002i 0.736241π0.736241\pi
6060 0 0
6161 − 550.000i − 1.15443i −0.816592 0.577215i 0.804139π-0.804139\pi
0.816592 0.577215i 0.195861π-0.195861\pi
6262 0 0
6363 264.000 0.527950
6464 0 0
6565 −44.0000 −0.0839620
6666 0 0
6767 188.000i 0.342804i 0.985201 + 0.171402i 0.0548297π0.0548297\pi
−0.985201 + 0.171402i 0.945170π0.945170\pi
6868 0 0
6969 224.000i 0.390818i
7070 0 0
7171 728.000 1.21687 0.608435 0.793604i 0.291798π-0.291798\pi
0.608435 + 0.793604i 0.291798π0.291798\pi
7272 0 0
7373 −154.000 −0.246909 −0.123454 0.992350i 0.539397π-0.539397\pi
−0.123454 + 0.992350i 0.539397π0.539397\pi
7474 0 0
7575 − 484.000i − 0.745167i
7676 0 0
7777 1056.00i 1.56289i
7878 0 0
7979 656.000 0.934250 0.467125 0.884191i 0.345290π-0.345290\pi
0.467125 + 0.884191i 0.345290π0.345290\pi
8080 0 0
8181 −311.000 −0.426612
8282 0 0
8383 236.000i 0.312101i 0.987749 + 0.156050i 0.0498762π0.0498762\pi
−0.987749 + 0.156050i 0.950124π0.950124\pi
8484 0 0
8585 − 100.000i − 0.127606i
8686 0 0
8787 −792.000 −0.975992
8888 0 0
8989 −714.000 −0.850380 −0.425190 0.905104i 0.639793π-0.639793\pi
−0.425190 + 0.905104i 0.639793π0.639793\pi
9090 0 0
9191 − 528.000i − 0.608236i
9292 0 0
9393 − 640.000i − 0.713601i
9494 0 0
9595 88.0000 0.0950380
9696 0 0
9797 −478.000 −0.500346 −0.250173 0.968201i 0.580487π-0.580487\pi
−0.250173 + 0.968201i 0.580487π0.580487\pi
9898 0 0
9999 484.000i 0.491352i
100100 0 0
101101 1566.00i 1.54280i 0.636350 + 0.771400i 0.280443π0.280443\pi
−0.636350 + 0.771400i 0.719557π0.719557\pi
102102 0 0
103103 −968.000 −0.926018 −0.463009 0.886354i 0.653230π-0.653230\pi
−0.463009 + 0.886354i 0.653230π0.653230\pi
104104 0 0
105105 −192.000 −0.178450
106106 0 0
107107 780.000i 0.704724i 0.935864 + 0.352362i 0.114621π0.114621\pi
−0.935864 + 0.352362i 0.885379π0.885379\pi
108108 0 0
109109 1994.00i 1.75221i 0.482123 + 0.876103i 0.339866π0.339866\pi
−0.482123 + 0.876103i 0.660134π0.660134\pi
110110 0 0
111111 −648.000 −0.554103
112112 0 0
113113 −942.000 −0.784212 −0.392106 0.919920i 0.628253π-0.628253\pi
−0.392106 + 0.919920i 0.628253π0.628253\pi
114114 0 0
115115 112.000i 0.0908179i
116116 0 0
117117 − 242.000i − 0.191221i
118118 0 0
119119 1200.00 0.924402
120120 0 0
121121 −605.000 −0.454545
122122 0 0
123123 − 792.000i − 0.580587i
124124 0 0
125125 − 492.000i − 0.352047i
126126 0 0
127127 −1408.00 −0.983778 −0.491889 0.870658i 0.663693π-0.663693\pi
−0.491889 + 0.870658i 0.663693π0.663693\pi
128128 0 0
129129 −208.000 −0.141964
130130 0 0
131131 − 2692.00i − 1.79543i −0.440578 0.897714i 0.645227π-0.645227\pi
0.440578 0.897714i 0.354773π-0.354773\pi
132132 0 0
133133 1056.00i 0.688472i
134134 0 0
135135 −304.000 −0.193809
136136 0 0
137137 −1626.00 −1.01400 −0.507002 0.861945i 0.669246π-0.669246\pi
−0.507002 + 0.861945i 0.669246π0.669246\pi
138138 0 0
139139 684.000i 0.417382i 0.977982 + 0.208691i 0.0669203π0.0669203\pi
−0.977982 + 0.208691i 0.933080π0.933080\pi
140140 0 0
141141 2112.00i 1.26144i
142142 0 0
143143 968.000 0.566072
144144 0 0
145145 −396.000 −0.226800
146146 0 0
147147 − 932.000i − 0.522926i
148148 0 0
149149 302.000i 0.166046i 0.996548 + 0.0830228i 0.0264574π0.0264574\pi
−0.996548 + 0.0830228i 0.973543π0.973543\pi
150150 0 0
151151 1352.00 0.728637 0.364319 0.931274i 0.381302π-0.381302\pi
0.364319 + 0.931274i 0.381302π0.381302\pi
152152 0 0
153153 550.000 0.290620
154154 0 0
155155 − 320.000i − 0.165826i
156156 0 0
157157 − 3142.00i − 1.59719i −0.601868 0.798595i 0.705577π-0.705577\pi
0.601868 0.798595i 0.294423π-0.294423\pi
158158 0 0
159159 −968.000 −0.482814
160160 0 0
161161 −1344.00 −0.657901
162162 0 0
163163 3036.00i 1.45888i 0.684043 + 0.729441i 0.260220π0.260220\pi
−0.684043 + 0.729441i 0.739780π0.739780\pi
164164 0 0
165165 − 352.000i − 0.166080i
166166 0 0
167167 −264.000 −0.122329 −0.0611645 0.998128i 0.519481π-0.519481\pi
−0.0611645 + 0.998128i 0.519481π0.519481\pi
168168 0 0
169169 1713.00 0.779700
170170 0 0
171171 484.000i 0.216447i
172172 0 0
173173 2826.00i 1.24195i 0.783832 + 0.620973i 0.213263π0.213263\pi
−0.783832 + 0.620973i 0.786737π0.786737\pi
174174 0 0
175175 2904.00 1.25441
176176 0 0
