Properties

Label 864.3.q.a.737.8
Level $864$
Weight $3$
Character 864.737
Analytic conductor $23.542$
Analytic rank $0$
Dimension $24$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [864,3,Mod(449,864)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(864, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 5]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("864.449");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 864 = 2^{5} \cdot 3^{3} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 864.q (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(23.5422948407\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(12\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 288)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 737.8
Character \(\chi\) \(=\) 864.737
Dual form 864.3.q.a.449.8

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.83987 - 1.06225i) q^{5} +(3.42470 - 5.93176i) q^{7} +(-4.54662 - 2.62499i) q^{11} +(-10.0161 - 17.3484i) q^{13} +0.0666728i q^{17} -27.2587 q^{19} +(-18.5685 + 10.7205i) q^{23} +(-10.2432 + 17.7418i) q^{25} +(37.2921 + 21.5306i) q^{29} +(-8.06516 - 13.9693i) q^{31} -14.5516i q^{35} -22.3835 q^{37} +(2.56602 - 1.48149i) q^{41} +(14.6708 - 25.4106i) q^{43} +(-38.3723 - 22.1542i) q^{47} +(1.04281 + 1.80621i) q^{49} +12.8946i q^{53} -11.1536 q^{55} +(-75.0094 + 43.3067i) q^{59} +(6.45271 - 11.1764i) q^{61} +(-36.8568 - 21.2793i) q^{65} +(-61.4191 - 106.381i) q^{67} +125.360i q^{71} +90.7813 q^{73} +(-31.1416 + 17.9796i) q^{77} +(24.2523 - 42.0063i) q^{79} +(-101.140 - 58.3934i) q^{83} +(0.0708233 + 0.122669i) q^{85} -116.172i q^{89} -137.209 q^{91} +(-50.1525 + 28.9556i) q^{95} +(-23.2781 + 40.3188i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + 60 q^{25} - 72 q^{29} - 252 q^{41} - 36 q^{49} - 96 q^{61} + 288 q^{65} + 24 q^{73} + 720 q^{77} + 96 q^{85} - 132 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/864\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(353\) \(703\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{6}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 1.83987 1.06225i 0.367974 0.212450i −0.304599 0.952481i \(-0.598522\pi\)
0.672573 + 0.740031i \(0.265189\pi\)
\(6\) 0 0
\(7\) 3.42470 5.93176i 0.489243 0.847394i −0.510680 0.859771i \(-0.670606\pi\)
0.999923 + 0.0123765i \(0.00393967\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −4.54662 2.62499i −0.413329 0.238636i 0.278890 0.960323i \(-0.410033\pi\)
−0.692219 + 0.721687i \(0.743367\pi\)
\(12\) 0 0
\(13\) −10.0161 17.3484i −0.770471 1.33449i −0.937305 0.348510i \(-0.886688\pi\)
0.166834 0.985985i \(-0.446646\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 0.0666728i 0.00392193i 0.999998 + 0.00196097i \(0.000624195\pi\)
−0.999998 + 0.00196097i \(0.999376\pi\)
\(18\) 0 0
\(19\) −27.2587 −1.43467 −0.717334 0.696730i \(-0.754638\pi\)
−0.717334 + 0.696730i \(0.754638\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −18.5685 + 10.7205i −0.807326 + 0.466110i −0.846026 0.533141i \(-0.821012\pi\)
0.0387003 + 0.999251i \(0.487678\pi\)
\(24\) 0 0
\(25\) −10.2432 + 17.7418i −0.409730 + 0.709673i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 37.2921 + 21.5306i 1.28594 + 0.742435i 0.977927 0.208948i \(-0.0670041\pi\)
0.308009 + 0.951384i \(0.400337\pi\)
\(30\) 0 0
\(31\) −8.06516 13.9693i −0.260167 0.450622i 0.706119 0.708093i \(-0.250444\pi\)
−0.966286 + 0.257471i \(0.917111\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 14.5516i 0.415759i
\(36\) 0 0
\(37\) −22.3835 −0.604961 −0.302480 0.953156i \(-0.597815\pi\)
−0.302480 + 0.953156i \(0.597815\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 2.56602 1.48149i 0.0625859 0.0361340i −0.468381 0.883527i \(-0.655162\pi\)
0.530966 + 0.847393i \(0.321829\pi\)
\(42\) 0 0
\(43\) 14.6708 25.4106i 0.341182 0.590944i −0.643471 0.765471i \(-0.722506\pi\)
0.984652 + 0.174527i \(0.0558396\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −38.3723 22.1542i −0.816431 0.471367i 0.0327529 0.999463i \(-0.489573\pi\)
−0.849184 + 0.528097i \(0.822906\pi\)
\(48\) 0 0
\(49\) 1.04281 + 1.80621i 0.0212819 + 0.0368614i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 12.8946i 0.243294i 0.992573 + 0.121647i \(0.0388176\pi\)
−0.992573 + 0.121647i \(0.961182\pi\)
\(54\) 0 0
\(55\) −11.1536 −0.202793
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −75.0094 + 43.3067i −1.27135 + 0.734012i −0.975241 0.221144i \(-0.929021\pi\)
−0.296105 + 0.955155i \(0.595688\pi\)
\(60\) 0 0
\(61\) 6.45271 11.1764i 0.105782 0.183220i −0.808275 0.588805i \(-0.799599\pi\)
0.914057 + 0.405585i \(0.132932\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −36.8568 21.2793i −0.567027 0.327373i
\(66\) 0 0
\(67\) −61.4191 106.381i −0.916704 1.58778i −0.804388 0.594105i \(-0.797506\pi\)
