Properties

Label 2592.1.b.a
Level $2592$
Weight $1$
Character orbit 2592.b
Self dual yes
Analytic conductor $1.294$
Analytic rank $0$
Dimension $1$
Projective image $D_{3}$
CM discriminant -8
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2592,1,Mod(1135,2592)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2592, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1, 0]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2592.1135");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2592 = 2^{5} \cdot 3^{4} \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 2592.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(1.29357651274\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 72)
Projective image: \(D_{3}\)
Projective field: Galois closure of 3.1.648.1
Artin image: $D_6$
Artin field: Galois closure of 6.2.20155392.5
Stark unit: Root of $x^{6} - 6054x^{5} + 761955x^{4} - 35139116x^{3} + 761955x^{2} - 6054x + 1$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q - q^{11} + q^{17} + q^{19} + q^{25} + q^{41} + q^{43} + q^{49} - q^{59} + q^{67} - q^{73} + 2 q^{83} - 2 q^{89} - q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2592\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(1217\) \(2431\)
\(\chi(n)\) \(1\) \(0\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1135.1
0
0 0 0 0 0 0 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
8.d odd 2 1 CM by \(\Q(\sqrt{-2}) \)

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2592.1.b.a 1
3.b odd 2 1 2592.1.b.b 1
4.b odd 2 1 648.1.b.a 1
8.b even 2 1 648.1.b.a 1
8.d odd 2 1 CM 2592.1.b.a 1
9.c even 3 2 864.1.t.a 2
9.d odd 6 2 288.1.t.a 2
12.b even 2 1 648.1.b.b 1
24.f even 2 1 2592.1.b.b 1
24.h odd 2 1 648.1.b.b 1
36.f odd 6 2 216.1.p.a 2
36.h even 6 2 72.1.p.a 2
72.j odd 6 2 72.1.p.a 2
72.l even 6 2 288.1.t.a 2
72.n even 6 2 216.1.p.a 2
72.p odd 6 2 864.1.t.a 2
144.u even 12 4 2304.1.o.c 4
144.w odd 12 4 2304.1.o.c 4
180.n even 6 2 1800.1.bk.d 2
180.v odd 12 4 1800.1.ba.b 4
252.o even 6 2 3528.1.ba.b 2
252.r odd 6 2 3528.1.ce.b 2
252.s odd 6 2 3528.1.cg.a 2
252.bb even 6 2 3528.1.ce.a 2
252.bn odd 6 2 3528.1.ba.a 2
360.bh odd 6 2 1800.1.bk.d 2
360.br even 12 4 1800.1.ba.b 4
504.y even 6 2 3528.1.ba.a 2
504.bi odd 6 2 3528.1.ce.a 2
504.ca even 6 2 3528.1.ce.b 2
504.cc even 6 2 3528.1.cg.a 2
504.db odd 6 2 3528.1.ba.b 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
72.1.p.a 2 36.h even 6 2
72.1.p.a 2 72.j odd 6 2
216.1.p.a 2 36.f odd 6 2
216.1.p.a 2 72.n even 6 2
288.1.t.a 2 9.d odd 6 2
288.1.t.a 2 72.l even 6 2
648.1.b.a 1 4.b odd 2 1
648.1.b.a 1 8.b even 2 1
648.1.b.b 1 12.b even 2 1
648.1.b.b 1 24.h odd 2 1
864.1.t.a 2 9.c even 3 2
864.1.t.a 2 72.p odd 6 2
1800.1.ba.b 4 180.v odd 12 4
1800.1.ba.b 4 360.br even 12 4
1800.1.bk.d 2 180.n even 6 2
1800.1.bk.d 2 360.bh odd 6 2
2304.1.o.c 4 144.u even 12 4
2304.1.o.c 4 144.w odd 12 4
2592.1.b.a 1 1.a even 1 1 trivial
2592.1.b.a 1 8.d odd 2 1 CM
2592.1.b.b 1 3.b odd 2 1
2592.1.b.b 1 24.f even 2 1
3528.1.ba.a 2 252.bn odd 6 2
3528.1.ba.a 2 504.y even 6 2
3528.1.ba.b 2 252.o even 6 2
3528.1.ba.b 2 504.db odd 6 2
3528.1.ce.a 2 252.bb even 6 2
3528.1.ce.a 2 504.bi odd 6 2
3528.1.ce.b 2 252.r odd 6 2
3528.1.ce.b 2 504.ca even 6 2
3528.1.cg.a 2 252.s odd 6 2
3528.1.cg.a 2 504.cc even 6 2

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{11} + 1 \) acting on \(S_{1}^{\mathrm{new}}(2592, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T \) Copy content Toggle raw display
$3$ \( T \) Copy content Toggle raw display
$5$ \( T \) Copy content Toggle raw display
$7$ \( T \) Copy content Toggle raw display
$11$ \( T + 1 \) Copy content Toggle raw display
$13$ \( T \) Copy content Toggle raw display
$17$ \( T - 1 \) Copy content Toggle raw display
$19$ \( T - 1 \) Copy content Toggle raw display
$23$ \( T \) Copy content Toggle raw display
$29$ \( T \) Copy content Toggle raw display
$31$ \( T \) Copy content Toggle raw display
$37$ \( T \) Copy content Toggle raw display
$41$ \( T - 1 \) Copy content Toggle raw display
$43$ \( T - 1 \) Copy content Toggle raw display
$47$ \( T \) Copy content Toggle raw display
$53$ \( T \) Copy content Toggle raw display
$59$ \( T + 1 \) Copy content Toggle raw display
$61$ \( T \) Copy content Toggle raw display
$67$ \( T - 1 \) Copy content Toggle raw display
$71$ \( T \) Copy content Toggle raw display
$73$ \( T + 1 \) Copy content Toggle raw display
$79$ \( T \) Copy content Toggle raw display
$83$ \( T - 2 \) Copy content Toggle raw display
$89$ \( T + 2 \) Copy content Toggle raw display
$97$ \( T + 1 \) Copy content Toggle raw display
show more
show less