Properties

Label 256.8.b.g
Level $256$
Weight $8$
Character orbit 256.b
Analytic conductor $79.971$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [256,8,Mod(129,256)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(256, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1]))
 
N = Newforms(chi, 8, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("256.129");
 
S:= CuspForms(chi, 8);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 256 = 2^{8} \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 256.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(79.9705665239\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-1}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 8)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = 2i\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + 22 \beta q^{3} - 215 \beta q^{5} + 1224 q^{7} + 251 q^{9} +O(q^{10}) \) Copy content Toggle raw display \( q + 22 \beta q^{3} - 215 \beta q^{5} + 1224 q^{7} + 251 q^{9} + 1582 \beta q^{11} + 3059 \beta q^{13} + 18920 q^{15} - 16270 q^{17} - 2738 \beta q^{19} + 26928 \beta q^{21} - 1576 q^{23} - 106775 q^{25} + 53636 \beta q^{27} + 61419 \beta q^{29} + 251360 q^{31} - 139216 q^{33} - 263160 \beta q^{35} + 26169 \beta q^{37} - 269192 q^{39} + 319398 q^{41} - 355394 \beta q^{43} - 53965 \beta q^{45} + 284112 q^{47} + 674633 q^{49} - 357940 \beta q^{51} - 148031 \beta q^{53} + 1360520 q^{55} + 240944 q^{57} + 448774 \beta q^{59} - 442405 \beta q^{61} + 307224 q^{63} + 2630740 q^{65} + 2329846 \beta q^{67} - 34672 \beta q^{69} + 2710792 q^{71} + 5670854 q^{73} - 2349050 \beta q^{75} + 1936368 \beta q^{77} - 5124176 q^{79} - 4171031 q^{81} - 781778 \beta q^{83} + 3498050 \beta q^{85} - 5404872 q^{87} - 11605674 q^{89} + 3744216 \beta q^{91} + 5529920 \beta q^{93} - 2354680 q^{95} + 10931618 q^{97} + 397082 \beta q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2448 q^{7} + 502 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q + 2448 q^{7} + 502 q^{9} + 37840 q^{15} - 32540 q^{17} - 3152 q^{23} - 213550 q^{25} + 502720 q^{31} - 278432 q^{33} - 538384 q^{39} + 638796 q^{41} + 568224 q^{47} + 1349266 q^{49} + 2721040 q^{55} + 481888 q^{57} + 614448 q^{63} + 5261480 q^{65} + 5421584 q^{71} + 11341708 q^{73} - 10248352 q^{79} - 8342062 q^{81} - 10809744 q^{87} - 23211348 q^{89} - 4709360 q^{95} + 21863236 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/256\mathbb{Z}\right)^\times\).

\(n\) \(5\) \(255\)
\(\chi(n)\) \(-1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
129.1
1.00000i
1.00000i
0 44.0000i 0 430.000i 0 1224.00 0 251.000 0
129.2 0 44.0000i 0 430.000i 0 1224.00 0 251.000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
8.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 256.8.b.g 2
4.b odd 2 1 256.8.b.a 2
8.b even 2 1 inner 256.8.b.g 2
8.d odd 2 1 256.8.b.a 2
16.e even 4 1 8.8.a.b 1
16.e even 4 1 64.8.a.b 1
16.f odd 4 1 16.8.a.a 1
16.f odd 4 1 64.8.a.f 1
48.i odd 4 1 72.8.a.a 1
48.i odd 4 1 576.8.a.y 1
48.k even 4 1 144.8.a.a 1
48.k even 4 1 576.8.a.z 1
80.i odd 4 1 200.8.c.c 2
80.j even 4 1 400.8.c.f 2
80.k odd 4 1 400.8.a.p 1
80.q even 4 1 200.8.a.b 1
80.s even 4 1 400.8.c.f 2
80.t odd 4 1 200.8.c.c 2
112.l odd 4 1 392.8.a.b 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
8.8.a.b 1 16.e even 4 1
16.8.a.a 1 16.f odd 4 1
64.8.a.b 1 16.e even 4 1
64.8.a.f 1 16.f odd 4 1
72.8.a.a 1 48.i odd 4 1
144.8.a.a 1 48.k even 4 1
200.8.a.b 1 80.q even 4 1
200.8.c.c 2 80.i odd 4 1
200.8.c.c 2 80.t odd 4 1
256.8.b.a 2 4.b odd 2 1
256.8.b.a 2 8.d odd 2 1
256.8.b.g 2 1.a even 1 1 trivial
256.8.b.g 2 8.b even 2 1 inner
392.8.a.b 1 112.l odd 4 1
400.8.a.p 1 80.k odd 4 1
400.8.c.f 2 80.j even 4 1
400.8.c.f 2 80.s even 4 1
576.8.a.y 1 48.i odd 4 1
576.8.a.z 1 48.k even 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{8}^{\mathrm{new}}(256, [\chi])\):

\( T_{3}^{2} + 1936 \) Copy content Toggle raw display
\( T_{7} - 1224 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} + 1936 \) Copy content Toggle raw display
$5$ \( T^{2} + 184900 \) Copy content Toggle raw display
$7$ \( (T - 1224)^{2} \) Copy content Toggle raw display
$11$ \( T^{2} + 10010896 \) Copy content Toggle raw display
$13$ \( T^{2} + 37429924 \) Copy content Toggle raw display
$17$ \( (T + 16270)^{2} \) Copy content Toggle raw display
$19$ \( T^{2} + 29986576 \) Copy content Toggle raw display
$23$ \( (T + 1576)^{2} \) Copy content Toggle raw display
$29$ \( T^{2} + 15089174244 \) Copy content Toggle raw display
$31$ \( (T - 251360)^{2} \) Copy content Toggle raw display
$37$ \( T^{2} + 2739266244 \) Copy content Toggle raw display
$41$ \( (T - 319398)^{2} \) Copy content Toggle raw display
$43$ \( T^{2} + 505219580944 \) Copy content Toggle raw display
$47$ \( (T - 284112)^{2} \) Copy content Toggle raw display
$53$ \( T^{2} + 87652707844 \) Copy content Toggle raw display
$59$ \( T^{2} + 805592412304 \) Copy content Toggle raw display
$61$ \( T^{2} + 782888736100 \) Copy content Toggle raw display
$67$ \( T^{2} + 21712729534864 \) Copy content Toggle raw display
$71$ \( (T - 2710792)^{2} \) Copy content Toggle raw display
$73$ \( (T - 5670854)^{2} \) Copy content Toggle raw display
$79$ \( (T + 5124176)^{2} \) Copy content Toggle raw display
$83$ \( T^{2} + 2444707365136 \) Copy content Toggle raw display
$89$ \( (T + 11605674)^{2} \) Copy content Toggle raw display
$97$ \( (T - 10931618)^{2} \) Copy content Toggle raw display
show more
show less