Properties

Label 256.4.b.h.129.4
Level $256$
Weight $4$
Character 256.129
Analytic conductor $15.104$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [256,4,Mod(129,256)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(256, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("256.129");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 256 = 2^{8} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 256.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(15.1044889615\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{12})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{8} \)
Twist minimal: no (minimal twist has level 128)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 129.4
Root \(-0.866025 + 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 256.129
Dual form 256.4.b.h.129.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+8.92820i q^{3} -11.8564i q^{5} +9.85641 q^{7} -52.7128 q^{9} -39.0718i q^{11} -91.5692i q^{13} +105.856 q^{15} -37.1384 q^{17} -46.4974i q^{19} +88.0000i q^{21} -120.708 q^{23} -15.5744 q^{25} -229.569i q^{27} +27.2820i q^{29} +81.1487 q^{31} +348.841 q^{33} -116.862i q^{35} +10.9948i q^{37} +817.549 q^{39} +205.426 q^{41} -115.359i q^{43} +624.985i q^{45} +312.841 q^{47} -245.851 q^{49} -331.580i q^{51} +90.9948i q^{53} -463.251 q^{55} +415.138 q^{57} +550.631i q^{59} -630.974i q^{61} -519.559 q^{63} -1085.68 q^{65} -661.041i q^{67} -1077.70i q^{69} +494.985 q^{71} -566.267 q^{73} -139.051i q^{75} -385.108i q^{77} -49.4153 q^{79} +626.395 q^{81} +564.067i q^{83} +440.328i q^{85} -243.580 q^{87} -1089.67 q^{89} -902.543i q^{91} +724.513i q^{93} -551.292 q^{95} +464.605 q^{97} +2059.58i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 16 q^{7} - 100 q^{9} + 368 q^{15} + 184 q^{17} + 16 q^{23} - 284 q^{25} + 768 q^{31} + 176 q^{33} + 1552 q^{39} + 600 q^{41} + 32 q^{47} - 540 q^{49} + 752 q^{55} + 1328 q^{57} - 1136 q^{63} - 1904 q^{65}+ \cdots + 4408 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/256\mathbb{Z}\right)^\times\).

\(n\) \(5\) \(255\)
\(\chi(n)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 8.92820i 1.71823i 0.511780 + 0.859117i \(0.328986\pi\)
−0.511780 + 0.859117i \(0.671014\pi\)
\(4\) 0 0
\(5\) − 11.8564i − 1.06047i −0.847851 0.530235i \(-0.822104\pi\)
0.847851 0.530235i \(-0.177896\pi\)
\(6\) 0 0
\(7\) 9.85641 0.532196 0.266098 0.963946i \(-0.414266\pi\)
0.266098 + 0.963946i \(0.414266\pi\)
\(8\) 0 0
\(9\) −52.7128 −1.95233
\(10\) 0 0
\(11\) − 39.0718i − 1.07096i −0.844547 0.535481i \(-0.820130\pi\)
0.844547 0.535481i \(-0.179870\pi\)
\(12\) 0 0
\(13\) − 91.5692i − 1.95359i −0.214166 0.976797i \(-0.568703\pi\)
0.214166 0.976797i \(-0.431297\pi\)
\(14\) 0 0
\(15\) 105.856 1.82213
\(16\) 0 0
\(17\) −37.1384 −0.529847 −0.264923 0.964269i \(-0.585347\pi\)
−0.264923 + 0.964269i \(0.585347\pi\)
\(18\) 0 0
\(19\) − 46.4974i − 0.561434i −0.959791 0.280717i \(-0.909428\pi\)
0.959791 0.280717i \(-0.0905722\pi\)
\(20\) 0 0
\(21\) 88.0000i 0.914437i
\(22\) 0 0
\(23\) −120.708 −1.09432 −0.547158 0.837029i \(-0.684290\pi\)
−0.547158 + 0.837029i \(0.684290\pi\)
\(24\) 0 0
\(25\) −15.5744 −0.124595
\(26\) 0 0
\(27\) − 229.569i − 1.63632i
\(28\) 0 0
\(29\) 27.2820i 0.174695i 0.996178 + 0.0873473i \(0.0278390\pi\)
−0.996178 + 0.0873473i \(0.972161\pi\)
\(30\) 0 0
\(31\) 81.1487 0.470153 0.235077 0.971977i \(-0.424466\pi\)
0.235077 + 0.971977i \(0.424466\pi\)
\(32\) 0 0
\(33\) 348.841 1.84016
\(34\) 0 0
\(35\) − 116.862i − 0.564377i
\(36\) 0 0
\(37\) 10.9948i 0.0488525i 0.999702 + 0.0244262i \(0.00777589\pi\)
−0.999702 + 0.0244262i \(0.992224\pi\)
\(38\) 0 0
\(39\) 817.549 3.35673
\(40\) 0 0
\(41\) 205.426 0.782490 0.391245 0.920287i \(-0.372044\pi\)
0.391245 + 0.920287i \(0.372044\pi\)
\(42\) 0 0
\(43\) − 115.359i − 0.409118i −0.978854 0.204559i \(-0.934424\pi\)
0.978854 0.204559i \(-0.0655760\pi\)
\(44\) 0 0
\(45\) 624.985i 2.07038i
\(46\) 0 0
\(47\) 312.841 0.970905 0.485453 0.874263i \(-0.338655\pi\)
0.485453 + 0.874263i \(0.338655\pi\)
\(48\) 0 0
\(49\) −245.851 −0.716767
\(50\) 0 0
\(51\) − 331.580i − 0.910400i
\(52\) 0 0
\(53\) 90.9948i 0.235832i 0.993024 + 0.117916i \(0.0376214\pi\)
−0.993024 + 0.117916i \(0.962379\pi\)
\(54\) 0 0
\(55\) −463.251 −1.13572
\(56\) 0 0
\(57\) 415.138 0.964674
\(58\) 0 0
\(59\) 550.631i 1.21502i 0.794313 + 0.607509i \(0.207831\pi\)
−0.794313 + 0.607509i \(0.792169\pi\)