−0.112316 0.993673i \(-0.535827\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 125.360i 1.76563i 0.469717 + 0.882817i \(0.344356\pi\)
−0.469717 + 0.882817i \(0.655644\pi\)
\(72\) 0 0
\(73\) 90.7813 1.24358 0.621790 0.783184i \(-0.286406\pi\)
0.621790 + 0.783184i \(0.286406\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −31.1416 + 17.9796i −0.404437 + 0.233502i
\(78\) 0 0
\(79\) 24.2523 42.0063i 0.306992 0.531725i −0.670711 0.741719i \(-0.734011\pi\)
0.977703 + 0.209994i \(0.0673443\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −101.140 58.3934i −1.21856 0.703534i −0.253948 0.967218i \(-0.581729\pi\)
−0.964609 + 0.263683i \(0.915063\pi\)
\(84\) 0 0
\(85\) 0.0708233 + 0.122669i 0.000833215 + 0.00144317i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 116.172i 1.30531i −0.757656 0.652654i \(-0.773655\pi\)
0.757656 0.652654i \(-0.226345\pi\)
\(90\) 0 0
\(91\) −137.209 −1.50779
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −50.1525 + 28.9556i −0.527921 + 0.304795i
\(96\) 0 0
\(97\) −23.2781 + 40.3188i −0.239980 + 0.415658i −0.960708 0.277560i \(-0.910474\pi\)
0.720728 + 0.693218i \(0.243808\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −117.017 67.5600i −1.15859 0.668911i −0.207622 0.978209i \(-0.566572\pi\)
−0.950965 + 0.309298i \(0.899906\pi\)
\(102\) 0 0
\(103\) −7.91649 13.7118i −0.0768592 0.133124i 0.825034 0.565083i \(-0.191156\pi\)
−0.901893 + 0.431959i \(0.857823\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 191.129i 1.78625i −0.449810 0.893124i \(-0.648508\pi\)
0.449810 0.893124i \(-0.351492\pi\)
\(108\) 0 0
\(109\) 144.818 1.32861 0.664304 0.747463i \(-0.268728\pi\)
0.664304 + 0.747463i \(0.268728\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −83.4871 + 48.2013i −0.738824 + 0.426560i −0.821641 0.570005i \(-0.806941\pi\)
0.0828178 + 0.996565i \(0.473608\pi\)
\(114\) 0 0
\(115\) −22.7758 + 39.4488i −0.198050 + 0.343033i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0.395487 + 0.228335i 0.00332342 + 0.00191878i
\(120\) 0 0
\(121\) −46.7188 80.9194i −0.386106 0.668755i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 96.6361i 0.773089i
\(126\) 0 0
\(127\) 127.727 1.00572 0.502861 0.864367i \(-0.332281\pi\)
0.502861 + 0.864367i \(0.332281\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 28.3110 16.3454i 0.216115 0.124774i −0.388035 0.921645i \(-0.626846\pi\)
0.604150 + 0.796871i \(0.293513\pi\)
\(132\) 0 0
\(133\) −93.3529 + 161.692i −0.701901 + 1.21573i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 159.718 + 92.2133i 1.16583 + 0.673089i 0.952693 0.303934i \(-0.0983002\pi\)
0.213132 + 0.977023i \(0.431634\pi\)
\(138\) 0 0
\(139\) −119.353 206.725i −0.858652 1.48723i −0.873215 0.487336i \(-0.837969\pi\)
0.0145624 0.999894i \(-0.495364\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 105.169i 0.735447i
\(144\) 0 0
\(145\) 91.4837 0.630922
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 222.274 128.330i 1.49177 0.861274i 0.491814 0.870700i \(-0.336334\pi\)
0.999956 + 0.00942657i \(0.00300061\pi\)
\(150\) 0 0
\(151\) −41.6371 + 72.1175i −0.275742 + 0.477600i −0.970322 0.241816i \(-0.922257\pi\)
0.694580 + 0.719416i \(0.255590\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −29.6777 17.1345i −0.191469 0.110545i
\(156\) 0 0
\(157\) −79.7821 138.187i −0.508166 0.880170i −0.999955 0.00945526i \(-0.996990\pi\)
0.491789 0.870714i \(-0.336343\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 146.859i 0.912165i
\(162\) 0 0
\(163\) −18.4140 −0.112970 −0.0564848 0.998403i \(-0.517989\pi\)
−0.0564848 + 0.998403i \(0.517989\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −175.064 + 101.073i −1.04829 + 0.605229i −0.922170 0.386786i \(-0.873585\pi\)
−0.126118 + 0.992015i \(0.540252\pi\)
\(168\) 0 0
\(169\) −116.145 + 201.170i −0.687251 + 1.19035i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −87.4383 50.4825i −0.505424 0.291807i 0.225527 0.974237i \(-0.427590\pi\)
−0.730951 + 0.682430i \(0.760923\pi\)
\(174\) 0 0
\(175\) 70.1602 + 121.521i 0.400915 + 0.694405i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 45.8305i 0.256036i 0.991772 + 0.128018i \(0.0408616\pi\)
−0.991772 + 0.128018i \(0.959138\pi\)
\(180\) 0 0
\(181\) 55.7708 0.308126 0.154063 0.988061i \(-0.450764\pi\)
0.154063 + 0.988061i \(0.450764\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −41.1829 + 23.7769i −0.222610 + 0.128524i
\(186\) 0 0
\(187\) 0.175016 0.303136i 0.000935912 0.00162105i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 274.007 + 158.198i 1.43459 + 0.828262i 0.997466 0.0711380i \(-0.0226631\pi\)
0.437126 + 0.899400i \(0.355996\pi\)
\(192\) 0 0
\(193\) −187.647 325.013i −0.972262 1.68401i −0.688690 0.725056i \(-0.741814\pi\)
−0.283571 0.958951i \(-0.591519\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 46.6367i 0.236734i −0.992970 0.118367i \(-0.962234\pi\)
