Properties

Label 256.8.b.d.129.2
Level $256$
Weight $8$
Character 256.129
Analytic conductor $79.971$
Analytic rank $0$
Dimension $2$
CM discriminant -4
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [256,8,Mod(129,256)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(256, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1]))
 
N = Newforms(chi, 8, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("256.129");
 
S:= CuspForms(chi, 8);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 256 = 2^{8} \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 256.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(79.9705665239\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 32)
Sato-Tate group: $\mathrm{U}(1)[D_{2}]$

Embedding invariants

Embedding label 129.2
Root \(1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 256.129
Dual form 256.8.b.d.129.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+58.0000i q^{5} +2187.00 q^{9} -8898.00i q^{13} -40094.0 q^{17} +74761.0 q^{25} +233230. i q^{29} -563974. i q^{37} -9530.00 q^{41} +126846. i q^{45} -823543. q^{49} +798602. i q^{53} -3.50533e6i q^{61} +516084. q^{65} -3.91742e6 q^{73} +4.78297e6 q^{81} -2.32545e6i q^{85} -9.24617e6 q^{89} -1.75674e7 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 4374 q^{9} - 80188 q^{17} + 149522 q^{25} - 19060 q^{41} - 1647086 q^{49} + 1032168 q^{65} - 7834836 q^{73} + 9565938 q^{81} - 18492340 q^{89} - 35134812 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/256\mathbb{Z}\right)^\times\).

\(n\) \(5\) \(255\)
\(\chi(n)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(4\) 0 0
\(5\) 58.0000i 0.207507i 0.994603 + 0.103754i \(0.0330853\pi\)
−0.994603 + 0.103754i \(0.966915\pi\)
\(6\) 0 0
\(7\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(8\) 0 0
\(9\) 2187.00 1.00000
\(10\) 0 0
\(11\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(12\) 0 0
\(13\) − 8898.00i − 1.12329i −0.827379 0.561643i \(-0.810169\pi\)
0.827379 0.561643i \(-0.189831\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −40094.0 −1.97928 −0.989642 0.143557i \(-0.954146\pi\)
−0.989642 + 0.143557i \(0.954146\pi\)
\(18\) 0 0
\(19\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(24\) 0 0
\(25\) 74761.0 0.956941
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 233230.i 1.77579i 0.460047 + 0.887895i \(0.347833\pi\)
−0.460047 + 0.887895i \(0.652167\pi\)
\(30\) 0 0
\(31\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) − 563974.i − 1.83043i −0.402966 0.915215i \(-0.632021\pi\)
0.402966 0.915215i \(-0.367979\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −9530.00 −0.0215948 −0.0107974 0.999942i \(-0.503437\pi\)
−0.0107974 + 0.999942i \(0.503437\pi\)
\(42\) 0 0
\(43\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(44\) 0 0
\(45\) 126846.i 0.207507i
\(46\) 0 0
\(47\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(48\) 0 0
\(49\) −823543. −1.00000
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 798602.i 0.736826i 0.929662 + 0.368413i \(0.120099\pi\)
−0.929662 + 0.368413i \(0.879901\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(60\) 0 0
\(61\) − 3.50533e6i − 1.97731i −0.150208 0.988654i \(-0.547994\pi\)
0.150208 0.988654i \(-0.452006\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 516084. 0.233090
\(66\) 0 0
\(67\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(72\) 0 0
\(73\) −3.91742e6 −1.17861 −0.589305 0.807911i \(-0.700598\pi\)
−0.589305 + 0.807911i \(0.700598\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(80\) 0 0
\(81\) 4.78297e6 1.00000
\(82\) 0 0
\(83\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(84\) 0 0
\(85\) − 2.32545e6i − 0.410716i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −9.24617e6 −1.39026 −0.695131 0.718883i \(-0.744654\pi\)
−0.695131 + 0.718883i \(0.744654\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −1.75674e7 −1.95437 −0.977185 0.212392i \(-0.931875\pi\)
−0.977185 + 0.212392i \(0.931875\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) − 1.33042e7i − 1.28488i −0.766334 0.642442i \(-0.777921\pi\)
0.766334 0.642442i \(-0.222079\pi\)
\(102\) 0 0
\(103\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(108\) 0 0
