Properties

Label 400.4.c.i.49.1
Level $400$
Weight $4$
Character 400.49
Analytic conductor $23.601$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [400,4,Mod(49,400)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(400, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 1]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("400.49");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 400 = 2^{4} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 400.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(23.6007640023\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 8)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 49.1
Root \(-1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 400.49
Dual form 400.4.c.i.49.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-4.00000i q^{3} -24.0000i q^{7} +11.0000 q^{9} +44.0000 q^{11} -22.0000i q^{13} +50.0000i q^{17} +44.0000 q^{19} -96.0000 q^{21} -56.0000i q^{23} -152.000i q^{27} -198.000 q^{29} +160.000 q^{31} -176.000i q^{33} -162.000i q^{37} -88.0000 q^{39} -198.000 q^{41} +52.0000i q^{43} -528.000i q^{47} -233.000 q^{49} +200.000 q^{51} +242.000i q^{53} -176.000i q^{57} -668.000 q^{59} +550.000 q^{61} -264.000i q^{63} -188.000i q^{67} -224.000 q^{69} -728.000 q^{71} -154.000i q^{73} -1056.00i q^{77} -656.000 q^{79} -311.000 q^{81} +236.000i q^{83} +792.000i q^{87} -714.000 q^{89} -528.000 q^{91} -640.000i q^{93} -478.000i q^{97} +484.000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 22 q^{9} + 88 q^{11} + 88 q^{19} - 192 q^{21} - 396 q^{29} + 320 q^{31} - 176 q^{39} - 396 q^{41} - 466 q^{49} + 400 q^{51} - 1336 q^{59} + 1100 q^{61} - 448 q^{69} - 1456 q^{71} - 1312 q^{79} - 622 q^{81}+ \cdots + 968 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/400\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(177\) \(351\)
\(\chi(n)\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) − 4.00000i − 0.769800i −0.922958 0.384900i \(-0.874236\pi\)
0.922958 0.384900i \(-0.125764\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) − 24.0000i − 1.29588i −0.761692 0.647939i \(-0.775631\pi\)
0.761692 0.647939i \(-0.224369\pi\)
\(8\) 0 0
\(9\) 11.0000 0.407407
\(10\) 0 0
\(11\) 44.0000 1.20605 0.603023 0.797724i \(-0.293963\pi\)
0.603023 + 0.797724i \(0.293963\pi\)
\(12\) 0 0
\(13\) − 22.0000i − 0.469362i −0.972072 0.234681i \(-0.924595\pi\)
0.972072 0.234681i \(-0.0754045\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 50.0000i 0.713340i 0.934230 + 0.356670i \(0.116088\pi\)
−0.934230 + 0.356670i \(0.883912\pi\)
\(18\) 0 0
\(19\) 44.0000 0.531279 0.265639 0.964072i \(-0.414417\pi\)
0.265639 + 0.964072i \(0.414417\pi\)
\(20\) 0 0
\(21\) −96.0000 −0.997567
\(22\) 0 0
\(23\) − 56.0000i − 0.507687i −0.967245 0.253844i \(-0.918305\pi\)
0.967245 0.253844i \(-0.0816949\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) − 152.000i − 1.08342i
\(28\) 0 0
\(29\) −198.000 −1.26785 −0.633925 0.773394i \(-0.718557\pi\)
−0.633925 + 0.773394i \(0.718557\pi\)
\(30\) 0 0
\(31\) 160.000 0.926995 0.463498 0.886098i \(-0.346594\pi\)
0.463498 + 0.886098i \(0.346594\pi\)
\(32\) 0 0
\(33\) − 176.000i − 0.928414i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) − 162.000i − 0.719801i −0.932991 0.359900i \(-0.882811\pi\)
0.932991 0.359900i \(-0.117189\pi\)
\(38\) 0 0
\(39\) −88.0000 −0.361315
\(40\) 0 0
\(41\) −198.000 −0.754205 −0.377102 0.926172i \(-0.623080\pi\)
−0.377102 + 0.926172i \(0.623080\pi\)
\(42\) 0 0
\(43\) 52.0000i 0.184417i 0.995740 + 0.0922084i \(0.0293926\pi\)
−0.995740 + 0.0922084i \(0.970607\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) − 528.000i − 1.63865i −0.573327 0.819327i \(-0.694347\pi\)
0.573327 0.819327i \(-0.305653\pi\)
\(48\) 0 0
\(49\) −233.000 −0.679300
\(50\) 0 0
\(51\) 200.000 0.549129
\(52\) 0 0
\(53\) 242.000i 0.627194i 0.949556 + 0.313597i \(0.101534\pi\)
−0.949556 + 0.313597i \(0.898466\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) − 176.000i − 0.408978i
\(58\) 0 0
\(59\) −668.000 −1.47400 −0.737002 0.675891i \(-0.763759\pi\)
−0.737002 + 0.675891i \(0.763759\pi\)
\(60\) 0 0
\(61\) 550.000 1.15443 0.577215 0.816592i \(-0.304139\pi\)
0.577215 + 0.816592i \(0.304139\pi\)
\(62\) 0 0
\(63\) − 264.000i − 0.527950i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) − 188.000i − 0.342804i −0.985201 0.171402i \(-0.945170\pi\)
0.985201 0.171402i \(-0.0548297\pi\)
\(68\) 0 0
\(69\) −224.000 −0.390818
\(70\) 0 0
