Properties

Label 2600.2.a.w.1.1
Level $2600$
Weight $2$
Character 2600.1
Self dual yes
Analytic conductor $20.761$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2600,2,Mod(1,2600)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2600, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2600.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2600 = 2^{3} \cdot 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2600.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(20.7611045255\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{8})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 520)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-1.41421\) of defining polynomial
Character \(\chi\) \(=\) 2600.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.585786 q^{3} +2.00000 q^{7} -2.65685 q^{9} -4.24264 q^{11} +1.00000 q^{13} -0.828427 q^{17} +0.242641 q^{19} +1.17157 q^{21} +9.07107 q^{23} -3.31371 q^{27} +1.65685 q^{29} +1.41421 q^{31} -2.48528 q^{33} +6.82843 q^{37} +0.585786 q^{39} +4.82843 q^{41} +10.2426 q^{43} -2.00000 q^{47} -3.00000 q^{49} -0.485281 q^{51} +8.82843 q^{53} +0.142136 q^{57} -2.58579 q^{59} +15.3137 q^{61} -5.31371 q^{63} +4.82843 q^{67} +5.31371 q^{69} +9.89949 q^{71} -1.17157 q^{73} -8.48528 q^{77} +1.17157 q^{79} +6.02944 q^{81} +2.00000 q^{83} +0.970563 q^{87} -10.0000 q^{89} +2.00000 q^{91} +0.828427 q^{93} -11.6569 q^{97} +11.2721 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 4 q^{3} + 4 q^{7} + 6 q^{9} + 2 q^{13} + 4 q^{17} - 8 q^{19} + 8 q^{21} + 4 q^{23} + 16 q^{27} - 8 q^{29} + 12 q^{33} + 8 q^{37} + 4 q^{39} + 4 q^{41} + 12 q^{43} - 4 q^{47} - 6 q^{49} + 16 q^{51}+ \cdots + 48 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.585786 0.338204 0.169102 0.985599i \(-0.445913\pi\)
0.169102 + 0.985599i \(0.445913\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 2.00000 0.755929 0.377964 0.925820i \(-0.376624\pi\)
0.377964 + 0.925820i \(0.376624\pi\)
\(8\) 0 0
\(9\) −2.65685 −0.885618
\(10\) 0 0
\(11\) −4.24264 −1.27920 −0.639602 0.768706i \(-0.720901\pi\)
−0.639602 + 0.768706i \(0.720901\pi\)
\(12\) 0 0
\(13\) 1.00000 0.277350
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −0.828427 −0.200923 −0.100462 0.994941i \(-0.532032\pi\)
−0.100462 + 0.994941i \(0.532032\pi\)
\(18\) 0 0
\(19\) 0.242641 0.0556656 0.0278328 0.999613i \(-0.491139\pi\)
0.0278328 + 0.999613i \(0.491139\pi\)
\(20\) 0 0
\(21\) 1.17157 0.255658
\(22\) 0 0
\(23\) 9.07107 1.89145 0.945724 0.324970i \(-0.105354\pi\)
0.945724 + 0.324970i \(0.105354\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) −3.31371 −0.637723
\(28\) 0 0
\(29\) 1.65685 0.307670 0.153835 0.988097i \(-0.450838\pi\)
0.153835 + 0.988097i \(0.450838\pi\)
\(30\) 0 0
\(31\) 1.41421 0.254000 0.127000 0.991903i \(-0.459465\pi\)
0.127000 + 0.991903i \(0.459465\pi\)
\(32\) 0 0
\(33\) −2.48528 −0.432632
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 6.82843 1.12259 0.561293 0.827617i \(-0.310304\pi\)
0.561293 + 0.827617i \(0.310304\pi\)
\(38\) 0 0
\(39\) 0.585786 0.0938009
\(40\) 0 0
\(41\) 4.82843 0.754074 0.377037 0.926198i \(-0.376943\pi\)
0.377037 + 0.926198i \(0.376943\pi\)
\(42\) 0 0
\(43\) 10.2426 1.56199 0.780994 0.624538i \(-0.214713\pi\)
0.780994 + 0.624538i \(0.214713\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −2.00000 −0.291730 −0.145865 0.989305i \(-0.546597\pi\)
−0.145865 + 0.989305i \(0.546597\pi\)
\(48\) 0 0
\(49\) −3.00000 −0.428571
\(50\) 0 0
\(51\) −0.485281 −0.0679530
\(52\) 0 0
\(53\) 8.82843 1.21268 0.606339 0.795206i \(-0.292638\pi\)
0.606339 + 0.795206i \(0.292638\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0.142136 0.0188263
\(58\) 0 0
\(59\) −2.58579 −0.336641 −0.168320 0.985732i \(-0.553834\pi\)
−0.168320 + 0.985732i \(0.553834\pi\)
\(60\) 0 0
\(61\) 15.3137 1.96072 0.980360 0.197218i \(-0.0631906\pi\)
0.980360 + 0.197218i \(0.0631906\pi\)
\(62\) 0 0
\(63\) −5.31371 −0.669464
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 4.82843 0.589886 0.294943 0.955515i \(-0.404699\pi\)