\(109\) − 2.41162e7i − 1.78368i −0.452352 0.891839i \(-0.649415\pi\)
0.452352 0.891839i \(-0.350585\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −2.91247e7 −1.89883 −0.949417 0.314017i \(-0.898325\pi\)
−0.949417 + 0.314017i \(0.898325\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) − 1.94599e7i − 1.12329i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 1.94872e7 1.00000
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 8.86739e6i 0.406079i
\(126\) 0 0
\(127\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −4.60312e7 −1.52943 −0.764716 0.644367i \(-0.777121\pi\)
−0.764716 + 0.644367i \(0.777121\pi\)
\(138\) 0 0
\(139\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) −1.35273e7 −0.368489
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) − 7.31577e7i − 1.81179i −0.423502 0.905895i \(-0.639199\pi\)
0.423502 0.905895i \(-0.360801\pi\)
\(150\) 0 0
\(151\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(152\) 0 0
\(153\) −8.76856e7 −1.97928
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) − 9.09715e7i − 1.87610i −0.346497 0.938051i \(-0.612629\pi\)
0.346497 0.938051i \(-0.387371\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(168\) 0 0
\(169\) −1.64259e7 −0.261773
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) − 6.55688e7i − 0.962800i −0.876501 0.481400i \(-0.840129\pi\)
0.876501 0.481400i \(-0.159871\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(180\) 0 0
\(181\) 1.45860e8i 1.82836i 0.405309 + 0.914180i \(0.367164\pi\)
−0.405309 + 0.914180i \(0.632836\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 3.27105e7 0.379827
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(192\) 0 0
\(193\) −1.05243e8 −1.05377 −0.526883 0.849938i \(-0.676639\pi\)
−0.526883 + 0.849938i \(0.676639\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) − 1.02733e8i − 0.957363i −0.877989 0.478681i \(-0.841115\pi\)
0.877989 0.478681i \(-0.158885\pi\)
\(198\) 0 0
\(199\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) − 552740.i − 0.00448108i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 3.56756e8i 2.22330i
\(222\) 0 0
\(223\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(224\) 0 0
\(225\) 1.63502e8 0.956941
\(226\) 0 0
\(227\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(228\) 0 0
\(229\) − 2.17910e8i − 1.19909i −0.800339 0.599547i \(-0.795347\pi\)
0.800339 0.599547i \(-0.204653\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 2.90325e8 1.50362 0.751811 0.659379i \(-0.229181\pi\)
0.751811 + 0.659379i \(0.229181\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(240\) 0 0
\(241\) 1.08961e8 0.501433 0.250717 0.968061i \(-0.419334\pi\)
0.250717 + 0.968061i \(0.419334\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) − 4.77655e7i − 0.207507i
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −2.30304e8 −0.846323 −0.423161 0.906054i \(-0.639080\pi\)
−0.423161 + 0.906054i \(0.639080\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 5.10074e8i 1.77579i
\(262\) 0 0
\(263\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(264\) 0 0
\(265\) −4.63189e7 −0.152897
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 7.80336e7i 0.244427i 0.992504 + 0.122213i \(0.0389992\pi\)
−0.992504 + 0.122213i \(0.961001\pi\)
\(270\) 0 0
\(271\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 5.35122e8i 1.51277i 0.654126 + 0.756386i \(0.273037\pi\)
−0.654126 + 0.756386i \(0.726963\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 6.34409e8 1.70568 0.852839 0.522174i \(-0.174879\pi\)
0.852839 + 0.522174i \(0.174879\pi\)
\(282\) 0 0
\(283\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 1.19719e9 2.91757
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 5.87629e8i 1.36479i 0.730983 + 0.682396i \(0.239062\pi\)
−0.730983 + 0.682396i \(0.760938\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 2.03309e8 0.410306
\(306\) 0 0
\(307\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(312\) 0 0
\(313\) −5.25457e8 −0.968573 −0.484286 0.874910i \(-0.660921\pi\)
−0.484286 + 0.874910i \(0.660921\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 1.13287e9i 1.99744i 0.0505827 + 0.998720i \(0.483892\pi\)
