Properties

Label 256.4.b.g.129.1
Level $256$
Weight $4$
Character 256.129
Analytic conductor $15.104$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [256,4,Mod(129,256)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(256, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("256.129");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 256 = 2^{8} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 256.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(15.1044889615\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 8)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 129.1
Root \(-1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 256.129
Dual form 256.4.b.g.129.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-4.00000i q^{3} -2.00000i q^{5} +24.0000 q^{7} +11.0000 q^{9} +44.0000i q^{11} -22.0000i q^{13} -8.00000 q^{15} +50.0000 q^{17} +44.0000i q^{19} -96.0000i q^{21} -56.0000 q^{23} +121.000 q^{25} -152.000i q^{27} -198.000i q^{29} +160.000 q^{31} +176.000 q^{33} -48.0000i q^{35} -162.000i q^{37} -88.0000 q^{39} +198.000 q^{41} -52.0000i q^{43} -22.0000i q^{45} -528.000 q^{47} +233.000 q^{49} -200.000i q^{51} -242.000i q^{53} +88.0000 q^{55} +176.000 q^{57} +668.000i q^{59} -550.000i q^{61} +264.000 q^{63} -44.0000 q^{65} +188.000i q^{67} +224.000i q^{69} +728.000 q^{71} -154.000 q^{73} -484.000i q^{75} +1056.00i q^{77} +656.000 q^{79} -311.000 q^{81} +236.000i q^{83} -100.000i q^{85} -792.000 q^{87} -714.000 q^{89} -528.000i q^{91} -640.000i q^{93} +88.0000 q^{95} -478.000 q^{97} +484.000i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 48 q^{7} + 22 q^{9} - 16 q^{15} + 100 q^{17} - 112 q^{23} + 242 q^{25} + 320 q^{31} + 352 q^{33} - 176 q^{39} + 396 q^{41} - 1056 q^{47} + 466 q^{49} + 176 q^{55} + 352 q^{57} + 528 q^{63} - 88 q^{65}+ \cdots - 956 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/256\mathbb{Z}\right)^\times\).

\(n\) \(5\) \(255\)
\(\chi(n)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) − 4.00000i − 0.769800i −0.922958 0.384900i \(-0.874236\pi\)
0.922958 0.384900i \(-0.125764\pi\)
\(4\) 0 0
\(5\) − 2.00000i − 0.178885i −0.995992 0.0894427i \(-0.971491\pi\)
0.995992 0.0894427i \(-0.0285086\pi\)
\(6\) 0 0
\(7\) 24.0000 1.29588 0.647939 0.761692i \(-0.275631\pi\)
0.647939 + 0.761692i \(0.275631\pi\)
\(8\) 0 0
\(9\) 11.0000 0.407407
\(10\) 0 0
\(11\) 44.0000i 1.20605i 0.797724 + 0.603023i \(0.206037\pi\)
−0.797724 + 0.603023i \(0.793963\pi\)
\(12\) 0 0
\(13\) − 22.0000i − 0.469362i −0.972072 0.234681i \(-0.924595\pi\)
0.972072 0.234681i \(-0.0754045\pi\)
\(14\) 0 0
\(15\) −8.00000 −0.137706
\(16\) 0 0
\(17\) 50.0000 0.713340 0.356670 0.934230i \(-0.383912\pi\)
0.356670 + 0.934230i \(0.383912\pi\)
\(18\) 0 0
\(19\) 44.0000i 0.531279i 0.964072 + 0.265639i \(0.0855830\pi\)
−0.964072 + 0.265639i \(0.914417\pi\)
\(20\) 0 0
\(21\) − 96.0000i − 0.997567i
\(22\) 0 0
\(23\) −56.0000 −0.507687 −0.253844 0.967245i \(-0.581695\pi\)
−0.253844 + 0.967245i \(0.581695\pi\)
\(24\) 0 0
\(25\) 121.000 0.968000
\(26\) 0 0
\(27\) − 152.000i − 1.08342i
\(28\) 0 0
\(29\) − 198.000i − 1.26785i −0.773394 0.633925i \(-0.781443\pi\)
0.773394 0.633925i \(-0.218557\pi\)
\(30\) 0 0
\(31\) 160.000 0.926995 0.463498 0.886098i \(-0.346594\pi\)
0.463498 + 0.886098i \(0.346594\pi\)
\(32\) 0 0
\(33\) 176.000 0.928414
\(34\) 0 0
\(35\) − 48.0000i − 0.231814i
\(36\) 0 0
\(37\) − 162.000i − 0.719801i −0.932991 0.359900i \(-0.882811\pi\)
0.932991 0.359900i \(-0.117189\pi\)
\(38\) 0 0
\(39\) −88.0000 −0.361315
\(40\) 0 0
\(41\) 198.000 0.754205 0.377102 0.926172i \(-0.376920\pi\)
0.377102 + 0.926172i \(0.376920\pi\)
\(42\) 0 0
\(43\) − 52.0000i − 0.184417i −0.995740 0.0922084i \(-0.970607\pi\)
0.995740 0.0922084i \(-0.0293926\pi\)
\(44\) 0 0
\(45\) − 22.0000i − 0.0728793i
\(46\) 0 0
\(47\) −528.000 −1.63865 −0.819327 0.573327i \(-0.805653\pi\)
−0.819327 + 0.573327i \(0.805653\pi\)
\(48\) 0 0
\(49\) 233.000 0.679300
\(50\) 0 0
\(51\) − 200.000i − 0.549129i
\(52\) 0 0
\(53\) − 242.000i − 0.627194i −0.949556 0.313597i \(-0.898466\pi\)
0.949556 0.313597i \(-0.101534\pi\)
\(54\) 0 0
\(55\) 88.0000 0.215744
\(56\) 0 0
\(57\) 176.000 0.408978
\(58\) 0 0
\(59\) 668.000i 1.47400i 0.675891 + 0.737002i \(0.263759\pi\)
−0.675891 + 0.737002i \(0.736241\pi\)
\(60\) 0 0
\(61\) − 550.000i − 1.15443i −0.816592 0.577215i \(-0.804139\pi\)
0.816592 0.577215i \(-0.195861\pi\)
\(62\) 0 0
\(63\) 264.000 0.527950
\(64\) 0 0
\(65\) −44.0000 −0.0839620
\(66\) 0 0
\(67\) 188.000i 0.342804i 0.985201 + 0.171402i \(0.0548297\pi\)
−0.985201 + 0.171402i \(0.945170\pi\)