0.294943 + 0.955515i \(0.404699\pi\)
\(68\) 0 0
\(69\) 5.31371 0.639695
\(70\) 0 0
\(71\) 9.89949 1.17485 0.587427 0.809277i \(-0.300141\pi\)
0.587427 + 0.809277i \(0.300141\pi\)
\(72\) 0 0
\(73\) −1.17157 −0.137122 −0.0685611 0.997647i \(-0.521841\pi\)
−0.0685611 + 0.997647i \(0.521841\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −8.48528 −0.966988
\(78\) 0 0
\(79\) 1.17157 0.131812 0.0659061 0.997826i \(-0.479006\pi\)
0.0659061 + 0.997826i \(0.479006\pi\)
\(80\) 0 0
\(81\) 6.02944 0.669937
\(82\) 0 0
\(83\) 2.00000 0.219529 0.109764 0.993958i \(-0.464990\pi\)
0.109764 + 0.993958i \(0.464990\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 0.970563 0.104055
\(88\) 0 0
\(89\) −10.0000 −1.06000 −0.529999 0.847998i \(-0.677808\pi\)
−0.529999 + 0.847998i \(0.677808\pi\)
\(90\) 0 0
\(91\) 2.00000 0.209657
\(92\) 0 0
\(93\) 0.828427 0.0859039
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −11.6569 −1.18357 −0.591787 0.806094i \(-0.701577\pi\)
−0.591787 + 0.806094i \(0.701577\pi\)
\(98\) 0 0
\(99\) 11.2721 1.13289
\(100\) 0 0
\(101\) −3.65685 −0.363871 −0.181935 0.983311i \(-0.558236\pi\)
−0.181935 + 0.983311i \(0.558236\pi\)
\(102\) 0 0
\(103\) −11.4142 −1.12468 −0.562338 0.826908i \(-0.690098\pi\)
−0.562338 + 0.826908i \(0.690098\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −5.07107 −0.490239 −0.245119 0.969493i \(-0.578827\pi\)
−0.245119 + 0.969493i \(0.578827\pi\)
\(108\) 0 0
\(109\) 17.3137 1.65835 0.829176 0.558987i \(-0.188810\pi\)
0.829176 + 0.558987i \(0.188810\pi\)
\(110\) 0 0
\(111\) 4.00000 0.379663
\(112\) 0 0
\(113\) 8.82843 0.830509 0.415254 0.909705i \(-0.363693\pi\)
0.415254 + 0.909705i \(0.363693\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) −2.65685 −0.245626
\(118\) 0 0
\(119\) −1.65685 −0.151884
\(120\) 0 0
\(121\) 7.00000 0.636364
\(122\) 0 0
\(123\) 2.82843 0.255031
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) −15.8995 −1.41085 −0.705426 0.708784i \(-0.749244\pi\)
−0.705426 + 0.708784i \(0.749244\pi\)
\(128\) 0 0
\(129\) 6.00000 0.528271
\(130\) 0 0
\(131\) −19.3137 −1.68745 −0.843723 0.536778i \(-0.819641\pi\)
−0.843723 + 0.536778i \(0.819641\pi\)
\(132\) 0 0
\(133\) 0.485281 0.0420792
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −2.00000 −0.170872 −0.0854358 0.996344i \(-0.527228\pi\)
−0.0854358 + 0.996344i \(0.527228\pi\)
\(138\) 0 0
\(139\) −8.48528 −0.719712 −0.359856 0.933008i \(-0.617174\pi\)
−0.359856 + 0.933008i \(0.617174\pi\)
\(140\) 0 0
\(141\) −1.17157 −0.0986642
\(142\) 0 0
\(143\) −4.24264 −0.354787
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) −1.75736 −0.144945
\(148\) 0 0
\(149\) −22.9706 −1.88182 −0.940911 0.338654i \(-0.890028\pi\)
−0.940911 + 0.338654i \(0.890028\pi\)
\(150\) 0 0
\(151\) 15.0711 1.22647 0.613233 0.789902i \(-0.289869\pi\)
0.613233 + 0.789902i \(0.289869\pi\)
\(152\) 0 0
\(153\) 2.20101 0.177941
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 17.3137 1.38178 0.690892 0.722958i \(-0.257218\pi\)
0.690892 + 0.722958i \(0.257218\pi\)
\(158\) 0 0
\(159\) 5.17157 0.410132
\(160\) 0 0
\(161\) 18.1421 1.42980
\(162\) 0 0
\(163\) 5.51472 0.431946 0.215973 0.976399i \(-0.430708\pi\)
0.215973 + 0.976399i \(0.430708\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −9.31371 −0.720716 −0.360358 0.932814i \(-0.617346\pi\)
−0.360358 + 0.932814i \(0.617346\pi\)
\(168\) 0 0
\(169\) 1.00000 0.0769231
\(170\) 0 0
\(171\) −0.644661 −0.0492985
\(172\) 0 0
\(173\) 15.1716 1.15347 0.576737 0.816930i \(-0.304326\pi\)
0.576737 + 0.816930i \(0.304326\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −1.51472 −0.113853
\(178\) 0 0
\(179\) 11.3137 0.845626 0.422813 0.906217i \(-0.361043\pi\)
0.422813 + 0.906217i \(0.361043\pi\)
\(180\) 0 0
\(181\) 0.686292 0.0510116 0.0255058 0.999675i \(-0.491880\pi\)
0.0255058 + 0.999675i \(0.491880\pi\)
\(182\) 0 0
\(183\) 8.97056 0.663123
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 3.51472 0.257022
\(188\) 0 0
\(189\) −6.62742 −0.482074
