Properties

Label 2592.3.e.i.161.10
Level $2592$
Weight $3$
Character 2592.161
Analytic conductor $70.627$
Analytic rank $0$
Dimension $24$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2592,3,Mod(161,2592)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2592, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 1]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2592.161");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2592 = 2^{5} \cdot 3^{4} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 2592.e (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(70.6268845222\)
Analytic rank: \(0\)
Dimension: \(24\)
Twist minimal: no (minimal twist has level 288)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 161.10
Character \(\chi\) \(=\) 2592.161
Dual form 2592.3.e.i.161.9

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.12450i q^{5} +6.84941 q^{7} -5.24998i q^{11} +20.0322 q^{13} +0.0666728i q^{17} +27.2587 q^{19} +21.4411i q^{23} +20.4865 q^{25} -43.0612i q^{29} -16.1303 q^{31} +14.5516i q^{35} -22.3835 q^{37} +2.96299i q^{41} +29.3416 q^{43} -44.3085i q^{47} -2.08563 q^{49} +12.8946i q^{53} +11.1536 q^{55} +86.6134i q^{59} -12.9054 q^{61} +42.5585i q^{65} -122.838 q^{67} -125.360i q^{71} +90.7813 q^{73} -35.9593i q^{77} +48.5047 q^{79} -116.787i q^{83} -0.141647 q^{85} -116.172i q^{89} +137.209 q^{91} +57.9111i q^{95} +46.5562 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q - 120 q^{25} + 72 q^{49} + 192 q^{61} + 24 q^{73} - 192 q^{85} + 264 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2592\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(1217\) \(2431\)
\(\chi(n)\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 2.12450i 0.424900i 0.977172 + 0.212450i \(0.0681443\pi\)
−0.977172 + 0.212450i \(0.931856\pi\)
\(6\) 0 0
\(7\) 6.84941 0.978487 0.489243 0.872147i \(-0.337273\pi\)
0.489243 + 0.872147i \(0.337273\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) − 5.24998i − 0.477271i −0.971109 0.238636i \(-0.923300\pi\)
0.971109 0.238636i \(-0.0767002\pi\)
\(12\) 0 0
\(13\) 20.0322 1.54094 0.770471 0.637475i \(-0.220021\pi\)
0.770471 + 0.637475i \(0.220021\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 0.0666728i 0.00392193i 0.999998 + 0.00196097i \(0.000624195\pi\)
−0.999998 + 0.00196097i \(0.999376\pi\)
\(18\) 0 0
\(19\) 27.2587 1.43467 0.717334 0.696730i \(-0.245362\pi\)
0.717334 + 0.696730i \(0.245362\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 21.4411i 0.932220i 0.884727 + 0.466110i \(0.154345\pi\)
−0.884727 + 0.466110i \(0.845655\pi\)
\(24\) 0 0
\(25\) 20.4865 0.819460
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) − 43.0612i − 1.48487i −0.669918 0.742435i \(-0.733671\pi\)
0.669918 0.742435i \(-0.266329\pi\)
\(30\) 0 0
\(31\) −16.1303 −0.520333 −0.260167 0.965564i \(-0.583777\pi\)
−0.260167 + 0.965564i \(0.583777\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 14.5516i 0.415759i
\(36\) 0 0
\(37\) −22.3835 −0.604961 −0.302480 0.953156i \(-0.597815\pi\)
−0.302480 + 0.953156i \(0.597815\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 2.96299i 0.0722680i 0.999347 + 0.0361340i \(0.0115043\pi\)
−0.999347 + 0.0361340i \(0.988496\pi\)
\(42\) 0 0
\(43\) 29.3416 0.682363 0.341182 0.939997i \(-0.389173\pi\)
0.341182 + 0.939997i \(0.389173\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) − 44.3085i − 0.942734i −0.881937 0.471367i \(-0.843761\pi\)
0.881937 0.471367i \(-0.156239\pi\)
\(48\) 0 0
\(49\) −2.08563 −0.0425638
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 12.8946i 0.243294i 0.992573 + 0.121647i \(0.0388176\pi\)
−0.992573 + 0.121647i \(0.961182\pi\)
\(54\) 0 0
\(55\) 11.1536 0.202793
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 86.6134i 1.46802i 0.679137 + 0.734012i \(0.262354\pi\)
−0.679137 + 0.734012i \(0.737646\pi\)
\(60\) 0 0
\(61\) −12.9054 −0.211564 −0.105782 0.994389i \(-0.533735\pi\)
−0.105782 + 0.994389i \(0.533735\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 42.5585i 0.654747i
\(66\) 0 0
\(67\) −122.838 −1.83341 −0.916704 0.399568i \(-0.869160\pi\)
−0.916704 + 0.399568i \(0.869160\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) − 125.360i − 1.76563i −0.469717 0.882817i \(-0.655644\pi\)
0.469717 0.882817i \(-0.344356\pi\)