177177 2672.00 1.13469
178178 0 0
179179 3084.00i 1.28776i 0.765127 + 0.643880i 0.222676π0.222676\pi
−0.765127 + 0.643880i 0.777324π0.777324\pi
180180 0 0
181181 − 2418.00i − 0.992975i −0.868044 0.496488i 0.834623π-0.834623\pi
0.868044 0.496488i 0.165377π-0.165377\pi
182182 0 0
183183 −2200.00 −0.888681
184184 0 0
185185 −324.000 −0.128762
186186 0 0
187187 2200.00i 0.860320i
188188 0 0
189189 − 3648.00i − 1.40398i
190190 0 0
191191 960.000 0.363681 0.181841 0.983328i 0.441794π-0.441794\pi
0.181841 + 0.983328i 0.441794π0.441794\pi
192192 0 0
193193 2882.00 1.07488 0.537438 0.843304i 0.319392π-0.319392\pi
0.537438 + 0.843304i 0.319392π0.319392\pi
194194 0 0
195195 176.000i 0.0646340i
196196 0 0
197197 1086.00i 0.392763i 0.980528 + 0.196381i 0.0629191π0.0629191\pi
−0.980528 + 0.196381i 0.937081π0.937081\pi
198198 0 0
199199 88.0000 0.0313475 0.0156738 0.999877i 0.495011π-0.495011\pi
0.0156738 + 0.999877i 0.495011π0.495011\pi
200200 0 0
201201 752.000 0.263890
202202 0 0
203203 − 4752.00i − 1.64298i
204204 0 0
205205 − 396.000i − 0.134916i
206206 0 0
207207 −616.000 −0.206836
208208 0 0
209209 −1936.00 −0.640746
210210 0 0
211211 − 3476.00i − 1.13411i −0.823679 0.567056i 0.808082π-0.808082\pi
0.823679 0.567056i 0.191918π-0.191918\pi
212212 0 0
213213 − 2912.00i − 0.936746i
214214 0 0
215215 −104.000 −0.0329895
216216 0 0
217217 3840.00 1.20127
218218 0 0
219219 616.000i 0.190070i
220220 0 0
221221 − 1100.00i − 0.334815i
222222 0 0
223223 −928.000 −0.278670 −0.139335 0.990245i 0.544497π-0.544497\pi
−0.139335 + 0.990245i 0.544497π0.544497\pi
224224 0 0
225225 1331.00 0.394370
226226 0 0
227227 156.000i 0.0456127i 0.999740 + 0.0228064i 0.00726012π0.00726012\pi
−0.999740 + 0.0228064i 0.992740π0.992740\pi
228228 0 0
229229 − 1634.00i − 0.471519i −0.971811 0.235759i 0.924242π-0.924242\pi
0.971811 0.235759i 0.0757577π-0.0757577\pi
230230 0 0
231231 4224.00 1.20311
232232 0 0
233233 902.000 0.253614 0.126807 0.991927i 0.459527π-0.459527\pi
0.126807 + 0.991927i 0.459527π0.459527\pi
234234 0 0
235235 1056.00i 0.293131i
236236 0 0
237237 − 2624.00i − 0.719186i
238238 0 0
239239 −1616.00 −0.437365 −0.218683 0.975796i 0.570176π-0.570176\pi
−0.218683 + 0.975796i 0.570176π0.570176\pi
240240 0 0
241241 4818.00 1.28778 0.643889 0.765119i 0.277320π-0.277320\pi
0.643889 + 0.765119i 0.277320π0.277320\pi
242242 0 0
243243 − 2860.00i − 0.755017i
244244 0 0
245245 − 466.000i − 0.121517i
246246 0 0
247247 968.000 0.249362
248248 0 0
249249 944.000 0.240255
250250 0 0
251251 2140.00i 0.538150i 0.963119 + 0.269075i 0.0867179π0.0867179\pi
−0.963119 + 0.269075i 0.913282π0.913282\pi
252252 0 0
253253 − 2464.00i − 0.612294i
254254 0 0
255255 −400.000 −0.0982313
256256 0 0
257257 770.000 0.186892 0.0934461 0.995624i 0.470212π-0.470212\pi
0.0934461 + 0.995624i 0.470212π0.470212\pi
258258 0 0
259259 − 3888.00i − 0.932774i
260260 0 0
261261 − 2178.00i − 0.516532i
262262 0 0
263263 −7400.00 −1.73499 −0.867497 0.497442i 0.834273π-0.834273\pi
−0.867497 + 0.497442i 0.834273π0.834273\pi
264264 0 0
265265 −484.000 −0.112196
266266 0 0
267267 2856.00i 0.654623i
268268 0 0
269269 2794.00i 0.633283i 0.948545 + 0.316642i 0.102555π0.102555\pi
−0.948545 + 0.316642i 0.897445π0.897445\pi
270270 0 0
271271 −8624.00 −1.93310 −0.966551 0.256474i 0.917439π-0.917439\pi
−0.966551 + 0.256474i 0.917439π0.917439\pi
272272 0 0
273273 −2112.00 −0.468220
274274 0 0
275275 5324.00i 1.16745i
276276 0 0
277277 − 1874.00i − 0.406490i −0.979128 0.203245i 0.934851π-0.934851\pi
0.979128 0.203245i 0.0651488π-0.0651488\pi
278278 0 0
279279 1760.00 0.377665
280280 0 0
281281 −3338.00 −0.708642 −0.354321 0.935124i 0.615288π-0.615288\pi
−0.354321 + 0.935124i 0.615288π0.615288\pi
282282 0 0
283283 − 7172.00i − 1.50647i −0.657751 0.753235i 0.728492π-0.728492\pi
0.657751 0.753235i 0.271508π-0.271508\pi
284284 0 0
285285 − 352.000i − 0.0731603i
286286 0 0
287287 4752.00 0.977358
288288 0 0
289289 −2413.00 −0.491146
290290 0 0
291291 1912.00i 0.385166i
292292 0 0
293293 5214.00i 1.03961i 0.854286 + 0.519804i 0.173995π0.173995\pi
−0.854286 + 0.519804i 0.826005π0.826005\pi
294294 0 0