\(190\) 0 0
\(191\) −10.3431 −0.748404 −0.374202 0.927347i \(-0.622083\pi\)
−0.374202 + 0.927347i \(0.622083\pi\)
\(192\) 0 0
\(193\) 19.6569 1.41493 0.707466 0.706748i \(-0.249838\pi\)
0.707466 + 0.706748i \(0.249838\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 11.6569 0.830516 0.415258 0.909704i \(-0.363691\pi\)
0.415258 + 0.909704i \(0.363691\pi\)
\(198\) 0 0
\(199\) 17.6569 1.25166 0.625831 0.779959i \(-0.284760\pi\)
0.625831 + 0.779959i \(0.284760\pi\)
\(200\) 0 0
\(201\) 2.82843 0.199502
\(202\) 0 0
\(203\) 3.31371 0.232577
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) −24.1005 −1.67510
\(208\) 0 0
\(209\) −1.02944 −0.0712077
\(210\) 0 0
\(211\) −5.65685 −0.389434 −0.194717 0.980859i \(-0.562379\pi\)
−0.194717 + 0.980859i \(0.562379\pi\)
\(212\) 0 0
\(213\) 5.79899 0.397340
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 2.82843 0.192006
\(218\) 0 0
\(219\) −0.686292 −0.0463753
\(220\) 0 0
\(221\) −0.828427 −0.0557260
\(222\) 0 0
\(223\) −2.68629 −0.179887 −0.0899437 0.995947i \(-0.528669\pi\)
−0.0899437 + 0.995947i \(0.528669\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −15.1716 −1.00697 −0.503486 0.864003i \(-0.667950\pi\)
−0.503486 + 0.864003i \(0.667950\pi\)
\(228\) 0 0
\(229\) 25.7990 1.70485 0.852423 0.522853i \(-0.175132\pi\)
0.852423 + 0.522853i \(0.175132\pi\)
\(230\) 0 0
\(231\) −4.97056 −0.327039
\(232\) 0 0
\(233\) 22.0000 1.44127 0.720634 0.693316i \(-0.243851\pi\)
0.720634 + 0.693316i \(0.243851\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 0.686292 0.0445794
\(238\) 0 0
\(239\) −16.7279 −1.08204 −0.541020 0.841010i \(-0.681962\pi\)
−0.541020 + 0.841010i \(0.681962\pi\)
\(240\) 0 0
\(241\) 12.8284 0.826352 0.413176 0.910651i \(-0.364419\pi\)
0.413176 + 0.910651i \(0.364419\pi\)
\(242\) 0 0
\(243\) 13.4731 0.864299
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 0.242641 0.0154389
\(248\) 0 0
\(249\) 1.17157 0.0742454
\(250\) 0 0
\(251\) −18.1421 −1.14512 −0.572561 0.819862i \(-0.694050\pi\)
−0.572561 + 0.819862i \(0.694050\pi\)
\(252\) 0 0
\(253\) −38.4853 −2.41955
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 18.9706 1.18335 0.591676 0.806176i \(-0.298467\pi\)
0.591676 + 0.806176i \(0.298467\pi\)
\(258\) 0 0
\(259\) 13.6569 0.848596
\(260\) 0 0
\(261\) −4.40202 −0.272478
\(262\) 0 0
\(263\) −22.2426 −1.37154 −0.685770 0.727818i \(-0.740534\pi\)
−0.685770 + 0.727818i \(0.740534\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) −5.85786 −0.358495
\(268\) 0 0
\(269\) −28.6274 −1.74544 −0.872722 0.488217i \(-0.837647\pi\)
−0.872722 + 0.488217i \(0.837647\pi\)
\(270\) 0 0
\(271\) −9.89949 −0.601351 −0.300676 0.953726i \(-0.597212\pi\)
−0.300676 + 0.953726i \(0.597212\pi\)
\(272\) 0 0
\(273\) 1.17157 0.0709068
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 24.1421 1.45056 0.725280 0.688454i \(-0.241710\pi\)
0.725280 + 0.688454i \(0.241710\pi\)
\(278\) 0 0
\(279\) −3.75736 −0.224947
\(280\) 0 0
\(281\) −5.51472 −0.328981 −0.164490 0.986379i \(-0.552598\pi\)
−0.164490 + 0.986379i \(0.552598\pi\)
\(282\) 0 0
\(283\) 15.8995 0.945127 0.472563 0.881297i \(-0.343329\pi\)
0.472563 + 0.881297i \(0.343329\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 9.65685 0.570026
\(288\) 0 0
\(289\) −16.3137 −0.959630
\(290\) 0 0
\(291\) −6.82843 −0.400289
\(292\) 0 0
\(293\) 2.82843 0.165238 0.0826192 0.996581i \(-0.473671\pi\)
0.0826192 + 0.996581i \(0.473671\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 14.0589 0.815779
\(298\) 0 0
\(299\) 9.07107 0.524593
\(300\) 0 0
\(301\) 20.4853 1.18075
\(302\) 0 0
\(303\) −2.14214 −0.123062
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) −4.34315 −0.247876 −0.123938 0.992290i \(-0.539552\pi\)
−0.123938 + 0.992290i \(0.539552\pi\)
\(308\) 0 0
\(309\) −6.68629 −0.380370
\(310\) 0 0
\(311\) 18.1421 1.02875 0.514373 0.857567i \(-0.328025\pi\)
0.514373 + 0.857567i \(0.328025\pi\)
\(312\) 0 0
\(313\) 12.8284 0.725106 0.362553 0.931963i \(-0.381905\pi\)