\(72\) 0 0
\(73\) 90.7813 1.24358 0.621790 0.783184i \(-0.286406\pi\)
0.621790 + 0.783184i \(0.286406\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) − 35.9593i − 0.467004i
\(78\) 0 0
\(79\) 48.5047 0.613983 0.306992 0.951712i \(-0.400678\pi\)
0.306992 + 0.951712i \(0.400678\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) − 116.787i − 1.40707i −0.710661 0.703534i \(-0.751604\pi\)
0.710661 0.703534i \(-0.248396\pi\)
\(84\) 0 0
\(85\) −0.141647 −0.00166643
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) − 116.172i − 1.30531i −0.757656 0.652654i \(-0.773655\pi\)
0.757656 0.652654i \(-0.226345\pi\)
\(90\) 0 0
\(91\) 137.209 1.50779
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 57.9111i 0.609591i
\(96\) 0 0
\(97\) 46.5562 0.479961 0.239980 0.970778i \(-0.422859\pi\)
0.239980 + 0.970778i \(0.422859\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 135.120i 1.33782i 0.743343 + 0.668911i \(0.233239\pi\)
−0.743343 + 0.668911i \(0.766761\pi\)
\(102\) 0 0
\(103\) −15.8330 −0.153718 −0.0768592 0.997042i \(-0.524489\pi\)
−0.0768592 + 0.997042i \(0.524489\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 191.129i 1.78625i 0.449810 + 0.893124i \(0.351492\pi\)
−0.449810 + 0.893124i \(0.648508\pi\)
\(108\) 0 0
\(109\) 144.818 1.32861 0.664304 0.747463i \(-0.268728\pi\)
0.664304 + 0.747463i \(0.268728\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) − 96.4026i − 0.853120i −0.904459 0.426560i \(-0.859725\pi\)
0.904459 0.426560i \(-0.140275\pi\)
\(114\) 0 0
\(115\) −45.5516 −0.396101
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0.456669i 0.00383756i
\(120\) 0 0
\(121\) 93.4377 0.772212
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 96.6361i 0.773089i
\(126\) 0 0
\(127\) −127.727 −1.00572 −0.502861 0.864367i \(-0.667719\pi\)
−0.502861 + 0.864367i \(0.667719\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) − 32.6907i − 0.249548i −0.992185 0.124774i \(-0.960179\pi\)
0.992185 0.124774i \(-0.0398205\pi\)
\(132\) 0 0
\(133\) 186.706 1.40380
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) − 184.427i − 1.34618i −0.739561 0.673089i \(-0.764967\pi\)
0.739561 0.673089i \(-0.235033\pi\)
\(138\) 0 0
\(139\) −238.705 −1.71730 −0.858652 0.512558i \(-0.828698\pi\)
−0.858652 + 0.512558i \(0.828698\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) − 105.169i − 0.735447i
\(144\) 0 0
\(145\) 91.4837 0.630922
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 256.660i 1.72255i 0.508141 + 0.861274i \(0.330333\pi\)
−0.508141 + 0.861274i \(0.669667\pi\)
\(150\) 0 0
\(151\) −83.2741 −0.551484 −0.275742 0.961232i \(-0.588924\pi\)
−0.275742 + 0.961232i \(0.588924\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) − 34.2689i − 0.221090i
\(156\) 0 0
\(157\) 159.564 1.01633 0.508166 0.861259i \(-0.330324\pi\)
0.508166 + 0.861259i \(0.330324\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 146.859i 0.912165i
\(162\) 0 0
\(163\) 18.4140 0.112970 0.0564848 0.998403i \(-0.482011\pi\)
0.0564848 + 0.998403i \(0.482011\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 202.147i 1.21046i 0.796051 + 0.605229i \(0.206919\pi\)
−0.796051 + 0.605229i \(0.793081\pi\)
\(168\) 0 0
\(169\) 232.291 1.37450
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 100.965i 0.583613i 0.956477 + 0.291807i \(0.0942564\pi\)
−0.956477 + 0.291807i \(0.905744\pi\)
\(174\) 0 0
\(175\) 140.320 0.801830
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) − 45.8305i − 0.256036i −0.991772 0.128018i \(-0.959138\pi\)
0.991772 0.128018i \(-0.0408616\pi\)
\(180\) 0 0
\(181\) 55.7708 0.308126 0.154063 0.988061i \(-0.450764\pi\)
0.154063 + 0.988061i \(0.450764\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) − 47.5539i − 0.257048i
\(186\) 0 0
\(187\) 0.350031 0.00187182
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 316.396i 1.65652i 0.560341 + 0.828262i \(0.310670\pi\)
−0.560341 + 0.828262i \(0.689330\pi\)
\(192\) 0 0
\(193\) 375.293 1.94452 0.972262 0.233895i \(-0.0751474\pi\)
0.972262 + 0.233895i \(0.0751474\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) − 46.6367i − 0.236734i −0.992970 0.118367i \(-0.962234\pi\)
0.992970 0.118367i \(-0.0377660\pi\)
\(198\) 0 0
\(199\) −192.041 −0.965033 −0.482516 0.875887i \(-0.660277\pi\)