\(60\) 0 0
\(61\) − 630.974i − 1.32439i −0.749330 0.662196i \(-0.769624\pi\)
0.749330 0.662196i \(-0.230376\pi\)
\(62\) 0 0
\(63\) −519.559 −1.03902
\(64\) 0 0
\(65\) −1085.68 −2.07173
\(66\) 0 0
\(67\) − 661.041i − 1.20536i −0.797984 0.602679i \(-0.794100\pi\)
0.797984 0.602679i \(-0.205900\pi\)
\(68\) 0 0
\(69\) − 1077.70i − 1.88029i
\(70\) 0 0
\(71\) 494.985 0.827378 0.413689 0.910418i \(-0.364240\pi\)
0.413689 + 0.910418i \(0.364240\pi\)
\(72\) 0 0
\(73\) −566.267 −0.907897 −0.453949 0.891028i \(-0.649985\pi\)
−0.453949 + 0.891028i \(0.649985\pi\)
\(74\) 0 0
\(75\) − 139.051i − 0.214083i
\(76\) 0 0
\(77\) − 385.108i − 0.569962i
\(78\) 0 0
\(79\) −49.4153 −0.0703754 −0.0351877 0.999381i \(-0.511203\pi\)
−0.0351877 + 0.999381i \(0.511203\pi\)
\(80\) 0 0
\(81\) 626.395 0.859252
\(82\) 0 0
\(83\) 564.067i 0.745956i 0.927840 + 0.372978i \(0.121663\pi\)
−0.927840 + 0.372978i \(0.878337\pi\)
\(84\) 0 0
\(85\) 440.328i 0.561886i
\(86\) 0 0
\(87\) −243.580 −0.300166
\(88\) 0 0
\(89\) −1089.67 −1.29781 −0.648904 0.760870i \(-0.724772\pi\)
−0.648904 + 0.760870i \(0.724772\pi\)
\(90\) 0 0
\(91\) − 902.543i − 1.03970i
\(92\) 0 0
\(93\) 724.513i 0.807833i
\(94\) 0 0
\(95\) −551.292 −0.595383
\(96\) 0 0
\(97\) 464.605 0.486325 0.243162 0.969986i \(-0.421815\pi\)
0.243162 + 0.969986i \(0.421815\pi\)
\(98\) 0 0
\(99\) 2059.58i 2.09087i
\(100\) 0 0
\(101\) − 965.005i − 0.950709i −0.879794 0.475354i \(-0.842320\pi\)
0.879794 0.475354i \(-0.157680\pi\)
\(102\) 0 0
\(103\) −1828.99 −1.74967 −0.874836 0.484419i \(-0.839031\pi\)
−0.874836 + 0.484419i \(0.839031\pi\)
\(104\) 0 0
\(105\) 1043.36 0.969732
\(106\) 0 0
\(107\) 1726.59i 1.55996i 0.625805 + 0.779980i \(0.284771\pi\)
−0.625805 + 0.779980i \(0.715229\pi\)
\(108\) 0 0
\(109\) − 423.015i − 0.371720i −0.982576 0.185860i \(-0.940493\pi\)
0.982576 0.185860i \(-0.0595072\pi\)
\(110\) 0 0
\(111\) −98.1642 −0.0839400
\(112\) 0 0
\(113\) 763.108 0.635284 0.317642 0.948211i \(-0.397109\pi\)
0.317642 + 0.948211i \(0.397109\pi\)
\(114\) 0 0
\(115\) 1431.16i 1.16049i
\(116\) 0 0
\(117\) 4826.87i 3.81405i
\(118\) 0 0
\(119\) −366.052 −0.281982
\(120\) 0 0
\(121\) −195.605 −0.146961
\(122\) 0 0
\(123\) 1834.08i 1.34450i
\(124\) 0 0
\(125\) − 1297.39i − 0.928340i
\(126\) 0 0
\(127\) 2159.38 1.50877 0.754387 0.656430i \(-0.227934\pi\)
0.754387 + 0.656430i \(0.227934\pi\)
\(128\) 0 0
\(129\) 1029.95 0.702961
\(130\) 0 0
\(131\) − 710.723i − 0.474016i −0.971508 0.237008i \(-0.923833\pi\)
0.971508 0.237008i \(-0.0761668\pi\)
\(132\) 0 0
\(133\) − 458.297i − 0.298793i
\(134\) 0 0
\(135\) −2721.87 −1.73527
\(136\) 0 0
\(137\) 987.128 0.615592 0.307796 0.951452i \(-0.400409\pi\)
0.307796 + 0.951452i \(0.400409\pi\)
\(138\) 0 0
\(139\) − 2334.15i − 1.42432i −0.702019 0.712158i \(-0.747718\pi\)
0.702019 0.712158i \(-0.252282\pi\)
\(140\) 0 0
\(141\) 2793.11i 1.66824i
\(142\) 0 0
\(143\) −3577.77 −2.09223
\(144\) 0 0
\(145\) 323.467 0.185258
\(146\) 0 0
\(147\) − 2195.01i − 1.23157i
\(148\) 0 0
\(149\) − 1792.29i − 0.985435i −0.870189 0.492718i \(-0.836004\pi\)
0.870189 0.492718i \(-0.163996\pi\)
\(150\) 0 0
\(151\) 2864.32 1.54367 0.771837 0.635820i \(-0.219338\pi\)
0.771837 + 0.635820i \(0.219338\pi\)
\(152\) 0 0
\(153\) 1957.67 1.03443
\(154\) 0 0
\(155\) − 962.133i − 0.498583i
\(156\) 0 0
\(157\) − 2123.57i − 1.07949i −0.841830 0.539743i \(-0.818521\pi\)
0.841830 0.539743i \(-0.181479\pi\)
\(158\) 0 0
\(159\) −812.420 −0.405215
\(160\) 0 0
\(161\) −1189.74 −0.582391
\(162\) 0 0
\(163\) 3164.21i 1.52049i 0.649636 + 0.760245i \(0.274921\pi\)
−0.649636 + 0.760245i \(0.725079\pi\)
\(164\) 0 0
\(165\) − 4136.00i − 1.95144i
\(166\) 0 0
\(167\) −1340.34 −0.621069 −0.310534 0.950562i \(-0.600508\pi\)
−0.310534 + 0.950562i \(0.600508\pi\)
\(168\) 0 0
\(169\) −6187.92 −2.81653
\(170\) 0 0
\(171\) 2451.01i 1.09610i
\(172\) 0 0
\(173\) 2802.13i 1.23146i 0.787958 + 0.615729i \(0.211138\pi\)
−0.787958 + 0.615729i \(0.788862\pi\)
\(174\) 0 0
\(175\) −153.507 −0.0663089
\(176\) 0 0
\(177\) −4916.14 −2.08768
\(178\) 0 0
\(179\) 1074.84i 0.448810i 0.974496 + 0.224405i \(0.0720438\pi\)
−0.974496 + 0.224405i \(0.927956\pi\)
\(180\) 0 0
\(181\) 571.036i 0.234502i 0.993102 + 0.117251i \(0.0374081\pi\)
−0.993102 + 0.117251i \(0.962592\pi\)
\(182\) 0 0
\(183\) 5633.47 2.27562
\(184\) 0 0
\(185\) 130.359 0.0518065
\(186\) 0 0
\(187\) 1451.07i 0.567446i
\(188\) 0 0