0.992970 0.118367i \(-0.0377660\pi\)
\(198\) 0 0
\(199\) 192.041 0.965033 0.482516 0.875887i \(-0.339723\pi\)
0.482516 + 0.875887i \(0.339723\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 255.429 147.472i 1.25827 0.726463i
\(204\) 0 0
\(205\) 3.14744 5.45152i 0.0153533 0.0265928i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 123.935 + 71.5538i 0.592990 + 0.342363i
\(210\) 0 0
\(211\) 157.590 + 272.954i 0.746872 + 1.29362i 0.949315 + 0.314326i \(0.101778\pi\)
−0.202443 + 0.979294i \(0.564888\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 62.3363i 0.289936i
\(216\) 0 0
\(217\) −110.483 −0.509139
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 1.15667 0.667803i 0.00523380 0.00302173i
\(222\) 0 0
\(223\) 92.1859 159.671i 0.413390 0.716012i −0.581868 0.813283i \(-0.697678\pi\)
0.995258 + 0.0972713i \(0.0310114\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −114.806 66.2830i −0.505752 0.291996i 0.225334 0.974282i \(-0.427653\pi\)
−0.731086 + 0.682286i \(0.760986\pi\)
\(228\) 0 0
\(229\) 12.0352 + 20.8456i 0.0525556 + 0.0910290i 0.891106 0.453794i \(-0.149930\pi\)
−0.838551 + 0.544824i \(0.816597\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 135.751i 0.582621i −0.956629 0.291311i \(-0.905909\pi\)
0.956629 0.291311i \(-0.0940913\pi\)
\(234\) 0 0
\(235\) −94.1335 −0.400568
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 371.772 214.642i 1.55553 0.898085i 0.557854 0.829939i \(-0.311625\pi\)
0.997675 0.0681461i \(-0.0217084\pi\)
\(240\) 0 0
\(241\) 91.2013 157.965i 0.378429 0.655458i −0.612405 0.790544i \(-0.709798\pi\)
0.990834 + 0.135086i \(0.0431312\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 3.83729 + 2.21546i 0.0156624 + 0.00904269i
\(246\) 0 0
\(247\) 273.026 + 472.895i 1.10537 + 1.91456i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 69.0483i 0.275093i −0.990495 0.137546i \(-0.956078\pi\)
0.990495 0.137546i \(-0.0439216\pi\)
\(252\) 0 0
\(253\) 112.565 0.444922
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 92.0921 53.1694i 0.358335 0.206885i −0.310015 0.950732i \(-0.600334\pi\)
0.668350 + 0.743847i \(0.267001\pi\)
\(258\) 0 0
\(259\) −76.6570 + 132.774i −0.295973 + 0.512640i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 209.762 + 121.106i 0.797575 + 0.460480i 0.842622 0.538505i \(-0.181011\pi\)
−0.0450477 + 0.998985i \(0.514344\pi\)
\(264\) 0 0
\(265\) 13.6973 + 23.7244i 0.0516879 + 0.0895260i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 143.438i 0.533228i 0.963803 + 0.266614i \(0.0859049\pi\)
−0.963803 + 0.266614i \(0.914095\pi\)
\(270\) 0 0
\(271\) −59.8857 −0.220980 −0.110490 0.993877i \(-0.535242\pi\)
−0.110490 + 0.993877i \(0.535242\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 93.1443 53.7769i 0.338706 0.195552i
\(276\) 0 0
\(277\) −157.458 + 272.725i −0.568441 + 0.984568i 0.428280 + 0.903646i \(0.359120\pi\)
−0.996720 + 0.0809221i \(0.974214\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 35.1739 + 20.3077i 0.125174 + 0.0722693i 0.561280 0.827626i \(-0.310309\pi\)
−0.436106 + 0.899896i \(0.643643\pi\)
\(282\) 0 0
\(283\) 50.9484 + 88.2451i 0.180030 + 0.311820i 0.941890 0.335920i \(-0.109047\pi\)
−0.761861 + 0.647741i \(0.775714\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 20.2947i 0.0707133i
\(288\) 0 0
\(289\) 288.996 0.999985
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −116.145 + 67.0565i −0.396400 + 0.228862i −0.684930 0.728609i \(-0.740167\pi\)
0.288529 + 0.957471i \(0.406834\pi\)
\(294\) 0 0
\(295\) −92.0052 + 159.358i −0.311882 + 0.540195i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 371.969 + 214.756i 1.24404 + 0.718248i
\(300\) 0 0
\(301\) −100.486 174.047i −0.333842 0.578231i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 27.4176i 0.0898937i
\(306\) 0 0
\(307\) 129.799 0.422799 0.211400 0.977400i \(-0.432198\pi\)
0.211400 + 0.977400i \(0.432198\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −175.014 + 101.044i −0.562746 + 0.324902i −0.754247 0.656591i \(-0.771998\pi\)
0.191501 + 0.981492i \(0.438665\pi\)
\(312\) 0 0
\(313\) −168.502 + 291.854i −0.538346 + 0.932442i 0.460648 + 0.887583i \(0.347617\pi\)
−0.998993 + 0.0448588i \(0.985716\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −268.759 155.168i −0.847821 0.489490i 0.0120937 0.999927i \(-0.496150\pi\)
−0.859915 + 0.510437i \(0.829484\pi\)
\(318\) 0 0
\(319\) −113.035 195.783i −0.354343 0.613740i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 1.81741i 0.00562667i
\(324\) 0 0
\(325\) 410.390 1.26274
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −262.827 + 151.743i −0.798867 + 0.461226i
\(330\) 0 0
\(331\) 82.2294 142.426i 0.248427 0.430289i −0.714662 0.699470i \(-0.753420\pi\)
0.963090 + 0.269181i \(0.0867530\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −226.007 130.485i −0.674647 0.389508i