−0.482516 + 0.875887i \(0.660277\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) − 294.944i − 1.45293i
\(204\) 0 0
\(205\) −6.29487 −0.0307067
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) − 143.108i − 0.684725i
\(210\) 0 0
\(211\) 315.180 1.49374 0.746872 0.664968i \(-0.231555\pi\)
0.746872 + 0.664968i \(0.231555\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 62.3363i 0.289936i
\(216\) 0 0
\(217\) −110.483 −0.509139
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 1.33561i 0.00604347i
\(222\) 0 0
\(223\) 184.372 0.826779 0.413390 0.910554i \(-0.364345\pi\)
0.413390 + 0.910554i \(0.364345\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) − 132.566i − 0.583992i −0.956420 0.291996i \(-0.905681\pi\)
0.956420 0.291996i \(-0.0943193\pi\)
\(228\) 0 0
\(229\) −24.0705 −0.105111 −0.0525556 0.998618i \(-0.516737\pi\)
−0.0525556 + 0.998618i \(0.516737\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) − 135.751i − 0.582621i −0.956629 0.291311i \(-0.905909\pi\)
0.956629 0.291311i \(-0.0940913\pi\)
\(234\) 0 0
\(235\) 94.1335 0.400568
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) − 429.285i − 1.79617i −0.439821 0.898085i \(-0.644958\pi\)
0.439821 0.898085i \(-0.355042\pi\)
\(240\) 0 0
\(241\) −182.403 −0.756858 −0.378429 0.925630i \(-0.623536\pi\)
−0.378429 + 0.925630i \(0.623536\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) − 4.43092i − 0.0180854i
\(246\) 0 0
\(247\) 546.053 2.21074
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 69.0483i 0.275093i 0.990495 + 0.137546i \(0.0439216\pi\)
−0.990495 + 0.137546i \(0.956078\pi\)
\(252\) 0 0
\(253\) 112.565 0.444922
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 106.339i 0.413770i 0.978365 + 0.206885i \(0.0663326\pi\)
−0.978365 + 0.206885i \(0.933667\pi\)
\(258\) 0 0
\(259\) −153.314 −0.591946
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 242.212i 0.920960i 0.887670 + 0.460480i \(0.152323\pi\)
−0.887670 + 0.460480i \(0.847677\pi\)
\(264\) 0 0
\(265\) −27.3946 −0.103376
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 143.438i 0.533228i 0.963803 + 0.266614i \(0.0859049\pi\)
−0.963803 + 0.266614i \(0.914095\pi\)
\(270\) 0 0
\(271\) 59.8857 0.220980 0.110490 0.993877i \(-0.464758\pi\)
0.110490 + 0.993877i \(0.464758\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) − 107.554i − 0.391105i
\(276\) 0 0
\(277\) 314.916 1.13688 0.568441 0.822724i \(-0.307547\pi\)
0.568441 + 0.822724i \(0.307547\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) − 40.6153i − 0.144539i −0.997385 0.0722693i \(-0.976976\pi\)
0.997385 0.0722693i \(-0.0230241\pi\)
\(282\) 0 0
\(283\) 101.897 0.360059 0.180030 0.983661i \(-0.442381\pi\)
0.180030 + 0.983661i \(0.442381\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 20.2947i 0.0707133i
\(288\) 0 0
\(289\) 288.996 0.999985
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) − 134.113i − 0.457724i −0.973459 0.228862i \(-0.926500\pi\)
0.973459 0.228862i \(-0.0735004\pi\)
\(294\) 0 0
\(295\) −184.010 −0.623764
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 429.513i 1.43650i
\(300\) 0 0
\(301\) 200.973 0.667683
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) − 27.4176i − 0.0898937i
\(306\) 0 0
\(307\) −129.799 −0.422799 −0.211400 0.977400i \(-0.567802\pi\)
−0.211400 + 0.977400i \(0.567802\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 202.089i 0.649803i 0.945748 + 0.324902i \(0.105331\pi\)
−0.945748 + 0.324902i \(0.894669\pi\)
\(312\) 0 0
\(313\) 337.004 1.07669 0.538346 0.842724i \(-0.319050\pi\)
0.538346 + 0.842724i \(0.319050\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 310.337i 0.978980i 0.872009 + 0.489490i \(0.162817\pi\)
−0.872009 + 0.489490i \(0.837183\pi\)
\(318\) 0 0
\(319\) −226.071 −0.708686
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 1.81741i 0.00562667i
\(324\) 0 0
\(325\) 410.390 1.26274
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) − 303.487i − 0.922452i
\(330\) 0 0
\(331\) 164.459 0.496854 0.248427 0.968651i \(-0.420086\pi\)
0.248427 + 0.968651i \(0.420086\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) − 260.970i − 0.779015i
\(336\) 0 0
\(337\) −189.077 −0.561060 −0.280530 0.959845i \(-0.590510\pi\)