0.362553 + 0.931963i \(0.381905\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −7.51472 −0.422069 −0.211034 0.977479i \(-0.567683\pi\)
−0.211034 + 0.977479i \(0.567683\pi\)
\(318\) 0 0
\(319\) −7.02944 −0.393573
\(320\) 0 0
\(321\) −2.97056 −0.165801
\(322\) 0 0
\(323\) −0.201010 −0.0111845
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 10.1421 0.560861
\(328\) 0 0
\(329\) −4.00000 −0.220527
\(330\) 0 0
\(331\) −15.0711 −0.828381 −0.414190 0.910190i \(-0.635935\pi\)
−0.414190 + 0.910190i \(0.635935\pi\)
\(332\) 0 0
\(333\) −18.1421 −0.994183
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 7.85786 0.428045 0.214023 0.976829i \(-0.431343\pi\)
0.214023 + 0.976829i \(0.431343\pi\)
\(338\) 0 0
\(339\) 5.17157 0.280881
\(340\) 0 0
\(341\) −6.00000 −0.324918
\(342\) 0 0
\(343\) −20.0000 −1.07990
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 32.3848 1.73851 0.869253 0.494368i \(-0.164600\pi\)
0.869253 + 0.494368i \(0.164600\pi\)
\(348\) 0 0
\(349\) −15.4558 −0.827332 −0.413666 0.910429i \(-0.635752\pi\)
−0.413666 + 0.910429i \(0.635752\pi\)
\(350\) 0 0
\(351\) −3.31371 −0.176873
\(352\) 0 0
\(353\) −10.8284 −0.576339 −0.288170 0.957579i \(-0.593047\pi\)
−0.288170 + 0.957579i \(0.593047\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) −0.970563 −0.0513676
\(358\) 0 0
\(359\) 3.55635 0.187697 0.0938485 0.995586i \(-0.470083\pi\)
0.0938485 + 0.995586i \(0.470083\pi\)
\(360\) 0 0
\(361\) −18.9411 −0.996901
\(362\) 0 0
\(363\) 4.10051 0.215221
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) −2.72792 −0.142396 −0.0711982 0.997462i \(-0.522682\pi\)
−0.0711982 + 0.997462i \(0.522682\pi\)
\(368\) 0 0
\(369\) −12.8284 −0.667821
\(370\) 0 0
\(371\) 17.6569 0.916698
\(372\) 0 0
\(373\) −10.0000 −0.517780 −0.258890 0.965907i \(-0.583357\pi\)
−0.258890 + 0.965907i \(0.583357\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 1.65685 0.0853323
\(378\) 0 0
\(379\) 7.75736 0.398469 0.199234 0.979952i \(-0.436154\pi\)
0.199234 + 0.979952i \(0.436154\pi\)
\(380\) 0 0
\(381\) −9.31371 −0.477156
\(382\) 0 0
\(383\) −22.0000 −1.12415 −0.562074 0.827087i \(-0.689996\pi\)
−0.562074 + 0.827087i \(0.689996\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −27.2132 −1.38332
\(388\) 0 0
\(389\) 9.31371 0.472224 0.236112 0.971726i \(-0.424127\pi\)
0.236112 + 0.971726i \(0.424127\pi\)
\(390\) 0 0
\(391\) −7.51472 −0.380036
\(392\) 0 0
\(393\) −11.3137 −0.570701
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) −6.82843 −0.342709 −0.171354 0.985209i \(-0.554814\pi\)
−0.171354 + 0.985209i \(0.554814\pi\)
\(398\) 0 0
\(399\) 0.284271 0.0142314
\(400\) 0 0
\(401\) −16.6274 −0.830334 −0.415167 0.909745i \(-0.636277\pi\)
−0.415167 + 0.909745i \(0.636277\pi\)
\(402\) 0 0
\(403\) 1.41421 0.0704470
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −28.9706 −1.43602
\(408\) 0 0
\(409\) −0.828427 −0.0409631 −0.0204815 0.999790i \(-0.506520\pi\)
−0.0204815 + 0.999790i \(0.506520\pi\)
\(410\) 0 0
\(411\) −1.17157 −0.0577894
\(412\) 0 0
\(413\) −5.17157 −0.254476
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) −4.97056 −0.243410
\(418\) 0 0
\(419\) −5.85786 −0.286175 −0.143088 0.989710i \(-0.545703\pi\)
−0.143088 + 0.989710i \(0.545703\pi\)
\(420\) 0 0
\(421\) 24.3431 1.18641 0.593206 0.805051i \(-0.297862\pi\)
0.593206 + 0.805051i \(0.297862\pi\)
\(422\) 0 0
\(423\) 5.31371 0.258361
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 30.6274 1.48216
\(428\) 0 0
\(429\) −2.48528 −0.119991
\(430\) 0 0
\(431\) −29.2132 −1.40715 −0.703575 0.710621i \(-0.748414\pi\)
−0.703575 + 0.710621i \(0.748414\pi\)
\(432\) 0 0
\(433\) −26.9706 −1.29612 −0.648061 0.761588i \(-0.724420\pi\)
−0.648061 + 0.761588i \(0.724420\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 2.20101 0.105289
\(438\) 0 0
\(439\) −28.2843 −1.34993 −0.674967 0.737848i \(-0.735842\pi\)
−0.674967 + 0.737848i \(0.735842\pi\)
\(440\) 0 0
\(441\) 7.97056 0.379551
\(442\) 0 0
\(443\) 0.585786 0.0278316 0.0139158 0.999903i \(-0.495570\pi\)