\(336\) 0 0
\(337\) 94.5387 + 163.746i 0.280530 + 0.485892i 0.971515 0.236976i \(-0.0761564\pi\)
−0.690985 + 0.722869i \(0.742823\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 84.6840i 0.248340i
\(342\) 0 0
\(343\) 349.906 1.02013
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 373.319 215.536i 1.07585 0.621141i 0.146075 0.989274i \(-0.453336\pi\)
0.929773 + 0.368132i \(0.120003\pi\)
\(348\) 0 0
\(349\) −183.325 + 317.529i −0.525287 + 0.909824i 0.474279 + 0.880375i \(0.342709\pi\)
−0.999566 + 0.0294495i \(0.990625\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −50.6831 29.2619i −0.143578 0.0828949i 0.426490 0.904492i \(-0.359750\pi\)
−0.570068 + 0.821597i \(0.693083\pi\)
\(354\) 0 0
\(355\) 133.164 + 230.646i 0.375109 + 0.649708i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 48.0665i 0.133890i 0.997757 + 0.0669449i \(0.0213252\pi\)
−0.997757 + 0.0669449i \(0.978675\pi\)
\(360\) 0 0
\(361\) 382.036 1.05827
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 167.026 96.4325i 0.457605 0.264199i
\(366\) 0 0
\(367\) −57.1737 + 99.0277i −0.155787 + 0.269830i −0.933345 0.358980i \(-0.883125\pi\)
0.777559 + 0.628810i \(0.216458\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 76.4876 + 44.1601i 0.206166 + 0.119030i
\(372\) 0 0
\(373\) −172.978 299.607i −0.463748 0.803235i 0.535396 0.844601i \(-0.320162\pi\)
−0.999144 + 0.0413660i \(0.986829\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 862.613i 2.28810i
\(378\) 0 0
\(379\) 323.425 0.853364 0.426682 0.904402i \(-0.359682\pi\)
0.426682 + 0.904402i \(0.359682\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 449.868 259.732i 1.17459 0.678151i 0.219834 0.975537i \(-0.429448\pi\)
0.954757 + 0.297387i \(0.0961151\pi\)
\(384\) 0 0
\(385\) −38.1978 + 66.1605i −0.0992150 + 0.171845i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 148.157 + 85.5386i 0.380867 + 0.219893i 0.678195 0.734882i \(-0.262762\pi\)
−0.297329 + 0.954775i \(0.596096\pi\)
\(390\) 0 0
\(391\) −0.714768 1.23801i −0.00182805 0.00316628i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 103.048i 0.260882i
\(396\) 0 0
\(397\) 159.942 0.402878 0.201439 0.979501i \(-0.435438\pi\)
0.201439 + 0.979501i \(0.435438\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −568.013 + 327.942i −1.41649 + 0.817811i −0.995989 0.0894809i \(-0.971479\pi\)
−0.420502 + 0.907292i \(0.638146\pi\)
\(402\) 0 0
\(403\) −161.563 + 279.836i −0.400902 + 0.694382i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 101.769 + 58.7566i 0.250048 + 0.144365i
\(408\) 0 0
\(409\) −33.1589 57.4330i −0.0810732 0.140423i 0.822638 0.568566i \(-0.192501\pi\)
−0.903711 + 0.428143i \(0.859168\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 593.250i 1.43644i
\(414\) 0 0
\(415\) −248.114 −0.597864
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −644.388 + 372.038i −1.53792 + 0.887918i −0.538959 + 0.842332i \(0.681182\pi\)
−0.998960 + 0.0455866i \(0.985484\pi\)
\(420\) 0 0
\(421\) 340.558 589.864i 0.808927 1.40110i −0.104680 0.994506i \(-0.533382\pi\)
0.913608 0.406597i \(-0.133285\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −1.18290 0.682946i −0.00278329 0.00160693i
\(426\) 0 0
\(427\) −44.1972 76.5518i −0.103506 0.179278i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 251.031i 0.582439i −0.956656 0.291220i \(-0.905939\pi\)
0.956656 0.291220i \(-0.0940610\pi\)
\(432\) 0 0
\(433\) −87.8113 −0.202797 −0.101399 0.994846i \(-0.532332\pi\)
−0.101399 + 0.994846i \(0.532332\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 506.153 292.227i 1.15824 0.668713i
\(438\) 0 0
\(439\) −196.634 + 340.580i −0.447913 + 0.775809i −0.998250 0.0591342i \(-0.981166\pi\)
0.550337 + 0.834943i \(0.314499\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −43.0034 24.8280i −0.0970731 0.0560452i 0.450678 0.892687i \(-0.351182\pi\)
−0.547751 + 0.836642i \(0.684516\pi\)
\(444\) 0 0
\(445\) −123.404 213.743i −0.277313 0.480320i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 276.997i 0.616919i −0.951237 0.308459i \(-0.900187\pi\)
0.951237 0.308459i \(-0.0998134\pi\)
\(450\) 0 0
\(451\) −15.5556 −0.0344914
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −252.447 + 145.750i −0.554829 + 0.320331i
\(456\) 0 0
\(457\) 3.56704 6.17829i 0.00780534 0.0135192i −0.862096 0.506744i \(-0.830849\pi\)
0.869902 + 0.493225i \(0.164182\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −298.324 172.238i −0.647124 0.373617i 0.140229 0.990119i \(-0.455216\pi\)
−0.787354 + 0.616502i \(0.788549\pi\)
\(462\) 0 0
\(463\) −309.452 535.986i −0.668362 1.15764i −0.978362 0.206900i \(-0.933662\pi\)
0.310000 0.950737i \(-0.399671\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 682.172i 1.46075i 0.683044 + 0.730377i \(0.260656\pi\)
−0.683044 + 0.730377i \(0.739344\pi\)