\(189\) − 2262.73i − 0.870842i
\(190\) 0 0
\(191\) −872.657 −0.330593 −0.165296 0.986244i \(-0.552858\pi\)
−0.165296 + 0.986244i \(0.552858\pi\)
\(192\) 0 0
\(193\) 672.523 0.250825 0.125413 0.992105i \(-0.459975\pi\)
0.125413 + 0.992105i \(0.459975\pi\)
\(194\) 0 0
\(195\) − 9693.19i − 3.55971i
\(196\) 0 0
\(197\) − 3129.56i − 1.13184i −0.824461 0.565918i \(-0.808522\pi\)
0.824461 0.565918i \(-0.191478\pi\)
\(198\) 0 0
\(199\) 1502.37 0.535176 0.267588 0.963533i \(-0.413773\pi\)
0.267588 + 0.963533i \(0.413773\pi\)
\(200\) 0 0
\(201\) 5901.91 2.07109
\(202\) 0 0
\(203\) 268.903i 0.0929718i
\(204\) 0 0
\(205\) − 2435.61i − 0.829807i
\(206\) 0 0
\(207\) 6362.84 2.13646
\(208\) 0 0
\(209\) −1816.74 −0.601275
\(210\) 0 0
\(211\) − 1773.70i − 0.578703i −0.957223 0.289352i \(-0.906560\pi\)
0.957223 0.289352i \(-0.0934397\pi\)
\(212\) 0 0
\(213\) 4419.32i 1.42163i
\(214\) 0 0
\(215\) −1367.74 −0.433857
\(216\) 0 0
\(217\) 799.835 0.250214
\(218\) 0 0
\(219\) − 5055.74i − 1.55998i
\(220\) 0 0
\(221\) 3400.74i 1.03511i
\(222\) 0 0
\(223\) 5413.66 1.62568 0.812838 0.582490i \(-0.197922\pi\)
0.812838 + 0.582490i \(0.197922\pi\)
\(224\) 0 0
\(225\) 820.969 0.243250
\(226\) 0 0
\(227\) 3744.27i 1.09478i 0.836876 + 0.547392i \(0.184379\pi\)
−0.836876 + 0.547392i \(0.815621\pi\)
\(228\) 0 0
\(229\) 680.739i 0.196439i 0.995165 + 0.0982194i \(0.0313147\pi\)
−0.995165 + 0.0982194i \(0.968685\pi\)
\(230\) 0 0
\(231\) 3438.32 0.979328
\(232\) 0 0
\(233\) 679.271 0.190989 0.0954947 0.995430i \(-0.469557\pi\)
0.0954947 + 0.995430i \(0.469557\pi\)
\(234\) 0 0
\(235\) − 3709.17i − 1.02962i
\(236\) 0 0
\(237\) − 441.190i − 0.120921i
\(238\) 0 0
\(239\) −3901.27 −1.05587 −0.527934 0.849286i \(-0.677033\pi\)
−0.527934 + 0.849286i \(0.677033\pi\)
\(240\) 0 0
\(241\) 5859.72 1.56622 0.783108 0.621886i \(-0.213633\pi\)
0.783108 + 0.621886i \(0.213633\pi\)
\(242\) 0 0
\(243\) − 605.790i − 0.159924i
\(244\) 0 0
\(245\) 2914.91i 0.760110i
\(246\) 0 0
\(247\) −4257.73 −1.09681
\(248\) 0 0
\(249\) −5036.10 −1.28173
\(250\) 0 0
\(251\) 3381.48i 0.850348i 0.905112 + 0.425174i \(0.139787\pi\)
−0.905112 + 0.425174i \(0.860213\pi\)
\(252\) 0 0
\(253\) 4716.27i 1.17197i
\(254\) 0 0
\(255\) −3931.34 −0.965452
\(256\) 0 0
\(257\) 3652.22 0.886455 0.443227 0.896409i \(-0.353833\pi\)
0.443227 + 0.896409i \(0.353833\pi\)
\(258\) 0 0
\(259\) 108.370i 0.0259991i
\(260\) 0 0
\(261\) − 1438.11i − 0.341061i
\(262\) 0 0
\(263\) 2462.74 0.577410 0.288705 0.957418i \(-0.406775\pi\)
0.288705 + 0.957418i \(0.406775\pi\)
\(264\) 0 0
\(265\) 1078.87 0.250093
\(266\) 0 0
\(267\) − 9728.81i − 2.22994i
\(268\) 0 0
\(269\) − 482.503i − 0.109363i −0.998504 0.0546816i \(-0.982586\pi\)
0.998504 0.0546816i \(-0.0174144\pi\)
\(270\) 0 0
\(271\) 3602.48 0.807510 0.403755 0.914867i \(-0.367705\pi\)
0.403755 + 0.914867i \(0.367705\pi\)
\(272\) 0 0
\(273\) 8058.09 1.78644
\(274\) 0 0
\(275\) 608.519i 0.133437i
\(276\) 0 0
\(277\) 6177.72i 1.34001i 0.742356 + 0.670006i \(0.233709\pi\)
−0.742356 + 0.670006i \(0.766291\pi\)
\(278\) 0 0
\(279\) −4277.58 −0.917892
\(280\) 0 0
\(281\) 543.477 0.115378 0.0576888 0.998335i \(-0.481627\pi\)
0.0576888 + 0.998335i \(0.481627\pi\)
\(282\) 0 0
\(283\) − 6582.11i − 1.38256i −0.722585 0.691282i \(-0.757046\pi\)
0.722585 0.691282i \(-0.242954\pi\)
\(284\) 0 0
\(285\) − 4922.05i − 1.02301i
\(286\) 0 0
\(287\) 2024.76 0.416438
\(288\) 0 0
\(289\) −3533.74 −0.719262
\(290\) 0 0
\(291\) 4148.09i 0.835620i
\(292\) 0 0
\(293\) 6753.68i 1.34660i 0.739369 + 0.673301i \(0.235124\pi\)
−0.739369 + 0.673301i \(0.764876\pi\)
\(294\) 0 0
\(295\) 6528.50 1.28849
\(296\) 0 0
\(297\) −8969.68 −1.75244
\(298\) 0 0
\(299\) 11053.1i 2.13785i
\(300\) 0 0
\(301\) − 1137.03i − 0.217731i
\(302\) 0 0
\(303\) 8615.76 1.63354
\(304\) 0 0
\(305\) −7481.09 −1.40448
\(306\) 0 0
\(307\) − 1821.88i − 0.338698i −0.985556 0.169349i \(-0.945833\pi\)
0.985556 0.169349i \(-0.0541665\pi\)
\(308\) 0 0
\(309\) − 16329.6i − 3.00635i
\(310\) 0 0
\(311\) −10598.2 −1.93237 −0.966184 0.257852i \(-0.916985\pi\)
−0.966184 + 0.257852i \(0.916985\pi\)
\(312\) 0 0
\(313\) 7969.69 1.43921 0.719606 0.694382i \(-0.244322\pi\)
0.719606 + 0.694382i \(0.244322\pi\)
\(314\) 0 0
\(315\) 6160.10i 1.10185i
\(316\) 0 0
\(317\) − 7773.66i − 1.37733i −0.725082 0.688663i \(-0.758198\pi\)
0.725082 0.688663i \(-0.241802\pi\)
\(318\) 0 0
\(319\) 1065.96 0.187092
\(320\) 0 0
