Properties

Label 3528.1.ce.b
Level 35283528
Weight 11
Character orbit 3528.ce
Analytic conductor 1.7611.761
Analytic rank 00
Dimension 22
Projective image D3D_{3}
CM discriminant -8
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3528,1,Mod(2419,3528)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3528, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 3, 4, 4]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3528.2419");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: N N == 3528=233272 3528 = 2^{3} \cdot 3^{2} \cdot 7^{2}
Weight: k k == 1 1
Character orbit: [χ][\chi] == 3528.ce (of order 66, degree 22, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 1.760701364571.76070136457
Analytic rank: 00
Dimension: 22
Coefficient field: Q(ζ6)\Q(\zeta_{6})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x2x+1 x^{2} - x + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2,a3]\Z[a_1, a_2, a_3]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 72)
Projective image: D3D_{3}
Projective field: Galois closure of 3.1.648.1
Artin image: C6×S3C_6\times S_3
Artin field: Galois closure of Q[x]/(x12)\mathbb{Q}[x]/(x^{12} - \cdots)

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

The qq-expansion and trace form are shown below.

f(q)f(q) == q+q2ζ62q3+q4ζ62q6+q8ζ6q9ζ62q11ζ62q12+q16ζ6q17ζ6q18+ζ62q19+q99+O(q100) q + q^{2} - \zeta_{6}^{2} q^{3} + q^{4} - \zeta_{6}^{2} q^{6} + q^{8} - \zeta_{6} q^{9} - \zeta_{6}^{2} q^{11} - \zeta_{6}^{2} q^{12} + q^{16} - \zeta_{6} q^{17} - \zeta_{6} q^{18} + \zeta_{6}^{2} q^{19} + \cdots - q^{99} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q+2q2+q3+2q4+q6+2q8q9+q11+q12+2q16q17q18q19+q22+q24q252q27+2q32q33q34q36+2q99+O(q100) 2 q + 2 q^{2} + q^{3} + 2 q^{4} + q^{6} + 2 q^{8} - q^{9} + q^{11} + q^{12} + 2 q^{16} - q^{17} - q^{18} - q^{19} + q^{22} + q^{24} - q^{25} - 2 q^{27} + 2 q^{32} - q^{33} - q^{34} - q^{36}+ \cdots - 2 q^{99}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/3528Z)×\left(\mathbb{Z}/3528\mathbb{Z}\right)^\times.

nn 785785 10811081 17651765 26472647
χ(n)\chi(n) ζ62\zeta_{6}^{2} ζ62\zeta_{6}^{2} 1-1 1-1