295295 1336.00 0.263678
296296 0 0
297297 6688.00 1.30666
298298 0 0
299299 1232.00i 0.238289i
300300 0 0
301301 − 1248.00i − 0.238982i
302302 0 0
303303 6264.00 1.18765
304304 0 0
305305 −1100.00 −0.206511
306306 0 0
307307 396.000i 0.0736186i 0.999322 + 0.0368093i 0.0117194π0.0117194\pi
−0.999322 + 0.0368093i 0.988281π0.988281\pi
308308 0 0
309309 3872.00i 0.712849i
310310 0 0
311311 −4056.00 −0.739533 −0.369766 0.929125i 0.620562π-0.620562\pi
−0.369766 + 0.929125i 0.620562π0.620562\pi
312312 0 0
313313 −2154.00 −0.388982 −0.194491 0.980904i 0.562305π-0.562305\pi
−0.194491 + 0.980904i 0.562305π0.562305\pi
314314 0 0
315315 − 528.000i − 0.0944426i
316316 0 0
317317 7386.00i 1.30864i 0.756217 + 0.654320i 0.227045π0.227045\pi
−0.756217 + 0.654320i 0.772955π0.772955\pi
318318 0 0
319319 8712.00 1.52909
320320 0 0
321321 3120.00 0.542497
322322 0 0
323323 2200.00i 0.378982i
324324 0 0
325325 − 2662.00i − 0.454342i
326326 0 0
327327 7976.00 1.34885
328328 0 0
329329 −12672.0 −2.12350
330330 0 0
331331 1132.00i 0.187977i 0.995573 + 0.0939884i 0.0299617π0.0299617\pi
−0.995573 + 0.0939884i 0.970038π0.970038\pi
332332 0 0
333333 − 1782.00i − 0.293252i
334334 0 0
335335 376.000 0.0613226
336336 0 0
337337 −3342.00 −0.540209 −0.270104 0.962831i 0.587058π-0.587058\pi
−0.270104 + 0.962831i 0.587058π0.587058\pi
338338 0 0
339339 3768.00i 0.603686i
340340 0 0
341341 7040.00i 1.11800i
342342 0 0
343343 −2640.00 −0.415588
344344 0 0
345345 448.000 0.0699116
346346 0 0
347347 − 2244.00i − 0.347159i −0.984820 0.173580i 0.944467π-0.944467\pi
0.984820 0.173580i 0.0555334π-0.0555334\pi
348348 0 0
349349 6522.00i 1.00033i 0.865931 + 0.500164i 0.166727π0.166727\pi
−0.865931 + 0.500164i 0.833273π0.833273\pi
350350 0 0
351351 −3344.00 −0.508517
352352 0 0
353353 −11230.0 −1.69324 −0.846618 0.532200i 0.821365π-0.821365\pi
−0.846618 + 0.532200i 0.821365π0.821365\pi
354354 0 0
355355 − 1456.00i − 0.217680i
356356 0 0
357357 − 4800.00i − 0.711605i
358358 0 0
359359 1848.00 0.271682 0.135841 0.990731i 0.456626π-0.456626\pi
0.135841 + 0.990731i 0.456626π0.456626\pi
360360 0 0
361361 4923.00 0.717743
362362 0 0
363363 2420.00i 0.349909i
364364 0 0
365365 308.000i 0.0441684i
366366 0 0
367367 −7120.00 −1.01270 −0.506350 0.862328i 0.669006π-0.669006\pi
−0.506350 + 0.862328i 0.669006π0.669006\pi
368368 0 0
369369 2178.00 0.307269
370370 0 0
371371 − 5808.00i − 0.812766i
372372 0 0
373373 6350.00i 0.881476i 0.897636 + 0.440738i 0.145283π0.145283\pi
−0.897636 + 0.440738i 0.854717π0.854717\pi
374374 0 0
375375 −1968.00 −0.271006
376376 0 0
377377 −4356.00 −0.595081
378378 0 0
379379 7900.00i 1.07070i 0.844630 + 0.535351i 0.179821π0.179821\pi
−0.844630 + 0.535351i 0.820179π0.820179\pi
380380 0 0
381381 5632.00i 0.757313i
382382 0 0
383383 −10368.0 −1.38324 −0.691619 0.722263i 0.743102π-0.743102\pi
−0.691619 + 0.722263i 0.743102π0.743102\pi
384384 0 0
385385 2112.00 0.279578
386386 0 0
387387 − 572.000i − 0.0751328i
388388 0 0
389389 8830.00i 1.15090i 0.817838 + 0.575448i 0.195172π0.195172\pi
−0.817838 + 0.575448i 0.804828π0.804828\pi
390390 0 0
391391 −2800.00 −0.362154
392392 0 0
393393 −10768.0 −1.38212
394394 0 0
395395 − 1312.00i − 0.167124i
396396 0 0
397397 − 9878.00i − 1.24877i −0.781116 0.624386i 0.785349π-0.785349\pi
0.781116 0.624386i 0.214651π-0.214651\pi
398398 0 0
399399 4224.00 0.529986
400400 0 0
401401 −13134.0 −1.63561 −0.817806 0.575494i 0.804810π-0.804810\pi
−0.817806 + 0.575494i 0.804810π0.804810\pi
402402 0 0
403403 − 3520.00i − 0.435096i
404404 0 0
405405 622.000i 0.0763146i
406406 0 0
407407 7128.00 0.868113
408408 0 0
409409 −906.000 −0.109533 −0.0547663 0.998499i 0.517441π-0.517441\pi
−0.0547663 + 0.998499i 0.517441π0.517441\pi
410410 0 0
411411 6504.00i 0.780581i
412412 0 0
413413 16032.0i 1.91013i
414414 0 0
415415 472.000 0.0558303
416416 0 0
417417 2736.00 0.321301
418418 0 0
419419 − 5412.00i − 0.631011i −0.948924 0.315505i 0.897826π-0.897826\pi
0.948924 0.315505i 0.102174π-0.102174\pi
420420 0 0
421421 − 4642.00i − 0.537381i −0.963227 0.268690i 0.913409π-0.913409\pi
0.963227 0.268690i 0.0865908π-0.0865908\pi