−0.0505827 + 0.998720i \(0.516108\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) − 6.65223e8i − 1.07492i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(332\) 0 0
\(333\) − 1.23341e9i − 1.83043i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 6.05044e8 0.861157 0.430578 0.902553i \(-0.358310\pi\)
0.430578 + 0.902553i \(0.358310\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(348\) 0 0
\(349\) 1.50468e9i 1.89477i 0.320097 + 0.947385i \(0.396285\pi\)
−0.320097 + 0.947385i \(0.603715\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −1.64963e9 −1.99607 −0.998035 0.0626535i \(-0.980044\pi\)
−0.998035 + 0.0626535i \(0.980044\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(360\) 0 0
\(361\) 8.93872e8 1.00000
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) − 2.27210e8i − 0.244570i
\(366\) 0 0
\(367\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(368\) 0 0
\(369\) −2.08421e7 −0.0215948
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 1.03979e9i 1.03744i 0.854944 + 0.518720i \(0.173591\pi\)
−0.854944 + 0.518720i \(0.826409\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 2.07528e9 1.99472
\(378\) 0 0
\(379\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) − 1.94162e9i − 1.67240i −0.548422 0.836202i \(-0.684771\pi\)
0.548422 0.836202i \(-0.315229\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) − 1.34628e9i − 1.07986i −0.841709 0.539932i \(-0.818450\pi\)
0.841709 0.539932i \(-0.181550\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −8.84817e8 −0.685248 −0.342624 0.939473i \(-0.611316\pi\)
−0.342624 + 0.939473i \(0.611316\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 2.77412e8i 0.207507i
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) −2.38968e9 −1.72706 −0.863531 0.504296i \(-0.831752\pi\)
−0.863531 + 0.504296i \(0.831752\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(420\) 0 0
\(421\) − 1.58512e9i − 1.03532i −0.855586 0.517661i \(-0.826803\pi\)
0.855586 0.517661i \(-0.173197\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −2.99747e9 −1.89406
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(432\) 0 0
\(433\) −1.34596e9 −0.796757 −0.398378 0.917221i \(-0.630427\pi\)
−0.398378 + 0.917221i \(0.630427\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(440\) 0 0
\(441\) −1.80109e9 −1.00000
\(442\) 0 0
\(443\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(444\) 0 0
\(445\) − 5.36278e8i − 0.288489i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 2.71111e9 1.41346 0.706732 0.707481i \(-0.250168\pi\)
0.706732 + 0.707481i \(0.250168\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −1.02241e9 −0.501095 −0.250548 0.968104i \(-0.580611\pi\)
−0.250548 + 0.968104i \(0.580611\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) − 4.07657e9i − 1.93795i −0.247164 0.968974i \(-0.579499\pi\)
0.247164 0.968974i \(-0.420501\pi\)
\(462\) 0 0
\(463\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 1.74654e9i 0.736826i
\(478\) 0 0
\(479\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(480\) 0 0
\(481\) −5.01824e9 −2.05610
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) − 1.01891e9i − 0.405545i
\(486\) 0 0
\(487\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(492\) 0 0
\(493\) − 9.35112e9i − 3.51479i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(504\) 0 0
\(505\) 7.71643e8 0.266623
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 5.95022e9i 1.99996i 0.00646007 + 0.999979i \(0.497944\pi\)
−0.00646007 + 0.999979i \(0.502056\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 2.38452e9 0.738701 0.369350 0.929290i \(-0.379580\pi\)
0.369350 + 0.929290i \(0.379580\pi\)
\(522\) 0 0
\(523\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) −3.40483e9 −1.00000
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 8.47979e7i 0.0242572i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 7.36235e9i 1.99906i 0.0306534 + 0.999530i \(0.490241\pi\)
−0.0306534 + 0.999530i \(0.509759\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 1.39874e9 0.370126
\(546\) 0 0
\(547\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(548\) 0 0
\(549\) − 7.66616e9i − 1.97731i
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) − 2.15369e9i − 0.528067i −0.964513 0.264034i \(-0.914947\pi\)