−0.280530 + 0.959845i \(0.590510\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 84.6840i 0.248340i
\(342\) 0 0
\(343\) −349.906 −1.02013
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) − 431.072i − 1.24228i −0.783699 0.621141i \(-0.786669\pi\)
0.783699 0.621141i \(-0.213331\pi\)
\(348\) 0 0
\(349\) 366.650 1.05057 0.525287 0.850925i \(-0.323958\pi\)
0.525287 + 0.850925i \(0.323958\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 58.5238i 0.165790i 0.996558 + 0.0828949i \(0.0264166\pi\)
−0.996558 + 0.0828949i \(0.973583\pi\)
\(354\) 0 0
\(355\) 266.328 0.750218
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) − 48.0665i − 0.133890i −0.997757 0.0669449i \(-0.978675\pi\)
0.997757 0.0669449i \(-0.0213252\pi\)
\(360\) 0 0
\(361\) 382.036 1.05827
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 192.865i 0.528397i
\(366\) 0 0
\(367\) −114.347 −0.311573 −0.155787 0.987791i \(-0.549791\pi\)
−0.155787 + 0.987791i \(0.549791\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 88.3203i 0.238060i
\(372\) 0 0
\(373\) 345.956 0.927496 0.463748 0.885967i \(-0.346504\pi\)
0.463748 + 0.885967i \(0.346504\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) − 862.613i − 2.28810i
\(378\) 0 0
\(379\) −323.425 −0.853364 −0.426682 0.904402i \(-0.640318\pi\)
−0.426682 + 0.904402i \(0.640318\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) − 519.463i − 1.35630i −0.734923 0.678151i \(-0.762782\pi\)
0.734923 0.678151i \(-0.237218\pi\)
\(384\) 0 0
\(385\) 76.3955 0.198430
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) − 171.077i − 0.439787i −0.975524 0.219893i \(-0.929429\pi\)
0.975524 0.219893i \(-0.0705710\pi\)
\(390\) 0 0
\(391\) −1.42954 −0.00365610
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 103.048i 0.260882i
\(396\) 0 0
\(397\) 159.942 0.402878 0.201439 0.979501i \(-0.435438\pi\)
0.201439 + 0.979501i \(0.435438\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) − 655.884i − 1.63562i −0.575487 0.817811i \(-0.695187\pi\)
0.575487 0.817811i \(-0.304813\pi\)
\(402\) 0 0
\(403\) −323.127 −0.801803
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 117.513i 0.288730i
\(408\) 0 0
\(409\) 66.3179 0.162146 0.0810732 0.996708i \(-0.474165\pi\)
0.0810732 + 0.996708i \(0.474165\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 593.250i 1.43644i
\(414\) 0 0
\(415\) 248.114 0.597864
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 744.076i 1.77584i 0.460001 + 0.887918i \(0.347849\pi\)
−0.460001 + 0.887918i \(0.652151\pi\)
\(420\) 0 0
\(421\) −681.117 −1.61785 −0.808927 0.587909i \(-0.799951\pi\)
−0.808927 + 0.587909i \(0.799951\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 1.36589i 0.00321386i
\(426\) 0 0
\(427\) −88.3945 −0.207013
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 251.031i 0.582439i 0.956656 + 0.291220i \(0.0940610\pi\)
−0.956656 + 0.291220i \(0.905939\pi\)
\(432\) 0 0
\(433\) −87.8113 −0.202797 −0.101399 0.994846i \(-0.532332\pi\)
−0.101399 + 0.994846i \(0.532332\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 584.455i 1.33743i
\(438\) 0 0
\(439\) −393.268 −0.895827 −0.447913 0.894077i \(-0.647833\pi\)
−0.447913 + 0.894077i \(0.647833\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) − 49.6560i − 0.112090i −0.998428 0.0560452i \(-0.982151\pi\)
0.998428 0.0560452i \(-0.0178491\pi\)
\(444\) 0 0
\(445\) 246.809 0.554626
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) − 276.997i − 0.616919i −0.951237 0.308459i \(-0.900187\pi\)
0.951237 0.308459i \(-0.0998134\pi\)
\(450\) 0 0
\(451\) 15.5556 0.0344914
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 291.501i 0.640661i
\(456\) 0 0
\(457\) −7.13408 −0.0156107 −0.00780534 0.999970i \(-0.502485\pi\)
−0.00780534 + 0.999970i \(0.502485\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 344.475i 0.747235i 0.927583 + 0.373617i \(0.121883\pi\)
−0.927583 + 0.373617i \(0.878117\pi\)
\(462\) 0 0
\(463\) −618.903 −1.33672 −0.668362 0.743836i \(-0.733004\pi\)
−0.668362 + 0.743836i \(0.733004\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) − 682.172i − 1.46075i −0.683044 0.730377i \(-0.739344\pi\)
0.683044 0.730377i \(-0.260656\pi\)
\(468\) 0 0
\(469\) −841.369 −1.79396
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) − 154.043i − 0.325672i