422422 0 0
423423 −5808.00 −0.667600
424424 0 0
425425 6050.00 0.690513
426426 0 0
427427 − 13200.0i − 1.49600i
428428 0 0
429429 − 3872.00i − 0.435762i
430430 0 0
431431 −656.000 −0.0733142 −0.0366571 0.999328i 0.511671π-0.511671\pi
−0.0366571 + 0.999328i 0.511671π0.511671\pi
432432 0 0
433433 9490.00 1.05326 0.526629 0.850096i 0.323456π-0.323456\pi
0.526629 + 0.850096i 0.323456π0.323456\pi
434434 0 0
435435 1584.00i 0.174591i
436436 0 0
437437 − 2464.00i − 0.269723i
438438 0 0
439439 5544.00 0.602735 0.301368 0.953508i 0.402557π-0.402557\pi
0.301368 + 0.953508i 0.402557π0.402557\pi
440440 0 0
441441 2563.00 0.276752
442442 0 0
443443 − 7652.00i − 0.820672i −0.911935 0.410336i 0.865412π-0.865412\pi
0.911935 0.410336i 0.134588π-0.134588\pi
444444 0 0
445445 1428.00i 0.152121i
446446 0 0
447447 1208.00 0.127822
448448 0 0
449449 −446.000 −0.0468776 −0.0234388 0.999725i 0.507461π-0.507461\pi
−0.0234388 + 0.999725i 0.507461π0.507461\pi
450450 0 0
451451 8712.00i 0.909605i
452452 0 0
453453 − 5408.00i − 0.560905i
454454 0 0
455455 −1056.00 −0.108804
456456 0 0
457457 −1562.00 −0.159885 −0.0799423 0.996799i 0.525474π-0.525474\pi
−0.0799423 + 0.996799i 0.525474π0.525474\pi
458458 0 0
459459 − 7600.00i − 0.772849i
460460 0 0
461461 − 10582.0i − 1.06910i −0.845138 0.534548i 0.820482π-0.820482\pi
0.845138 0.534548i 0.179518π-0.179518\pi
462462 0 0
463463 10768.0 1.08085 0.540423 0.841394i 0.318264π-0.318264\pi
0.540423 + 0.841394i 0.318264π0.318264\pi
464464 0 0
465465 −1280.00 −0.127653
466466 0 0
467467 − 9876.00i − 0.978601i −0.872115 0.489301i 0.837252π-0.837252\pi
0.872115 0.489301i 0.162748π-0.162748\pi
468468 0 0
469469 4512.00i 0.444232i
470470 0 0
471471 −12568.0 −1.22952
472472 0 0
473473 2288.00 0.222415
474474 0 0
475475 5324.00i 0.514278i
476476 0 0
477477 − 2662.00i − 0.255523i
478478 0 0
479479 352.000 0.0335768 0.0167884 0.999859i 0.494656π-0.494656\pi
0.0167884 + 0.999859i 0.494656π0.494656\pi
480480 0 0
481481 −3564.00 −0.337847
482482 0 0
483483 5376.00i 0.506452i
484484 0 0
485485 956.000i 0.0895046i
486486 0 0
487487 −15176.0 −1.41209 −0.706047 0.708165i 0.749523π-0.749523\pi
−0.706047 + 0.708165i 0.749523π0.749523\pi
488488 0 0
489489 12144.0 1.12305
490490 0 0
491491 8844.00i 0.812880i 0.913677 + 0.406440i 0.133230π0.133230\pi
−0.913677 + 0.406440i 0.866770π0.866770\pi
492492 0 0
493493 − 9900.00i − 0.904409i
494494 0 0
495495 968.000 0.0878957
496496 0 0
497497 17472.0 1.57691
498498 0 0
499499 19404.0i 1.74077i 0.492375 + 0.870383i 0.336129π0.336129\pi
−0.492375 + 0.870383i 0.663871π0.663871\pi
500500 0 0
501501 1056.00i 0.0941689i
502502 0 0
503503 16488.0 1.46156 0.730779 0.682614i 0.239157π-0.239157\pi
0.730779 + 0.682614i 0.239157π0.239157\pi
504504 0 0
505505 3132.00 0.275984
506506 0 0
507507 − 6852.00i − 0.600213i
508508 0 0
509509 12954.0i 1.12805i 0.825759 + 0.564024i 0.190747π0.190747\pi
−0.825759 + 0.564024i 0.809253π0.809253\pi
510510 0 0
511511 −3696.00 −0.319964
512512 0 0
513513 6688.00 0.575599
514514 0 0
515515 1936.00i 0.165651i
516516 0 0
517517 − 23232.0i − 1.97629i
518518 0 0
519519 11304.0 0.956051
520520 0 0
521521 −10970.0 −0.922465 −0.461233 0.887279i 0.652593π-0.652593\pi
−0.461233 + 0.887279i 0.652593π0.652593\pi
522522 0 0
523523 16940.0i 1.41632i 0.706053 + 0.708159i 0.250474π0.250474\pi
−0.706053 + 0.708159i 0.749526π0.749526\pi
524524 0 0
525525 − 11616.0i − 0.965645i
526526 0 0
527527 8000.00 0.661263
528528 0 0
529529 −9031.00 −0.742254
530530 0 0
531531 7348.00i 0.600520i
532532 0 0
533533 − 4356.00i − 0.353995i
534534 0 0
535535 1560.00 0.126065
536536 0 0
537537 12336.0 0.991318
538538 0 0
539539 10252.0i 0.819267i
540540 0 0
541541 − 198.000i − 0.0157351i −0.999969 0.00786755i 0.997496π-0.997496\pi
0.999969 0.00786755i 0.00250434π-0.00250434\pi
542542 0 0
543543 −9672.00 −0.764393
544544 0 0
545545 3988.00 0.313444
546546 0 0
547547 − 15268.0i − 1.19344i −0.802449 0.596721i 0.796470π-0.796470\pi
0.802449 0.596721i 0.203530π-0.203530\pi
548548 0 0
549549 − 6050.00i − 0.470324i
550550 0 0
551551 8712.00 0.673582
552552 0 0
553553 15744.0 1.21067
554554 0 0