0.0139158 + 0.999903i \(0.495570\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) −13.4558 −0.636440
\(448\) 0 0
\(449\) 36.1421 1.70565 0.852826 0.522195i \(-0.174886\pi\)
0.852826 + 0.522195i \(0.174886\pi\)
\(450\) 0 0
\(451\) −20.4853 −0.964614
\(452\) 0 0
\(453\) 8.82843 0.414796
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −12.6274 −0.590686 −0.295343 0.955391i \(-0.595434\pi\)
−0.295343 + 0.955391i \(0.595434\pi\)
\(458\) 0 0
\(459\) 2.74517 0.128133
\(460\) 0 0
\(461\) 8.14214 0.379217 0.189609 0.981860i \(-0.439278\pi\)
0.189609 + 0.981860i \(0.439278\pi\)
\(462\) 0 0
\(463\) −5.51472 −0.256291 −0.128145 0.991755i \(-0.540902\pi\)
−0.128145 + 0.991755i \(0.540902\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −5.75736 −0.266419 −0.133209 0.991088i \(-0.542528\pi\)
−0.133209 + 0.991088i \(0.542528\pi\)
\(468\) 0 0
\(469\) 9.65685 0.445912
\(470\) 0 0
\(471\) 10.1421 0.467325
\(472\) 0 0
\(473\) −43.4558 −1.99810
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) −23.4558 −1.07397
\(478\) 0 0
\(479\) −23.7574 −1.08550 −0.542751 0.839894i \(-0.682617\pi\)
−0.542751 + 0.839894i \(0.682617\pi\)
\(480\) 0 0
\(481\) 6.82843 0.311349
\(482\) 0 0
\(483\) 10.6274 0.483564
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 10.4853 0.475133 0.237567 0.971371i \(-0.423650\pi\)
0.237567 + 0.971371i \(0.423650\pi\)
\(488\) 0 0
\(489\) 3.23045 0.146086
\(490\) 0 0
\(491\) 43.1127 1.94565 0.972824 0.231544i \(-0.0743777\pi\)
0.972824 + 0.231544i \(0.0743777\pi\)
\(492\) 0 0
\(493\) −1.37258 −0.0618180
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 19.7990 0.888106
\(498\) 0 0
\(499\) −29.4142 −1.31676 −0.658381 0.752685i \(-0.728758\pi\)
−0.658381 + 0.752685i \(0.728758\pi\)
\(500\) 0 0
\(501\) −5.45584 −0.243749
\(502\) 0 0
\(503\) 24.5858 1.09623 0.548113 0.836404i \(-0.315346\pi\)
0.548113 + 0.836404i \(0.315346\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 0.585786 0.0260157
\(508\) 0 0
\(509\) 34.4853 1.52853 0.764267 0.644900i \(-0.223101\pi\)
0.764267 + 0.644900i \(0.223101\pi\)
\(510\) 0 0
\(511\) −2.34315 −0.103655
\(512\) 0 0
\(513\) −0.804041 −0.0354993
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 8.48528 0.373182
\(518\) 0 0
\(519\) 8.88730 0.390109
\(520\) 0 0
\(521\) −35.3137 −1.54712 −0.773561 0.633722i \(-0.781526\pi\)
−0.773561 + 0.633722i \(0.781526\pi\)
\(522\) 0 0
\(523\) −35.6985 −1.56099 −0.780493 0.625165i \(-0.785032\pi\)
−0.780493 + 0.625165i \(0.785032\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −1.17157 −0.0510345
\(528\) 0 0
\(529\) 59.2843 2.57758
\(530\) 0 0
\(531\) 6.87006 0.298135
\(532\) 0 0
\(533\) 4.82843 0.209142
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 6.62742 0.285994
\(538\) 0 0
\(539\) 12.7279 0.548230
\(540\) 0 0
\(541\) −2.48528 −0.106851 −0.0534253 0.998572i \(-0.517014\pi\)
−0.0534253 + 0.998572i \(0.517014\pi\)
\(542\) 0 0
\(543\) 0.402020 0.0172523
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 18.9289 0.809343 0.404671 0.914462i \(-0.367386\pi\)
0.404671 + 0.914462i \(0.367386\pi\)
\(548\) 0 0
\(549\) −40.6863 −1.73645
\(550\) 0 0
\(551\) 0.402020 0.0171266
\(552\) 0 0
\(553\) 2.34315 0.0996407
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −13.8579 −0.587177 −0.293588 0.955932i \(-0.594849\pi\)
−0.293588 + 0.955932i \(0.594849\pi\)
\(558\) 0 0
\(559\) 10.2426 0.433218
\(560\) 0 0
\(561\) 2.05887 0.0869257
\(562\) 0 0
\(563\) 13.5563 0.571332 0.285666 0.958329i \(-0.407785\pi\)
0.285666 + 0.958329i \(0.407785\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 12.0589 0.506425
\(568\) 0 0
\(569\) −8.68629 −0.364148 −0.182074 0.983285i \(-0.558281\pi\)
−0.182074 + 0.983285i \(0.558281\pi\)
\(570\) 0 0
\(571\) −29.1716 −1.22079 −0.610396 0.792096i \(-0.708990\pi\)
−0.610396 + 0.792096i \(0.708990\pi\)
\(572\) 0 0
\(573\) −6.05887 −0.253113
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) −5.85786 −0.243866 −0.121933 0.992538i \(-0.538909\pi\)
−0.121933 + 0.992538i \(0.538909\pi\)
\(578\) 0 0
\(579\) 11.5147 0.478535