\(68\) 0 0
\(69\) 224.000i 0.390818i
\(70\) 0 0
\(71\) 728.000 1.21687 0.608435 0.793604i \(-0.291798\pi\)
0.608435 + 0.793604i \(0.291798\pi\)
\(72\) 0 0
\(73\) −154.000 −0.246909 −0.123454 0.992350i \(-0.539397\pi\)
−0.123454 + 0.992350i \(0.539397\pi\)
\(74\) 0 0
\(75\) − 484.000i − 0.745167i
\(76\) 0 0
\(77\) 1056.00i 1.56289i
\(78\) 0 0
\(79\) 656.000 0.934250 0.467125 0.884191i \(-0.345290\pi\)
0.467125 + 0.884191i \(0.345290\pi\)
\(80\) 0 0
\(81\) −311.000 −0.426612
\(82\) 0 0
\(83\) 236.000i 0.312101i 0.987749 + 0.156050i \(0.0498762\pi\)
−0.987749 + 0.156050i \(0.950124\pi\)
\(84\) 0 0
\(85\) − 100.000i − 0.127606i
\(86\) 0 0
\(87\) −792.000 −0.975992
\(88\) 0 0
\(89\) −714.000 −0.850380 −0.425190 0.905104i \(-0.639793\pi\)
−0.425190 + 0.905104i \(0.639793\pi\)
\(90\) 0 0
\(91\) − 528.000i − 0.608236i
\(92\) 0 0
\(93\) − 640.000i − 0.713601i
\(94\) 0 0
\(95\) 88.0000 0.0950380
\(96\) 0 0
\(97\) −478.000 −0.500346 −0.250173 0.968201i \(-0.580487\pi\)
−0.250173 + 0.968201i \(0.580487\pi\)
\(98\) 0 0
\(99\) 484.000i 0.491352i
\(100\) 0 0
\(101\) 1566.00i 1.54280i 0.636350 + 0.771400i \(0.280443\pi\)
−0.636350 + 0.771400i \(0.719557\pi\)
\(102\) 0 0
\(103\) −968.000 −0.926018 −0.463009 0.886354i \(-0.653230\pi\)
−0.463009 + 0.886354i \(0.653230\pi\)
\(104\) 0 0
\(105\) −192.000 −0.178450
\(106\) 0 0
\(107\) 780.000i 0.704724i 0.935864 + 0.352362i \(0.114621\pi\)
−0.935864 + 0.352362i \(0.885379\pi\)
\(108\) 0 0
\(109\) 1994.00i 1.75221i 0.482123 + 0.876103i \(0.339866\pi\)
−0.482123 + 0.876103i \(0.660134\pi\)
\(110\) 0 0
\(111\) −648.000 −0.554103
\(112\) 0 0
\(113\) −942.000 −0.784212 −0.392106 0.919920i \(-0.628253\pi\)
−0.392106 + 0.919920i \(0.628253\pi\)
\(114\) 0 0
\(115\) 112.000i 0.0908179i
\(116\) 0 0
\(117\) − 242.000i − 0.191221i
\(118\) 0 0
\(119\) 1200.00 0.924402
\(120\) 0 0
\(121\) −605.000 −0.454545
\(122\) 0 0
\(123\) − 792.000i − 0.580587i
\(124\) 0 0
\(125\) − 492.000i − 0.352047i
\(126\) 0 0
\(127\) −1408.00 −0.983778 −0.491889 0.870658i \(-0.663693\pi\)
−0.491889 + 0.870658i \(0.663693\pi\)
\(128\) 0 0
\(129\) −208.000 −0.141964
\(130\) 0 0
\(131\) − 2692.00i − 1.79543i −0.440578 0.897714i \(-0.645227\pi\)
0.440578 0.897714i \(-0.354773\pi\)
\(132\) 0 0
\(133\) 1056.00i 0.688472i
\(134\) 0 0
\(135\) −304.000 −0.193809
\(136\) 0 0
\(137\) −1626.00 −1.01400 −0.507002 0.861945i \(-0.669246\pi\)
−0.507002 + 0.861945i \(0.669246\pi\)
\(138\) 0 0
\(139\) 684.000i 0.417382i 0.977982 + 0.208691i \(0.0669203\pi\)
−0.977982 + 0.208691i \(0.933080\pi\)
\(140\) 0 0
\(141\) 2112.00i 1.26144i
\(142\) 0 0
\(143\) 968.000 0.566072
\(144\) 0 0
\(145\) −396.000 −0.226800
\(146\) 0 0
\(147\) − 932.000i − 0.522926i
\(148\) 0 0
\(149\) 302.000i 0.166046i 0.996548 + 0.0830228i \(0.0264574\pi\)
−0.996548 + 0.0830228i \(0.973543\pi\)
\(150\) 0 0
\(151\) 1352.00 0.728637 0.364319 0.931274i \(-0.381302\pi\)
0.364319 + 0.931274i \(0.381302\pi\)
\(152\) 0 0
\(153\) 550.000 0.290620
\(154\) 0 0
\(155\) − 320.000i − 0.165826i
\(156\) 0 0
\(157\) − 3142.00i − 1.59719i −0.601868 0.798595i \(-0.705577\pi\)
0.601868 0.798595i \(-0.294423\pi\)
\(158\) 0 0
\(159\) −968.000 −0.482814
\(160\) 0 0
\(161\) −1344.00 −0.657901
\(162\) 0 0
\(163\) 3036.00i 1.45888i 0.684043 + 0.729441i \(0.260220\pi\)
−0.684043 + 0.729441i \(0.739780\pi\)
\(164\) 0 0
\(165\) − 352.000i − 0.166080i
\(166\) 0 0
\(167\) −264.000 −0.122329 −0.0611645 0.998128i \(-0.519481\pi\)
−0.0611645 + 0.998128i \(0.519481\pi\)
\(168\) 0 0
\(169\) 1713.00 0.779700
\(170\) 0 0
\(171\) 484.000i 0.216447i
\(172\) 0 0
\(173\) 2826.00i 1.24195i 0.783832 + 0.620973i \(0.213263\pi\)
−0.783832 + 0.620973i \(0.786737\pi\)
\(174\) 0 0
\(175\) 2904.00 1.25441
\(176\) 0 0
\(177\) 2672.00 1.13469
\(178\) 0 0
\(179\) 3084.00i 1.28776i 0.765127 + 0.643880i \(0.222676\pi\)
−0.765127 + 0.643880i \(0.777324\pi\)
\(180\) 0 0
\(181\) − 2418.00i − 0.992975i −0.868044 0.496488i \(-0.834623\pi\)
0.868044 0.496488i \(-0.165377\pi\)
\(182\) 0 0
\(183\) −2200.00 −0.888681
\(184\) 0 0
\(185\) −324.000 −0.128762
\(186\) 0 0
\(187\) 2200.00i 0.860320i
\(188\) 0 0
\(189\) − 3648.00i − 1.40398i
\(190\) 0 0
\(191\) 960.000 0.363681 0.181841 0.983328i \(-0.441794\pi\)
0.181841 + 0.983328i \(0.441794\pi\)
\(192\) 0 0
\(193\) 2882.00 1.07488 0.537438 0.843304i \(-0.319392\pi\)
0.537438 + 0.843304i \(0.319392\pi\)
\(194\) 0 0
\(195\) 176.000i 0.0646340i
\(196\) 0 0
\(197\) 1086.00i 0.392763i 0.980528 + 0.196381i \(0.0629191\pi\)
−0.980528 + 0.196381i \(0.937081\pi\)
\(198\) 0 0
\(199\) 88.0000 0.0313475 0.0156738 0.999877i \(-0.495011\pi\)