555555 1296.00i 0.0991210i
556556 0 0
557557 − 20854.0i − 1.58638i −0.608976 0.793189i 0.708419π-0.708419\pi
0.608976 0.793189i 0.291581π-0.291581\pi
558558 0 0
559559 −1144.00 −0.0865582
560560 0 0
561561 8800.00 0.662275
562562 0 0
563563 − 19316.0i − 1.44595i −0.690872 0.722977i 0.742773π-0.742773\pi
0.690872 0.722977i 0.257227π-0.257227\pi
564564 0 0
565565 1884.00i 0.140284i
566566 0 0
567567 −7464.00 −0.552837
568568 0 0
569569 −7018.00 −0.517065 −0.258532 0.966003i 0.583239π-0.583239\pi
−0.258532 + 0.966003i 0.583239π0.583239\pi
570570 0 0
571571 − 24420.0i − 1.78975i −0.446320 0.894873i 0.647266π-0.647266\pi
0.446320 0.894873i 0.352734π-0.352734\pi
572572 0 0
573573 − 3840.00i − 0.279962i
574574 0 0
575575 −6776.00 −0.491441
576576 0 0
577577 23234.0 1.67633 0.838166 0.545415i 0.183628π-0.183628\pi
0.838166 + 0.545415i 0.183628π0.183628\pi
578578 0 0
579579 − 11528.0i − 0.827439i
580580 0 0
581581 5664.00i 0.404445i
582582 0 0
583583 10648.0 0.756424
584584 0 0
585585 −484.000 −0.0342067
586586 0 0
587587 10604.0i 0.745611i 0.927909 + 0.372806i 0.121604π0.121604\pi
−0.927909 + 0.372806i 0.878396π0.878396\pi
588588 0 0
589589 7040.00i 0.492493i
590590 0 0
591591 4344.00 0.302349
592592 0 0
593593 −13838.0 −0.958277 −0.479139 0.877739i 0.659051π-0.659051\pi
−0.479139 + 0.877739i 0.659051π0.659051\pi
594594 0 0
595595 − 2400.00i − 0.165362i
596596 0 0
597597 − 352.000i − 0.0241313i
598598 0 0
599599 −3960.00 −0.270119 −0.135059 0.990837i 0.543123π-0.543123\pi
−0.135059 + 0.990837i 0.543123π0.543123\pi
600600 0 0
601601 5942.00 0.403293 0.201647 0.979458i 0.435371π-0.435371\pi
0.201647 + 0.979458i 0.435371π0.435371\pi
602602 0 0
603603 2068.00i 0.139661i
604604 0 0
605605 1210.00i 0.0813116i
606606 0 0
607607 3040.00 0.203278 0.101639 0.994821i 0.467591π-0.467591\pi
0.101639 + 0.994821i 0.467591π0.467591\pi
608608 0 0
609609 −19008.0 −1.26477
610610 0 0
611611 11616.0i 0.769121i
612612 0 0
613613 − 2530.00i − 0.166698i −0.996520 0.0833489i 0.973438π-0.973438\pi
0.996520 0.0833489i 0.0265616π-0.0265616\pi
614614 0 0
615615 −1584.00 −0.103859
616616 0 0
617617 19206.0 1.25317 0.626584 0.779354i 0.284453π-0.284453\pi
0.626584 + 0.779354i 0.284453π0.284453\pi
618618 0 0
619619 − 10996.0i − 0.714001i −0.934104 0.357000i 0.883799π-0.883799\pi
0.934104 0.357000i 0.116201π-0.116201\pi
620620 0 0
621621 8512.00i 0.550040i
622622 0 0
623623 −17136.0 −1.10199
624624 0 0
625625 14141.0 0.905024
626626 0 0
627627 7744.00i 0.493247i
628628 0 0
629629 − 8100.00i − 0.513463i
630630 0 0
631631 −6680.00 −0.421437 −0.210718 0.977547i 0.567580π-0.567580\pi
−0.210718 + 0.977547i 0.567580π0.567580\pi
632632 0 0
633633 −13904.0 −0.873040
634634 0 0
635635 2816.00i 0.175984i
636636 0 0
637637 − 5126.00i − 0.318838i
638638 0 0
639639 8008.00 0.495761
640640 0 0
641641 6274.00 0.386596 0.193298 0.981140i 0.438082π-0.438082\pi
0.193298 + 0.981140i 0.438082π0.438082\pi
642642 0 0
643643 9084.00i 0.557135i 0.960417 + 0.278568i 0.0898596π0.0898596\pi
−0.960417 + 0.278568i 0.910140π0.910140\pi
644644 0 0
645645 416.000i 0.0253953i
646646 0 0
647647 −23656.0 −1.43742 −0.718712 0.695308i 0.755268π-0.755268\pi
−0.718712 + 0.695308i 0.755268π0.755268\pi
648648 0 0
649649 −29392.0 −1.77771
650650 0 0
651651 − 15360.0i − 0.924740i
652652 0 0
653653 6762.00i 0.405234i 0.979258 + 0.202617i 0.0649446π0.0649446\pi
−0.979258 + 0.202617i 0.935055π0.935055\pi
654654 0 0
655655 −5384.00 −0.321176
656656 0 0
657657 −1694.00 −0.100592
658658 0 0
659659 15276.0i 0.902987i 0.892274 + 0.451494i 0.149109π0.149109\pi
−0.892274 + 0.451494i 0.850891π0.850891\pi
660660 0 0
661661 11054.0i 0.650455i 0.945636 + 0.325228i 0.105441π0.105441\pi
−0.945636 + 0.325228i 0.894559π0.894559\pi
662662 0 0
663663 −4400.00 −0.257740
664664 0 0
665665 2112.00 0.123158
666666 0 0
667667 11088.0i 0.643672i
668668 0 0
669669 3712.00i 0.214520i
670670 0 0
671671 24200.0 1.39230
672672 0 0
673673 −21278.0 −1.21873 −0.609366 0.792889i 0.708576π-0.708576\pi
−0.609366 + 0.792889i 0.708576π0.708576\pi
674674 0 0
675675 − 18392.0i − 1.04875i
676676 0 0