\(474\) 0 0
\(475\) 558.435 1.17565
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) − 138.757i − 0.289681i −0.989455 0.144841i \(-0.953733\pi\)
0.989455 0.144841i \(-0.0462670\pi\)
\(480\) 0 0
\(481\) −448.393 −0.932209
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 98.9087i 0.203935i
\(486\) 0 0
\(487\) 630.925 1.29553 0.647766 0.761839i \(-0.275703\pi\)
0.647766 + 0.761839i \(0.275703\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 405.911i 0.826703i 0.910572 + 0.413351i \(0.135642\pi\)
−0.910572 + 0.413351i \(0.864358\pi\)
\(492\) 0 0
\(493\) 2.87101 0.00582356
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) − 858.642i − 1.72765i
\(498\) 0 0
\(499\) 104.177 0.208772 0.104386 0.994537i \(-0.466712\pi\)
0.104386 + 0.994537i \(0.466712\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 275.389i 0.547493i 0.961802 + 0.273746i \(0.0882629\pi\)
−0.961802 + 0.273746i \(0.911737\pi\)
\(504\) 0 0
\(505\) −287.063 −0.568441
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 763.424i 1.49985i 0.661523 + 0.749925i \(0.269911\pi\)
−0.661523 + 0.749925i \(0.730089\pi\)
\(510\) 0 0
\(511\) 621.798 1.21683
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) − 33.6372i − 0.0653150i
\(516\) 0 0
\(517\) −232.619 −0.449940
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 727.642i 1.39663i 0.715793 + 0.698313i \(0.246065\pi\)
−0.715793 + 0.698313i \(0.753935\pi\)
\(522\) 0 0
\(523\) −585.050 −1.11864 −0.559321 0.828951i \(-0.688938\pi\)
−0.559321 + 0.828951i \(0.688938\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) − 1.07545i − 0.00204071i
\(528\) 0 0
\(529\) 69.2810 0.130966
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 59.3553i 0.111361i
\(534\) 0 0
\(535\) −406.053 −0.758978
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 10.9495i 0.0203145i
\(540\) 0 0
\(541\) −359.365 −0.664260 −0.332130 0.943234i \(-0.607767\pi\)
−0.332130 + 0.943234i \(0.607767\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 307.667i 0.564526i
\(546\) 0 0
\(547\) −97.9640 −0.179093 −0.0895467 0.995983i \(-0.528542\pi\)
−0.0895467 + 0.995983i \(0.528542\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) − 1173.79i − 2.13029i
\(552\) 0 0
\(553\) 332.228 0.600775
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 550.731i 0.988745i 0.869250 + 0.494373i \(0.164602\pi\)
−0.869250 + 0.494373i \(0.835398\pi\)
\(558\) 0 0
\(559\) 587.779 1.05148
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 536.763i 0.953398i 0.879067 + 0.476699i \(0.158167\pi\)
−0.879067 + 0.476699i \(0.841833\pi\)
\(564\) 0 0
\(565\) 204.807 0.362491
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) − 551.945i − 0.970025i −0.874507 0.485013i \(-0.838815\pi\)
0.874507 0.485013i \(-0.161185\pi\)
\(570\) 0 0
\(571\) −819.521 −1.43524 −0.717619 0.696436i \(-0.754768\pi\)
−0.717619 + 0.696436i \(0.754768\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 439.252i 0.763917i
\(576\) 0 0
\(577\) −828.718 −1.43625 −0.718126 0.695913i \(-0.755000\pi\)
−0.718126 + 0.695913i \(0.755000\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) − 799.920i − 1.37680i
\(582\) 0 0
\(583\) 67.6964 0.116117
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 76.6443i 0.130570i 0.997867 + 0.0652848i \(0.0207956\pi\)
−0.997867 + 0.0652848i \(0.979204\pi\)
\(588\) 0 0
\(589\) −439.691 −0.746505
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) − 943.303i − 1.59073i −0.606130 0.795366i \(-0.707279\pi\)
0.606130 0.795366i \(-0.292721\pi\)
\(594\) 0 0
\(595\) −0.970195 −0.00163058
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 329.462i 0.550021i 0.961441 + 0.275010i \(0.0886813\pi\)
−0.961441 + 0.275010i \(0.911319\pi\)
\(600\) 0 0
\(601\) −762.581 −1.26885 −0.634427 0.772983i \(-0.718764\pi\)
−0.634427 + 0.772983i \(0.718764\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 198.508i 0.328113i
\(606\) 0 0
\(607\) −959.375 −1.58052 −0.790259 0.612773i \(-0.790054\pi\)
−0.790259 + 0.612773i \(0.790054\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) − 887.599i − 1.45270i
\(612\) 0 0
\(613\) 573.016 0.934773 0.467386 0.884053i \(-0.345196\pi\)
0.467386 + 0.884053i \(0.345196\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) − 112.234i − 0.181903i −0.995855 0.0909515i \(-0.971009\pi\)