0.0156738 + 0.999877i \(0.495011\pi\)
\(200\) 0 0
\(201\) 752.000 0.263890
\(202\) 0 0
\(203\) − 4752.00i − 1.64298i
\(204\) 0 0
\(205\) − 396.000i − 0.134916i
\(206\) 0 0
\(207\) −616.000 −0.206836
\(208\) 0 0
\(209\) −1936.00 −0.640746
\(210\) 0 0
\(211\) − 3476.00i − 1.13411i −0.823679 0.567056i \(-0.808082\pi\)
0.823679 0.567056i \(-0.191918\pi\)
\(212\) 0 0
\(213\) − 2912.00i − 0.936746i
\(214\) 0 0
\(215\) −104.000 −0.0329895
\(216\) 0 0
\(217\) 3840.00 1.20127
\(218\) 0 0
\(219\) 616.000i 0.190070i
\(220\) 0 0
\(221\) − 1100.00i − 0.334815i
\(222\) 0 0
\(223\) −928.000 −0.278670 −0.139335 0.990245i \(-0.544497\pi\)
−0.139335 + 0.990245i \(0.544497\pi\)
\(224\) 0 0
\(225\) 1331.00 0.394370
\(226\) 0 0
\(227\) 156.000i 0.0456127i 0.999740 + 0.0228064i \(0.00726012\pi\)
−0.999740 + 0.0228064i \(0.992740\pi\)
\(228\) 0 0
\(229\) − 1634.00i − 0.471519i −0.971811 0.235759i \(-0.924242\pi\)
0.971811 0.235759i \(-0.0757577\pi\)
\(230\) 0 0
\(231\) 4224.00 1.20311
\(232\) 0 0
\(233\) 902.000 0.253614 0.126807 0.991927i \(-0.459527\pi\)
0.126807 + 0.991927i \(0.459527\pi\)
\(234\) 0 0
\(235\) 1056.00i 0.293131i
\(236\) 0 0
\(237\) − 2624.00i − 0.719186i
\(238\) 0 0
\(239\) −1616.00 −0.437365 −0.218683 0.975796i \(-0.570176\pi\)
−0.218683 + 0.975796i \(0.570176\pi\)
\(240\) 0 0
\(241\) 4818.00 1.28778 0.643889 0.765119i \(-0.277320\pi\)
0.643889 + 0.765119i \(0.277320\pi\)
\(242\) 0 0
\(243\) − 2860.00i − 0.755017i
\(244\) 0 0
\(245\) − 466.000i − 0.121517i
\(246\) 0 0
\(247\) 968.000 0.249362
\(248\) 0 0
\(249\) 944.000 0.240255
\(250\) 0 0
\(251\) 2140.00i 0.538150i 0.963119 + 0.269075i \(0.0867179\pi\)
−0.963119 + 0.269075i \(0.913282\pi\)
\(252\) 0 0
\(253\) − 2464.00i − 0.612294i
\(254\) 0 0
\(255\) −400.000 −0.0982313
\(256\) 0 0
\(257\) 770.000 0.186892 0.0934461 0.995624i \(-0.470212\pi\)
0.0934461 + 0.995624i \(0.470212\pi\)
\(258\) 0 0
\(259\) − 3888.00i − 0.932774i
\(260\) 0 0
\(261\) − 2178.00i − 0.516532i
\(262\) 0 0
\(263\) −7400.00 −1.73499 −0.867497 0.497442i \(-0.834273\pi\)
−0.867497 + 0.497442i \(0.834273\pi\)
\(264\) 0 0
\(265\) −484.000 −0.112196
\(266\) 0 0
\(267\) 2856.00i 0.654623i
\(268\) 0 0
\(269\) 2794.00i 0.633283i 0.948545 + 0.316642i \(0.102555\pi\)
−0.948545 + 0.316642i \(0.897445\pi\)
\(270\) 0 0
\(271\) −8624.00 −1.93310 −0.966551 0.256474i \(-0.917439\pi\)
−0.966551 + 0.256474i \(0.917439\pi\)
\(272\) 0 0
\(273\) −2112.00 −0.468220
\(274\) 0 0
\(275\) 5324.00i 1.16745i
\(276\) 0 0
\(277\) − 1874.00i − 0.406490i −0.979128 0.203245i \(-0.934851\pi\)
0.979128 0.203245i \(-0.0651488\pi\)
\(278\) 0 0
\(279\) 1760.00 0.377665
\(280\) 0 0
\(281\) −3338.00 −0.708642 −0.354321 0.935124i \(-0.615288\pi\)
−0.354321 + 0.935124i \(0.615288\pi\)
\(282\) 0 0
\(283\) − 7172.00i − 1.50647i −0.657751 0.753235i \(-0.728492\pi\)
0.657751 0.753235i \(-0.271508\pi\)
\(284\) 0 0
\(285\) − 352.000i − 0.0731603i
\(286\) 0 0
\(287\) 4752.00 0.977358
\(288\) 0 0
\(289\) −2413.00 −0.491146
\(290\) 0 0
\(291\) 1912.00i 0.385166i
\(292\) 0 0
\(293\) 5214.00i 1.03961i 0.854286 + 0.519804i \(0.173995\pi\)
−0.854286 + 0.519804i \(0.826005\pi\)
\(294\) 0 0
\(295\) 1336.00 0.263678
\(296\) 0 0
\(297\) 6688.00 1.30666
\(298\) 0 0
\(299\) 1232.00i 0.238289i
\(300\) 0 0
\(301\) − 1248.00i − 0.238982i
\(302\) 0 0
\(303\) 6264.00 1.18765
\(304\) 0 0
\(305\) −1100.00 −0.206511
\(306\) 0 0
\(307\) 396.000i 0.0736186i 0.999322 + 0.0368093i \(0.0117194\pi\)
−0.999322 + 0.0368093i \(0.988281\pi\)
\(308\) 0 0
\(309\) 3872.00i 0.712849i
\(310\) 0 0
\(311\) −4056.00 −0.739533 −0.369766 0.929125i \(-0.620562\pi\)
−0.369766 + 0.929125i \(0.620562\pi\)
\(312\) 0 0
\(313\) −2154.00 −0.388982 −0.194491 0.980904i \(-0.562305\pi\)
−0.194491 + 0.980904i \(0.562305\pi\)
\(314\) 0 0
\(315\) − 528.000i − 0.0944426i
\(316\) 0 0
\(317\) 7386.00i 1.30864i 0.756217 + 0.654320i \(0.227045\pi\)
−0.756217 + 0.654320i \(0.772955\pi\)
\(318\) 0 0
\(319\) 8712.00 1.52909
\(320\) 0 0
\(321\) 3120.00 0.542497
\(322\) 0 0
\(323\) 2200.00i 0.378982i
\(324\) 0 0
\(325\) − 2662.00i − 0.454342i
\(326\) 0 0
\(327\) 7976.00 1.34885
\(328\) 0 0
\(329\) −12672.0 −2.12350
\(330\) 0 0
\(331\) 1132.00i 0.187977i 0.995573 + 0.0939884i \(0.0299617\pi\)
−0.995573 + 0.0939884i \(0.970038\pi\)
\(332\) 0 0
\(333\) − 1782.00i − 0.293252i
\(334\) 0 0
\(335\) 376.000 0.0613226
\(336\) 0 0
\(337\) −3342.00 −0.540209 −0.270104 0.962831i \(-0.587058\pi\)
−0.270104 + 0.962831i \(0.587058\pi\)
\(338\) 0 0
\(339\) 3768.00i 0.603686i
\(340\) 0 0
\(341\) 7040.00i 1.11800i
\(342\) 0 0
\(343\) −2640.00 −0.415588