\(321\) −15415.3 −2.68038
\(322\) 0 0
\(323\) 1726.84i 0.297474i
\(324\) 0 0
\(325\) 1426.13i 0.243408i
\(326\) 0 0
\(327\) 3776.77 0.638703
\(328\) 0 0
\(329\) 3083.49 0.516712
\(330\) 0 0
\(331\) 8212.87i 1.36381i 0.731442 + 0.681903i \(0.238848\pi\)
−0.731442 + 0.681903i \(0.761152\pi\)
\(332\) 0 0
\(333\) − 579.569i − 0.0953760i
\(334\) 0 0
\(335\) −7837.57 −1.27825
\(336\) 0 0
\(337\) 5260.17 0.850267 0.425133 0.905131i \(-0.360227\pi\)
0.425133 + 0.905131i \(0.360227\pi\)
\(338\) 0 0
\(339\) 6813.18i 1.09157i
\(340\) 0 0
\(341\) − 3170.63i − 0.503516i
\(342\) 0 0
\(343\) −5803.96 −0.913657
\(344\) 0 0
\(345\) −12777.7 −1.99399
\(346\) 0 0
\(347\) 2162.12i 0.334492i 0.985915 + 0.167246i \(0.0534873\pi\)
−0.985915 + 0.167246i \(0.946513\pi\)
\(348\) 0 0
\(349\) − 2888.90i − 0.443093i −0.975150 0.221546i \(-0.928890\pi\)
0.975150 0.221546i \(-0.0711104\pi\)
\(350\) 0 0
\(351\) −21021.5 −3.19670
\(352\) 0 0
\(353\) 11550.2 1.74152 0.870760 0.491709i \(-0.163628\pi\)
0.870760 + 0.491709i \(0.163628\pi\)
\(354\) 0 0
\(355\) − 5868.74i − 0.877409i
\(356\) 0 0
\(357\) − 3268.18i − 0.484511i
\(358\) 0 0
\(359\) −6523.97 −0.959114 −0.479557 0.877511i \(-0.659203\pi\)
−0.479557 + 0.877511i \(0.659203\pi\)
\(360\) 0 0
\(361\) 4696.99 0.684792
\(362\) 0 0
\(363\) − 1746.40i − 0.252514i
\(364\) 0 0
\(365\) 6713.89i 0.962797i
\(366\) 0 0
\(367\) −6856.96 −0.975287 −0.487644 0.873043i \(-0.662143\pi\)
−0.487644 + 0.873043i \(0.662143\pi\)
\(368\) 0 0
\(369\) −10828.6 −1.52768
\(370\) 0 0
\(371\) 896.882i 0.125509i
\(372\) 0 0
\(373\) − 5001.68i − 0.694309i −0.937808 0.347155i \(-0.887148\pi\)
0.937808 0.347155i \(-0.112852\pi\)
\(374\) 0 0
\(375\) 11583.4 1.59511
\(376\) 0 0
\(377\) 2498.19 0.341283
\(378\) 0 0
\(379\) − 84.9775i − 0.0115172i −0.999983 0.00575858i \(-0.998167\pi\)
0.999983 0.00575858i \(-0.00183302\pi\)
\(380\) 0 0
\(381\) 19279.4i 2.59243i
\(382\) 0 0
\(383\) −2596.76 −0.346444 −0.173222 0.984883i \(-0.555418\pi\)
−0.173222 + 0.984883i \(0.555418\pi\)
\(384\) 0 0
\(385\) −4565.99 −0.604427
\(386\) 0 0
\(387\) 6080.90i 0.798732i
\(388\) 0 0
\(389\) 9213.21i 1.20084i 0.799683 + 0.600422i \(0.205001\pi\)
−0.799683 + 0.600422i \(0.794999\pi\)
\(390\) 0 0
\(391\) 4482.89 0.579820
\(392\) 0 0
\(393\) 6345.48 0.814471
\(394\) 0 0
\(395\) 585.888i 0.0746310i
\(396\) 0 0
\(397\) 6614.19i 0.836163i 0.908409 + 0.418082i \(0.137297\pi\)
−0.908409 + 0.418082i \(0.862703\pi\)
\(398\) 0 0
\(399\) 4091.77 0.513396
\(400\) 0 0
\(401\) 3434.94 0.427763 0.213881 0.976860i \(-0.431389\pi\)
0.213881 + 0.976860i \(0.431389\pi\)
\(402\) 0 0
\(403\) − 7430.73i − 0.918489i
\(404\) 0 0
\(405\) − 7426.79i − 0.911210i
\(406\) 0 0
\(407\) 429.588 0.0523192
\(408\) 0 0
\(409\) 6435.82 0.778071 0.389035 0.921223i \(-0.372808\pi\)
0.389035 + 0.921223i \(0.372808\pi\)
\(410\) 0 0
\(411\) 8813.28i 1.05773i
\(412\) 0 0
\(413\) 5427.24i 0.646627i
\(414\) 0 0
\(415\) 6687.80 0.791064
\(416\) 0 0
\(417\) 20839.8 2.44731
\(418\) 0 0
\(419\) 4222.04i 0.492267i 0.969236 + 0.246134i \(0.0791602\pi\)
−0.969236 + 0.246134i \(0.920840\pi\)
\(420\) 0 0
\(421\) 5164.92i 0.597917i 0.954266 + 0.298958i \(0.0966391\pi\)
−0.954266 + 0.298958i \(0.903361\pi\)
\(422\) 0 0
\(423\) −16490.7 −1.89552
\(424\) 0 0
\(425\) 578.408 0.0660163
\(426\) 0 0
\(427\) − 6219.14i − 0.704837i
\(428\) 0 0
\(429\) − 31943.1i − 3.59493i
\(430\) 0 0
\(431\) −7476.41 −0.835559 −0.417780 0.908548i \(-0.637192\pi\)
−0.417780 + 0.908548i \(0.637192\pi\)
\(432\) 0 0
\(433\) −11289.7 −1.25299 −0.626497 0.779424i \(-0.715512\pi\)
−0.626497 + 0.779424i \(0.715512\pi\)
\(434\) 0 0
\(435\) 2887.98i 0.318317i
\(436\) 0 0
\(437\) 5612.59i 0.614386i
\(438\) 0 0
\(439\) −1800.79 −0.195779 −0.0978895 0.995197i \(-0.531209\pi\)
−0.0978895 + 0.995197i \(0.531209\pi\)
\(440\) 0 0
\(441\) 12959.5 1.39936
\(442\) 0 0
\(443\) 7020.76i 0.752972i 0.926422 + 0.376486i \(0.122868\pi\)
−0.926422 + 0.376486i \(0.877132\pi\)
\(444\) 0 0
\(445\) 12919.6i 1.37629i
\(446\) 0 0
\(447\) 16001.9 1.69321
\(448\) 0 0
\(449\) −3318.29 −0.348774 −0.174387 0.984677i \(-0.555794\pi\)
−0.174387 + 0.984677i \(0.555794\pi\)
\(450\) 0 0
\(451\) − 8026.35i − 0.838018i
\(452\) 0 0
\(453\) 25573.2i 2.65239i
\(454\) 0 0
\(455\) −10700.9 −1.10256
\(456\) 0 0
\(457\) −4468.38 −0.457378 −0.228689 0.973500i \(-0.573444\pi\)
−0.228689 + 0.973500i \(0.573444\pi\)
\(458\) 0 0