\(71\) −728.000 −1.21687 −0.608435 0.793604i \(-0.708202\pi\)
−0.608435 + 0.793604i \(0.708202\pi\)
\(72\) 0 0
\(73\) − 154.000i − 0.246909i −0.992350 0.123454i \(-0.960603\pi\)
0.992350 0.123454i \(-0.0393973\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) − 1056.00i − 1.56289i
\(78\) 0 0
\(79\) −656.000 −0.934250 −0.467125 0.884191i \(-0.654710\pi\)
−0.467125 + 0.884191i \(0.654710\pi\)
\(80\) 0 0
\(81\) −311.000 −0.426612
\(82\) 0 0
\(83\) 236.000i 0.312101i 0.987749 + 0.156050i \(0.0498762\pi\)
−0.987749 + 0.156050i \(0.950124\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 792.000i 0.975992i
\(88\) 0 0
\(89\) −714.000 −0.850380 −0.425190 0.905104i \(-0.639793\pi\)
−0.425190 + 0.905104i \(0.639793\pi\)
\(90\) 0 0
\(91\) −528.000 −0.608236
\(92\) 0 0
\(93\) − 640.000i − 0.713601i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) − 478.000i − 0.500346i −0.968201 0.250173i \(-0.919513\pi\)
0.968201 0.250173i \(-0.0804875\pi\)
\(98\) 0 0
\(99\) 484.000 0.491352
\(100\) 0 0
\(101\) 1566.00 1.54280 0.771400 0.636350i \(-0.219557\pi\)
0.771400 + 0.636350i \(0.219557\pi\)
\(102\) 0 0
\(103\) − 968.000i − 0.926018i −0.886354 0.463009i \(-0.846770\pi\)
0.886354 0.463009i \(-0.153230\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 780.000i 0.704724i 0.935864 + 0.352362i \(0.114621\pi\)
−0.935864 + 0.352362i \(0.885379\pi\)
\(108\) 0 0
\(109\) 1994.00 1.75221 0.876103 0.482123i \(-0.160134\pi\)
0.876103 + 0.482123i \(0.160134\pi\)
\(110\) 0 0
\(111\) −648.000 −0.554103
\(112\) 0 0
\(113\) 942.000i 0.784212i 0.919920 + 0.392106i \(0.128253\pi\)
−0.919920 + 0.392106i \(0.871747\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) − 242.000i − 0.191221i
\(118\) 0 0
\(119\) 1200.00 0.924402
\(120\) 0 0
\(121\) 605.000 0.454545
\(122\) 0 0
\(123\) 792.000i 0.580587i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) − 1408.00i − 0.983778i −0.870658 0.491889i \(-0.836307\pi\)
0.870658 0.491889i \(-0.163693\pi\)
\(128\) 0 0
\(129\) 208.000 0.141964
\(130\) 0 0
\(131\) 2692.00 1.79543 0.897714 0.440578i \(-0.145227\pi\)
0.897714 + 0.440578i \(0.145227\pi\)
\(132\) 0 0
\(133\) − 1056.00i − 0.688472i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 1626.00i 1.01400i 0.861945 + 0.507002i \(0.169246\pi\)
−0.861945 + 0.507002i \(0.830754\pi\)
\(138\) 0 0
\(139\) −684.000 −0.417382 −0.208691 0.977982i \(-0.566920\pi\)
−0.208691 + 0.977982i \(0.566920\pi\)
\(140\) 0 0
\(141\) −2112.00 −1.26144
\(142\) 0 0
\(143\) − 968.000i − 0.566072i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 932.000i 0.522926i
\(148\) 0 0
\(149\) −302.000 −0.166046 −0.0830228 0.996548i \(-0.526457\pi\)
−0.0830228 + 0.996548i \(0.526457\pi\)
\(150\) 0 0
\(151\) −1352.00 −0.728637 −0.364319 0.931274i \(-0.618698\pi\)
−0.364319 + 0.931274i \(0.618698\pi\)
\(152\) 0 0
\(153\) 550.000i 0.290620i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 3142.00i 1.59719i 0.601868 + 0.798595i \(0.294423\pi\)
−0.601868 + 0.798595i \(0.705577\pi\)
\(158\) 0 0
\(159\) 968.000 0.482814
\(160\) 0 0
\(161\) −1344.00 −0.657901
\(162\) 0 0
\(163\) 3036.00i 1.45888i 0.684043 + 0.729441i \(0.260220\pi\)
−0.684043 + 0.729441i \(0.739780\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 264.000i 0.122329i 0.998128 + 0.0611645i \(0.0194814\pi\)
−0.998128 + 0.0611645i \(0.980519\pi\)
\(168\) 0 0
\(169\) 1713.00 0.779700
\(170\) 0 0
\(171\) 484.000 0.216447
\(172\) 0 0
\(173\) 2826.00i 1.24195i 0.783832 + 0.620973i \(0.213263\pi\)
−0.783832 + 0.620973i \(0.786737\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 2672.00i 1.13469i
\(178\) 0 0
\(179\) 3084.00 1.28776 0.643880 0.765127i \(-0.277324\pi\)
0.643880 + 0.765127i \(0.277324\pi\)
\(180\) 0 0
\(181\) −2418.00 −0.992975 −0.496488 0.868044i \(-0.665377\pi\)
−0.496488 + 0.868044i \(0.665377\pi\)
\(182\) 0 0
\(183\) − 2200.00i − 0.888681i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 2200.00i 0.860320i
\(188\) 0 0
\(189\) −3648.00 −1.40398
\(190\) 0 0
\(191\) 960.000 0.363681 0.181841 0.983328i \(-0.441794\pi\)
0.181841 + 0.983328i \(0.441794\pi\)
\(192\) 0 0
\(193\) − 2882.00i − 1.07488i −0.843304 0.537438i \(-0.819392\pi\)
0.843304 0.537438i \(-0.180608\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 1086.00i 0.392763i 0.980528 + 0.196381i \(0.0629191\pi\)
−0.980528 + 0.196381i \(0.937081\pi\)
\(198\) 0 0
\(199\) 88.0000 0.0313475 0.0156738 0.999877i \(-0.495011\pi\)
0.0156738 + 0.999877i \(0.495011\pi\)
\(200\) 0 0