\(344\) 0 0
\(345\) 448.000 0.0699116
\(346\) 0 0
\(347\) − 2244.00i − 0.347159i −0.984820 0.173580i \(-0.944467\pi\)
0.984820 0.173580i \(-0.0555334\pi\)
\(348\) 0 0
\(349\) 6522.00i 1.00033i 0.865931 + 0.500164i \(0.166727\pi\)
−0.865931 + 0.500164i \(0.833273\pi\)
\(350\) 0 0
\(351\) −3344.00 −0.508517
\(352\) 0 0
\(353\) −11230.0 −1.69324 −0.846618 0.532200i \(-0.821365\pi\)
−0.846618 + 0.532200i \(0.821365\pi\)
\(354\) 0 0
\(355\) − 1456.00i − 0.217680i
\(356\) 0 0
\(357\) − 4800.00i − 0.711605i
\(358\) 0 0
\(359\) 1848.00 0.271682 0.135841 0.990731i \(-0.456626\pi\)
0.135841 + 0.990731i \(0.456626\pi\)
\(360\) 0 0
\(361\) 4923.00 0.717743
\(362\) 0 0
\(363\) 2420.00i 0.349909i
\(364\) 0 0
\(365\) 308.000i 0.0441684i
\(366\) 0 0
\(367\) −7120.00 −1.01270 −0.506350 0.862328i \(-0.669006\pi\)
−0.506350 + 0.862328i \(0.669006\pi\)
\(368\) 0 0
\(369\) 2178.00 0.307269
\(370\) 0 0
\(371\) − 5808.00i − 0.812766i
\(372\) 0 0
\(373\) 6350.00i 0.881476i 0.897636 + 0.440738i \(0.145283\pi\)
−0.897636 + 0.440738i \(0.854717\pi\)
\(374\) 0 0
\(375\) −1968.00 −0.271006
\(376\) 0 0
\(377\) −4356.00 −0.595081
\(378\) 0 0
\(379\) 7900.00i 1.07070i 0.844630 + 0.535351i \(0.179821\pi\)
−0.844630 + 0.535351i \(0.820179\pi\)
\(380\) 0 0
\(381\) 5632.00i 0.757313i
\(382\) 0 0
\(383\) −10368.0 −1.38324 −0.691619 0.722263i \(-0.743102\pi\)
−0.691619 + 0.722263i \(0.743102\pi\)
\(384\) 0 0
\(385\) 2112.00 0.279578
\(386\) 0 0
\(387\) − 572.000i − 0.0751328i
\(388\) 0 0
\(389\) 8830.00i 1.15090i 0.817838 + 0.575448i \(0.195172\pi\)
−0.817838 + 0.575448i \(0.804828\pi\)
\(390\) 0 0
\(391\) −2800.00 −0.362154
\(392\) 0 0
\(393\) −10768.0 −1.38212
\(394\) 0 0
\(395\) − 1312.00i − 0.167124i
\(396\) 0 0
\(397\) − 9878.00i − 1.24877i −0.781116 0.624386i \(-0.785349\pi\)
0.781116 0.624386i \(-0.214651\pi\)
\(398\) 0 0
\(399\) 4224.00 0.529986
\(400\) 0 0
\(401\) −13134.0 −1.63561 −0.817806 0.575494i \(-0.804810\pi\)
−0.817806 + 0.575494i \(0.804810\pi\)
\(402\) 0 0
\(403\) − 3520.00i − 0.435096i
\(404\) 0 0
\(405\) 622.000i 0.0763146i
\(406\) 0 0
\(407\) 7128.00 0.868113
\(408\) 0 0
\(409\) −906.000 −0.109533 −0.0547663 0.998499i \(-0.517441\pi\)
−0.0547663 + 0.998499i \(0.517441\pi\)
\(410\) 0 0
\(411\) 6504.00i 0.780581i
\(412\) 0 0
\(413\) 16032.0i 1.91013i
\(414\) 0 0
\(415\) 472.000 0.0558303
\(416\) 0 0
\(417\) 2736.00 0.321301
\(418\) 0 0
\(419\) − 5412.00i − 0.631011i −0.948924 0.315505i \(-0.897826\pi\)
0.948924 0.315505i \(-0.102174\pi\)
\(420\) 0 0
\(421\) − 4642.00i − 0.537381i −0.963227 0.268690i \(-0.913409\pi\)
0.963227 0.268690i \(-0.0865908\pi\)
\(422\) 0 0
\(423\) −5808.00 −0.667600
\(424\) 0 0
\(425\) 6050.00 0.690513
\(426\) 0 0
\(427\) − 13200.0i − 1.49600i
\(428\) 0 0
\(429\) − 3872.00i − 0.435762i
\(430\) 0 0
\(431\) −656.000 −0.0733142 −0.0366571 0.999328i \(-0.511671\pi\)
−0.0366571 + 0.999328i \(0.511671\pi\)
\(432\) 0 0
\(433\) 9490.00 1.05326 0.526629 0.850096i \(-0.323456\pi\)
0.526629 + 0.850096i \(0.323456\pi\)
\(434\) 0 0
\(435\) 1584.00i 0.174591i
\(436\) 0 0
\(437\) − 2464.00i − 0.269723i
\(438\) 0 0
\(439\) 5544.00 0.602735 0.301368 0.953508i \(-0.402557\pi\)
0.301368 + 0.953508i \(0.402557\pi\)
\(440\) 0 0
\(441\) 2563.00 0.276752
\(442\) 0 0
\(443\) − 7652.00i − 0.820672i −0.911935 0.410336i \(-0.865412\pi\)
0.911935 0.410336i \(-0.134588\pi\)
\(444\) 0 0
\(445\) 1428.00i 0.152121i
\(446\) 0 0
\(447\) 1208.00 0.127822
\(448\) 0 0
\(449\) −446.000 −0.0468776 −0.0234388 0.999725i \(-0.507461\pi\)
−0.0234388 + 0.999725i \(0.507461\pi\)
\(450\) 0 0
\(451\) 8712.00i 0.909605i
\(452\) 0 0
\(453\) − 5408.00i − 0.560905i
\(454\) 0 0
\(455\) −1056.00 −0.108804
\(456\) 0 0
\(457\) −1562.00 −0.159885 −0.0799423 0.996799i \(-0.525474\pi\)
−0.0799423 + 0.996799i \(0.525474\pi\)
\(458\) 0 0
\(459\) − 7600.00i − 0.772849i
\(460\) 0 0
\(461\) − 10582.0i − 1.06910i −0.845138 0.534548i \(-0.820482\pi\)
0.845138 0.534548i \(-0.179518\pi\)
\(462\) 0 0
\(463\) 10768.0 1.08085 0.540423 0.841394i \(-0.318264\pi\)
0.540423 + 0.841394i \(0.318264\pi\)
\(464\) 0 0
\(465\) −1280.00 −0.127653
\(466\) 0 0
\(467\) − 9876.00i − 0.978601i −0.872115 0.489301i \(-0.837252\pi\)
0.872115 0.489301i \(-0.162748\pi\)
\(468\) 0 0
\(469\) 4512.00i 0.444232i
\(470\) 0 0
\(471\) −12568.0 −1.22952
\(472\) 0 0
\(473\) 2288.00 0.222415
\(474\) 0 0
\(475\) 5324.00i 0.514278i
\(476\) 0 0
\(477\) − 2662.00i − 0.255523i
\(478\) 0 0
\(479\) 352.000 0.0335768 0.0167884 0.999859i \(-0.494656\pi\)
0.0167884 + 0.999859i \(0.494656\pi\)
\(480\) 0 0
\(481\) −3564.00 −0.337847
\(482\) 0 0