0.964513 0.264034i \(-0.0850530\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(564\) 0 0
\(565\) − 1.68923e9i − 0.394022i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −6.84617e9 −1.55796 −0.778978 0.627052i \(-0.784262\pi\)
−0.778978 + 0.627052i \(0.784262\pi\)
\(570\) 0 0
\(571\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) −2.65224e9 −0.574775 −0.287387 0.957814i \(-0.592787\pi\)
−0.287387 + 0.957814i \(0.592787\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 1.12868e9 0.233090
\(586\) 0 0
\(587\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 7.08713e9 1.39566 0.697829 0.716265i \(-0.254150\pi\)
0.697829 + 0.716265i \(0.254150\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(600\) 0 0
\(601\) 1.05496e10 1.98233 0.991165 0.132637i \(-0.0423443\pi\)
0.991165 + 0.132637i \(0.0423443\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 1.13026e9i 0.207507i
\(606\) 0 0
\(607\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 9.50665e9i 1.66692i 0.552577 + 0.833462i \(0.313645\pi\)
−0.552577 + 0.833462i \(0.686355\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 2.16779e9 0.371551 0.185776 0.982592i \(-0.440520\pi\)
0.185776 + 0.982592i \(0.440520\pi\)
\(618\) 0 0
\(619\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 5.32639e9 0.872676
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 2.26120e10i 3.62294i
\(630\) 0 0
\(631\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 7.32789e9i 1.12329i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 5.92310e9 0.888272 0.444136 0.895959i \(-0.353511\pi\)
0.444136 + 0.895959i \(0.353511\pi\)
\(642\) 0 0
\(643\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) − 7.96894e9i − 1.11997i −0.828504 0.559983i \(-0.810808\pi\)
0.828504 0.559983i \(-0.189192\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) −8.56739e9 −1.17861
\(658\) 0 0
\(659\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(660\) 0 0
\(661\) − 1.15742e9i − 0.155879i −0.996958 0.0779394i \(-0.975166\pi\)
0.996958 0.0779394i \(-0.0248341\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 1.54182e10 1.94976 0.974879 0.222734i \(-0.0714982\pi\)
0.974879 + 0.222734i \(0.0714982\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) − 4.29286e9i − 0.531724i −0.964011 0.265862i \(-0.914343\pi\)
0.964011 0.265862i \(-0.0856566\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(684\) 0 0
\(685\) − 2.66981e9i − 0.317368i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 7.10596e9 0.827667
\(690\) 0 0
\(691\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 3.82096e8 0.0427423
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 1.77141e10i 1.94226i 0.238556 + 0.971129i \(0.423326\pi\)
−0.238556 + 0.971129i \(0.576674\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) − 1.64383e10i − 1.73219i −0.499877 0.866096i \(-0.666621\pi\)
0.499877 0.866096i \(-0.333379\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 1.74365e10i 1.69933i
\(726\) 0 0
\(727\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(728\) 0 0
\(729\) 1.04604e10 1.00000
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 1.85321e10i 1.73804i 0.494773 + 0.869022i \(0.335251\pi\)
−0.494773 + 0.869022i \(0.664749\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(744\) 0 0
\(745\) 4.24315e9 0.375959
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) − 1.72709e10i − 1.44703i −0.690307 0.723516i \(-0.742525\pi\)
0.690307 0.723516i \(-0.257475\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 1.99861e10 1.64392 0.821961 0.569543i \(-0.192880\pi\)
0.821961 + 0.569543i \(0.192880\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) − 5.08576e9i − 0.410716i
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) −2.52206e10 −1.99992 −0.999960 0.00895271i \(-0.997150\pi\)
−0.999960 + 0.00895271i \(0.997150\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 2.55364e10i 1.98853i 0.106964 + 0.994263i \(0.465887\pi\)
−0.106964 + 0.994263i \(0.534113\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 5.27635e9 0.389305
\(786\) 0 0
\(787\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) −3.11904e10 −2.22108
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) − 9.53016e9i − 0.666801i −0.942785 0.333400i \(-0.891804\pi\)