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
2419.1
0.500000 0.866025i
0.500000 + 0.866025i
1.00000 0.500000 + 0.866025i 1.00000 0 0.500000 + 0.866025i 0 1.00000 −0.500000 + 0.866025i 0
3019.1 1.00000 0.500000 0.866025i 1.00000 0 0.500000 0.866025i 0 1.00000 −0.500000 0.866025i 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
8.d odd 2 1 CM by Q(2)\Q(\sqrt{-2})
63.h even 3 1 inner
504.ce odd 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3528.1.ce.b 2
7.b odd 2 1 3528.1.ce.a 2
7.c even 3 1 3528.1.ba.a 2
7.c even 3 1 3528.1.cg.a 2
7.d odd 6 1 72.1.p.a 2
7.d odd 6 1 3528.1.ba.b 2
8.d odd 2 1 CM 3528.1.ce.b 2
9.c even 3 1 3528.1.ba.a 2
21.g even 6 1 216.1.p.a 2
28.f even 6 1 288.1.t.a 2
35.i odd 6 1 1800.1.bk.d 2
35.k even 12 2 1800.1.ba.b 4
56.e even 2 1 3528.1.ce.a 2
56.j odd 6 1 288.1.t.a 2
56.k odd 6 1 3528.1.ba.a 2
56.k odd 6 1 3528.1.cg.a 2
56.m even 6 1 72.1.p.a 2
56.m even 6 1 3528.1.ba.b 2
63.g even 3 1 3528.1.cg.a 2
63.h even 3 1 inner 3528.1.ce.b 2
63.i even 6 1 648.1.b.a 1
63.k odd 6 1 72.1.p.a 2
63.l odd 6 1 3528.1.ba.b 2
63.s even 6 1 216.1.p.a 2
63.t odd 6 1 648.1.b.b 1
63.t odd 6 1 3528.1.ce.a 2
72.p odd 6 1 3528.1.ba.a 2
84.j odd 6 1 864.1.t.a 2
112.v even 12 2 2304.1.o.c 4
112.x odd 12 2 2304.1.o.c 4
168.ba even 6 1 864.1.t.a 2
168.be odd 6 1 216.1.p.a 2
252.n even 6 1 288.1.t.a 2
252.r odd 6 1 2592.1.b.a 1
252.bj even 6 1 2592.1.b.b 1
252.bn odd 6 1 864.1.t.a 2
280.ba even 6 1 1800.1.bk.d 2
280.bp odd 12 2 1800.1.ba.b 4
315.bn odd 6 1 1800.1.bk.d 2
315.cg even 12 2 1800.1.ba.b 4
504.u odd 6 1 216.1.p.a 2
504.y even 6 1 864.1.t.a 2
504.ba odd 6 1 3528.1.cg.a 2
504.be even 6 1 3528.1.ba.b 2
504.bf even 6 1 648.1.b.b 1
504.bf even 6 1 3528.1.ce.a 2
504.bp odd 6 1 2592.1.b.b 1
504.ca even 6 1 2592.1.b.a 1
504.ce odd 6 1 inner 3528.1.ce.b 2
504.cm odd 6 1 648.1.b.a 1
504.cw odd 6 1 288.1.t.a 2
504.cz even 6 1 72.1.p.a 2
1008.eb odd 12 2 2304.1.o.c 4
1008.ek even 12 2 2304.1.o.c 4
2520.gp even 6 1 1800.1.bk.d 2
2520.iy odd 12 2 1800.1.ba.b 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
72.1.p.a 2 7.d odd 6 1
72.1.p.a 2 56.m even 6 1
72.1.p.a 2 63.k odd 6 1
72.1.p.a 2 504.cz even 6 1
216.1.p.a 2 21.g even 6 1
216.1.p.a 2 63.s even 6 1
216.1.p.a 2 168.be odd 6 1
216.1.p.a 2 504.u odd 6 1
288.1.t.a 2 28.f even 6 1
288.1.t.a 2 56.j odd 6 1
288.1.t.a 2 252.n even 6 1
288.1.t.a 2 504.cw odd 6 1
648.1.b.a 1 63.i even 6 1
648.1.b.a 1 504.cm odd 6 1
648.1.b.b 1 63.t odd 6 1
648.1.b.b 1 504.bf even 6 1
864.1.t.a 2 84.j odd 6 1
864.1.t.a 2 168.ba even 6 1
864.1.t.a 2 252.bn odd 6 1
864.1.t.a 2 504.y even 6 1
1800.1.ba.b 4 35.k even 12 2
1800.1.ba.b 4 280.bp odd 12 2
1800.1.ba.b 4 315.cg even 12 2
1800.1.ba.b 4 2520.iy odd 12 2
1800.1.bk.d 2 35.i odd 6 1
1800.1.bk.d 2 280.ba even 6 1
1800.1.bk.d 2 315.bn odd 6 1
1800.1.bk.d 2 2520.gp even 6 1
2304.1.o.c 4 112.v even 12 2
2304.1.o.c 4 112.x odd 12 2
2304.1.o.c 4 1008.eb odd 12 2
2304.1.o.c 4 1008.ek even 12 2
2592.1.b.a 1 252.r odd 6 1
2592.1.b.a 1 504.ca even 6 1
2592.1.b.b 1 252.bj even 6 1
2592.1.b.b 1 504.bp odd 6 1
3528.1.ba.a 2 7.c even 3 1
3528.1.ba.a 2 9.c even 3 1
3528.1.ba.a 2 56.k odd 6 1
3528.1.ba.a 2 72.p odd 6 1
3528.1.ba.b 2 7.d odd 6 1
3528.1.ba.b 2 56.m even 6 1
3528.1.ba.b 2 63.l odd 6 1
3528.1.ba.b 2 504.be even 6 1
3528.1.ce.a 2 7.b odd 2 1
3528.1.ce.a 2 56.e even 2 1
3528.1.ce.a 2 63.t odd 6 1
3528.1.ce.a 2 504.bf even 6 1
3528.1.ce.b 2 1.a even 1 1 trivial
3528.1.ce.b 2 8.d odd 2 1 CM
3528.1.ce.b 2 63.h even 3 1 inner
3528.1.ce.b 2 504.ce odd 6 1 inner
3528.1.cg.a 2 7.c even 3 1
3528.1.cg.a 2 56.k odd 6 1
3528.1.cg.a 2 63.g even 3 1
3528.1.cg.a 2 504.ba odd 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S1new(3528,[χ])S_{1}^{\mathrm{new}}(3528, [\chi]):

T5 T_{5} Copy content Toggle raw display
T112T11+1 T_{11}^{2} - T_{11} + 1 Copy content Toggle raw display
T172+T17+1 T_{17}^{2} + T_{17} + 1 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 (T1)2 (T - 1)^{2} Copy content Toggle raw display
33 T2T+1 T^{2} - T + 1 Copy content Toggle raw display
55 T2 T^{2} Copy content Toggle raw display
77 T2 T^{2} Copy content Toggle raw display
1111 T2T+1 T^{2} - T + 1 Copy content Toggle raw display
1313 T2 T^{2} Copy content Toggle raw display
1717 T2+T+1 T^{2} + T + 1 Copy content Toggle raw display
1919 T2+T+1 T^{2} + T + 1 Copy content Toggle raw display
2323 T2 T^{2} Copy content Toggle raw display
2929 T2 T^{2} Copy content Toggle raw display
3131 T2 T^{2} Copy content Toggle raw display
3737 T2 T^{2} Copy content Toggle raw display
4141 T2+T+1 T^{2} + T + 1 Copy content Toggle raw display
4343 T2T+1 T^{2} - T + 1 Copy content Toggle raw display
4747 T2 T^{2} Copy content Toggle raw display
5353 T2 T^{2} Copy content Toggle raw display
5959 (T1)2 (T - 1)^{2} Copy content Toggle raw display
6161 T2 T^{2} Copy content Toggle raw display
6767 (T+1)2 (T + 1)^{2} Copy content Toggle raw display
7171 T2 T^{2} Copy content Toggle raw display
7373 T2+T+1 T^{2} + T + 1 Copy content Toggle raw display
7979 T2 T^{2} Copy content Toggle raw display
8383 T22T+4 T^{2} - 2T + 4 Copy content Toggle raw display
8989 T22T+4 T^{2} - 2T + 4 Copy content Toggle raw display
9797 T2+T+1 T^{2} + T + 1 Copy content Toggle raw display
show more
show less