\(483\) 5376.00i 0.506452i
\(484\) 0 0
\(485\) 956.000i 0.0895046i
\(486\) 0 0
\(487\) −15176.0 −1.41209 −0.706047 0.708165i \(-0.749523\pi\)
−0.706047 + 0.708165i \(0.749523\pi\)
\(488\) 0 0
\(489\) 12144.0 1.12305
\(490\) 0 0
\(491\) 8844.00i 0.812880i 0.913677 + 0.406440i \(0.133230\pi\)
−0.913677 + 0.406440i \(0.866770\pi\)
\(492\) 0 0
\(493\) − 9900.00i − 0.904409i
\(494\) 0 0
\(495\) 968.000 0.0878957
\(496\) 0 0
\(497\) 17472.0 1.57691
\(498\) 0 0
\(499\) 19404.0i 1.74077i 0.492375 + 0.870383i \(0.336129\pi\)
−0.492375 + 0.870383i \(0.663871\pi\)
\(500\) 0 0
\(501\) 1056.00i 0.0941689i
\(502\) 0 0
\(503\) 16488.0 1.46156 0.730779 0.682614i \(-0.239157\pi\)
0.730779 + 0.682614i \(0.239157\pi\)
\(504\) 0 0
\(505\) 3132.00 0.275984
\(506\) 0 0
\(507\) − 6852.00i − 0.600213i
\(508\) 0 0
\(509\) 12954.0i 1.12805i 0.825759 + 0.564024i \(0.190747\pi\)
−0.825759 + 0.564024i \(0.809253\pi\)
\(510\) 0 0
\(511\) −3696.00 −0.319964
\(512\) 0 0
\(513\) 6688.00 0.575599
\(514\) 0 0
\(515\) 1936.00i 0.165651i
\(516\) 0 0
\(517\) − 23232.0i − 1.97629i
\(518\) 0 0
\(519\) 11304.0 0.956051
\(520\) 0 0
\(521\) −10970.0 −0.922465 −0.461233 0.887279i \(-0.652593\pi\)
−0.461233 + 0.887279i \(0.652593\pi\)
\(522\) 0 0
\(523\) 16940.0i 1.41632i 0.706053 + 0.708159i \(0.250474\pi\)
−0.706053 + 0.708159i \(0.749526\pi\)
\(524\) 0 0
\(525\) − 11616.0i − 0.965645i
\(526\) 0 0
\(527\) 8000.00 0.661263
\(528\) 0 0
\(529\) −9031.00 −0.742254
\(530\) 0 0
\(531\) 7348.00i 0.600520i
\(532\) 0 0
\(533\) − 4356.00i − 0.353995i
\(534\) 0 0
\(535\) 1560.00 0.126065
\(536\) 0 0
\(537\) 12336.0 0.991318
\(538\) 0 0
\(539\) 10252.0i 0.819267i
\(540\) 0 0
\(541\) − 198.000i − 0.0157351i −0.999969 0.00786755i \(-0.997496\pi\)
0.999969 0.00786755i \(-0.00250434\pi\)
\(542\) 0 0
\(543\) −9672.00 −0.764393
\(544\) 0 0
\(545\) 3988.00 0.313444
\(546\) 0 0
\(547\) − 15268.0i − 1.19344i −0.802449 0.596721i \(-0.796470\pi\)
0.802449 0.596721i \(-0.203530\pi\)
\(548\) 0 0
\(549\) − 6050.00i − 0.470324i
\(550\) 0 0
\(551\) 8712.00 0.673582
\(552\) 0 0
\(553\) 15744.0 1.21067
\(554\) 0 0
\(555\) 1296.00i 0.0991210i
\(556\) 0 0
\(557\) − 20854.0i − 1.58638i −0.608976 0.793189i \(-0.708419\pi\)
0.608976 0.793189i \(-0.291581\pi\)
\(558\) 0 0
\(559\) −1144.00 −0.0865582
\(560\) 0 0
\(561\) 8800.00 0.662275
\(562\) 0 0
\(563\) − 19316.0i − 1.44595i −0.690872 0.722977i \(-0.742773\pi\)
0.690872 0.722977i \(-0.257227\pi\)
\(564\) 0 0
\(565\) 1884.00i 0.140284i
\(566\) 0 0
\(567\) −7464.00 −0.552837
\(568\) 0 0
\(569\) −7018.00 −0.517065 −0.258532 0.966003i \(-0.583239\pi\)
−0.258532 + 0.966003i \(0.583239\pi\)
\(570\) 0 0
\(571\) − 24420.0i − 1.78975i −0.446320 0.894873i \(-0.647266\pi\)
0.446320 0.894873i \(-0.352734\pi\)
\(572\) 0 0
\(573\) − 3840.00i − 0.279962i
\(574\) 0 0
\(575\) −6776.00 −0.491441
\(576\) 0 0
\(577\) 23234.0 1.67633 0.838166 0.545415i \(-0.183628\pi\)
0.838166 + 0.545415i \(0.183628\pi\)
\(578\) 0 0
\(579\) − 11528.0i − 0.827439i
\(580\) 0 0
\(581\) 5664.00i 0.404445i
\(582\) 0 0
\(583\) 10648.0 0.756424
\(584\) 0 0
\(585\) −484.000 −0.0342067
\(586\) 0 0
\(587\) 10604.0i 0.745611i 0.927909 + 0.372806i \(0.121604\pi\)
−0.927909 + 0.372806i \(0.878396\pi\)
\(588\) 0 0
\(589\) 7040.00i 0.492493i
\(590\) 0 0
\(591\) 4344.00 0.302349
\(592\) 0 0
\(593\) −13838.0 −0.958277 −0.479139 0.877739i \(-0.659051\pi\)
−0.479139 + 0.877739i \(0.659051\pi\)
\(594\) 0 0
\(595\) − 2400.00i − 0.165362i
\(596\) 0 0
\(597\) − 352.000i − 0.0241313i
\(598\) 0 0
\(599\) −3960.00 −0.270119 −0.135059 0.990837i \(-0.543123\pi\)
−0.135059 + 0.990837i \(0.543123\pi\)
\(600\) 0 0
\(601\) 5942.00 0.403293 0.201647 0.979458i \(-0.435371\pi\)
0.201647 + 0.979458i \(0.435371\pi\)
\(602\) 0 0
\(603\) 2068.00i 0.139661i
\(604\) 0 0
\(605\) 1210.00i 0.0813116i
\(606\) 0 0
\(607\) 3040.00 0.203278 0.101639 0.994821i \(-0.467591\pi\)
0.101639 + 0.994821i \(0.467591\pi\)
\(608\) 0 0
\(609\) −19008.0 −1.26477
\(610\) 0 0
\(611\) 11616.0i 0.769121i
\(612\) 0 0
\(613\) − 2530.00i − 0.166698i −0.996520 0.0833489i \(-0.973438\pi\)
0.996520 0.0833489i \(-0.0265616\pi\)
\(614\) 0 0
\(615\) −1584.00 −0.103859
\(616\) 0 0
\(617\) 19206.0 1.25317 0.626584 0.779354i \(-0.284453\pi\)
0.626584 + 0.779354i \(0.284453\pi\)
\(618\) 0 0
\(619\) − 10996.0i − 0.714001i −0.934104 0.357000i \(-0.883799\pi\)
0.934104 0.357000i \(-0.116201\pi\)
\(620\) 0 0
\(621\) 8512.00i 0.550040i
\(622\) 0 0
\(623\) −17136.0 −1.10199
\(624\) 0 0
\(625\) 14141.0 0.905024
\(626\) 0 0
\(627\) 7744.00i 0.493247i
\(628\) 0 0
\(629\) − 8100.00i − 0.513463i
\(630\) 0 0