0.942785 0.333400i \(-0.108196\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) −2.02214e10 −1.39026
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 2.84568e10 1.88959 0.944793 0.327668i \(-0.106263\pi\)
0.944793 + 0.327668i \(0.106263\pi\)
\(810\) 0 0
\(811\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) − 2.88014e10i − 1.81641i −0.418530 0.908203i \(-0.637454\pi\)
0.418530 0.908203i \(-0.362546\pi\)
\(822\) 0 0
\(823\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(828\) 0 0
\(829\) − 2.59446e10i − 1.58163i −0.612052 0.790817i \(-0.709656\pi\)
0.612052 0.790817i \(-0.290344\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 3.30191e10 1.97928
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(840\) 0 0
\(841\) −3.71464e10 −2.15343
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) − 9.52701e8i − 0.0543198i
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) 2.32103e9i 0.128044i 0.997948 + 0.0640220i \(0.0203928\pi\)
−0.997948 + 0.0640220i \(0.979607\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −2.11516e10 −1.14792 −0.573960 0.818884i \(-0.694593\pi\)
−0.573960 + 0.818884i \(0.694593\pi\)
\(858\) 0 0
\(859\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(864\) 0 0
\(865\) 3.80299e9 0.199788
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) −3.84199e10 −1.95437
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) − 5.68052e9i − 0.284374i −0.989840 0.142187i \(-0.954587\pi\)
0.989840 0.142187i \(-0.0454134\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −2.69850e10 −1.32956 −0.664778 0.747041i \(-0.731474\pi\)
−0.664778 + 0.747041i \(0.731474\pi\)
\(882\) 0 0
\(883\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 0 0
\(900\) 0 0
\(901\) − 3.20191e10i − 1.45839i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −8.45989e9 −0.379398
\(906\) 0 0
\(907\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(908\) 0 0
\(909\) − 2.90963e10i − 1.28488i
\(910\) 0 0
\(911\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) − 4.21633e10i − 1.75161i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −1.43415e10 −0.586866 −0.293433 0.955980i \(-0.594798\pi\)
−0.293433 + 0.955980i \(0.594798\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 5.03482e10 1.99938 0.999690 0.0249138i \(-0.00793112\pi\)
0.999690 + 0.0249138i \(0.00793112\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 3.49808e10i 1.36857i 0.729217 + 0.684283i \(0.239885\pi\)
−0.729217 + 0.684283i \(0.760115\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(948\) 0 0
\(949\) 3.48572e10i 1.32392i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 5.27653e9 0.197480 0.0987400 0.995113i \(-0.468519\pi\)
0.0987400 + 0.995113i \(0.468519\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −2.75126e10 −1.00000
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) − 6.10411e9i − 0.218664i
\(966\) 0 0
\(967\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −3.63185e10 −1.24594 −0.622970 0.782246i \(-0.714074\pi\)
−0.622970 + 0.782246i \(0.714074\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) − 5.27422e10i − 1.78368i
\(982\) 0 0
\(983\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(984\) 0 0
\(985\) 5.95849e9 0.198660
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) − 1.44203e10i − 0.460832i −0.973092 0.230416i \(-0.925991\pi\)
0.973092 0.230416i \(-0.0740087\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 256.8.b.d.129.2 2
4.3 odd 2 CM 256.8.b.d.129.2 2
8.3 odd 2 inner 256.8.b.d.129.1 2
8.5 even 2 inner 256.8.b.d.129.1 2
16.3 odd 4 64.8.a.d.1.1 1
16.5 even 4 32.8.a.a.1.1 1
16.11 odd 4 32.8.a.a.1.1 1
16.13 even 4 64.8.a.d.1.1 1
48.5 odd 4 288.8.a.b.1.1 1
48.11 even 4 288.8.a.b.1.1 1
48.29 odd 4 576.8.a.n.1.1 1
48.35 even 4 576.8.a.n.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
32.8.a.a.1.1 1 16.5 even 4
32.8.a.a.1.1 1 16.11 odd 4
64.8.a.d.1.1 1 16.3 odd 4
64.8.a.d.1.1 1 16.13 even 4
256.8.b.d.129.1 2 8.3 odd 2 inner
256.8.b.d.129.1 2 8.5 even 2 inner
256.8.b.d.129.2 2 1.1 even 1 trivial
256.8.b.d.129.2 2 4.3 odd 2 CM
288.8.a.b.1.1 1 48.5 odd 4
288.8.a.b.1.1 1 48.11 even 4
576.8.a.n.1.1 1 48.29 odd 4
576.8.a.n.1.1 1 48.35 even 4