\(201\) −752.000 −0.263890
\(202\) 0 0
\(203\) 4752.00i 1.64298i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) − 616.000i − 0.206836i
\(208\) 0 0
\(209\) 1936.00 0.640746
\(210\) 0 0
\(211\) 3476.00 1.13411 0.567056 0.823679i \(-0.308082\pi\)
0.567056 + 0.823679i \(0.308082\pi\)
\(212\) 0 0
\(213\) 2912.00i 0.936746i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) − 3840.00i − 1.20127i
\(218\) 0 0
\(219\) −616.000 −0.190070
\(220\) 0 0
\(221\) 1100.00 0.334815
\(222\) 0 0
\(223\) 928.000i 0.278670i 0.990245 + 0.139335i \(0.0444965\pi\)
−0.990245 + 0.139335i \(0.955503\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) − 156.000i − 0.0456127i −0.999740 0.0228064i \(-0.992740\pi\)
0.999740 0.0228064i \(-0.00726012\pi\)
\(228\) 0 0
\(229\) 1634.00 0.471519 0.235759 0.971811i \(-0.424242\pi\)
0.235759 + 0.971811i \(0.424242\pi\)
\(230\) 0 0
\(231\) −4224.00 −1.20311
\(232\) 0 0
\(233\) 902.000i 0.253614i 0.991927 + 0.126807i \(0.0404728\pi\)
−0.991927 + 0.126807i \(0.959527\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 2624.00i 0.719186i
\(238\) 0 0
\(239\) 1616.00 0.437365 0.218683 0.975796i \(-0.429824\pi\)
0.218683 + 0.975796i \(0.429824\pi\)
\(240\) 0 0
\(241\) 4818.00 1.28778 0.643889 0.765119i \(-0.277320\pi\)
0.643889 + 0.765119i \(0.277320\pi\)
\(242\) 0 0
\(243\) − 2860.00i − 0.755017i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) − 968.000i − 0.249362i
\(248\) 0 0
\(249\) 944.000 0.240255
\(250\) 0 0
\(251\) 2140.00 0.538150 0.269075 0.963119i \(-0.413282\pi\)
0.269075 + 0.963119i \(0.413282\pi\)
\(252\) 0 0
\(253\) − 2464.00i − 0.612294i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 770.000i 0.186892i 0.995624 + 0.0934461i \(0.0297883\pi\)
−0.995624 + 0.0934461i \(0.970212\pi\)
\(258\) 0 0
\(259\) −3888.00 −0.932774
\(260\) 0 0
\(261\) −2178.00 −0.516532
\(262\) 0 0
\(263\) − 7400.00i − 1.73499i −0.497442 0.867497i \(-0.665727\pi\)
0.497442 0.867497i \(-0.334273\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 2856.00i 0.654623i
\(268\) 0 0
\(269\) 2794.00 0.633283 0.316642 0.948545i \(-0.397445\pi\)
0.316642 + 0.948545i \(0.397445\pi\)
\(270\) 0 0
\(271\) −8624.00 −1.93310 −0.966551 0.256474i \(-0.917439\pi\)
−0.966551 + 0.256474i \(0.917439\pi\)
\(272\) 0 0
\(273\) 2112.00i 0.468220i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) − 1874.00i − 0.406490i −0.979128 0.203245i \(-0.934851\pi\)
0.979128 0.203245i \(-0.0651488\pi\)
\(278\) 0 0
\(279\) 1760.00 0.377665
\(280\) 0 0
\(281\) 3338.00 0.708642 0.354321 0.935124i \(-0.384712\pi\)
0.354321 + 0.935124i \(0.384712\pi\)
\(282\) 0 0
\(283\) 7172.00i 1.50647i 0.657751 + 0.753235i \(0.271508\pi\)
−0.657751 + 0.753235i \(0.728492\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 4752.00i 0.977358i
\(288\) 0 0
\(289\) 2413.00 0.491146
\(290\) 0 0
\(291\) −1912.00 −0.385166
\(292\) 0 0
\(293\) − 5214.00i − 1.03961i −0.854286 0.519804i \(-0.826005\pi\)
0.854286 0.519804i \(-0.173995\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) − 6688.00i − 1.30666i
\(298\) 0 0
\(299\) −1232.00 −0.238289
\(300\) 0 0
\(301\) 1248.00 0.238982
\(302\) 0 0
\(303\) − 6264.00i − 1.18765i
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) − 396.000i − 0.0736186i −0.999322 0.0368093i \(-0.988281\pi\)
0.999322 0.0368093i \(-0.0117194\pi\)
\(308\) 0 0
\(309\) −3872.00 −0.712849
\(310\) 0 0
\(311\) 4056.00 0.739533 0.369766 0.929125i \(-0.379438\pi\)
0.369766 + 0.929125i \(0.379438\pi\)
\(312\) 0 0
\(313\) − 2154.00i − 0.388982i −0.980904 0.194491i \(-0.937695\pi\)
0.980904 0.194491i \(-0.0623055\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) − 7386.00i − 1.30864i −0.756217 0.654320i \(-0.772955\pi\)
0.756217 0.654320i \(-0.227045\pi\)
\(318\) 0 0
\(319\) −8712.00 −1.52909
\(320\) 0 0
\(321\) 3120.00 0.542497
\(322\) 0 0
\(323\) 2200.00i 0.378982i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) − 7976.00i − 1.34885i
\(328\) 0 0
\(329\) −12672.0 −2.12350
\(330\) 0 0
\(331\) 1132.00 0.187977 0.0939884 0.995573i \(-0.470038\pi\)
0.0939884 + 0.995573i \(0.470038\pi\)
\(332\) 0 0
\(333\) − 1782.00i − 0.293252i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) − 3342.00i − 0.540209i −0.962831 0.270104i \(-0.912942\pi\)
0.962831 0.270104i \(-0.0870582\pi\)
\(338\) 0 0
\(339\) 3768.00 0.603686
\(340\) 0 0
\(341\) 7040.00 1.11800
\(342\) 0 0
\(343\) − 2640.00i − 0.415588i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) − 2244.00i − 0.347159i −0.984820 0.173580i \(-0.944467\pi\)