0.995855 0.0909515i \(-0.0289908\pi\)
\(618\) 0 0
\(619\) −45.1174 −0.0728876 −0.0364438 0.999336i \(-0.511603\pi\)
−0.0364438 + 0.999336i \(0.511603\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) − 795.712i − 1.27723i
\(624\) 0 0
\(625\) 306.859 0.490974
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) − 1.49237i − 0.00237261i
\(630\) 0 0
\(631\) 1118.03 1.77185 0.885923 0.463832i \(-0.153526\pi\)
0.885923 + 0.463832i \(0.153526\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) − 271.355i − 0.427331i
\(636\) 0 0
\(637\) −41.7798 −0.0655884
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 673.551i 1.05078i 0.850861 + 0.525390i \(0.176081\pi\)
−0.850861 + 0.525390i \(0.823919\pi\)
\(642\) 0 0
\(643\) 570.492 0.887235 0.443617 0.896216i \(-0.353695\pi\)
0.443617 + 0.896216i \(0.353695\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) − 376.087i − 0.581278i −0.956833 0.290639i \(-0.906132\pi\)
0.956833 0.290639i \(-0.0938678\pi\)
\(648\) 0 0
\(649\) 454.719 0.700646
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 643.420i 0.985330i 0.870219 + 0.492665i \(0.163977\pi\)
−0.870219 + 0.492665i \(0.836023\pi\)
\(654\) 0 0
\(655\) 69.4515 0.106033
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 161.681i 0.245342i 0.992447 + 0.122671i \(0.0391461\pi\)
−0.992447 + 0.122671i \(0.960854\pi\)
\(660\) 0 0
\(661\) −717.266 −1.08512 −0.542561 0.840016i \(-0.682545\pi\)
−0.542561 + 0.840016i \(0.682545\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 396.657i 0.596476i
\(666\) 0 0
\(667\) 923.278 1.38423
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 67.7532i 0.100974i
\(672\) 0 0
\(673\) −164.830 −0.244918 −0.122459 0.992474i \(-0.539078\pi\)
−0.122459 + 0.992474i \(0.539078\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 811.953i 1.19934i 0.800247 + 0.599670i \(0.204701\pi\)
−0.800247 + 0.599670i \(0.795299\pi\)
\(678\) 0 0
\(679\) 318.882 0.469635
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 546.230i 0.799751i 0.916569 + 0.399876i \(0.130947\pi\)
−0.916569 + 0.399876i \(0.869053\pi\)
\(684\) 0 0
\(685\) 391.814 0.571992
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 258.308i 0.374902i
\(690\) 0 0
\(691\) 23.7822 0.0344171 0.0172085 0.999852i \(-0.494522\pi\)
0.0172085 + 0.999852i \(0.494522\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) − 507.130i − 0.729683i
\(696\) 0 0
\(697\) −0.197551 −0.000283430 0
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) − 959.326i − 1.36851i −0.729242 0.684255i \(-0.760127\pi\)
0.729242 0.684255i \(-0.239873\pi\)
\(702\) 0 0
\(703\) −610.146 −0.867917
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 925.491i 1.30904i
\(708\) 0 0
\(709\) −436.916 −0.616243 −0.308121 0.951347i \(-0.599700\pi\)
−0.308121 + 0.951347i \(0.599700\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) − 345.851i − 0.485065i
\(714\) 0 0
\(715\) 223.432 0.312492
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 643.581i 0.895106i 0.894257 + 0.447553i \(0.147704\pi\)
−0.894257 + 0.447553i \(0.852296\pi\)
\(720\) 0 0
\(721\) −108.447 −0.150411
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) − 882.174i − 1.21679i
\(726\) 0 0
\(727\) 730.998 1.00550 0.502749 0.864432i \(-0.332322\pi\)
0.502749 + 0.864432i \(0.332322\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 1.95629i 0.00267618i
\(732\) 0 0
\(733\) −942.809 −1.28623 −0.643117 0.765768i \(-0.722359\pi\)
−0.643117 + 0.765768i \(0.722359\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 644.899i 0.875033i
\(738\) 0 0
\(739\) −354.141 −0.479216 −0.239608 0.970870i \(-0.577019\pi\)
−0.239608 + 0.970870i \(0.577019\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) − 125.849i − 0.169380i −0.996407 0.0846899i \(-0.973010\pi\)
0.996407 0.0846899i \(-0.0269900\pi\)
\(744\) 0 0
\(745\) −545.274 −0.731911
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 1309.12i 1.74782i
\(750\) 0 0
\(751\) −551.404 −0.734226 −0.367113 0.930176i \(-0.619654\pi\)
−0.367113 + 0.930176i \(0.619654\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) − 176.916i − 0.234326i
\(756\) 0 0
\(757\) −816.186 −1.07818 −0.539092 0.842247i \(-0.681233\pi\)