\(631\) −6680.00 −0.421437 −0.210718 0.977547i \(-0.567580\pi\)
−0.210718 + 0.977547i \(0.567580\pi\)
\(632\) 0 0
\(633\) −13904.0 −0.873040
\(634\) 0 0
\(635\) 2816.00i 0.175984i
\(636\) 0 0
\(637\) − 5126.00i − 0.318838i
\(638\) 0 0
\(639\) 8008.00 0.495761
\(640\) 0 0
\(641\) 6274.00 0.386596 0.193298 0.981140i \(-0.438082\pi\)
0.193298 + 0.981140i \(0.438082\pi\)
\(642\) 0 0
\(643\) 9084.00i 0.557135i 0.960417 + 0.278568i \(0.0898596\pi\)
−0.960417 + 0.278568i \(0.910140\pi\)
\(644\) 0 0
\(645\) 416.000i 0.0253953i
\(646\) 0 0
\(647\) −23656.0 −1.43742 −0.718712 0.695308i \(-0.755268\pi\)
−0.718712 + 0.695308i \(0.755268\pi\)
\(648\) 0 0
\(649\) −29392.0 −1.77771
\(650\) 0 0
\(651\) − 15360.0i − 0.924740i
\(652\) 0 0
\(653\) 6762.00i 0.405234i 0.979258 + 0.202617i \(0.0649446\pi\)
−0.979258 + 0.202617i \(0.935055\pi\)
\(654\) 0 0
\(655\) −5384.00 −0.321176
\(656\) 0 0
\(657\) −1694.00 −0.100592
\(658\) 0 0
\(659\) 15276.0i 0.902987i 0.892274 + 0.451494i \(0.149109\pi\)
−0.892274 + 0.451494i \(0.850891\pi\)
\(660\) 0 0
\(661\) 11054.0i 0.650455i 0.945636 + 0.325228i \(0.105441\pi\)
−0.945636 + 0.325228i \(0.894559\pi\)
\(662\) 0 0
\(663\) −4400.00 −0.257740
\(664\) 0 0
\(665\) 2112.00 0.123158
\(666\) 0 0
\(667\) 11088.0i 0.643672i
\(668\) 0 0
\(669\) 3712.00i 0.214520i
\(670\) 0 0
\(671\) 24200.0 1.39230
\(672\) 0 0
\(673\) −21278.0 −1.21873 −0.609366 0.792889i \(-0.708576\pi\)
−0.609366 + 0.792889i \(0.708576\pi\)
\(674\) 0 0
\(675\) − 18392.0i − 1.04875i
\(676\) 0 0
\(677\) 8926.00i 0.506727i 0.967371 + 0.253363i \(0.0815368\pi\)
−0.967371 + 0.253363i \(0.918463\pi\)
\(678\) 0 0
\(679\) −11472.0 −0.648387
\(680\) 0 0
\(681\) 624.000 0.0351127
\(682\) 0 0
\(683\) − 8116.00i − 0.454685i −0.973815 0.227343i \(-0.926996\pi\)
0.973815 0.227343i \(-0.0730037\pi\)
\(684\) 0 0
\(685\) 3252.00i 0.181391i
\(686\) 0 0
\(687\) −6536.00 −0.362975
\(688\) 0 0
\(689\) −5324.00 −0.294381
\(690\) 0 0
\(691\) − 11764.0i − 0.647646i −0.946118 0.323823i \(-0.895032\pi\)
0.946118 0.323823i \(-0.104968\pi\)
\(692\) 0 0
\(693\) 11616.0i 0.636732i
\(694\) 0 0
\(695\) 1368.00 0.0746636
\(696\) 0 0
\(697\) 9900.00 0.538005
\(698\) 0 0
\(699\) − 3608.00i − 0.195232i
\(700\) 0 0
\(701\) 4698.00i 0.253126i 0.991959 + 0.126563i \(0.0403945\pi\)
−0.991959 + 0.126563i \(0.959605\pi\)
\(702\) 0 0
\(703\) 7128.00 0.382415
\(704\) 0 0
\(705\) 4224.00 0.225653
\(706\) 0 0
\(707\) 37584.0i 1.99928i
\(708\) 0 0
\(709\) 24638.0i 1.30508i 0.757756 + 0.652538i \(0.226296\pi\)
−0.757756 + 0.652538i \(0.773704\pi\)
\(710\) 0 0
\(711\) 7216.00 0.380620
\(712\) 0 0
\(713\) −8960.00 −0.470624
\(714\) 0 0
\(715\) − 1936.00i − 0.101262i
\(716\) 0 0
\(717\) 6464.00i 0.336684i
\(718\) 0 0
\(719\) −16624.0 −0.862268 −0.431134 0.902288i \(-0.641886\pi\)
−0.431134 + 0.902288i \(0.641886\pi\)
\(720\) 0 0
\(721\) −23232.0 −1.20001
\(722\) 0 0
\(723\) − 19272.0i − 0.991332i
\(724\) 0 0
\(725\) − 23958.0i − 1.22728i
\(726\) 0 0
\(727\) 30216.0 1.54147 0.770735 0.637155i \(-0.219889\pi\)
0.770735 + 0.637155i \(0.219889\pi\)
\(728\) 0 0
\(729\) −19837.0 −1.00782
\(730\) 0 0
\(731\) − 2600.00i − 0.131552i
\(732\) 0 0
\(733\) 3322.00i 0.167395i 0.996491 + 0.0836977i \(0.0266730\pi\)
−0.996491 + 0.0836977i \(0.973327\pi\)
\(734\) 0 0
\(735\) −1864.00 −0.0935438
\(736\) 0 0
\(737\) −8272.00 −0.413437
\(738\) 0 0
\(739\) − 14692.0i − 0.731331i −0.930746 0.365666i \(-0.880841\pi\)
0.930746 0.365666i \(-0.119159\pi\)
\(740\) 0 0
\(741\) − 3872.00i − 0.191959i
\(742\) 0 0
\(743\) 28600.0 1.41216 0.706078 0.708134i \(-0.250463\pi\)
0.706078 + 0.708134i \(0.250463\pi\)
\(744\) 0 0
\(745\) 604.000 0.0297032
\(746\) 0 0
\(747\) 2596.00i 0.127152i
\(748\) 0 0
\(749\) 18720.0i 0.913236i
\(750\) 0 0
\(751\) 29616.0 1.43902 0.719509 0.694483i \(-0.244367\pi\)
0.719509 + 0.694483i \(0.244367\pi\)
\(752\) 0 0
\(753\) 8560.00 0.414268
\(754\) 0 0
\(755\) − 2704.00i − 0.130343i
\(756\) 0 0
\(757\) 2894.00i 0.138949i 0.997584 + 0.0694744i \(0.0221322\pi\)
−0.997584 + 0.0694744i \(0.977868\pi\)
\(758\) 0 0
\(759\) −9856.00 −0.471344
\(760\) 0 0
\(761\) −14762.0 −0.703183 −0.351591 0.936154i \(-0.614359\pi\)
−0.351591 + 0.936154i \(0.614359\pi\)
\(762\) 0 0
\(763\) 47856.0i 2.27065i
\(764\) 0 0
\(765\) − 1100.00i − 0.0519877i
\(766\) 0 0
\(767\) 14696.0 0.691841
\(768\) 0 0
\(769\) −7678.00 −0.360047 −0.180023 0.983662i \(-0.557617\pi\)
−0.180023 + 0.983662i \(0.557617\pi\)
\(770\) 0 0
\(771\) − 3080.00i − 0.143870i
\(772\) 0 0
\(773\) 27390.0i 1.27445i 0.770678 + 0.637225i \(0.219918\pi\)
−0.770678 + 0.637225i \(0.780082\pi\)