\(459\) 8525.84i 0.866998i
\(460\) 0 0
\(461\) − 1179.45i − 0.119159i −0.998224 0.0595795i \(-0.981024\pi\)
0.998224 0.0595795i \(-0.0189760\pi\)
\(462\) 0 0
\(463\) −13763.1 −1.38148 −0.690742 0.723101i \(-0.742716\pi\)
−0.690742 + 0.723101i \(0.742716\pi\)
\(464\) 0 0
\(465\) 8590.11 0.856682
\(466\) 0 0
\(467\) 17014.1i 1.68591i 0.537984 + 0.842955i \(0.319186\pi\)
−0.537984 + 0.842955i \(0.680814\pi\)
\(468\) 0 0
\(469\) − 6515.49i − 0.641487i
\(470\) 0 0
\(471\) 18959.7 1.85481
\(472\) 0 0
\(473\) −4507.28 −0.438150
\(474\) 0 0
\(475\) 724.168i 0.0699518i
\(476\) 0 0
\(477\) − 4796.59i − 0.460421i
\(478\) 0 0
\(479\) 18976.7 1.81017 0.905083 0.425236i \(-0.139809\pi\)
0.905083 + 0.425236i \(0.139809\pi\)
\(480\) 0 0
\(481\) 1006.79 0.0954379
\(482\) 0 0
\(483\) − 10622.3i − 1.00068i
\(484\) 0 0
\(485\) − 5508.55i − 0.515733i
\(486\) 0 0
\(487\) 10579.6 0.984408 0.492204 0.870480i \(-0.336191\pi\)
0.492204 + 0.870480i \(0.336191\pi\)
\(488\) 0 0
\(489\) −28250.7 −2.61256
\(490\) 0 0
\(491\) − 15200.9i − 1.39716i −0.715533 0.698579i \(-0.753816\pi\)
0.715533 0.698579i \(-0.246184\pi\)
\(492\) 0 0
\(493\) − 1013.21i − 0.0925614i
\(494\) 0 0
\(495\) 24419.3 2.21730
\(496\) 0 0
\(497\) 4878.77 0.440327
\(498\) 0 0
\(499\) − 2553.92i − 0.229117i −0.993417 0.114558i \(-0.963455\pi\)
0.993417 0.114558i \(-0.0365453\pi\)
\(500\) 0 0
\(501\) − 11966.8i − 1.06714i
\(502\) 0 0
\(503\) 4863.70 0.431137 0.215568 0.976489i \(-0.430840\pi\)
0.215568 + 0.976489i \(0.430840\pi\)
\(504\) 0 0
\(505\) −11441.5 −1.00820
\(506\) 0 0
\(507\) − 55247.0i − 4.83946i
\(508\) 0 0
\(509\) − 17659.5i − 1.53781i −0.639366 0.768903i \(-0.720803\pi\)
0.639366 0.768903i \(-0.279197\pi\)
\(510\) 0 0
\(511\) −5581.35 −0.483179
\(512\) 0 0
\(513\) −10674.4 −0.918685
\(514\) 0 0
\(515\) 21685.3i 1.85547i
\(516\) 0 0
\(517\) − 12223.3i − 1.03980i
\(518\) 0 0
\(519\) −25018.0 −2.11593
\(520\) 0 0
\(521\) 3778.19 0.317707 0.158853 0.987302i \(-0.449220\pi\)
0.158853 + 0.987302i \(0.449220\pi\)
\(522\) 0 0
\(523\) − 2792.67i − 0.233489i −0.993162 0.116745i \(-0.962754\pi\)
0.993162 0.116745i \(-0.0372459\pi\)
\(524\) 0 0
\(525\) − 1370.54i − 0.113934i
\(526\) 0 0
\(527\) −3013.74 −0.249109
\(528\) 0 0
\(529\) 2403.34 0.197529
\(530\) 0 0
\(531\) − 29025.3i − 2.37211i
\(532\) 0 0
\(533\) − 18810.7i − 1.52867i
\(534\) 0 0
\(535\) 20471.1 1.65429
\(536\) 0 0
\(537\) −9596.35 −0.771160
\(538\) 0 0
\(539\) 9605.85i 0.767631i
\(540\) 0 0
\(541\) 2062.12i 0.163877i 0.996637 + 0.0819383i \(0.0261111\pi\)
−0.996637 + 0.0819383i \(0.973889\pi\)
\(542\) 0 0
\(543\) −5098.33 −0.402928
\(544\) 0 0
\(545\) −5015.44 −0.394198
\(546\) 0 0
\(547\) − 16562.0i − 1.29459i −0.762239 0.647296i \(-0.775900\pi\)
0.762239 0.647296i \(-0.224100\pi\)
\(548\) 0 0
\(549\) 33260.4i 2.58565i
\(550\) 0 0
\(551\) 1268.54 0.0980795
\(552\) 0 0
\(553\) −487.057 −0.0374535
\(554\) 0 0
\(555\) 1163.87i 0.0890157i
\(556\) 0 0
\(557\) 9272.94i 0.705399i 0.935737 + 0.352699i \(0.114736\pi\)
−0.935737 + 0.352699i \(0.885264\pi\)
\(558\) 0 0
\(559\) −10563.3 −0.799251
\(560\) 0 0
\(561\) −12955.4 −0.975005
\(562\) 0 0
\(563\) 62.0181i 0.00464254i 0.999997 + 0.00232127i \(0.000738884\pi\)
−0.999997 + 0.00232127i \(0.999261\pi\)
\(564\) 0 0
\(565\) − 9047.71i − 0.673699i
\(566\) 0 0
\(567\) 6174.00 0.457290
\(568\) 0 0
\(569\) −10015.9 −0.737938 −0.368969 0.929442i \(-0.620289\pi\)
−0.368969 + 0.929442i \(0.620289\pi\)
\(570\) 0 0
\(571\) 15543.3i 1.13917i 0.821931 + 0.569587i \(0.192897\pi\)
−0.821931 + 0.569587i \(0.807103\pi\)
\(572\) 0 0
\(573\) − 7791.26i − 0.568036i
\(574\) 0 0
\(575\) 1879.95 0.136346
\(576\) 0 0
\(577\) 3776.77 0.272494 0.136247 0.990675i \(-0.456496\pi\)
0.136247 + 0.990675i \(0.456496\pi\)
\(578\) 0 0
\(579\) 6004.42i 0.430976i
\(580\) 0 0
\(581\) 5559.67i 0.396995i
\(582\) 0 0
\(583\) 3555.33 0.252567
\(584\) 0 0
\(585\) 57229.3 4.04469
\(586\) 0 0
\(587\) − 596.285i − 0.0419273i −0.999780 0.0209637i \(-0.993327\pi\)
0.999780 0.0209637i \(-0.00667343\pi\)
\(588\) 0 0
\(589\) − 3773.21i − 0.263960i
\(590\) 0 0
\(591\) 27941.3 1.94476
\(592\) 0 0
\(593\) 20179.6 1.39743 0.698717 0.715398i \(-0.253755\pi\)
0.698717 + 0.715398i \(0.253755\pi\)
\(594\) 0 0
\(595\) 4340.06i 0.299034i
\(596\) 0 0
\(597\) 13413.5i 0.919558i
\(598\) 0 0
\(599\) −13076.3 −0.891960 −0.445980 0.895043i \(-0.647145\pi\)
−0.445980 + 0.895043i \(0.647145\pi\)