−0.539092 + 0.842247i \(0.681233\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) − 943.192i − 1.23941i −0.784834 0.619706i \(-0.787252\pi\)
0.784834 0.619706i \(-0.212748\pi\)
\(762\) 0 0
\(763\) 991.919 1.30002
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 1735.06i 2.26214i
\(768\) 0 0
\(769\) −544.577 −0.708163 −0.354081 0.935215i \(-0.615206\pi\)
−0.354081 + 0.935215i \(0.615206\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 24.6789i 0.0319262i 0.999873 + 0.0159631i \(0.00508143\pi\)
−0.999873 + 0.0159631i \(0.994919\pi\)
\(774\) 0 0
\(775\) −330.454 −0.426392
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 80.7671i 0.103681i
\(780\) 0 0
\(781\) −658.138 −0.842686
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 338.994i 0.431840i
\(786\) 0 0
\(787\) 716.409 0.910304 0.455152 0.890414i \(-0.349585\pi\)
0.455152 + 0.890414i \(0.349585\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) − 660.300i − 0.834767i
\(792\) 0 0
\(793\) −258.525 −0.326008
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 962.391i 1.20752i 0.797167 + 0.603758i \(0.206331\pi\)
−0.797167 + 0.603758i \(0.793669\pi\)
\(798\) 0 0
\(799\) 2.95417 0.00369734
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) − 476.600i − 0.593525i
\(804\) 0 0
\(805\) −312.001 −0.387579
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) − 674.254i − 0.833441i −0.909035 0.416721i \(-0.863179\pi\)
0.909035 0.416721i \(-0.136821\pi\)
\(810\) 0 0
\(811\) −36.7884 −0.0453618 −0.0226809 0.999743i \(-0.507220\pi\)
−0.0226809 + 0.999743i \(0.507220\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 39.1207i 0.0480008i
\(816\) 0 0
\(817\) 799.814 0.978964
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) − 1515.18i − 1.84552i −0.385369 0.922762i \(-0.625926\pi\)
0.385369 0.922762i \(-0.374074\pi\)
\(822\) 0 0
\(823\) 762.423 0.926395 0.463198 0.886255i \(-0.346702\pi\)
0.463198 + 0.886255i \(0.346702\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) − 648.915i − 0.784662i −0.919824 0.392331i \(-0.871669\pi\)
0.919824 0.392331i \(-0.128331\pi\)
\(828\) 0 0
\(829\) −958.477 −1.15618 −0.578092 0.815971i \(-0.696203\pi\)
−0.578092 + 0.815971i \(0.696203\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) − 0.139055i 0 0.000166932i
\(834\) 0 0
\(835\) −429.461 −0.514324
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) − 287.975i − 0.343236i −0.985164 0.171618i \(-0.945100\pi\)
0.985164 0.171618i \(-0.0548995\pi\)
\(840\) 0 0
\(841\) −1013.27 −1.20484
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 493.502i 0.584027i
\(846\) 0 0
\(847\) 639.993 0.755599
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) − 479.927i − 0.563956i
\(852\) 0 0
\(853\) −666.572 −0.781445 −0.390722 0.920509i \(-0.627775\pi\)
−0.390722 + 0.920509i \(0.627775\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) − 731.580i − 0.853653i −0.904334 0.426826i \(-0.859632\pi\)
0.904334 0.426826i \(-0.140368\pi\)
\(858\) 0 0
\(859\) −776.313 −0.903740 −0.451870 0.892084i \(-0.649243\pi\)
−0.451870 + 0.892084i \(0.649243\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 925.254i 1.07214i 0.844175 + 0.536068i \(0.180091\pi\)
−0.844175 + 0.536068i \(0.819909\pi\)
\(864\) 0 0
\(865\) −214.501 −0.247977
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) − 254.649i − 0.293037i
\(870\) 0 0
\(871\) −2460.73 −2.82517
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 661.900i 0.756457i
\(876\) 0 0
\(877\) −696.151 −0.793787 −0.396893 0.917865i \(-0.629912\pi\)
−0.396893 + 0.917865i \(0.629912\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 183.830i 0.208660i 0.994543 + 0.104330i \(0.0332699\pi\)
−0.994543 + 0.104330i \(0.966730\pi\)
\(882\) 0 0
\(883\) −823.282 −0.932369 −0.466184 0.884688i \(-0.654372\pi\)
−0.466184 + 0.884688i \(0.654372\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 365.372i 0.411919i 0.978561 + 0.205959i \(0.0660315\pi\)
−0.978561 + 0.205959i \(0.933969\pi\)
\(888\) 0 0
\(889\) −874.852 −0.984085
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) − 1207.79i − 1.35251i
\(894\) 0 0
\(895\) 97.3670 0.108790
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 694.592i 0.772627i
\(900\) 0 0
\(901\) −0.859719 −0.000954183 0