0.984820 0.173580i \(-0.0555334\pi\)
\(348\) 0 0
\(349\) 6522.00 1.00033 0.500164 0.865931i \(-0.333273\pi\)
0.500164 + 0.865931i \(0.333273\pi\)
\(350\) 0 0
\(351\) −3344.00 −0.508517
\(352\) 0 0
\(353\) 11230.0i 1.69324i 0.532200 + 0.846618i \(0.321365\pi\)
−0.532200 + 0.846618i \(0.678635\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) − 4800.00i − 0.711605i
\(358\) 0 0
\(359\) 1848.00 0.271682 0.135841 0.990731i \(-0.456626\pi\)
0.135841 + 0.990731i \(0.456626\pi\)
\(360\) 0 0
\(361\) −4923.00 −0.717743
\(362\) 0 0
\(363\) − 2420.00i − 0.349909i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) − 7120.00i − 1.01270i −0.862328 0.506350i \(-0.830994\pi\)
0.862328 0.506350i \(-0.169006\pi\)
\(368\) 0 0
\(369\) −2178.00 −0.307269
\(370\) 0 0
\(371\) 5808.00 0.812766
\(372\) 0 0
\(373\) − 6350.00i − 0.881476i −0.897636 0.440738i \(-0.854717\pi\)
0.897636 0.440738i \(-0.145283\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 4356.00i 0.595081i
\(378\) 0 0
\(379\) −7900.00 −1.07070 −0.535351 0.844630i \(-0.679821\pi\)
−0.535351 + 0.844630i \(0.679821\pi\)
\(380\) 0 0
\(381\) −5632.00 −0.757313
\(382\) 0 0
\(383\) 10368.0i 1.38324i 0.722263 + 0.691619i \(0.243102\pi\)
−0.722263 + 0.691619i \(0.756898\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 572.000i 0.0751328i
\(388\) 0 0
\(389\) −8830.00 −1.15090 −0.575448 0.817838i \(-0.695172\pi\)
−0.575448 + 0.817838i \(0.695172\pi\)
\(390\) 0 0
\(391\) 2800.00 0.362154
\(392\) 0 0
\(393\) − 10768.0i − 1.38212i
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 9878.00i 1.24877i 0.781116 + 0.624386i \(0.214651\pi\)
−0.781116 + 0.624386i \(0.785349\pi\)
\(398\) 0 0
\(399\) −4224.00 −0.529986
\(400\) 0 0
\(401\) −13134.0 −1.63561 −0.817806 0.575494i \(-0.804810\pi\)
−0.817806 + 0.575494i \(0.804810\pi\)
\(402\) 0 0
\(403\) − 3520.00i − 0.435096i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) − 7128.00i − 0.868113i
\(408\) 0 0
\(409\) −906.000 −0.109533 −0.0547663 0.998499i \(-0.517441\pi\)
−0.0547663 + 0.998499i \(0.517441\pi\)
\(410\) 0 0
\(411\) 6504.00 0.780581
\(412\) 0 0
\(413\) 16032.0i 1.91013i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 2736.00i 0.321301i
\(418\) 0 0
\(419\) −5412.00 −0.631011 −0.315505 0.948924i \(-0.602174\pi\)
−0.315505 + 0.948924i \(0.602174\pi\)
\(420\) 0 0
\(421\) −4642.00 −0.537381 −0.268690 0.963227i \(-0.586591\pi\)
−0.268690 + 0.963227i \(0.586591\pi\)
\(422\) 0 0
\(423\) − 5808.00i − 0.667600i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) − 13200.0i − 1.49600i
\(428\) 0 0
\(429\) −3872.00 −0.435762
\(430\) 0 0
\(431\) −656.000 −0.0733142 −0.0366571 0.999328i \(-0.511671\pi\)
−0.0366571 + 0.999328i \(0.511671\pi\)
\(432\) 0 0
\(433\) − 9490.00i − 1.05326i −0.850096 0.526629i \(-0.823456\pi\)
0.850096 0.526629i \(-0.176544\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) − 2464.00i − 0.269723i
\(438\) 0 0
\(439\) 5544.00 0.602735 0.301368 0.953508i \(-0.402557\pi\)
0.301368 + 0.953508i \(0.402557\pi\)
\(440\) 0 0
\(441\) −2563.00 −0.276752
\(442\) 0 0
\(443\) 7652.00i 0.820672i 0.911935 + 0.410336i \(0.134588\pi\)
−0.911935 + 0.410336i \(0.865412\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 1208.00i 0.127822i
\(448\) 0 0
\(449\) 446.000 0.0468776 0.0234388 0.999725i \(-0.492539\pi\)
0.0234388 + 0.999725i \(0.492539\pi\)
\(450\) 0 0
\(451\) −8712.00 −0.909605
\(452\) 0 0
\(453\) 5408.00i 0.560905i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 1562.00i 0.159885i 0.996799 + 0.0799423i \(0.0254736\pi\)
−0.996799 + 0.0799423i \(0.974526\pi\)
\(458\) 0 0
\(459\) 7600.00 0.772849
\(460\) 0 0
\(461\) 10582.0 1.06910 0.534548 0.845138i \(-0.320482\pi\)
0.534548 + 0.845138i \(0.320482\pi\)
\(462\) 0 0
\(463\) − 10768.0i − 1.08085i −0.841394 0.540423i \(-0.818264\pi\)
0.841394 0.540423i \(-0.181736\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 9876.00i 0.978601i 0.872115 + 0.489301i \(0.162748\pi\)
−0.872115 + 0.489301i \(0.837252\pi\)
\(468\) 0 0
\(469\) −4512.00 −0.444232
\(470\) 0 0
\(471\) 12568.0 1.22952
\(472\) 0 0
\(473\) 2288.00i 0.222415i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 2662.00i 0.255523i
\(478\) 0 0
\(479\) −352.000 −0.0335768 −0.0167884 0.999859i \(-0.505344\pi\)
−0.0167884 + 0.999859i \(0.505344\pi\)
\(480\) 0 0
\(481\) −3564.00 −0.337847
\(482\) 0 0
\(483\) 5376.00i 0.506452i
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 15176.0i 1.41209i 0.708165 + 0.706047i \(0.249523\pi\)