\(580\) 0 0
\(581\) 4.00000 0.165948
\(582\) 0 0
\(583\) −37.4558 −1.55126
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −2.48528 −0.102579 −0.0512893 0.998684i \(-0.516333\pi\)
−0.0512893 + 0.998684i \(0.516333\pi\)
\(588\) 0 0
\(589\) 0.343146 0.0141391
\(590\) 0 0
\(591\) 6.82843 0.280884
\(592\) 0 0
\(593\) 26.0000 1.06769 0.533846 0.845582i \(-0.320746\pi\)
0.533846 + 0.845582i \(0.320746\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 10.3431 0.423317
\(598\) 0 0
\(599\) −11.5147 −0.470479 −0.235239 0.971937i \(-0.575587\pi\)
−0.235239 + 0.971937i \(0.575587\pi\)
\(600\) 0 0
\(601\) 35.9411 1.46607 0.733035 0.680191i \(-0.238103\pi\)
0.733035 + 0.680191i \(0.238103\pi\)
\(602\) 0 0
\(603\) −12.8284 −0.522414
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 6.44365 0.261540 0.130770 0.991413i \(-0.458255\pi\)
0.130770 + 0.991413i \(0.458255\pi\)
\(608\) 0 0
\(609\) 1.94113 0.0786584
\(610\) 0 0
\(611\) −2.00000 −0.0809113
\(612\) 0 0
\(613\) −22.0000 −0.888572 −0.444286 0.895885i \(-0.646543\pi\)
−0.444286 + 0.895885i \(0.646543\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 3.65685 0.147219 0.0736097 0.997287i \(-0.476548\pi\)
0.0736097 + 0.997287i \(0.476548\pi\)
\(618\) 0 0
\(619\) 36.0416 1.44864 0.724318 0.689466i \(-0.242155\pi\)
0.724318 + 0.689466i \(0.242155\pi\)
\(620\) 0 0
\(621\) −30.0589 −1.20622
\(622\) 0 0
\(623\) −20.0000 −0.801283
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) −0.603030 −0.0240827
\(628\) 0 0
\(629\) −5.65685 −0.225554
\(630\) 0 0
\(631\) −12.7279 −0.506691 −0.253345 0.967376i \(-0.581531\pi\)
−0.253345 + 0.967376i \(0.581531\pi\)
\(632\) 0 0
\(633\) −3.31371 −0.131708
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) −3.00000 −0.118864
\(638\) 0 0
\(639\) −26.3015 −1.04047
\(640\) 0 0
\(641\) 28.3431 1.11949 0.559743 0.828666i \(-0.310900\pi\)
0.559743 + 0.828666i \(0.310900\pi\)
\(642\) 0 0
\(643\) 13.3137 0.525041 0.262521 0.964926i \(-0.415446\pi\)
0.262521 + 0.964926i \(0.415446\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 37.3553 1.46859 0.734295 0.678831i \(-0.237513\pi\)
0.734295 + 0.678831i \(0.237513\pi\)
\(648\) 0 0
\(649\) 10.9706 0.430632
\(650\) 0 0
\(651\) 1.65685 0.0649372
\(652\) 0 0
\(653\) 9.02944 0.353349 0.176675 0.984269i \(-0.443466\pi\)
0.176675 + 0.984269i \(0.443466\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 3.11270 0.121438
\(658\) 0 0
\(659\) 4.48528 0.174722 0.0873609 0.996177i \(-0.472157\pi\)
0.0873609 + 0.996177i \(0.472157\pi\)
\(660\) 0 0
\(661\) −9.02944 −0.351204 −0.175602 0.984461i \(-0.556187\pi\)
−0.175602 + 0.984461i \(0.556187\pi\)
\(662\) 0 0
\(663\) −0.485281 −0.0188468
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 15.0294 0.581942
\(668\) 0 0
\(669\) −1.57359 −0.0608386
\(670\) 0 0
\(671\) −64.9706 −2.50816
\(672\) 0 0
\(673\) −33.7990 −1.30286 −0.651428 0.758711i \(-0.725830\pi\)
−0.651428 + 0.758711i \(0.725830\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 20.1421 0.774125 0.387063 0.922053i \(-0.373490\pi\)
0.387063 + 0.922053i \(0.373490\pi\)
\(678\) 0 0
\(679\) −23.3137 −0.894698
\(680\) 0 0
\(681\) −8.88730 −0.340562
\(682\) 0 0
\(683\) −37.1127 −1.42008 −0.710039 0.704162i \(-0.751323\pi\)
−0.710039 + 0.704162i \(0.751323\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 15.1127 0.576585
\(688\) 0 0
\(689\) 8.82843 0.336336
\(690\) 0 0
\(691\) −49.4142 −1.87981 −0.939903 0.341443i \(-0.889085\pi\)
−0.939903 + 0.341443i \(0.889085\pi\)
\(692\) 0 0
\(693\) 22.5442 0.856382
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) −4.00000 −0.151511
\(698\) 0 0
\(699\) 12.8873 0.487443
\(700\) 0 0
\(701\) −20.6274 −0.779087 −0.389543 0.921008i \(-0.627367\pi\)
−0.389543 + 0.921008i \(0.627367\pi\)
\(702\) 0 0
\(703\) 1.65685 0.0624894
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −7.31371 −0.275060
\(708\) 0 0
\(709\) −19.4558 −0.730680 −0.365340 0.930874i \(-0.619047\pi\)
−0.365340 + 0.930874i \(0.619047\pi\)
\(710\) 0 0
\(711\) −3.11270 −0.116735
