Properties

Label 256.8.b.g
Level 256256
Weight 88
Character orbit 256.b
Analytic conductor 79.97179.971
Analytic rank 00
Dimension 22
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [256,8,Mod(129,256)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(256, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1]))
 
N = Newforms(chi, 8, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("256.129");
 
S:= CuspForms(chi, 8);
 
N := Newforms(S);
 
Level: N N == 256=28 256 = 2^{8}
Weight: k k == 8 8
Character orbit: [χ][\chi] == 256.b (of order 22, degree 11, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 79.970566523979.9705665239
Analytic rank: 00
Dimension: 22
Coefficient field: Q(1)\Q(\sqrt{-1})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x2+1 x^{2} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a5]\Z[a_1, \ldots, a_{5}]
Coefficient ring index: 2 2
Twist minimal: no (minimal twist has level 8)
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of β=2i\beta = 2i. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+22βq3215βq5+1224q7+251q9+1582βq11+3059βq13+18920q1516270q172738βq19+26928βq211576q23106775q25++397082βq99+O(q100) q + 22 \beta q^{3} - 215 \beta q^{5} + 1224 q^{7} + 251 q^{9} + 1582 \beta q^{11} + 3059 \beta q^{13} + 18920 q^{15} - 16270 q^{17} - 2738 \beta q^{19} + 26928 \beta q^{21} - 1576 q^{23} - 106775 q^{25} + \cdots + 397082 \beta q^{99} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q+2448q7+502q9+37840q1532540q173152q23213550q25+502720q31278432q33538384q39+638796q41+568224q47+1349266q49+2721040q55++21863236q97+O(q100) 2 q + 2448 q^{7} + 502 q^{9} + 37840 q^{15} - 32540 q^{17} - 3152 q^{23} - 213550 q^{25} + 502720 q^{31} - 278432 q^{33} - 538384 q^{39} + 638796 q^{41} + 568224 q^{47} + 1349266 q^{49} + 2721040 q^{55}+ \cdots + 21863236 q^{97}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/256Z)×\left(\mathbb{Z}/256\mathbb{Z}\right)^\times.

nn 55 255255
χ(n)\chi(n) 1-1 11

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
129.1
1.00000i
1.00000i
0 44.0000i 0 430.000i 0 1224.00 0 251.000 0
129.2 0 44.0000i 0 430.000i 0 1224.00 0 251.000 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
8.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 256.8.b.g 2
4.b odd 2 1 256.8.b.a 2
8.b even 2 1 inner 256.8.b.g 2
8.d odd 2 1 256.8.b.a 2
16.e even 4 1 8.8.a.b 1
16.e even 4 1 64.8.a.b 1
16.f odd 4 1 16.8.a.a 1
16.f odd 4 1 64.8.a.f 1
48.i odd 4 1 72.8.a.a 1
48.i odd 4 1 576.8.a.y 1
48.k even 4 1 144.8.a.a 1
48.k even 4 1 576.8.a.z 1
80.i odd 4 1 200.8.c.c 2
80.j even 4 1 400.8.c.f 2
80.k odd 4 1 400.8.a.p 1
80.q even 4 1 200.8.a.b 1
80.s even 4 1 400.8.c.f 2
80.t odd 4 1 200.8.c.c 2
112.l odd 4 1 392.8.a.b 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
8.8.a.b 1 16.e even 4 1
16.8.a.a 1 16.f odd 4 1
64.8.a.b 1 16.e even 4 1
64.8.a.f 1 16.f odd 4 1
72.8.a.a 1 48.i odd 4 1
144.8.a.a 1 48.k even 4 1
200.8.a.b 1 80.q even 4 1
200.8.c.c 2 80.i odd 4 1
200.8.c.c 2 80.t odd 4 1
256.8.b.a 2 4.b odd 2 1
256.8.b.a 2 8.d odd 2 1
256.8.b.g 2 1.a even 1 1 trivial
256.8.b.g 2 8.b even 2 1 inner
392.8.a.b 1 112.l odd 4 1
400.8.a.p 1 80.k odd 4 1
400.8.c.f 2 80.j even 4 1
400.8.c.f 2 80.s even 4 1
576.8.a.y 1 48.i odd 4 1
576.8.a.z 1 48.k even 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S8new(256,[χ])S_{8}^{\mathrm{new}}(256, [\chi]):

T32+1936 T_{3}^{2} + 1936 Copy content Toggle raw display
T71224 T_{7} - 1224 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T2 T^{2} Copy content Toggle raw display
33 T2+1936 T^{2} + 1936 Copy content Toggle raw display
55 T2+184900 T^{2} + 184900 Copy content Toggle raw display
77 (T1224)2 (T - 1224)^{2} Copy content Toggle raw display
1111 T2+10010896 T^{2} + 10010896 Copy content Toggle raw display
1313 T2+37429924 T^{2} + 37429924 Copy content Toggle raw display
1717 (T+16270)2 (T + 16270)^{2} Copy content Toggle raw display
1919 T2+29986576 T^{2} + 29986576 Copy content Toggle raw display
2323 (T+1576)2 (T + 1576)^{2} Copy content Toggle raw display
2929 T2+15089174244 T^{2} + 15089174244 Copy content Toggle raw display
3131 (T251360)2 (T - 251360)^{2} Copy content Toggle raw display
3737 T2+2739266244 T^{2} + 2739266244 Copy content Toggle raw display
4141 (T319398)2 (T - 319398)^{2} Copy content Toggle raw display
4343 T2+505219580944 T^{2} + 505219580944 Copy content Toggle raw display
4747 (T284112)2 (T - 284112)^{2} Copy content Toggle raw display
5353 T2+87652707844 T^{2} + 87652707844 Copy content Toggle raw display
5959 T2+805592412304 T^{2} + 805592412304 Copy content Toggle raw display
6161 T2+782888736100 T^{2} + 782888736100 Copy content Toggle raw display
6767 T2+21712729534864 T^{2} + 21712729534864 Copy content Toggle raw display
7171 (T2710792)2 (T - 2710792)^{2} Copy content Toggle raw display
7373 (T5670854)2 (T - 5670854)^{2} Copy content Toggle raw display
7979 (T+5124176)2 (T + 5124176)^{2} Copy content Toggle raw display
8383 T2+2444707365136 T^{2} + 2444707365136 Copy content Toggle raw display
8989 (T+11605674)2 (T + 11605674)^{2} Copy content Toggle raw display
9797 (T10931618)2 (T - 10931618)^{2} Copy content Toggle raw display
show more
show less