−0.708165 + 0.706047i \(0.750477\pi\)
\(488\) 0 0
\(489\) 12144.0 1.12305
\(490\) 0 0
\(491\) 8844.00 0.812880 0.406440 0.913677i \(-0.366770\pi\)
0.406440 + 0.913677i \(0.366770\pi\)
\(492\) 0 0
\(493\) − 9900.00i − 0.904409i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 17472.0i 1.57691i
\(498\) 0 0
\(499\) 19404.0 1.74077 0.870383 0.492375i \(-0.163871\pi\)
0.870383 + 0.492375i \(0.163871\pi\)
\(500\) 0 0
\(501\) 1056.00 0.0941689
\(502\) 0 0
\(503\) 16488.0i 1.46156i 0.682614 + 0.730779i \(0.260843\pi\)
−0.682614 + 0.730779i \(0.739157\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) − 6852.00i − 0.600213i
\(508\) 0 0
\(509\) 12954.0 1.12805 0.564024 0.825759i \(-0.309253\pi\)
0.564024 + 0.825759i \(0.309253\pi\)
\(510\) 0 0
\(511\) −3696.00 −0.319964
\(512\) 0 0
\(513\) − 6688.00i − 0.575599i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) − 23232.0i − 1.97629i
\(518\) 0 0
\(519\) 11304.0 0.956051
\(520\) 0 0
\(521\) 10970.0 0.922465 0.461233 0.887279i \(-0.347407\pi\)
0.461233 + 0.887279i \(0.347407\pi\)
\(522\) 0 0
\(523\) − 16940.0i − 1.41632i −0.706053 0.708159i \(-0.749526\pi\)
0.706053 0.708159i \(-0.250474\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 8000.00i 0.661263i
\(528\) 0 0
\(529\) 9031.00 0.742254
\(530\) 0 0
\(531\) −7348.00 −0.600520
\(532\) 0 0
\(533\) 4356.00i 0.353995i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) − 12336.0i − 0.991318i
\(538\) 0 0
\(539\) −10252.0 −0.819267
\(540\) 0 0
\(541\) 198.000 0.0157351 0.00786755 0.999969i \(-0.497496\pi\)
0.00786755 + 0.999969i \(0.497496\pi\)
\(542\) 0 0
\(543\) 9672.00i 0.764393i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 15268.0i 1.19344i 0.802449 + 0.596721i \(0.203530\pi\)
−0.802449 + 0.596721i \(0.796470\pi\)
\(548\) 0 0
\(549\) 6050.00 0.470324
\(550\) 0 0
\(551\) −8712.00 −0.673582
\(552\) 0 0
\(553\) 15744.0i 1.21067i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 20854.0i 1.58638i 0.608976 + 0.793189i \(0.291581\pi\)
−0.608976 + 0.793189i \(0.708419\pi\)
\(558\) 0 0
\(559\) 1144.00 0.0865582
\(560\) 0 0
\(561\) 8800.00 0.662275
\(562\) 0 0
\(563\) − 19316.0i − 1.44595i −0.690872 0.722977i \(-0.742773\pi\)
0.690872 0.722977i \(-0.257227\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 7464.00i 0.552837i
\(568\) 0 0
\(569\) −7018.00 −0.517065 −0.258532 0.966003i \(-0.583239\pi\)
−0.258532 + 0.966003i \(0.583239\pi\)
\(570\) 0 0
\(571\) −24420.0 −1.78975 −0.894873 0.446320i \(-0.852734\pi\)
−0.894873 + 0.446320i \(0.852734\pi\)
\(572\) 0 0
\(573\) − 3840.00i − 0.279962i
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 23234.0i 1.67633i 0.545415 + 0.838166i \(0.316372\pi\)
−0.545415 + 0.838166i \(0.683628\pi\)
\(578\) 0 0
\(579\) −11528.0 −0.827439
\(580\) 0 0
\(581\) 5664.00 0.404445
\(582\) 0 0
\(583\) 10648.0i 0.756424i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 10604.0i 0.745611i 0.927909 + 0.372806i \(0.121604\pi\)
−0.927909 + 0.372806i \(0.878396\pi\)
\(588\) 0 0
\(589\) 7040.00 0.492493
\(590\) 0 0
\(591\) 4344.00 0.302349
\(592\) 0 0
\(593\) 13838.0i 0.958277i 0.877739 + 0.479139i \(0.159051\pi\)
−0.877739 + 0.479139i \(0.840949\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) − 352.000i − 0.0241313i
\(598\) 0 0
\(599\) −3960.00 −0.270119 −0.135059 0.990837i \(-0.543123\pi\)
−0.135059 + 0.990837i \(0.543123\pi\)
\(600\) 0 0
\(601\) −5942.00 −0.403293 −0.201647 0.979458i \(-0.564629\pi\)
−0.201647 + 0.979458i \(0.564629\pi\)
\(602\) 0 0
\(603\) − 2068.00i − 0.139661i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 3040.00i 0.203278i 0.994821 + 0.101639i \(0.0324087\pi\)
−0.994821 + 0.101639i \(0.967591\pi\)
\(608\) 0 0
\(609\) 19008.0 1.26477
\(610\) 0 0
\(611\) −11616.0 −0.769121
\(612\) 0 0
\(613\) 2530.00i 0.166698i 0.996520 + 0.0833489i \(0.0265616\pi\)
−0.996520 + 0.0833489i \(0.973438\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) − 19206.0i − 1.25317i −0.779354 0.626584i \(-0.784453\pi\)
0.779354 0.626584i \(-0.215547\pi\)
\(618\) 0 0
\(619\) 10996.0 0.714001 0.357000 0.934104i \(-0.383799\pi\)
0.357000 + 0.934104i \(0.383799\pi\)
\(620\) 0 0
\(621\) −8512.00 −0.550040
\(622\) 0 0
\(623\) 17136.0i 1.10199i
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) − 7744.00i − 0.493247i
\(628\) 0 0
\(629\) 8100.00 0.513463
\(630\) 0 0
\(631\) 6680.00 0.421437 0.210718 0.977547i \(-0.432420\pi\)
0.210718 + 0.977547i \(0.432420\pi\)