\(712\) 0 0
\(713\) 12.8284 0.480428
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) −9.79899 −0.365950
\(718\) 0 0
\(719\) −18.6274 −0.694685 −0.347343 0.937738i \(-0.612916\pi\)
−0.347343 + 0.937738i \(0.612916\pi\)
\(720\) 0 0
\(721\) −22.8284 −0.850175
\(722\) 0 0
\(723\) 7.51472 0.279475
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 2.24264 0.0831749 0.0415875 0.999135i \(-0.486758\pi\)
0.0415875 + 0.999135i \(0.486758\pi\)
\(728\) 0 0
\(729\) −10.1960 −0.377628
\(730\) 0 0
\(731\) −8.48528 −0.313839
\(732\) 0 0
\(733\) −32.6274 −1.20512 −0.602561 0.798073i \(-0.705853\pi\)
−0.602561 + 0.798073i \(0.705853\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −20.4853 −0.754585
\(738\) 0 0
\(739\) 18.5858 0.683689 0.341845 0.939756i \(-0.388948\pi\)
0.341845 + 0.939756i \(0.388948\pi\)
\(740\) 0 0
\(741\) 0.142136 0.00522148
\(742\) 0 0
\(743\) −30.9706 −1.13620 −0.568100 0.822960i \(-0.692321\pi\)
−0.568100 + 0.822960i \(0.692321\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) −5.31371 −0.194418
\(748\) 0 0
\(749\) −10.1421 −0.370586
\(750\) 0 0
\(751\) 8.48528 0.309632 0.154816 0.987943i \(-0.450521\pi\)
0.154816 + 0.987943i \(0.450521\pi\)
\(752\) 0 0
\(753\) −10.6274 −0.387285
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 8.14214 0.295931 0.147965 0.988993i \(-0.452728\pi\)
0.147965 + 0.988993i \(0.452728\pi\)
\(758\) 0 0
\(759\) −22.5442 −0.818301
\(760\) 0 0
\(761\) −41.3137 −1.49762 −0.748810 0.662784i \(-0.769375\pi\)
−0.748810 + 0.662784i \(0.769375\pi\)
\(762\) 0 0
\(763\) 34.6274 1.25360
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −2.58579 −0.0933673
\(768\) 0 0
\(769\) −19.6569 −0.708844 −0.354422 0.935086i \(-0.615322\pi\)
−0.354422 + 0.935086i \(0.615322\pi\)
\(770\) 0 0
\(771\) 11.1127 0.400214
\(772\) 0 0
\(773\) −18.1421 −0.652527 −0.326264 0.945279i \(-0.605790\pi\)
−0.326264 + 0.945279i \(0.605790\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 8.00000 0.286998
\(778\) 0 0
\(779\) 1.17157 0.0419760
\(780\) 0 0
\(781\) −42.0000 −1.50288
\(782\) 0 0
\(783\) −5.49033 −0.196208
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 38.0000 1.35455 0.677277 0.735728i \(-0.263160\pi\)
0.677277 + 0.735728i \(0.263160\pi\)
\(788\) 0 0
\(789\) −13.0294 −0.463860
\(790\) 0 0
\(791\) 17.6569 0.627805
\(792\) 0 0
\(793\) 15.3137 0.543806
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −49.5980 −1.75685 −0.878425 0.477880i \(-0.841405\pi\)
−0.878425 + 0.477880i \(0.841405\pi\)
\(798\) 0 0
\(799\) 1.65685 0.0586153
\(800\) 0 0
\(801\) 26.5685 0.938753
\(802\) 0 0
\(803\) 4.97056 0.175407
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −16.7696 −0.590316
\(808\) 0 0
\(809\) −41.6569 −1.46458 −0.732289 0.680995i \(-0.761548\pi\)
−0.732289 + 0.680995i \(0.761548\pi\)
\(810\) 0 0
\(811\) 9.89949 0.347618 0.173809 0.984779i \(-0.444392\pi\)
0.173809 + 0.984779i \(0.444392\pi\)
\(812\) 0 0
\(813\) −5.79899 −0.203379
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 2.48528 0.0869490
\(818\) 0 0
\(819\) −5.31371 −0.185676
\(820\) 0 0
\(821\) 6.68629 0.233353 0.116677 0.993170i \(-0.462776\pi\)
0.116677 + 0.993170i \(0.462776\pi\)
\(822\) 0 0
\(823\) 16.8701 0.588053 0.294027 0.955797i \(-0.405005\pi\)
0.294027 + 0.955797i \(0.405005\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −20.6274 −0.717286 −0.358643 0.933475i \(-0.616760\pi\)
−0.358643 + 0.933475i \(0.616760\pi\)
\(828\) 0 0
\(829\) 14.3431 0.498158 0.249079 0.968483i \(-0.419872\pi\)
0.249079 + 0.968483i \(0.419872\pi\)
\(830\) 0 0
\(831\) 14.1421 0.490585
\(832\) 0 0
\(833\) 2.48528 0.0861099
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) −4.68629 −0.161982
\(838\) 0 0
\(839\) −37.8995 −1.30844 −0.654218 0.756306i \(-0.727002\pi\)
−0.654218 + 0.756306i \(0.727002\pi\)
\(840\) 0 0
\(841\) −26.2548 −0.905339
\(842\) 0 0
\(843\) −3.23045 −0.111263
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 14.0000 0.481046
\(848\) 0 0
\(849\) 9.31371 0.319646
\(850\) 0 0