\(774\) 0 0
\(775\) 19360.0 0.897331
\(776\) 0 0
\(777\) −15552.0 −0.718050
\(778\) 0 0
\(779\) 8712.00i 0.400693i
\(780\) 0 0
\(781\) 32032.0i 1.46760i
\(782\) 0 0
\(783\) −30096.0 −1.37362
\(784\) 0 0
\(785\) −6284.00 −0.285714
\(786\) 0 0
\(787\) 19756.0i 0.894823i 0.894328 + 0.447411i \(0.147654\pi\)
−0.894328 + 0.447411i \(0.852346\pi\)
\(788\) 0 0
\(789\) 29600.0i 1.33560i
\(790\) 0 0
\(791\) −22608.0 −1.01624
\(792\) 0 0
\(793\) −12100.0 −0.541846
\(794\) 0 0
\(795\) 1936.00i 0.0863684i
\(796\) 0 0
\(797\) − 38854.0i − 1.72682i −0.504499 0.863412i \(-0.668323\pi\)
0.504499 0.863412i \(-0.331677\pi\)
\(798\) 0 0
\(799\) −26400.0 −1.16892
\(800\) 0 0
\(801\) −7854.00 −0.346451
\(802\) 0 0
\(803\) − 6776.00i − 0.297783i
\(804\) 0 0
\(805\) 2688.00i 0.117689i
\(806\) 0 0
\(807\) 11176.0 0.487502
\(808\) 0 0
\(809\) 14278.0 0.620504 0.310252 0.950654i \(-0.399587\pi\)
0.310252 + 0.950654i \(0.399587\pi\)
\(810\) 0 0
\(811\) 716.000i 0.0310014i 0.999880 + 0.0155007i \(0.00493423\pi\)
−0.999880 + 0.0155007i \(0.995066\pi\)
\(812\) 0 0
\(813\) 34496.0i 1.48810i
\(814\) 0 0
\(815\) 6072.00 0.260973
\(816\) 0 0
\(817\) 2288.00 0.0979767
\(818\) 0 0
\(819\) − 5808.00i − 0.247800i
\(820\) 0 0
\(821\) − 23538.0i − 1.00059i −0.865856 0.500293i \(-0.833225\pi\)
0.865856 0.500293i \(-0.166775\pi\)
\(822\) 0 0
\(823\) −6616.00 −0.280218 −0.140109 0.990136i \(-0.544745\pi\)
−0.140109 + 0.990136i \(0.544745\pi\)
\(824\) 0 0
\(825\) 21296.0 0.898705
\(826\) 0 0
\(827\) − 27236.0i − 1.14521i −0.819831 0.572605i \(-0.805933\pi\)
0.819831 0.572605i \(-0.194067\pi\)
\(828\) 0 0
\(829\) − 12070.0i − 0.505680i −0.967508 0.252840i \(-0.918635\pi\)
0.967508 0.252840i \(-0.0813646\pi\)
\(830\) 0 0
\(831\) −7496.00 −0.312916
\(832\) 0 0
\(833\) 11650.0 0.484572
\(834\) 0 0
\(835\) 528.000i 0.0218829i
\(836\) 0 0
\(837\) − 24320.0i − 1.00433i
\(838\) 0 0
\(839\) −42024.0 −1.72924 −0.864618 0.502429i \(-0.832440\pi\)
−0.864618 + 0.502429i \(0.832440\pi\)
\(840\) 0 0
\(841\) −14815.0 −0.607446
\(842\) 0 0
\(843\) 13352.0i 0.545513i
\(844\) 0 0
\(845\) − 3426.00i − 0.139477i
\(846\) 0 0
\(847\) −14520.0 −0.589036
\(848\) 0 0
\(849\) −28688.0 −1.15968
\(850\) 0 0
\(851\) 9072.00i 0.365434i
\(852\) 0 0
\(853\) 2414.00i 0.0968978i 0.998826 + 0.0484489i \(0.0154278\pi\)
−0.998826 + 0.0484489i \(0.984572\pi\)
\(854\) 0 0
\(855\) 968.000 0.0387192
\(856\) 0 0
\(857\) 37686.0 1.50213 0.751067 0.660226i \(-0.229539\pi\)
0.751067 + 0.660226i \(0.229539\pi\)
\(858\) 0 0
\(859\) − 40644.0i − 1.61438i −0.590289 0.807192i \(-0.700986\pi\)
0.590289 0.807192i \(-0.299014\pi\)
\(860\) 0 0
\(861\) − 19008.0i − 0.752370i
\(862\) 0 0
\(863\) 18656.0 0.735872 0.367936 0.929851i \(-0.380065\pi\)
0.367936 + 0.929851i \(0.380065\pi\)
\(864\) 0 0
\(865\) 5652.00 0.222166
\(866\) 0 0
\(867\) 9652.00i 0.378084i
\(868\) 0 0
\(869\) 28864.0i 1.12675i
\(870\) 0 0
\(871\) 4136.00 0.160899
\(872\) 0 0
\(873\) −5258.00 −0.203845
\(874\) 0 0
\(875\) − 11808.0i − 0.456209i
\(876\) 0 0
\(877\) 13002.0i 0.500623i 0.968165 + 0.250311i \(0.0805330\pi\)
−0.968165 + 0.250311i \(0.919467\pi\)
\(878\) 0 0
\(879\) 20856.0 0.800291
\(880\) 0 0
\(881\) 49490.0 1.89258 0.946289 0.323323i \(-0.104800\pi\)
0.946289 + 0.323323i \(0.104800\pi\)
\(882\) 0 0
\(883\) 1100.00i 0.0419229i 0.999780 + 0.0209615i \(0.00667273\pi\)
−0.999780 + 0.0209615i \(0.993327\pi\)
\(884\) 0 0
\(885\) − 5344.00i − 0.202979i
\(886\) 0 0
\(887\) −14104.0 −0.533896 −0.266948 0.963711i \(-0.586015\pi\)
−0.266948 + 0.963711i \(0.586015\pi\)
\(888\) 0 0
\(889\) −33792.0 −1.27486
\(890\) 0 0
\(891\) − 13684.0i − 0.514513i
\(892\) 0 0
\(893\) − 23232.0i − 0.870581i
\(894\) 0 0
\(895\) 6168.00 0.230361
\(896\) 0 0
\(897\) 4928.00 0.183435
\(898\) 0 0
\(899\) − 31680.0i − 1.17529i
\(900\) 0 0
\(901\) − 12100.0i − 0.447402i
\(902\) 0 0
\(903\) −4992.00 −0.183968
\(904\) 0 0
\(905\) −4836.00 −0.177629
\(906\) 0 0
\(907\) 12716.0i 0.465521i 0.972534 + 0.232761i \(0.0747759\pi\)
−0.972534 + 0.232761i \(0.925224\pi\)
\(908\) 0 0
\(909\) 17226.0i 0.628548i
\(910\) 0 0
\(911\) 39632.0 1.44135 0.720673 0.693275i \(-0.243833\pi\)
0.720673 + 0.693275i \(0.243833\pi\)
\(912\) 0 0
\(913\) −10384.0 −0.376408
\(914\) 0 0
\(915\) 4400.00i 0.158972i
\(916\) 0 0
\(917\) − 64608.0i − 2.32666i
\(918\) 0 0
\(919\) 5704.00 0.204742 0.102371 0.994746i \(-0.467357\pi\)
0.102371 + 0.994746i \(0.467357\pi\)
\(920\) 0 0
\(921\) 1584.00 0.0566716
\(922\) 0 0
\(923\) − 16016.0i − 0.571152i
\(924\) 0 0
\(925\) − 19602.0i − 0.696767i
\(926\) 0 0
\(927\) −10648.0 −0.377267
\(928\) 0 0