\(600\) 0 0
\(601\) 16866.9 1.14479 0.572393 0.819980i \(-0.306015\pi\)
0.572393 + 0.819980i \(0.306015\pi\)
\(602\) 0 0
\(603\) 34845.3i 2.35325i
\(604\) 0 0
\(605\) 2319.18i 0.155848i
\(606\) 0 0
\(607\) 19953.0 1.33421 0.667107 0.744962i \(-0.267532\pi\)
0.667107 + 0.744962i \(0.267532\pi\)
\(608\) 0 0
\(609\) −2400.82 −0.159747
\(610\) 0 0
\(611\) − 28646.6i − 1.89676i
\(612\) 0 0
\(613\) − 7214.32i − 0.475340i −0.971346 0.237670i \(-0.923616\pi\)
0.971346 0.237670i \(-0.0763837\pi\)
\(614\) 0 0
\(615\) 21745.6 1.42580
\(616\) 0 0
\(617\) −22212.9 −1.44936 −0.724681 0.689084i \(-0.758013\pi\)
−0.724681 + 0.689084i \(0.758013\pi\)
\(618\) 0 0
\(619\) − 4349.02i − 0.282394i −0.989982 0.141197i \(-0.954905\pi\)
0.989982 0.141197i \(-0.0450951\pi\)
\(620\) 0 0
\(621\) 27710.8i 1.79065i
\(622\) 0 0
\(623\) −10740.2 −0.690688
\(624\) 0 0
\(625\) −17329.2 −1.10907
\(626\) 0 0
\(627\) − 16220.2i − 1.03313i
\(628\) 0 0
\(629\) − 408.331i − 0.0258843i
\(630\) 0 0
\(631\) 10127.9 0.638966 0.319483 0.947592i \(-0.396491\pi\)
0.319483 + 0.947592i \(0.396491\pi\)
\(632\) 0 0
\(633\) 15835.9 0.994347
\(634\) 0 0
\(635\) − 25602.5i − 1.60001i
\(636\) 0 0
\(637\) 22512.4i 1.40027i
\(638\) 0 0
\(639\) −26092.0 −1.61531
\(640\) 0 0
\(641\) −17624.6 −1.08601 −0.543003 0.839731i \(-0.682713\pi\)
−0.543003 + 0.839731i \(0.682713\pi\)
\(642\) 0 0
\(643\) 27238.1i 1.67055i 0.549829 + 0.835277i \(0.314693\pi\)
−0.549829 + 0.835277i \(0.685307\pi\)
\(644\) 0 0
\(645\) − 12211.5i − 0.745468i
\(646\) 0 0
\(647\) 28702.1 1.74404 0.872021 0.489469i \(-0.162809\pi\)
0.872021 + 0.489469i \(0.162809\pi\)
\(648\) 0 0
\(649\) 21514.1 1.30124
\(650\) 0 0
\(651\) 7141.09i 0.429925i
\(652\) 0 0
\(653\) − 7937.84i − 0.475700i −0.971302 0.237850i \(-0.923557\pi\)
0.971302 0.237850i \(-0.0764426\pi\)
\(654\) 0 0
\(655\) −8426.62 −0.502680
\(656\) 0 0
\(657\) 29849.5 1.77251
\(658\) 0 0
\(659\) 3675.29i 0.217252i 0.994083 + 0.108626i \(0.0346451\pi\)
−0.994083 + 0.108626i \(0.965355\pi\)
\(660\) 0 0
\(661\) − 4205.49i − 0.247466i −0.992316 0.123733i \(-0.960513\pi\)
0.992316 0.123733i \(-0.0394866\pi\)
\(662\) 0 0
\(663\) −30362.5 −1.77855
\(664\) 0 0
\(665\) −5433.76 −0.316860
\(666\) 0 0
\(667\) − 3293.15i − 0.191171i
\(668\) 0 0
\(669\) 48334.3i 2.79329i
\(670\) 0 0
\(671\) −24653.3 −1.41838
\(672\) 0 0
\(673\) −4634.55 −0.265452 −0.132726 0.991153i \(-0.542373\pi\)
−0.132726 + 0.991153i \(0.542373\pi\)
\(674\) 0 0
\(675\) 3575.40i 0.203877i
\(676\) 0 0
\(677\) 5327.42i 0.302437i 0.988500 + 0.151218i \(0.0483196\pi\)
−0.988500 + 0.151218i \(0.951680\pi\)
\(678\) 0 0
\(679\) 4579.34 0.258820
\(680\) 0 0
\(681\) −33429.6 −1.88109
\(682\) 0 0
\(683\) 2816.05i 0.157764i 0.996884 + 0.0788822i \(0.0251351\pi\)
−0.996884 + 0.0788822i \(0.974865\pi\)
\(684\) 0 0
\(685\) − 11703.8i − 0.652816i
\(686\) 0 0
\(687\) −6077.77 −0.337528
\(688\) 0 0
\(689\) 8332.33 0.460720
\(690\) 0 0
\(691\) 16910.1i 0.930955i 0.885060 + 0.465477i \(0.154117\pi\)
−0.885060 + 0.465477i \(0.845883\pi\)
\(692\) 0 0
\(693\) 20300.1i 1.11275i
\(694\) 0 0
\(695\) −27674.6 −1.51044
\(696\) 0 0
\(697\) −7629.19 −0.414600
\(698\) 0 0
\(699\) 6064.67i 0.328164i
\(700\) 0 0
\(701\) − 30588.4i − 1.64808i −0.566528 0.824042i \(-0.691714\pi\)
0.566528 0.824042i \(-0.308286\pi\)
\(702\) 0 0
\(703\) 511.232 0.0274274
\(704\) 0 0
\(705\) 33116.2 1.76912
\(706\) 0 0
\(707\) − 9511.48i − 0.505963i
\(708\) 0 0
\(709\) − 21242.9i − 1.12524i −0.826716 0.562619i \(-0.809794\pi\)
0.826716 0.562619i \(-0.190206\pi\)
\(710\) 0 0
\(711\) 2604.82 0.137396
\(712\) 0 0
\(713\) −9795.28 −0.514496
\(714\) 0 0
\(715\) 42419.5i 2.21874i
\(716\) 0 0
\(717\) − 34831.3i − 1.81423i
\(718\) 0 0
\(719\) −12452.7 −0.645907 −0.322954 0.946415i \(-0.604676\pi\)
−0.322954 + 0.946415i \(0.604676\pi\)
\(720\) 0 0
\(721\) −18027.3 −0.931168
\(722\) 0 0
\(723\) 52316.8i 2.69112i
\(724\) 0 0
\(725\) − 424.901i − 0.0217661i
\(726\) 0 0
\(727\) −27178.3 −1.38650 −0.693251 0.720696i \(-0.743822\pi\)
−0.693251 + 0.720696i \(0.743822\pi\)
\(728\) 0 0
\(729\) 22321.3 1.13404
\(730\) 0 0
\(731\) 4284.25i 0.216770i
\(732\) 0 0
\(733\) − 21999.7i − 1.10856i −0.832329 0.554282i \(-0.812993\pi\)
0.832329 0.554282i \(-0.187007\pi\)
\(734\) 0 0
\(735\) −26024.9 −1.30605
\(736\) 0 0
\(737\) −25828.1 −1.29089
\(738\) 0 0
\(739\) − 13644.0i − 0.679166i −0.940576 0.339583i \(-0.889714\pi\)