\(468\) 0 0
\(469\) −841.369 −1.79396
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −133.405 + 77.0215i −0.282041 + 0.162836i
\(474\) 0 0
\(475\) 279.217 483.619i 0.587826 1.01814i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −120.167 69.3787i −0.250871 0.144841i 0.369292 0.929313i \(-0.379600\pi\)
−0.620163 + 0.784473i \(0.712934\pi\)
\(480\) 0 0
\(481\) 224.196 + 388.319i 0.466105 + 0.807317i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 98.9087i 0.203935i
\(486\) 0 0
\(487\) −630.925 −1.29553 −0.647766 0.761839i \(-0.724297\pi\)
−0.647766 + 0.761839i \(0.724297\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −351.529 + 202.955i −0.715945 + 0.413351i −0.813259 0.581903i \(-0.802309\pi\)
0.0973131 + 0.995254i \(0.468975\pi\)
\(492\) 0 0
\(493\) −1.43551 + 2.48637i −0.00291178 + 0.00504335i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 743.605 + 429.321i 1.49619 + 0.863825i
\(498\) 0 0
\(499\) 52.0887 + 90.2203i 0.104386 + 0.180802i 0.913487 0.406867i \(-0.133379\pi\)
−0.809101 + 0.587670i \(0.800046\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 275.389i 0.547493i −0.961802 0.273746i \(-0.911737\pi\)
0.961802 0.273746i \(-0.0882629\pi\)
\(504\) 0 0
\(505\) −287.063 −0.568441
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 661.144 381.712i 1.29891 0.749925i 0.318693 0.947858i \(-0.396756\pi\)
0.980216 + 0.197933i \(0.0634228\pi\)
\(510\) 0 0
\(511\) 310.899 538.493i 0.608413 1.05380i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −29.1307 16.8186i −0.0565644 0.0326575i
\(516\) 0 0
\(517\) 116.309 + 201.454i 0.224970 + 0.389659i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 727.642i 1.39663i 0.715793 + 0.698313i \(0.246065\pi\)
−0.715793 + 0.698313i \(0.753935\pi\)
\(522\) 0 0
\(523\) 585.050 1.11864 0.559321 0.828951i \(-0.311062\pi\)
0.559321 + 0.828951i \(0.311062\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 0.931371 0.537727i 0.00176731 0.00102036i
\(528\) 0 0
\(529\) −34.6405 + 59.9991i −0.0654830 + 0.113420i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −51.4032 29.6777i −0.0964413 0.0556804i
\(534\) 0 0
\(535\) −203.027 351.652i −0.379489 0.657294i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 10.9495i 0.0203145i
\(540\) 0 0
\(541\) −359.365 −0.664260 −0.332130 0.943234i \(-0.607767\pi\)
−0.332130 + 0.943234i \(0.607767\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 266.447 153.833i 0.488894 0.282263i
\(546\) 0 0
\(547\) −48.9820 + 84.8393i −0.0895467 + 0.155099i −0.907320 0.420442i \(-0.861875\pi\)
0.817773 + 0.575541i \(0.195208\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −1016.53 586.896i −1.84489 1.06515i
\(552\) 0 0
\(553\) −166.114 287.718i −0.300387 0.520286i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 550.731i 0.988745i 0.869250 + 0.494373i \(0.164602\pi\)
−0.869250 + 0.494373i \(0.835398\pi\)
\(558\) 0 0
\(559\) −587.779 −1.05148
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −464.850 + 268.382i −0.825667 + 0.476699i −0.852367 0.522944i \(-0.824833\pi\)
0.0266998 + 0.999643i \(0.491500\pi\)
\(564\) 0 0
\(565\) −102.404 + 177.368i −0.181245 + 0.313926i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 477.998 + 275.972i 0.840067 + 0.485013i 0.857287 0.514839i \(-0.172148\pi\)
−0.0172202 + 0.999852i \(0.505482\pi\)
\(570\) 0 0
\(571\) −409.760 709.726i −0.717619 1.24295i −0.961941 0.273258i \(-0.911899\pi\)
0.244322 0.969694i \(-0.421435\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 439.252i 0.763917i
\(576\) 0 0
\(577\) −828.718 −1.43625 −0.718126 0.695913i \(-0.755000\pi\)
−0.718126 + 0.695913i \(0.755000\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −692.751 + 399.960i −1.19234 + 0.688399i
\(582\) 0 0
\(583\) 33.8482 58.6268i 0.0580587 0.100561i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 66.3759 + 38.3222i 0.113077 + 0.0652848i 0.555472 0.831535i \(-0.312538\pi\)
−0.442395 + 0.896820i \(0.645871\pi\)
\(588\) 0 0
\(589\) 219.846 + 380.784i 0.373252 + 0.646492i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 943.303i 1.59073i −0.606130 0.795366i \(-0.707279\pi\)
0.606130 0.795366i \(-0.292721\pi\)
\(594\) 0 0
\(595\) 0.970195 0.00163058
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −285.323 + 164.731i −0.476332 + 0.275010i −0.718887 0.695127i \(-0.755348\pi\)
0.242555 + 0.970138i \(0.422015\pi\)
\(600\) 0 0
\(601\) 381.291 660.415i 0.634427 1.09886i −0.352209 0.935921i \(-0.614569\pi\)
0.986636 0.162939i \(-0.0520972\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −171.913 99.2542i −0.284154 0.164057i
\(606\) 0 0
\(607\) −479.687 830.843i −0.790259 1.36877i −0.925806 0.377998i \(-0.876613\pi\)
0.135547 0.990771i \(-0.456721\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 887.599i 1.45270i
\(612\) 0 0