677677 8926.00i 0.506727i 0.967371 + 0.253363i 0.0815368π0.0815368\pi
−0.967371 + 0.253363i 0.918463π0.918463\pi
678678 0 0
679679 −11472.0 −0.648387
680680 0 0
681681 624.000 0.0351127
682682 0 0
683683 − 8116.00i − 0.454685i −0.973815 0.227343i 0.926996π-0.926996\pi
0.973815 0.227343i 0.0730037π-0.0730037\pi
684684 0 0
685685 3252.00i 0.181391i
686686 0 0
687687 −6536.00 −0.362975
688688 0 0
689689 −5324.00 −0.294381
690690 0 0
691691 − 11764.0i − 0.647646i −0.946118 0.323823i 0.895032π-0.895032\pi
0.946118 0.323823i 0.104968π-0.104968\pi
692692 0 0
693693 11616.0i 0.636732i
694694 0 0
695695 1368.00 0.0746636
696696 0 0
697697 9900.00 0.538005
698698 0 0
699699 − 3608.00i − 0.195232i
700700 0 0
701701 4698.00i 0.253126i 0.991959 + 0.126563i 0.0403945π0.0403945\pi
−0.991959 + 0.126563i 0.959605π0.959605\pi
702702 0 0
703703 7128.00 0.382415
704704 0 0
705705 4224.00 0.225653
706706 0 0
707707 37584.0i 1.99928i
708708 0 0
709709 24638.0i 1.30508i 0.757756 + 0.652538i 0.226296π0.226296\pi
−0.757756 + 0.652538i 0.773704π0.773704\pi
710710 0 0
711711 7216.00 0.380620
712712 0 0
713713 −8960.00 −0.470624
714714 0 0
715715 − 1936.00i − 0.101262i
716716 0 0
717717 6464.00i 0.336684i
718718 0 0
719719 −16624.0 −0.862268 −0.431134 0.902288i 0.641886π-0.641886\pi
−0.431134 + 0.902288i 0.641886π0.641886\pi
720720 0 0
721721 −23232.0 −1.20001
722722 0 0
723723 − 19272.0i − 0.991332i
724724 0 0
725725 − 23958.0i − 1.22728i
726726 0 0
727727 30216.0 1.54147 0.770735 0.637155i 0.219889π-0.219889\pi
0.770735 + 0.637155i 0.219889π0.219889\pi
728728 0 0
729729 −19837.0 −1.00782
730730 0 0
731731 − 2600.00i − 0.131552i
732732 0 0
733733 3322.00i 0.167395i 0.996491 + 0.0836977i 0.0266730π0.0266730\pi
−0.996491 + 0.0836977i 0.973327π0.973327\pi
734734 0 0
735735 −1864.00 −0.0935438
736736 0 0
737737 −8272.00 −0.413437
738738 0 0
739739 − 14692.0i − 0.731331i −0.930746 0.365666i 0.880841π-0.880841\pi
0.930746 0.365666i 0.119159π-0.119159\pi
740740 0 0
741741 − 3872.00i − 0.191959i
742742 0 0
743743 28600.0 1.41216 0.706078 0.708134i 0.250463π-0.250463\pi
0.706078 + 0.708134i 0.250463π0.250463\pi
744744 0 0
745745 604.000 0.0297032
746746 0 0
747747 2596.00i 0.127152i
748748 0 0
749749 18720.0i 0.913236i
750750 0 0
751751 29616.0 1.43902 0.719509 0.694483i 0.244367π-0.244367\pi
0.719509 + 0.694483i 0.244367π0.244367\pi
752752 0 0
753753 8560.00 0.414268
754754 0 0
755755 − 2704.00i − 0.130343i
756756 0 0
757757 2894.00i 0.138949i 0.997584 + 0.0694744i 0.0221322π0.0221322\pi
−0.997584 + 0.0694744i 0.977868π0.977868\pi
758758 0 0
759759 −9856.00 −0.471344
760760 0 0
761761 −14762.0 −0.703183 −0.351591 0.936154i 0.614359π-0.614359\pi
−0.351591 + 0.936154i 0.614359π0.614359\pi
762762 0 0
763763 47856.0i 2.27065i
764764 0 0
765765 − 1100.00i − 0.0519877i
766766 0 0
767767 14696.0 0.691841
768768 0 0
769769 −7678.00 −0.360047 −0.180023 0.983662i 0.557617π-0.557617\pi
−0.180023 + 0.983662i 0.557617π0.557617\pi
770770 0 0
771771 − 3080.00i − 0.143870i
772772 0 0
773773 27390.0i 1.27445i 0.770678 + 0.637225i 0.219918π0.219918\pi
−0.770678 + 0.637225i 0.780082π0.780082\pi
774774 0 0
775775 19360.0 0.897331
776776 0 0
777777 −15552.0 −0.718050
778778 0 0
779779 8712.00i 0.400693i
780780 0 0
781781 32032.0i 1.46760i
782782 0 0
783783 −30096.0 −1.37362
784784 0 0
785785 −6284.00 −0.285714
786786 0 0
787787 19756.0i 0.894823i 0.894328 + 0.447411i 0.147654π0.147654\pi
−0.894328 + 0.447411i 0.852346π0.852346\pi
788788 0 0
789789 29600.0i 1.33560i
790790 0 0
791791 −22608.0 −1.01624
792792 0 0
793793 −12100.0 −0.541846
794794 0 0
795795 1936.00i 0.0863684i
796796 0 0
797797 − 38854.0i − 1.72682i −0.504499 0.863412i 0.668323π-0.668323\pi
0.504499 0.863412i 0.331677π-0.331677\pi
798798 0 0
799799 −26400.0 −1.16892
800800 0 0
801801 −7854.00 −0.346451
802802 0 0
803803 − 6776.00i − 0.297783i
804804 0 0
805805 2688.00i 0.117689i
806806 0 0
807807 11176.0 0.487502
808808 0 0
809809 14278.0 0.620504 0.310252 0.950654i 0.399587π-0.399587\pi
0.310252 + 0.950654i 0.399587π0.399587\pi
810810 0 0
811811 716.000i 0.0310014i 0.999880 + 0.0155007i 0.00493423π0.00493423\pi