\(632\) 0 0
\(633\) − 13904.0i − 0.873040i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 5126.00i 0.318838i
\(638\) 0 0
\(639\) −8008.00 −0.495761
\(640\) 0 0
\(641\) 6274.00 0.386596 0.193298 0.981140i \(-0.438082\pi\)
0.193298 + 0.981140i \(0.438082\pi\)
\(642\) 0 0
\(643\) 9084.00i 0.557135i 0.960417 + 0.278568i \(0.0898596\pi\)
−0.960417 + 0.278568i \(0.910140\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 23656.0i 1.43742i 0.695308 + 0.718712i \(0.255268\pi\)
−0.695308 + 0.718712i \(0.744732\pi\)
\(648\) 0 0
\(649\) −29392.0 −1.77771
\(650\) 0 0
\(651\) −15360.0 −0.924740
\(652\) 0 0
\(653\) 6762.00i 0.405234i 0.979258 + 0.202617i \(0.0649446\pi\)
−0.979258 + 0.202617i \(0.935055\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) − 1694.00i − 0.100592i
\(658\) 0 0
\(659\) 15276.0 0.902987 0.451494 0.892274i \(-0.350891\pi\)
0.451494 + 0.892274i \(0.350891\pi\)
\(660\) 0 0
\(661\) 11054.0 0.650455 0.325228 0.945636i \(-0.394559\pi\)
0.325228 + 0.945636i \(0.394559\pi\)
\(662\) 0 0
\(663\) − 4400.00i − 0.257740i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 11088.0i 0.643672i
\(668\) 0 0
\(669\) 3712.00 0.214520
\(670\) 0 0
\(671\) 24200.0 1.39230
\(672\) 0 0
\(673\) 21278.0i 1.21873i 0.792889 + 0.609366i \(0.208576\pi\)
−0.792889 + 0.609366i \(0.791424\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 8926.00i 0.506727i 0.967371 + 0.253363i \(0.0815368\pi\)
−0.967371 + 0.253363i \(0.918463\pi\)
\(678\) 0 0
\(679\) −11472.0 −0.648387
\(680\) 0 0
\(681\) −624.000 −0.0351127
\(682\) 0 0
\(683\) 8116.00i 0.454685i 0.973815 + 0.227343i \(0.0730037\pi\)
−0.973815 + 0.227343i \(0.926996\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) − 6536.00i − 0.362975i
\(688\) 0 0
\(689\) 5324.00 0.294381
\(690\) 0 0
\(691\) 11764.0 0.647646 0.323823 0.946118i \(-0.395032\pi\)
0.323823 + 0.946118i \(0.395032\pi\)
\(692\) 0 0
\(693\) − 11616.0i − 0.636732i
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) − 9900.00i − 0.538005i
\(698\) 0 0
\(699\) 3608.00 0.195232
\(700\) 0 0
\(701\) −4698.00 −0.253126 −0.126563 0.991959i \(-0.540395\pi\)
−0.126563 + 0.991959i \(0.540395\pi\)
\(702\) 0 0
\(703\) − 7128.00i − 0.382415i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) − 37584.0i − 1.99928i
\(708\) 0 0
\(709\) −24638.0 −1.30508 −0.652538 0.757756i \(-0.726296\pi\)
−0.652538 + 0.757756i \(0.726296\pi\)
\(710\) 0 0
\(711\) −7216.00 −0.380620
\(712\) 0 0
\(713\) − 8960.00i − 0.470624i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) − 6464.00i − 0.336684i
\(718\) 0 0
\(719\) 16624.0 0.862268 0.431134 0.902288i \(-0.358114\pi\)
0.431134 + 0.902288i \(0.358114\pi\)
\(720\) 0 0
\(721\) −23232.0 −1.20001
\(722\) 0 0
\(723\) − 19272.0i − 0.991332i
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) − 30216.0i − 1.54147i −0.637155 0.770735i \(-0.719889\pi\)
0.637155 0.770735i \(-0.280111\pi\)
\(728\) 0 0
\(729\) −19837.0 −1.00782
\(730\) 0 0
\(731\) −2600.00 −0.131552
\(732\) 0 0
\(733\) 3322.00i 0.167395i 0.996491 + 0.0836977i \(0.0266730\pi\)
−0.996491 + 0.0836977i \(0.973327\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) − 8272.00i − 0.413437i
\(738\) 0 0
\(739\) −14692.0 −0.731331 −0.365666 0.930746i \(-0.619159\pi\)
−0.365666 + 0.930746i \(0.619159\pi\)
\(740\) 0 0
\(741\) −3872.00 −0.191959
\(742\) 0 0
\(743\) 28600.0i 1.41216i 0.708134 + 0.706078i \(0.249537\pi\)
−0.708134 + 0.706078i \(0.750463\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 2596.00i 0.127152i
\(748\) 0 0
\(749\) 18720.0 0.913236
\(750\) 0 0
\(751\) 29616.0 1.43902 0.719509 0.694483i \(-0.244367\pi\)
0.719509 + 0.694483i \(0.244367\pi\)
\(752\) 0 0
\(753\) − 8560.00i − 0.414268i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 2894.00i 0.138949i 0.997584 + 0.0694744i \(0.0221322\pi\)
−0.997584 + 0.0694744i \(0.977868\pi\)
\(758\) 0 0
\(759\) −9856.00 −0.471344
\(760\) 0 0
\(761\) 14762.0 0.703183 0.351591 0.936154i \(-0.385641\pi\)
0.351591 + 0.936154i \(0.385641\pi\)
\(762\) 0 0
\(763\) − 47856.0i − 2.27065i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 14696.0i 0.691841i
\(768\) 0 0
\(769\) 7678.00 0.360047 0.180023 0.983662i \(-0.442383\pi\)
0.180023 + 0.983662i \(0.442383\pi\)
\(770\) 0 0
\(771\) 3080.00 0.143870
\(772\) 0 0
\(773\) − 27390.0i − 1.27445i −0.770678 0.637225i \(-0.780082\pi\)
0.770678 0.637225i \(-0.219918\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 15552.0i 0.718050i