\(613\) 573.016 0.934773 0.467386 0.884053i \(-0.345196\pi\)
0.467386 + 0.884053i \(0.345196\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −97.1976 + 56.1171i −0.157533 + 0.0909515i −0.576694 0.816960i \(-0.695657\pi\)
0.419161 + 0.907912i \(0.362324\pi\)
\(618\) 0 0
\(619\) −22.5587 + 39.0728i −0.0364438 + 0.0631225i −0.883672 0.468107i \(-0.844936\pi\)
0.847228 + 0.531229i \(0.178270\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −689.107 397.856i −1.10611 0.638613i
\(624\) 0 0
\(625\) −153.429 265.747i −0.245487 0.425196i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 1.49237i 0.00237261i
\(630\) 0 0
\(631\) −1118.03 −1.77185 −0.885923 0.463832i \(-0.846474\pi\)
−0.885923 + 0.463832i \(0.846474\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 235.001 135.678i 0.370080 0.213666i
\(636\) 0 0
\(637\) 20.8899 36.1824i 0.0327942 0.0568012i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −583.312 336.775i −0.910003 0.525390i −0.0295708 0.999563i \(-0.509414\pi\)
−0.880432 + 0.474172i \(0.842747\pi\)
\(642\) 0 0
\(643\) 285.246 + 494.060i 0.443617 + 0.768368i 0.997955 0.0639243i \(-0.0203616\pi\)
−0.554337 + 0.832292i \(0.687028\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 376.087i 0.581278i 0.956833 + 0.290639i \(0.0938678\pi\)
−0.956833 + 0.290639i \(0.906132\pi\)
\(648\) 0 0
\(649\) 454.719 0.700646
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 557.218 321.710i 0.853321 0.492665i −0.00844912 0.999964i \(-0.502689\pi\)
0.861770 + 0.507299i \(0.169356\pi\)
\(654\) 0 0
\(655\) 34.7258 60.1468i 0.0530164 0.0918272i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 140.020 + 80.8403i 0.212473 + 0.122671i 0.602460 0.798149i \(-0.294187\pi\)
−0.389987 + 0.920820i \(0.627521\pi\)
\(660\) 0 0
\(661\) 358.633 + 621.171i 0.542561 + 0.939744i 0.998756 + 0.0498638i \(0.0158787\pi\)
−0.456195 + 0.889880i \(0.650788\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 396.657i 0.596476i
\(666\) 0 0
\(667\) −923.278 −1.38423
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −58.6760 + 33.8766i −0.0874456 + 0.0504868i
\(672\) 0 0
\(673\) 82.4149 142.747i 0.122459 0.212105i −0.798278 0.602289i \(-0.794255\pi\)
0.920737 + 0.390184i \(0.127589\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −703.172 405.977i −1.03866 0.599670i −0.119206 0.992870i \(-0.538035\pi\)
−0.919453 + 0.393200i \(0.871368\pi\)
\(678\) 0 0
\(679\) 159.441 + 276.160i 0.234818 + 0.406716i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 546.230i 0.799751i −0.916569 0.399876i \(-0.869053\pi\)
0.916569 0.399876i \(-0.130947\pi\)
\(684\) 0 0
\(685\) 391.814 0.571992
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 223.701 129.154i 0.324675 0.187451i
\(690\) 0 0
\(691\) 11.8911 20.5960i 0.0172085 0.0298061i −0.857293 0.514829i \(-0.827855\pi\)
0.874501 + 0.485023i \(0.161189\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −439.187 253.565i −0.631924 0.364842i
\(696\) 0 0
\(697\) 0.0987754 + 0.171084i 0.000141715 + 0.000245458i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 959.326i 1.36851i −0.729242 0.684255i \(-0.760127\pi\)
0.729242 0.684255i \(-0.239873\pi\)
\(702\) 0 0
\(703\) 610.146 0.867917
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −801.499 + 462.746i −1.13366 + 0.654520i
\(708\) 0 0
\(709\) 218.458 378.381i 0.308121 0.533682i −0.669830 0.742515i \(-0.733633\pi\)
0.977951 + 0.208833i \(0.0669664\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 299.516 + 172.926i 0.420079 + 0.242532i
\(714\) 0 0
\(715\) 111.716 + 193.497i 0.156246 + 0.270626i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 643.581i 0.895106i −0.894257 0.447553i \(-0.852296\pi\)
0.894257 0.447553i \(-0.147704\pi\)
\(720\) 0 0
\(721\) −108.447 −0.150411
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −763.985 + 441.087i −1.05377 + 0.608396i
\(726\) 0 0
\(727\) 365.499 633.062i 0.502749 0.870787i −0.497246 0.867610i \(-0.665655\pi\)
0.999995 0.00317756i \(-0.00101145\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 1.69420 + 0.978144i 0.00231764 + 0.00133809i
\(732\) 0 0
\(733\) 471.405 + 816.497i 0.643117 + 1.11391i 0.984733 + 0.174072i \(0.0556924\pi\)
−0.341616 + 0.939840i \(0.610974\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 644.899i 0.875033i
\(738\) 0 0
\(739\) 354.141 0.479216 0.239608 0.970870i \(-0.422981\pi\)
0.239608 + 0.970870i \(0.422981\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 108.989 62.9246i 0.146687 0.0846899i −0.424860 0.905259i \(-0.639677\pi\)
0.571547 + 0.820569i \(0.306343\pi\)
\(744\) 0 0
\(745\) 272.637 472.221i 0.365955 0.633853i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −1133.73 654.559i −1.51366 0.873910i
\(750\) 0 0
\(751\) −275.702 477.530i −0.367113 0.635858i 0.622000 0.783017i \(-0.286320\pi\)