−0.999880 + 0.0155007i 0.995066π0.995066\pi
812812 0 0
813813 34496.0i 1.48810i
814814 0 0
815815 6072.00 0.260973
816816 0 0
817817 2288.00 0.0979767
818818 0 0
819819 − 5808.00i − 0.247800i
820820 0 0
821821 − 23538.0i − 1.00059i −0.865856 0.500293i 0.833225π-0.833225\pi
0.865856 0.500293i 0.166775π-0.166775\pi
822822 0 0
823823 −6616.00 −0.280218 −0.140109 0.990136i 0.544745π-0.544745\pi
−0.140109 + 0.990136i 0.544745π0.544745\pi
824824 0 0
825825 21296.0 0.898705
826826 0 0
827827 − 27236.0i − 1.14521i −0.819831 0.572605i 0.805933π-0.805933\pi
0.819831 0.572605i 0.194067π-0.194067\pi
828828 0 0
829829 − 12070.0i − 0.505680i −0.967508 0.252840i 0.918635π-0.918635\pi
0.967508 0.252840i 0.0813646π-0.0813646\pi
830830 0 0
831831 −7496.00 −0.312916
832832 0 0
833833 11650.0 0.484572
834834 0 0
835835 528.000i 0.0218829i
836836 0 0
837837 − 24320.0i − 1.00433i
838838 0 0
839839 −42024.0 −1.72924 −0.864618 0.502429i 0.832440π-0.832440\pi
−0.864618 + 0.502429i 0.832440π0.832440\pi
840840 0 0
841841 −14815.0 −0.607446
842842 0 0
843843 13352.0i 0.545513i
844844 0 0
845845 − 3426.00i − 0.139477i
846846 0 0
847847 −14520.0 −0.589036
848848 0 0
849849 −28688.0 −1.15968
850850 0 0
851851 9072.00i 0.365434i
852852 0 0
853853 2414.00i 0.0968978i 0.998826 + 0.0484489i 0.0154278π0.0154278\pi
−0.998826 + 0.0484489i 0.984572π0.984572\pi
854854 0 0
855855 968.000 0.0387192
856856 0 0
857857 37686.0 1.50213 0.751067 0.660226i 0.229539π-0.229539\pi
0.751067 + 0.660226i 0.229539π0.229539\pi
858858 0 0
859859 − 40644.0i − 1.61438i −0.590289 0.807192i 0.700986π-0.700986\pi
0.590289 0.807192i 0.299014π-0.299014\pi
860860 0 0
861861 − 19008.0i − 0.752370i
862862 0 0
863863 18656.0 0.735872 0.367936 0.929851i 0.380065π-0.380065\pi
0.367936 + 0.929851i 0.380065π0.380065\pi
864864 0 0
865865 5652.00 0.222166
866866 0 0
867867 9652.00i 0.378084i
868868 0 0
869869 28864.0i 1.12675i
870870 0 0
871871 4136.00 0.160899
872872 0 0
873873 −5258.00 −0.203845
874874 0 0
875875 − 11808.0i − 0.456209i
876876 0 0
877877 13002.0i 0.500623i 0.968165 + 0.250311i 0.0805330π0.0805330\pi
−0.968165 + 0.250311i 0.919467π0.919467\pi
878878 0 0
879879 20856.0 0.800291
880880 0 0
881881 49490.0 1.89258 0.946289 0.323323i 0.104800π-0.104800\pi
0.946289 + 0.323323i 0.104800π0.104800\pi
882882 0 0
883883 1100.00i 0.0419229i 0.999780 + 0.0209615i 0.00667273π0.00667273\pi
−0.999780 + 0.0209615i 0.993327π0.993327\pi
884884 0 0
885885 − 5344.00i − 0.202979i
886886 0 0
887887 −14104.0 −0.533896 −0.266948 0.963711i 0.586015π-0.586015\pi
−0.266948 + 0.963711i 0.586015π0.586015\pi
888888 0 0
889889 −33792.0 −1.27486
890890 0 0
891891 − 13684.0i − 0.514513i
892892 0 0
893893 − 23232.0i − 0.870581i
894894 0 0
895895 6168.00 0.230361
896896 0 0
897897 4928.00 0.183435
898898 0 0
899899 − 31680.0i − 1.17529i
900900 0 0
901901 − 12100.0i − 0.447402i
902902 0 0
903903 −4992.00 −0.183968
904904 0 0
905905 −4836.00 −0.177629
906906 0 0
907907 12716.0i 0.465521i 0.972534 + 0.232761i 0.0747759π0.0747759\pi
−0.972534 + 0.232761i 0.925224π0.925224\pi
908908 0 0
909909 17226.0i 0.628548i
910910 0 0
911911 39632.0 1.44135 0.720673 0.693275i 0.243833π-0.243833\pi
0.720673 + 0.693275i 0.243833π0.243833\pi
912912 0 0
913913 −10384.0 −0.376408
914914 0 0
915915 4400.00i 0.158972i
916916 0 0
917917 − 64608.0i − 2.32666i
918918 0 0
919919 5704.00 0.204742 0.102371 0.994746i 0.467357π-0.467357\pi
0.102371 + 0.994746i 0.467357π0.467357\pi
920920 0 0
921921 1584.00 0.0566716
922922 0 0
923923 − 16016.0i − 0.571152i
924924 0 0
925925 − 19602.0i − 0.696767i
926926 0 0
927927 −10648.0 −0.377267
928928 0 0
929929 8162.00 0.288252 0.144126 0.989559i 0.453963π-0.453963\pi
0.144126 + 0.989559i 0.453963π0.453963\pi
930930 0 0
931931 10252.0i 0.360898i
932932 0 0
933933 16224.0i 0.569293i
934934 0 0
935935 4400.00 0.153899
936936 0 0
937937 55110.0 1.92141 0.960707 0.277564i 0.0895270π-0.0895270\pi
0.960707 + 0.277564i 0.0895270π0.0895270\pi
938938 0 0
939939 8616.00i 0.299438i
940940 0 0
941941 − 16374.0i − 0.567245i −0.958936 0.283622i 0.908464π-0.908464\pi
0.958936 0.283622i 0.0915362π-0.0915362\pi