\(778\) 0 0
\(779\) −8712.00 −0.400693
\(780\) 0 0
\(781\) −32032.0 −1.46760
\(782\) 0 0
\(783\) 30096.0i 1.37362i
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) − 19756.0i − 0.894823i −0.894328 0.447411i \(-0.852346\pi\)
0.894328 0.447411i \(-0.147654\pi\)
\(788\) 0 0
\(789\) −29600.0 −1.33560
\(790\) 0 0
\(791\) 22608.0 1.01624
\(792\) 0 0
\(793\) − 12100.0i − 0.541846i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 38854.0i 1.72682i 0.504499 + 0.863412i \(0.331677\pi\)
−0.504499 + 0.863412i \(0.668323\pi\)
\(798\) 0 0
\(799\) 26400.0 1.16892
\(800\) 0 0
\(801\) −7854.00 −0.346451
\(802\) 0 0
\(803\) − 6776.00i − 0.297783i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) − 11176.0i − 0.487502i
\(808\) 0 0
\(809\) 14278.0 0.620504 0.310252 0.950654i \(-0.399587\pi\)
0.310252 + 0.950654i \(0.399587\pi\)
\(810\) 0 0
\(811\) 716.000 0.0310014 0.0155007 0.999880i \(-0.495066\pi\)
0.0155007 + 0.999880i \(0.495066\pi\)
\(812\) 0 0
\(813\) 34496.0i 1.48810i
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 2288.00i 0.0979767i
\(818\) 0 0
\(819\) −5808.00 −0.247800
\(820\) 0 0
\(821\) −23538.0 −1.00059 −0.500293 0.865856i \(-0.666775\pi\)
−0.500293 + 0.865856i \(0.666775\pi\)
\(822\) 0 0
\(823\) − 6616.00i − 0.280218i −0.990136 0.140109i \(-0.955255\pi\)
0.990136 0.140109i \(-0.0447453\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) − 27236.0i − 1.14521i −0.819831 0.572605i \(-0.805933\pi\)
0.819831 0.572605i \(-0.194067\pi\)
\(828\) 0 0
\(829\) −12070.0 −0.505680 −0.252840 0.967508i \(-0.581365\pi\)
−0.252840 + 0.967508i \(0.581365\pi\)
\(830\) 0 0
\(831\) −7496.00 −0.312916
\(832\) 0 0
\(833\) − 11650.0i − 0.484572i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) − 24320.0i − 1.00433i
\(838\) 0 0
\(839\) −42024.0 −1.72924 −0.864618 0.502429i \(-0.832440\pi\)
−0.864618 + 0.502429i \(0.832440\pi\)
\(840\) 0 0
\(841\) 14815.0 0.607446
\(842\) 0 0
\(843\) − 13352.0i − 0.545513i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) − 14520.0i − 0.589036i
\(848\) 0 0
\(849\) 28688.0 1.15968
\(850\) 0 0
\(851\) −9072.00 −0.365434
\(852\) 0 0
\(853\) − 2414.00i − 0.0968978i −0.998826 0.0484489i \(-0.984572\pi\)
0.998826 0.0484489i \(-0.0154278\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) − 37686.0i − 1.50213i −0.660226 0.751067i \(-0.729539\pi\)
0.660226 0.751067i \(-0.270461\pi\)
\(858\) 0 0
\(859\) 40644.0 1.61438 0.807192 0.590289i \(-0.200986\pi\)
0.807192 + 0.590289i \(0.200986\pi\)
\(860\) 0 0
\(861\) 19008.0 0.752370
\(862\) 0 0
\(863\) − 18656.0i − 0.735872i −0.929851 0.367936i \(-0.880065\pi\)
0.929851 0.367936i \(-0.119935\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) − 9652.00i − 0.378084i
\(868\) 0 0
\(869\) −28864.0 −1.12675
\(870\) 0 0
\(871\) −4136.00 −0.160899
\(872\) 0 0
\(873\) − 5258.00i − 0.203845i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) − 13002.0i − 0.500623i −0.968165 0.250311i \(-0.919467\pi\)
0.968165 0.250311i \(-0.0805330\pi\)
\(878\) 0 0
\(879\) −20856.0 −0.800291
\(880\) 0 0
\(881\) 49490.0 1.89258 0.946289 0.323323i \(-0.104800\pi\)
0.946289 + 0.323323i \(0.104800\pi\)
\(882\) 0 0
\(883\) 1100.00i 0.0419229i 0.999780 + 0.0209615i \(0.00667273\pi\)
−0.999780 + 0.0209615i \(0.993327\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 14104.0i 0.533896i 0.963711 + 0.266948i \(0.0860152\pi\)
−0.963711 + 0.266948i \(0.913985\pi\)
\(888\) 0 0
\(889\) −33792.0 −1.27486
\(890\) 0 0
\(891\) −13684.0 −0.514513
\(892\) 0 0
\(893\) − 23232.0i − 0.870581i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 4928.00i 0.183435i
\(898\) 0 0
\(899\) −31680.0 −1.17529
\(900\) 0 0
\(901\) −12100.0 −0.447402
\(902\) 0 0
\(903\) − 4992.00i − 0.183968i
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 12716.0i 0.465521i 0.972534 + 0.232761i \(0.0747759\pi\)
−0.972534 + 0.232761i \(0.925224\pi\)
\(908\) 0 0
\(909\) 17226.0 0.628548
\(910\) 0 0
\(911\) 39632.0 1.44135 0.720673 0.693275i \(-0.243833\pi\)
0.720673 + 0.693275i \(0.243833\pi\)
\(912\) 0 0
\(913\) 10384.0i 0.376408i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) − 64608.0i − 2.32666i
\(918\) 0 0
\(919\) 5704.00 0.204742 0.102371 0.994746i \(-0.467357\pi\)
0.102371 + 0.994746i \(0.467357\pi\)
\(920\) 0 0
\(921\) −1584.00 −0.0566716
\(922\) 0 0
\(923\) 16016.0i 0.571152i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) − 10648.0i − 0.377267i
\(928\) 0 0
\(929\) −8162.00 −0.288252 −0.144126 0.989559i \(-0.546037\pi\)