−0.989113 + 0.147159i \(0.952987\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 176.916i 0.234326i
\(756\) 0 0
\(757\) −816.186 −1.07818 −0.539092 0.842247i \(-0.681233\pi\)
−0.539092 + 0.842247i \(0.681233\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −816.829 + 471.596i −1.07336 + 0.619706i −0.929098 0.369833i \(-0.879415\pi\)
−0.144264 + 0.989539i \(0.546081\pi\)
\(762\) 0 0
\(763\) 495.960 859.027i 0.650012 1.12585i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 1502.61 + 867.531i 1.95907 + 1.13107i
\(768\) 0 0
\(769\) 272.289 + 471.618i 0.354081 + 0.613287i 0.986960 0.160964i \(-0.0514603\pi\)
−0.632879 + 0.774251i \(0.718127\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 24.6789i 0.0319262i 0.999873 + 0.0159631i \(0.00508143\pi\)
−0.999873 + 0.0159631i \(0.994919\pi\)
\(774\) 0 0
\(775\) 330.454 0.426392
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −69.9464 + 40.3836i −0.0897900 + 0.0518403i
\(780\) 0 0
\(781\) 329.069 569.964i 0.421343 0.729788i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −293.578 169.497i −0.373984 0.215920i
\(786\) 0 0
\(787\) 358.205 + 620.429i 0.455152 + 0.788346i 0.998697 0.0510338i \(-0.0162516\pi\)
−0.543545 + 0.839380i \(0.682918\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 660.300i 0.834767i
\(792\) 0 0
\(793\) −258.525 −0.326008
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 833.455 481.195i 1.04574 0.603758i 0.124286 0.992246i \(-0.460336\pi\)
0.921454 + 0.388488i \(0.127003\pi\)
\(798\) 0 0
\(799\) 1.47709 2.55839i 0.00184867 0.00320199i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −412.748 238.300i −0.514007 0.296762i
\(804\) 0 0
\(805\) 156.001 + 270.201i 0.193790 + 0.335653i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 674.254i 0.833441i −0.909035 0.416721i \(-0.863179\pi\)
0.909035 0.416721i \(-0.136821\pi\)
\(810\) 0 0
\(811\) 36.7884 0.0453618 0.0226809 0.999743i \(-0.492780\pi\)
0.0226809 + 0.999743i \(0.492780\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −33.8795 + 19.5603i −0.0415699 + 0.0240004i
\(816\) 0 0
\(817\) −399.907 + 692.659i −0.489482 + 0.847808i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 1312.18 + 757.588i 1.59827 + 0.922762i 0.991820 + 0.127642i \(0.0407408\pi\)
0.606451 + 0.795121i \(0.292593\pi\)
\(822\) 0 0
\(823\) 381.212 + 660.278i 0.463198 + 0.802282i 0.999118 0.0419867i \(-0.0133687\pi\)
−0.535921 + 0.844268i \(0.680035\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 648.915i 0.784662i 0.919824 + 0.392331i \(0.128331\pi\)
−0.919824 + 0.392331i \(0.871669\pi\)
\(828\) 0 0
\(829\) −958.477 −1.15618 −0.578092 0.815971i \(-0.696203\pi\)
−0.578092 + 0.815971i \(0.696203\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −0.120425 + 0.0695273i −0.000144568 + 8.34662e-5i
\(834\) 0 0
\(835\) −214.730 + 371.924i −0.257162 + 0.445418i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −249.394 143.988i −0.297251 0.171618i 0.343956 0.938986i \(-0.388233\pi\)
−0.641207 + 0.767368i \(0.721566\pi\)
\(840\) 0 0
\(841\) 506.635 + 877.517i 0.602420 + 1.04342i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 493.502i 0.584027i
\(846\) 0 0
\(847\) −639.993 −0.755599
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 415.629 239.963i 0.488400 0.281978i
\(852\) 0 0
\(853\) 333.286 577.268i 0.390722 0.676751i −0.601823 0.798630i \(-0.705559\pi\)
0.992545 + 0.121879i \(0.0388920\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 633.567 + 365.790i 0.739285 + 0.426826i 0.821809 0.569763i \(-0.192965\pi\)
−0.0825243 + 0.996589i \(0.526298\pi\)
\(858\) 0 0
\(859\) −388.156 672.307i −0.451870 0.782662i 0.546632 0.837373i \(-0.315910\pi\)
−0.998502 + 0.0547109i \(0.982576\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 925.254i 1.07214i −0.844175 0.536068i \(-0.819909\pi\)
0.844175 0.536068i \(-0.180091\pi\)
\(864\) 0 0
\(865\) −214.501 −0.247977
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −220.532 + 127.324i −0.253777 + 0.146518i
\(870\) 0 0
\(871\) −1230.36 + 2131.05i −1.41259 + 2.44667i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 573.222 + 330.950i 0.655111 + 0.378229i
\(876\) 0 0
\(877\) 348.075 + 602.884i 0.396893 + 0.687439i 0.993341 0.115213i \(-0.0367550\pi\)
−0.596448 + 0.802652i \(0.703422\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 183.830i 0.208660i 0.994543 + 0.104330i \(0.0332699\pi\)
−0.994543 + 0.104330i \(0.966730\pi\)
\(882\) 0 0
\(883\) 823.282 0.932369 0.466184 0.884688i \(-0.345628\pi\)
0.466184 + 0.884688i \(0.345628\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −316.421 + 182.686i −0.356732 + 0.205959i −0.667646 0.744479i \(-0.732698\pi\)
0.310914 + 0.950438i \(0.399365\pi\)
\(888\) 0 0
\(889\) 437.426 757.644i 0.492043 0.852243i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 1045.98 + 603.895i 1.17131 + 0.676255i