\(929\) 8162.00 0.288252 0.144126 0.989559i \(-0.453963\pi\)
0.144126 + 0.989559i \(0.453963\pi\)
\(930\) 0 0
\(931\) 10252.0i 0.360898i
\(932\) 0 0
\(933\) 16224.0i 0.569293i
\(934\) 0 0
\(935\) 4400.00 0.153899
\(936\) 0 0
\(937\) 55110.0 1.92141 0.960707 0.277564i \(-0.0895270\pi\)
0.960707 + 0.277564i \(0.0895270\pi\)
\(938\) 0 0
\(939\) 8616.00i 0.299438i
\(940\) 0 0
\(941\) − 16374.0i − 0.567245i −0.958936 0.283622i \(-0.908464\pi\)
0.958936 0.283622i \(-0.0915362\pi\)
\(942\) 0 0
\(943\) −11088.0 −0.382900
\(944\) 0 0
\(945\) −7296.00 −0.251152
\(946\) 0 0
\(947\) 8460.00i 0.290299i 0.989410 + 0.145149i \(0.0463663\pi\)
−0.989410 + 0.145149i \(0.953634\pi\)
\(948\) 0 0
\(949\) 3388.00i 0.115889i
\(950\) 0 0
\(951\) 29544.0 1.00739
\(952\) 0 0
\(953\) 20502.0 0.696878 0.348439 0.937331i \(-0.386712\pi\)
0.348439 + 0.937331i \(0.386712\pi\)
\(954\) 0 0
\(955\) − 1920.00i − 0.0650573i
\(956\) 0 0
\(957\) − 34848.0i − 1.17709i
\(958\) 0 0
\(959\) −39024.0 −1.31403
\(960\) 0 0
\(961\) −4191.00 −0.140680
\(962\) 0 0
\(963\) 8580.00i 0.287110i
\(964\) 0 0
\(965\) − 5764.00i − 0.192280i
\(966\) 0 0
\(967\) −36520.0 −1.21448 −0.607241 0.794518i \(-0.707724\pi\)
−0.607241 + 0.794518i \(0.707724\pi\)
\(968\) 0 0
\(969\) 8800.00 0.291741
\(970\) 0 0
\(971\) − 20244.0i − 0.669064i −0.942384 0.334532i \(-0.891422\pi\)
0.942384 0.334532i \(-0.108578\pi\)
\(972\) 0 0
\(973\) 16416.0i 0.540876i
\(974\) 0 0
\(975\) −10648.0 −0.349753
\(976\) 0 0
\(977\) 50034.0 1.63841 0.819206 0.573499i \(-0.194414\pi\)
0.819206 + 0.573499i \(0.194414\pi\)
\(978\) 0 0
\(979\) − 31416.0i − 1.02560i
\(980\) 0 0
\(981\) 21934.0i 0.713862i
\(982\) 0 0
\(983\) 37128.0 1.20468 0.602339 0.798240i \(-0.294235\pi\)
0.602339 + 0.798240i \(0.294235\pi\)
\(984\) 0 0
\(985\) 2172.00 0.0702596
\(986\) 0 0
\(987\) 50688.0i 1.63467i
\(988\) 0 0
\(989\) 2912.00i 0.0936261i
\(990\) 0 0
\(991\) −27808.0 −0.891373 −0.445686 0.895189i \(-0.647040\pi\)
−0.445686 + 0.895189i \(0.647040\pi\)
\(992\) 0 0
\(993\) 4528.00 0.144705
\(994\) 0 0
\(995\) − 176.000i − 0.00560761i
\(996\) 0 0
\(997\) − 28514.0i − 0.905765i −0.891570 0.452882i \(-0.850396\pi\)
0.891570 0.452882i \(-0.149604\pi\)
\(998\) 0 0
\(999\) −24624.0 −0.779849
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 256.4.b.g.129.1 2
4.3 odd 2 256.4.b.a.129.2 2
8.3 odd 2 256.4.b.a.129.1 2
8.5 even 2 inner 256.4.b.g.129.2 2
16.3 odd 4 8.4.a.a.1.1 1
16.5 even 4 64.4.a.b.1.1 1
16.11 odd 4 64.4.a.d.1.1 1
16.13 even 4 16.4.a.a.1.1 1
48.5 odd 4 576.4.a.j.1.1 1
48.11 even 4 576.4.a.k.1.1 1
48.29 odd 4 144.4.a.e.1.1 1
48.35 even 4 72.4.a.c.1.1 1
80.3 even 4 200.4.c.e.49.1 2
80.13 odd 4 400.4.c.i.49.2 2
80.19 odd 4 200.4.a.g.1.1 1
80.29 even 4 400.4.a.g.1.1 1
80.59 odd 4 1600.4.a.o.1.1 1
80.67 even 4 200.4.c.e.49.2 2
80.69 even 4 1600.4.a.bm.1.1 1
80.77 odd 4 400.4.c.i.49.1 2
112.3 even 12 392.4.i.b.177.1 2
112.13 odd 4 784.4.a.e.1.1 1
112.19 even 12 392.4.i.b.361.1 2
112.51 odd 12 392.4.i.g.361.1 2
112.67 odd 12 392.4.i.g.177.1 2
112.83 even 4 392.4.a.e.1.1 1
144.67 odd 12 648.4.i.h.217.1 2
144.83 even 12 648.4.i.e.433.1 2
144.115 odd 12 648.4.i.h.433.1 2
144.131 even 12 648.4.i.e.217.1 2
176.109 odd 4 1936.4.a.l.1.1 1
176.131 even 4 968.4.a.a.1.1 1
208.51 odd 4 1352.4.a.a.1.1 1
240.83 odd 4 1800.4.f.u.649.1 2
240.179 even 4 1800.4.a.d.1.1 1
240.227 odd 4 1800.4.f.u.649.2 2
272.67 odd 4 2312.4.a.a.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
8.4.a.a.1.1 1 16.3 odd 4
16.4.a.a.1.1 1 16.13 even 4
64.4.a.b.1.1 1 16.5 even 4
64.4.a.d.1.1 1 16.11 odd 4
72.4.a.c.1.1 1 48.35 even 4
144.4.a.e.1.1 1 48.29 odd 4
200.4.a.g.1.1 1 80.19 odd 4
200.4.c.e.49.1 2 80.3 even 4
200.4.c.e.49.2 2 80.67 even 4
256.4.b.a.129.1 2 8.3 odd 2
256.4.b.a.129.2 2 4.3 odd 2
256.4.b.g.129.1 2 1.1 even 1 trivial
256.4.b.g.129.2 2 8.5 even 2 inner
392.4.a.e.1.1 1 112.83 even 4
392.4.i.b.177.1 2 112.3 even 12
392.4.i.b.361.1 2 112.19 even 12
392.4.i.g.177.1 2 112.67 odd 12
392.4.i.g.361.1 2 112.51 odd 12
400.4.a.g.1.1 1 80.29 even 4
400.4.c.i.49.1 2 80.77 odd 4
400.4.c.i.49.2 2 80.13 odd 4
576.4.a.j.1.1 1 48.5 odd 4
576.4.a.k.1.1 1 48.11 even 4
648.4.i.e.217.1 2 144.131 even 12
648.4.i.e.433.1 2 144.83 even 12
648.4.i.h.217.1 2 144.67 odd 12
648.4.i.h.433.1 2 144.115 odd 12
784.4.a.e.1.1 1 112.13 odd 4
968.4.a.a.1.1 1 176.131 even 4
1352.4.a.a.1.1 1 208.51 odd 4
1600.4.a.o.1.1 1 80.59 odd 4
1600.4.a.bm.1.1 1 80.69 even 4
1800.4.a.d.1.1 1 240.179 even 4
1800.4.f.u.649.1 2 240.83 odd 4
1800.4.f.u.649.2 2 240.227 odd 4
1936.4.a.l.1.1 1 176.109 odd 4
2312.4.a.a.1.1 1 272.67 odd 4