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 118.485i 0.130923i
\(906\) 0 0
\(907\) −306.404 −0.337822 −0.168911 0.985631i \(-0.554025\pi\)
−0.168911 + 0.985631i \(0.554025\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 788.139i 0.865136i 0.901601 + 0.432568i \(0.142392\pi\)
−0.901601 + 0.432568i \(0.857608\pi\)
\(912\) 0 0
\(913\) −613.128 −0.671554
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) − 223.912i − 0.244179i
\(918\) 0 0
\(919\) −1319.46 −1.43575 −0.717876 0.696171i \(-0.754886\pi\)
−0.717876 + 0.696171i \(0.754886\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) − 2511.24i − 2.72074i
\(924\) 0 0
\(925\) −458.560 −0.495741
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 469.930i 0.505845i 0.967487 + 0.252922i \(0.0813917\pi\)
−0.967487 + 0.252922i \(0.918608\pi\)
\(930\) 0 0
\(931\) −56.8515 −0.0610649
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0.743642i 0 0.000795339i
\(936\) 0 0
\(937\) −1619.12 −1.72798 −0.863991 0.503508i \(-0.832042\pi\)
−0.863991 + 0.503508i \(0.832042\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) − 668.395i − 0.710302i −0.934809 0.355151i \(-0.884429\pi\)
0.934809 0.355151i \(-0.115571\pi\)
\(942\) 0 0
\(943\) −63.5296 −0.0673697
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) − 992.522i − 1.04807i −0.851697 0.524035i \(-0.824426\pi\)
0.851697 0.524035i \(-0.175574\pi\)
\(948\) 0 0
\(949\) 1818.55 1.91628
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) − 565.650i − 0.593546i −0.954948 0.296773i \(-0.904089\pi\)
0.954948 0.296773i \(-0.0959105\pi\)
\(954\) 0 0
\(955\) −672.184 −0.703858
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) − 1263.21i − 1.31722i
\(960\) 0 0
\(961\) −700.812 −0.729253
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 797.311i 0.826229i
\(966\) 0 0
\(967\) 1030.39 1.06555 0.532775 0.846257i \(-0.321149\pi\)
0.532775 + 0.846257i \(0.321149\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) − 454.101i − 0.467663i −0.972277 0.233832i \(-0.924874\pi\)
0.972277 0.233832i \(-0.0751265\pi\)
\(972\) 0 0
\(973\) −1634.99 −1.68036
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 846.744i 0.866678i 0.901231 + 0.433339i \(0.142665\pi\)
−0.901231 + 0.433339i \(0.857335\pi\)
\(978\) 0 0
\(979\) −609.904 −0.622986
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 1433.24i 1.45803i 0.684499 + 0.729014i \(0.260021\pi\)
−0.684499 + 0.729014i \(0.739979\pi\)
\(984\) 0 0
\(985\) 99.0797 0.100588
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 629.115i 0.636113i
\(990\) 0 0
\(991\) −955.562 −0.964240 −0.482120 0.876105i \(-0.660133\pi\)
−0.482120 + 0.876105i \(0.660133\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) − 407.992i − 0.410043i
\(996\) 0 0
\(997\) −589.446 −0.591219 −0.295610 0.955309i \(-0.595523\pi\)
−0.295610 + 0.955309i \(0.595523\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2592.3.e.i.161.10 24
3.2 odd 2 inner 2592.3.e.i.161.9 24
4.3 odd 2 inner 2592.3.e.i.161.16 24
9.2 odd 6 864.3.q.a.449.7 24
9.4 even 3 864.3.q.a.737.7 24
9.5 odd 6 288.3.q.b.65.7 yes 24
9.7 even 3 288.3.q.b.257.7 yes 24
12.11 even 2 inner 2592.3.e.i.161.15 24
36.7 odd 6 288.3.q.b.257.6 yes 24
36.11 even 6 864.3.q.a.449.8 24
36.23 even 6 288.3.q.b.65.6 24
36.31 odd 6 864.3.q.a.737.8 24
72.5 odd 6 576.3.q.l.65.6 24
72.11 even 6 1728.3.q.k.449.6 24
72.13 even 6 1728.3.q.k.1601.5 24
72.29 odd 6 1728.3.q.k.449.5 24
72.43 odd 6 576.3.q.l.257.7 24
72.59 even 6 576.3.q.l.65.7 24
72.61 even 6 576.3.q.l.257.6 24
72.67 odd 6 1728.3.q.k.1601.6 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
288.3.q.b.65.6 24 36.23 even 6
288.3.q.b.65.7 yes 24 9.5 odd 6
288.3.q.b.257.6 yes 24 36.7 odd 6
288.3.q.b.257.7 yes 24 9.7 even 3
576.3.q.l.65.6 24 72.5 odd 6
576.3.q.l.65.7 24 72.59 even 6
576.3.q.l.257.6 24 72.61 even 6
576.3.q.l.257.7 24 72.43 odd 6
864.3.q.a.449.7 24 9.2 odd 6
864.3.q.a.449.8 24 36.11 even 6
864.3.q.a.737.7 24 9.4 even 3
864.3.q.a.737.8 24 36.31 odd 6
1728.3.q.k.449.5 24 72.29 odd 6
1728.3.q.k.449.6 24 72.11 even 6
1728.3.q.k.1601.5 24 72.13 even 6
1728.3.q.k.1601.6 24 72.67 odd 6
2592.3.e.i.161.9 24 3.2 odd 2 inner
2592.3.e.i.161.10 24 1.1 even 1 trivial
2592.3.e.i.161.15 24 12.11 even 2 inner
2592.3.e.i.161.16 24 4.3 odd 2 inner