\(894\) 0 0
\(895\) 48.6835 + 84.3223i 0.0543950 + 0.0942148i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 694.592i 0.772627i
\(900\) 0 0
\(901\) −0.859719 −0.000954183
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 102.611 59.2426i 0.113383 0.0654615i
\(906\) 0 0
\(907\) −153.202 + 265.354i −0.168911 + 0.292562i −0.938037 0.346535i \(-0.887358\pi\)
0.769126 + 0.639097i \(0.220692\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 682.548 + 394.069i 0.749229 + 0.432568i 0.825415 0.564526i \(-0.190941\pi\)
−0.0761860 + 0.997094i \(0.524274\pi\)
\(912\) 0 0
\(913\) 306.564 + 530.985i 0.335777 + 0.581582i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 223.912i 0.244179i
\(918\) 0 0
\(919\) 1319.46 1.43575 0.717876 0.696171i \(-0.245114\pi\)
0.717876 + 0.696171i \(0.245114\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 2174.80 1255.62i 2.35623 1.36037i
\(924\) 0 0
\(925\) 229.280 397.125i 0.247870 0.429324i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −406.971 234.965i −0.438075 0.252922i 0.264706 0.964329i \(-0.414725\pi\)
−0.702781 + 0.711407i \(0.748058\pi\)
\(930\) 0 0
\(931\) −28.4257 49.2348i −0.0305325 0.0528838i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0.743642i 0.000795339i
\(936\) 0 0
\(937\) −1619.12 −1.72798 −0.863991 0.503508i \(-0.832042\pi\)
−0.863991 + 0.503508i \(0.832042\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −578.847 + 334.197i −0.615140 + 0.355151i −0.774974 0.631993i \(-0.782237\pi\)
0.159834 + 0.987144i \(0.448904\pi\)
\(942\) 0 0
\(943\) −31.7648 + 55.0182i −0.0336848 + 0.0583438i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −859.549 496.261i −0.907655 0.524035i −0.0279791 0.999609i \(-0.508907\pi\)
−0.879676 + 0.475574i \(0.842241\pi\)
\(948\) 0 0
\(949\) −909.276 1574.91i −0.958142 1.65955i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 565.650i 0.593546i −0.954948 0.296773i \(-0.904089\pi\)
0.954948 0.296773i \(-0.0959105\pi\)
\(954\) 0 0
\(955\) 672.184 0.703858
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 1093.97 631.606i 1.14074 0.658609i
\(960\) 0 0
\(961\) 350.406 606.921i 0.364627 0.631552i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −690.491 398.655i −0.715535 0.413114i
\(966\) 0 0
\(967\) 515.193 + 892.340i 0.532775 + 0.922793i 0.999268 + 0.0382677i \(0.0121840\pi\)
−0.466493 + 0.884525i \(0.654483\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 454.101i 0.467663i 0.972277 + 0.233832i \(0.0751265\pi\)
−0.972277 + 0.233832i \(0.924874\pi\)
\(972\) 0 0
\(973\) −1634.99 −1.68036
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 733.302 423.372i 0.750565 0.433339i −0.0753331 0.997158i \(-0.524002\pi\)
0.825898 + 0.563820i \(0.190669\pi\)
\(978\) 0 0
\(979\) −304.952 + 528.192i −0.311493 + 0.539522i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 1241.22 + 716.621i 1.26269 + 0.729014i 0.973594 0.228286i \(-0.0733123\pi\)
0.289095 + 0.957300i \(0.406646\pi\)
\(984\) 0 0
\(985\) −49.5398 85.8055i −0.0502942 0.0871122i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 629.115i 0.636113i
\(990\) 0 0
\(991\) 955.562 0.964240 0.482120 0.876105i \(-0.339867\pi\)
0.482120 + 0.876105i \(0.339867\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 353.332 203.996i 0.355107 0.205021i
\(996\) 0 0
\(997\) 294.723 510.475i 0.295610 0.512011i −0.679517 0.733660i \(-0.737811\pi\)
0.975127 + 0.221649i \(0.0711439\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 864.3.q.a.737.8 24
3.2 odd 2 288.3.q.b.65.6 24
4.3 odd 2 inner 864.3.q.a.737.7 24
8.3 odd 2 1728.3.q.k.1601.5 24
8.5 even 2 1728.3.q.k.1601.6 24
9.2 odd 6 2592.3.e.i.161.15 24
9.4 even 3 288.3.q.b.257.6 yes 24
9.5 odd 6 inner 864.3.q.a.449.8 24
9.7 even 3 2592.3.e.i.161.16 24
12.11 even 2 288.3.q.b.65.7 yes 24
24.5 odd 2 576.3.q.l.65.7 24
24.11 even 2 576.3.q.l.65.6 24
36.7 odd 6 2592.3.e.i.161.10 24
36.11 even 6 2592.3.e.i.161.9 24
36.23 even 6 inner 864.3.q.a.449.7 24
36.31 odd 6 288.3.q.b.257.7 yes 24
72.5 odd 6 1728.3.q.k.449.6 24
72.13 even 6 576.3.q.l.257.7 24
72.59 even 6 1728.3.q.k.449.5 24
72.67 odd 6 576.3.q.l.257.6 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
288.3.q.b.65.6 24 3.2 odd 2
288.3.q.b.65.7 yes 24 12.11 even 2
288.3.q.b.257.6 yes 24 9.4 even 3
288.3.q.b.257.7 yes 24 36.31 odd 6
576.3.q.l.65.6 24 24.11 even 2
576.3.q.l.65.7 24 24.5 odd 2
576.3.q.l.257.6 24 72.67 odd 6
576.3.q.l.257.7 24 72.13 even 6
864.3.q.a.449.7 24 36.23 even 6 inner
864.3.q.a.449.8 24 9.5 odd 6 inner
864.3.q.a.737.7 24 4.3 odd 2 inner
864.3.q.a.737.8 24 1.1 even 1 trivial
1728.3.q.k.449.5 24 72.59 even 6
1728.3.q.k.449.6 24 72.5 odd 6
1728.3.q.k.1601.5 24 8.3 odd 2
1728.3.q.k.1601.6 24 8.5 even 2
2592.3.e.i.161.9 24 36.11 even 6
2592.3.e.i.161.10 24 36.7 odd 6
2592.3.e.i.161.15 24 9.2 odd 6
2592.3.e.i.161.16 24 9.7 even 3