−0.144126 + 0.989559i \(0.546037\pi\)
\(930\) 0 0
\(931\) −10252.0 −0.360898
\(932\) 0 0
\(933\) − 16224.0i − 0.569293i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) − 55110.0i − 1.92141i −0.277564 0.960707i \(-0.589527\pi\)
0.277564 0.960707i \(-0.410473\pi\)
\(938\) 0 0
\(939\) −8616.00 −0.299438
\(940\) 0 0
\(941\) 16374.0 0.567245 0.283622 0.958936i \(-0.408464\pi\)
0.283622 + 0.958936i \(0.408464\pi\)
\(942\) 0 0
\(943\) 11088.0i 0.382900i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) − 8460.00i − 0.290299i −0.989410 0.145149i \(-0.953634\pi\)
0.989410 0.145149i \(-0.0463663\pi\)
\(948\) 0 0
\(949\) −3388.00 −0.115889
\(950\) 0 0
\(951\) −29544.0 −1.00739
\(952\) 0 0
\(953\) 20502.0i 0.696878i 0.937331 + 0.348439i \(0.113288\pi\)
−0.937331 + 0.348439i \(0.886712\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 34848.0i 1.17709i
\(958\) 0 0
\(959\) 39024.0 1.31403
\(960\) 0 0
\(961\) −4191.00 −0.140680
\(962\) 0 0
\(963\) 8580.00i 0.287110i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 36520.0i 1.21448i 0.794518 + 0.607241i \(0.207724\pi\)
−0.794518 + 0.607241i \(0.792276\pi\)
\(968\) 0 0
\(969\) 8800.00 0.291741
\(970\) 0 0
\(971\) −20244.0 −0.669064 −0.334532 0.942384i \(-0.608578\pi\)
−0.334532 + 0.942384i \(0.608578\pi\)
\(972\) 0 0
\(973\) 16416.0i 0.540876i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 50034.0i 1.63841i 0.573499 + 0.819206i \(0.305586\pi\)
−0.573499 + 0.819206i \(0.694414\pi\)
\(978\) 0 0
\(979\) −31416.0 −1.02560
\(980\) 0 0
\(981\) 21934.0 0.713862
\(982\) 0 0
\(983\) 37128.0i 1.20468i 0.798240 + 0.602339i \(0.205765\pi\)
−0.798240 + 0.602339i \(0.794235\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 50688.0i 1.63467i
\(988\) 0 0
\(989\) 2912.00 0.0936261
\(990\) 0 0
\(991\) −27808.0 −0.891373 −0.445686 0.895189i \(-0.647040\pi\)
−0.445686 + 0.895189i \(0.647040\pi\)
\(992\) 0 0
\(993\) − 4528.00i − 0.144705i
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) − 28514.0i − 0.905765i −0.891570 0.452882i \(-0.850396\pi\)
0.891570 0.452882i \(-0.149604\pi\)
\(998\) 0 0
\(999\) −24624.0 −0.779849
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 400.4.c.i.49.1 2
4.3 odd 2 200.4.c.e.49.2 2
5.2 odd 4 400.4.a.g.1.1 1
5.3 odd 4 16.4.a.a.1.1 1
5.4 even 2 inner 400.4.c.i.49.2 2
12.11 even 2 1800.4.f.u.649.2 2
15.8 even 4 144.4.a.e.1.1 1
20.3 even 4 8.4.a.a.1.1 1
20.7 even 4 200.4.a.g.1.1 1
20.19 odd 2 200.4.c.e.49.1 2
35.13 even 4 784.4.a.e.1.1 1
40.3 even 4 64.4.a.d.1.1 1
40.13 odd 4 64.4.a.b.1.1 1
40.27 even 4 1600.4.a.o.1.1 1
40.37 odd 4 1600.4.a.bm.1.1 1
55.43 even 4 1936.4.a.l.1.1 1
60.23 odd 4 72.4.a.c.1.1 1
60.47 odd 4 1800.4.a.d.1.1 1
60.59 even 2 1800.4.f.u.649.1 2
80.3 even 4 256.4.b.a.129.1 2
80.13 odd 4 256.4.b.g.129.2 2
80.43 even 4 256.4.b.a.129.2 2
80.53 odd 4 256.4.b.g.129.1 2
120.53 even 4 576.4.a.j.1.1 1
120.83 odd 4 576.4.a.k.1.1 1
140.3 odd 12 392.4.i.b.177.1 2
140.23 even 12 392.4.i.g.361.1 2
140.83 odd 4 392.4.a.e.1.1 1
140.103 odd 12 392.4.i.b.361.1 2
140.123 even 12 392.4.i.g.177.1 2
180.23 odd 12 648.4.i.e.217.1 2
180.43 even 12 648.4.i.h.433.1 2
180.83 odd 12 648.4.i.e.433.1 2
180.103 even 12 648.4.i.h.217.1 2
220.43 odd 4 968.4.a.a.1.1 1
260.103 even 4 1352.4.a.a.1.1 1
340.203 even 4 2312.4.a.a.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
8.4.a.a.1.1 1 20.3 even 4
16.4.a.a.1.1 1 5.3 odd 4
64.4.a.b.1.1 1 40.13 odd 4
64.4.a.d.1.1 1 40.3 even 4
72.4.a.c.1.1 1 60.23 odd 4
144.4.a.e.1.1 1 15.8 even 4
200.4.a.g.1.1 1 20.7 even 4
200.4.c.e.49.1 2 20.19 odd 2
200.4.c.e.49.2 2 4.3 odd 2
256.4.b.a.129.1 2 80.3 even 4
256.4.b.a.129.2 2 80.43 even 4
256.4.b.g.129.1 2 80.53 odd 4
256.4.b.g.129.2 2 80.13 odd 4
392.4.a.e.1.1 1 140.83 odd 4
392.4.i.b.177.1 2 140.3 odd 12
392.4.i.b.361.1 2 140.103 odd 12
392.4.i.g.177.1 2 140.123 even 12
392.4.i.g.361.1 2 140.23 even 12
400.4.a.g.1.1 1 5.2 odd 4
400.4.c.i.49.1 2 1.1 even 1 trivial
400.4.c.i.49.2 2 5.4 even 2 inner
576.4.a.j.1.1 1 120.53 even 4
576.4.a.k.1.1 1 120.83 odd 4
648.4.i.e.217.1 2 180.23 odd 12
648.4.i.e.433.1 2 180.83 odd 12
648.4.i.h.217.1 2 180.103 even 12
648.4.i.h.433.1 2 180.43 even 12
784.4.a.e.1.1 1 35.13 even 4
968.4.a.a.1.1 1 220.43 odd 4
1352.4.a.a.1.1 1 260.103 even 4
1600.4.a.o.1.1 1 40.27 even 4
1600.4.a.bm.1.1 1 40.37 odd 4
1800.4.a.d.1.1 1 60.47 odd 4
1800.4.f.u.649.1 2 60.59 even 2
1800.4.f.u.649.2 2 12.11 even 2
1936.4.a.l.1.1 1 55.43 even 4
2312.4.a.a.1.1 1 340.203 even 4