942942 0 0
943943 −11088.0 −0.382900
944944 0 0
945945 −7296.00 −0.251152
946946 0 0
947947 8460.00i 0.290299i 0.989410 + 0.145149i 0.0463663π0.0463663\pi
−0.989410 + 0.145149i 0.953634π0.953634\pi
948948 0 0
949949 3388.00i 0.115889i
950950 0 0
951951 29544.0 1.00739
952952 0 0
953953 20502.0 0.696878 0.348439 0.937331i 0.386712π-0.386712\pi
0.348439 + 0.937331i 0.386712π0.386712\pi
954954 0 0
955955 − 1920.00i − 0.0650573i
956956 0 0
957957 − 34848.0i − 1.17709i
958958 0 0
959959 −39024.0 −1.31403
960960 0 0
961961 −4191.00 −0.140680
962962 0 0
963963 8580.00i 0.287110i
964964 0 0
965965 − 5764.00i − 0.192280i
966966 0 0
967967 −36520.0 −1.21448 −0.607241 0.794518i 0.707724π-0.707724\pi
−0.607241 + 0.794518i 0.707724π0.707724\pi
968968 0 0
969969 8800.00 0.291741
970970 0 0
971971 − 20244.0i − 0.669064i −0.942384 0.334532i 0.891422π-0.891422\pi
0.942384 0.334532i 0.108578π-0.108578\pi
972972 0 0
973973 16416.0i 0.540876i
974974 0 0
975975 −10648.0 −0.349753
976976 0 0
977977 50034.0 1.63841 0.819206 0.573499i 0.194414π-0.194414\pi
0.819206 + 0.573499i 0.194414π0.194414\pi
978978 0 0
979979 − 31416.0i − 1.02560i
980980 0 0
981981 21934.0i 0.713862i
982982 0 0
983983 37128.0 1.20468 0.602339 0.798240i 0.294235π-0.294235\pi
0.602339 + 0.798240i 0.294235π0.294235\pi
984984 0 0
985985 2172.00 0.0702596
986986 0 0
987987 50688.0i 1.63467i
988988 0 0
989989 2912.00i 0.0936261i
990990 0 0
991991 −27808.0 −0.891373 −0.445686 0.895189i 0.647040π-0.647040\pi
−0.445686 + 0.895189i 0.647040π0.647040\pi
992992 0 0
993993 4528.00 0.144705
994994 0 0
995995 − 176.000i − 0.00560761i
996996 0 0
997997 − 28514.0i − 0.905765i −0.891570 0.452882i 0.850396π-0.850396\pi
0.891570 0.452882i 0.149604π-0.149604\pi
998998 0 0
999999 −24624.0 −0.779849
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 256.4.b.g.129.1 2
4.3 odd 2 256.4.b.a.129.2 2
8.3 odd 2 256.4.b.a.129.1 2
8.5 even 2 inner 256.4.b.g.129.2 2
16.3 odd 4 8.4.a.a.1.1 1
16.5 even 4 64.4.a.b.1.1 1
16.11 odd 4 64.4.a.d.1.1 1
16.13 even 4 16.4.a.a.1.1 1
48.5 odd 4 576.4.a.j.1.1 1
48.11 even 4 576.4.a.k.1.1 1
48.29 odd 4 144.4.a.e.1.1 1
48.35 even 4 72.4.a.c.1.1 1
80.3 even 4 200.4.c.e.49.1 2
80.13 odd 4 400.4.c.i.49.2 2
80.19 odd 4 200.4.a.g.1.1 1
80.29 even 4 400.4.a.g.1.1 1
80.59 odd 4 1600.4.a.o.1.1 1
80.67 even 4 200.4.c.e.49.2 2
80.69 even 4 1600.4.a.bm.1.1 1
80.77 odd 4 400.4.c.i.49.1 2
112.3 even 12 392.4.i.b.177.1 2
112.13 odd 4 784.4.a.e.1.1 1
112.19 even 12 392.4.i.b.361.1 2
112.51 odd 12 392.4.i.g.361.1 2
112.67 odd 12 392.4.i.g.177.1 2
112.83 even 4 392.4.a.e.1.1 1
144.67 odd 12 648.4.i.h.217.1 2
144.83 even 12 648.4.i.e.433.1 2
144.115 odd 12 648.4.i.h.433.1 2
144.131 even 12 648.4.i.e.217.1 2
176.109 odd 4 1936.4.a.l.1.1 1
176.131 even 4 968.4.a.a.1.1 1
208.51 odd 4 1352.4.a.a.1.1 1
240.83 odd 4 1800.4.f.u.649.1 2
240.179 even 4 1800.4.a.d.1.1 1
240.227 odd 4 1800.4.f.u.649.2 2
272.67 odd 4 2312.4.a.a.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
8.4.a.a.1.1 1 16.3 odd 4
16.4.a.a.1.1 1 16.13 even 4
64.4.a.b.1.1 1 16.5 even 4
64.4.a.d.1.1 1 16.11 odd 4
72.4.a.c.1.1 1 48.35 even 4
144.4.a.e.1.1 1 48.29 odd 4
200.4.a.g.1.1 1 80.19 odd 4
200.4.c.e.49.1 2 80.3 even 4
200.4.c.e.49.2 2 80.67 even 4
256.4.b.a.129.1 2 8.3 odd 2
256.4.b.a.129.2 2 4.3 odd 2
256.4.b.g.129.1 2 1.1 even 1 trivial
256.4.b.g.129.2 2 8.5 even 2 inner
392.4.a.e.1.1 1 112.83 even 4
392.4.i.b.177.1 2 112.3 even 12
392.4.i.b.361.1 2 112.19 even 12
392.4.i.g.177.1 2 112.67 odd 12
392.4.i.g.361.1 2 112.51 odd 12
400.4.a.g.1.1 1 80.29 even 4
400.4.c.i.49.1 2 80.77 odd 4
400.4.c.i.49.2 2 80.13 odd 4
576.4.a.j.1.1 1 48.5 odd 4
576.4.a.k.1.1 1 48.11 even 4
648.4.i.e.217.1 2 144.131 even 12
648.4.i.e.433.1 2 144.83 even 12
648.4.i.h.217.1 2 144.67 odd 12
648.4.i.h.433.1 2 144.115 odd 12
784.4.a.e.1.1 1 112.13 odd 4
968.4.a.a.1.1 1 176.131 even 4
1352.4.a.a.1.1 1 208.51 odd 4
1600.4.a.o.1.1 1 80.59 odd 4
1600.4.a.bm.1.1 1 80.69 even 4
1800.4.a.d.1.1 1 240.179 even 4
1800.4.f.u.649.1 2 240.83 odd 4
1800.4.f.u.649.2 2 240.227 odd 4
1936.4.a.l.1.1 1 176.109 odd 4
2312.4.a.a.1.1 1 272.67 odd 4