0.940576 0.339583i \(-0.110286\pi\)
\(740\) 0 0
\(741\) − 38013.9i − 1.88458i
\(742\) 0 0
\(743\) −13980.2 −0.690286 −0.345143 0.938550i \(-0.612170\pi\)
−0.345143 + 0.938550i \(0.612170\pi\)
\(744\) 0 0
\(745\) −21250.1 −1.04502
\(746\) 0 0
\(747\) − 29733.5i − 1.45635i
\(748\) 0 0
\(749\) 17018.0i 0.830204i
\(750\) 0 0
\(751\) 21138.7 1.02711 0.513557 0.858055i \(-0.328327\pi\)
0.513557 + 0.858055i \(0.328327\pi\)
\(752\) 0 0
\(753\) −30190.6 −1.46110
\(754\) 0 0
\(755\) − 33960.5i − 1.63702i
\(756\) 0 0
\(757\) 28328.1i 1.36011i 0.733162 + 0.680054i \(0.238044\pi\)
−0.733162 + 0.680054i \(0.761956\pi\)
\(758\) 0 0
\(759\) −42107.8 −2.01372
\(760\) 0 0
\(761\) 1093.79 0.0521023 0.0260512 0.999661i \(-0.491707\pi\)
0.0260512 + 0.999661i \(0.491707\pi\)
\(762\) 0 0
\(763\) − 4169.41i − 0.197828i
\(764\) 0 0
\(765\) − 23210.9i − 1.09699i
\(766\) 0 0
\(767\) 50420.8 2.37365
\(768\) 0 0
\(769\) −1659.21 −0.0778059 −0.0389029 0.999243i \(-0.512386\pi\)
−0.0389029 + 0.999243i \(0.512386\pi\)
\(770\) 0 0
\(771\) 32607.7i 1.52314i
\(772\) 0 0
\(773\) 7537.89i 0.350736i 0.984503 + 0.175368i \(0.0561115\pi\)
−0.984503 + 0.175368i \(0.943888\pi\)
\(774\) 0 0
\(775\) −1263.84 −0.0585787
\(776\) 0 0
\(777\) −967.546 −0.0446725
\(778\) 0 0
\(779\) − 9551.76i − 0.439316i
\(780\) 0 0
\(781\) − 19339.9i − 0.886091i
\(782\) 0 0
\(783\) 6263.11 0.285856
\(784\) 0 0
\(785\) −25177.9 −1.14476
\(786\) 0 0
\(787\) − 9304.20i − 0.421422i −0.977548 0.210711i \(-0.932422\pi\)
0.977548 0.210711i \(-0.0675778\pi\)
\(788\) 0 0
\(789\) 21987.8i 0.992126i
\(790\) 0 0
\(791\) 7521.50 0.338096
\(792\) 0 0
\(793\) −57777.8 −2.58733
\(794\) 0 0
\(795\) 9632.39i 0.429718i
\(796\) 0 0
\(797\) − 38619.5i − 1.71640i −0.513314 0.858201i \(-0.671582\pi\)
0.513314 0.858201i \(-0.328418\pi\)
\(798\) 0 0
\(799\) −11618.4 −0.514431
\(800\) 0 0
\(801\) 57439.7 2.53375
\(802\) 0 0
\(803\) 22125.1i 0.972324i
\(804\) 0 0
\(805\) 14106.1i 0.617608i
\(806\) 0 0
\(807\) 4307.88 0.187912
\(808\) 0 0
\(809\) 18550.5 0.806179 0.403090 0.915160i \(-0.367936\pi\)
0.403090 + 0.915160i \(0.367936\pi\)
\(810\) 0 0
\(811\) 3704.80i 0.160411i 0.996778 + 0.0802054i \(0.0255576\pi\)
−0.996778 + 0.0802054i \(0.974442\pi\)
\(812\) 0 0
\(813\) 32163.7i 1.38749i
\(814\) 0 0
\(815\) 37516.2 1.61243
\(816\) 0 0
\(817\) −5363.90 −0.229693
\(818\) 0 0
\(819\) 47575.6i 2.02982i
\(820\) 0 0
\(821\) − 5544.86i − 0.235709i −0.993031 0.117854i \(-0.962398\pi\)
0.993031 0.117854i \(-0.0376016\pi\)
\(822\) 0 0
\(823\) 3915.39 0.165835 0.0829174 0.996556i \(-0.473576\pi\)
0.0829174 + 0.996556i \(0.473576\pi\)
\(824\) 0 0
\(825\) −5432.98 −0.229275
\(826\) 0 0
\(827\) 35091.2i 1.47550i 0.675073 + 0.737751i \(0.264112\pi\)
−0.675073 + 0.737751i \(0.735888\pi\)
\(828\) 0 0
\(829\) 3532.71i 0.148005i 0.997258 + 0.0740025i \(0.0235773\pi\)
−0.997258 + 0.0740025i \(0.976423\pi\)
\(830\) 0 0
\(831\) −55156.0 −2.30245
\(832\) 0 0
\(833\) 9130.53 0.379777
\(834\) 0 0
\(835\) 15891.6i 0.658624i
\(836\) 0 0
\(837\) − 18629.3i − 0.769320i
\(838\) 0 0
\(839\) 30081.1 1.23780 0.618900 0.785470i \(-0.287579\pi\)
0.618900 + 0.785470i \(0.287579\pi\)
\(840\) 0 0
\(841\) 23644.7 0.969482
\(842\) 0 0
\(843\) 4852.27i 0.198246i
\(844\) 0 0
\(845\) 73366.5i 2.98685i
\(846\) 0 0
\(847\) −1927.97 −0.0782121
\(848\) 0 0
\(849\) 58766.4 2.37557
\(850\) 0 0
\(851\) − 1327.16i − 0.0534601i
\(852\) 0 0
\(853\) − 11222.1i − 0.450453i −0.974306 0.225226i \(-0.927688\pi\)
0.974306 0.225226i \(-0.0723122\pi\)
\(854\) 0 0
\(855\) 29060.2 1.16238
\(856\) 0 0
\(857\) 27486.0 1.09557 0.547785 0.836619i \(-0.315471\pi\)
0.547785 + 0.836619i \(0.315471\pi\)
\(858\) 0 0
\(859\) − 14976.2i − 0.594855i −0.954744 0.297427i \(-0.903871\pi\)
0.954744 0.297427i \(-0.0961287\pi\)
\(860\) 0 0
\(861\) 18077.5i 0.715538i
\(862\) 0 0
\(863\) −9419.49 −0.371545 −0.185772 0.982593i \(-0.559479\pi\)
−0.185772 + 0.982593i \(0.559479\pi\)
\(864\) 0 0
\(865\) 33223.2 1.30592
\(866\) 0 0
\(867\) − 31549.9i − 1.23586i
\(868\) 0 0
\(869\) 1930.75i 0.0753694i
\(870\) 0 0
\(871\) −60531.0 −2.35478
\(872\) 0 0
\(873\) −24490.7 −0.949465
\(874\) 0 0
\(875\) − 12787.6i − 0.494059i
\(876\) 0 0
\(877\) − 21069.8i − 0.811263i −0.914037 0.405631i \(-0.867052\pi\)
0.914037 0.405631i \(-0.132948\pi\)
\(878\) 0 0
\(879\) −60298.2 −2.31378
\(880\) 0 0
\(881\) −14511.7 −0.554952 −0.277476 0.960733i \(-0.589498\pi\)
−0.277476 + 0.960733i \(0.589498\pi\)
\(882\) 0 0
\(883\) − 26515.9i − 1.01057i −0.862953 0.505284i \(-0.831388\pi\)
0.862953 0.505284i \(-0.168612\pi\)
\(884\) 0 0
\(885\) 58287.8i 2.21392i
\(886\) 0 0
\(887\) 29223.6 1.10624 0.553119 0.833102i \(-0.313437\pi\)
0.553119 + 0.833102i \(0.313437\pi\)
\(888\) 0 0
\(889\) 21283.8 0.802964
\(890\) 0 0
\(891\) − 24474.4i − 0.920227i
\(892\) 0 0
\(893\) − 14546.3i − 0.545099i
\(894\) 0 0
\(895\) 12743.7 0.475949
\(896\) 0 0
\(897\) −98684.4 −3.67333
\(898\) 0 0
\(899\) 2213.90i 0.0821332i
\(900\) 0 0
\(901\) − 3379.41i − 0.124955i
\(902\) 0 0
\(903\) 10151.6 0.374113
\(904\) 0 0
\(905\) 6770.44 0.248682
\(906\) 0 0
\(907\) − 32139.3i − 1.17659i −0.808646 0.588296i \(-0.799799\pi\)
0.808646 0.588296i \(-0.200201\pi\)
\(908\) 0 0
\(909\) 50868.1i 1.85609i
\(910\) 0 0
\(911\) 21430.7 0.779396 0.389698 0.920943i \(-0.372579\pi\)
0.389698 + 0.920943i \(0.372579\pi\)
\(912\) 0 0
\(913\) 22039.1 0.798891
\(914\) 0 0
\(915\) − 66792.7i − 2.41322i
\(916\) 0 0
\(917\) − 7005.17i − 0.252270i
\(918\) 0 0
\(919\) −11676.1 −0.419106 −0.209553 0.977797i \(-0.567201\pi\)
−0.209553 + 0.977797i \(0.567201\pi\)
\(920\) 0 0
\(921\) 16266.1 0.581962
\(922\) 0 0
\(923\) − 45325.3i − 1.61636i
\(924\) 0 0
\(925\) − 171.238i − 0.00608677i
\(926\) 0 0
\(927\) 96411.5 3.41593
\(928\) 0 0
\(929\) 41969.7 1.48222 0.741110 0.671383i \(-0.234300\pi\)
0.741110 + 0.671383i \(0.234300\pi\)
\(930\) 0 0
\(931\) 11431.4i 0.402417i
\(932\) 0 0
\(933\) − 94622.6i − 3.32026i
\(934\) 0 0
\(935\) 17204.4 0.601759
\(936\) 0 0
\(937\) 45948.6 1.60200 0.801001 0.598663i \(-0.204301\pi\)
0.801001 + 0.598663i \(0.204301\pi\)
\(938\) 0 0
\(939\) 71155.0i 2.47290i
\(940\) 0 0
\(941\) − 15000.1i − 0.519648i −0.965656 0.259824i \(-0.916335\pi\)
0.965656 0.259824i \(-0.0836645\pi\)
\(942\) 0 0
\(943\) −24796.4 −0.856292
\(944\) 0 0
\(945\) −26827.8 −0.923502
\(946\) 0 0
\(947\) − 37423.2i − 1.28415i −0.766642 0.642075i \(-0.778074\pi\)
0.766642 0.642075i \(-0.221926\pi\)
\(948\) 0 0
\(949\) 51852.6i 1.77366i
\(950\) 0 0
\(951\) 69404.8 2.36657
\(952\) 0 0
\(953\) 55403.0 1.88319 0.941594 0.336750i \(-0.109328\pi\)
0.941594 + 0.336750i \(0.109328\pi\)
\(954\) 0 0
\(955\) 10346.6i 0.350584i
\(956\) 0 0
\(957\) 9517.09i 0.321467i
\(958\) 0 0
\(959\) 9729.54 0.327615
\(960\) 0 0
\(961\) −23205.9 −0.778956
\(962\) 0 0
\(963\) − 91013.4i − 3.04555i
\(964\) 0 0
\(965\) − 7973.70i − 0.265992i
\(966\) 0 0
\(967\) −31440.5 −1.04556 −0.522780 0.852467i \(-0.675105\pi\)
−0.522780 + 0.852467i \(0.675105\pi\)
\(968\) 0 0
\(969\) −15417.6 −0.511129
\(970\) 0 0
\(971\) 19010.3i 0.628290i 0.949375 + 0.314145i \(0.101718\pi\)
−0.949375 + 0.314145i \(0.898282\pi\)
\(972\) 0 0
\(973\) − 23006.3i − 0.758015i
\(974\) 0 0
\(975\) −12732.8 −0.418232
\(976\) 0 0
\(977\) −8504.01 −0.278472 −0.139236 0.990259i \(-0.544465\pi\)
−0.139236 + 0.990259i \(0.544465\pi\)
\(978\) 0 0
\(979\) 42575.4i 1.38990i
\(980\) 0 0
\(981\) 22298.3i 0.725720i
\(982\) 0 0
\(983\) 52828.3 1.71410 0.857051 0.515232i \(-0.172294\pi\)
0.857051 + 0.515232i \(0.172294\pi\)
\(984\) 0 0
\(985\) −37105.3 −1.20028
\(986\) 0 0
\(987\) 27530.0i 0.887831i
\(988\) 0 0
\(989\) 13924.7i 0.447705i
\(990\) 0 0
\(991\) −13275.5 −0.425541 −0.212770 0.977102i \(-0.568249\pi\)
−0.212770 + 0.977102i \(0.568249\pi\)
\(992\) 0 0
\(993\) −73326.1 −2.34334
\(994\) 0 0
\(995\) − 17812.7i − 0.567538i
\(996\) 0 0
\(997\) 20858.1i 0.662570i 0.943531 + 0.331285i \(0.107482\pi\)
−0.943531 + 0.331285i \(0.892518\pi\)
\(998\) 0 0
\(999\) 2524.08 0.0799382
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 256.4.b.h.129.4 4
4.3 odd 2 256.4.b.i.129.1 4
8.3 odd 2 256.4.b.i.129.4 4
8.5 even 2 inner 256.4.b.h.129.1 4
16.3 odd 4 128.4.a.h.1.2 yes 2
16.5 even 4 128.4.a.g.1.2 yes 2
16.11 odd 4 128.4.a.e.1.1 2
16.13 even 4 128.4.a.f.1.1 yes 2
48.5 odd 4 1152.4.a.t.1.1 2
48.11 even 4 1152.4.a.s.1.1 2
48.29 odd 4 1152.4.a.r.1.2 2
48.35 even 4 1152.4.a.q.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
128.4.a.e.1.1 2 16.11 odd 4
128.4.a.f.1.1 yes 2 16.13 even 4
128.4.a.g.1.2 yes 2 16.5 even 4
128.4.a.h.1.2 yes 2 16.3 odd 4
256.4.b.h.129.1 4 8.5 even 2 inner
256.4.b.h.129.4 4 1.1 even 1 trivial
256.4.b.i.129.1 4 4.3 odd 2
256.4.b.i.129.4 4 8.3 odd 2
1152.4.a.q.1.2 2 48.35 even 4
1152.4.a.r.1.2 2 48.29 odd 4
1152.4.a.s.1.1 2 48.11 even 4
1152.4.a.t.1.1 2 48.5 odd 4