\(851\) 61.9411 2.12331
\(852\) 0 0
\(853\) 47.1127 1.61311 0.806554 0.591160i \(-0.201330\pi\)
0.806554 + 0.591160i \(0.201330\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 52.9117 1.80743 0.903714 0.428136i \(-0.140830\pi\)
0.903714 + 0.428136i \(0.140830\pi\)
\(858\) 0 0
\(859\) 54.8284 1.87072 0.935361 0.353695i \(-0.115075\pi\)
0.935361 + 0.353695i \(0.115075\pi\)
\(860\) 0 0
\(861\) 5.65685 0.192785
\(862\) 0 0
\(863\) −53.5980 −1.82450 −0.912248 0.409638i \(-0.865655\pi\)
−0.912248 + 0.409638i \(0.865655\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) −9.55635 −0.324551
\(868\) 0 0
\(869\) −4.97056 −0.168615
\(870\) 0 0
\(871\) 4.82843 0.163605
\(872\) 0 0
\(873\) 30.9706 1.04819
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 29.3137 0.989854 0.494927 0.868935i \(-0.335195\pi\)
0.494927 + 0.868935i \(0.335195\pi\)
\(878\) 0 0
\(879\) 1.65685 0.0558843
\(880\) 0 0
\(881\) 25.9411 0.873979 0.436989 0.899467i \(-0.356045\pi\)
0.436989 + 0.899467i \(0.356045\pi\)
\(882\) 0 0
\(883\) 18.2426 0.613914 0.306957 0.951723i \(-0.400689\pi\)
0.306957 + 0.951723i \(0.400689\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −30.0416 −1.00870 −0.504350 0.863500i \(-0.668268\pi\)
−0.504350 + 0.863500i \(0.668268\pi\)
\(888\) 0 0
\(889\) −31.7990 −1.06650
\(890\) 0 0
\(891\) −25.5807 −0.856987
\(892\) 0 0
\(893\) −0.485281 −0.0162393
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 5.31371 0.177420
\(898\) 0 0
\(899\) 2.34315 0.0781483
\(900\) 0 0
\(901\) −7.31371 −0.243655
\(902\) 0 0
\(903\) 12.0000 0.399335
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) −1.07107 −0.0355642 −0.0177821 0.999842i \(-0.505661\pi\)
−0.0177821 + 0.999842i \(0.505661\pi\)
\(908\) 0 0
\(909\) 9.71573 0.322250
\(910\) 0 0
\(911\) 51.5980 1.70952 0.854759 0.519026i \(-0.173705\pi\)
0.854759 + 0.519026i \(0.173705\pi\)
\(912\) 0 0
\(913\) −8.48528 −0.280822
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −38.6274 −1.27559
\(918\) 0 0
\(919\) −3.11270 −0.102678 −0.0513392 0.998681i \(-0.516349\pi\)
−0.0513392 + 0.998681i \(0.516349\pi\)
\(920\) 0 0
\(921\) −2.54416 −0.0838328
\(922\) 0 0
\(923\) 9.89949 0.325846
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 30.3259 0.996033
\(928\) 0 0
\(929\) −41.1127 −1.34886 −0.674432 0.738337i \(-0.735611\pi\)
−0.674432 + 0.738337i \(0.735611\pi\)
\(930\) 0 0
\(931\) −0.727922 −0.0238567
\(932\) 0 0
\(933\) 10.6274 0.347926
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −46.2843 −1.51204 −0.756021 0.654548i \(-0.772859\pi\)
−0.756021 + 0.654548i \(0.772859\pi\)
\(938\) 0 0
\(939\) 7.51472 0.245234
\(940\) 0 0
\(941\) −18.4853 −0.602603 −0.301301 0.953529i \(-0.597421\pi\)
−0.301301 + 0.953529i \(0.597421\pi\)
\(942\) 0 0
\(943\) 43.7990 1.42629
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −46.9706 −1.52634 −0.763169 0.646199i \(-0.776358\pi\)
−0.763169 + 0.646199i \(0.776358\pi\)
\(948\) 0 0
\(949\) −1.17157 −0.0380309
\(950\) 0 0
\(951\) −4.40202 −0.142745
\(952\) 0 0
\(953\) 19.9411 0.645956 0.322978 0.946406i \(-0.395316\pi\)
0.322978 + 0.946406i \(0.395316\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) −4.11775 −0.133108
\(958\) 0 0
\(959\) −4.00000 −0.129167
\(960\) 0 0
\(961\) −29.0000 −0.935484
\(962\) 0 0
\(963\) 13.4731 0.434164
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 44.8284 1.44159 0.720793 0.693151i \(-0.243778\pi\)
0.720793 + 0.693151i \(0.243778\pi\)
\(968\) 0 0
\(969\) −0.117749 −0.00378264
\(970\) 0 0
\(971\) −6.62742 −0.212684 −0.106342 0.994330i \(-0.533914\pi\)
−0.106342 + 0.994330i \(0.533914\pi\)
\(972\) 0 0
\(973\) −16.9706 −0.544051
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −62.4264 −1.99720 −0.998599 0.0529182i \(-0.983148\pi\)
−0.998599 + 0.0529182i \(0.983148\pi\)
\(978\) 0 0
\(979\) 42.4264 1.35595
\(980\) 0 0
\(981\) −46.0000 −1.46867
\(982\) 0 0
\(983\) 34.4853 1.09991 0.549955 0.835194i \(-0.314645\pi\)
0.549955 + 0.835194i \(0.314645\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) −2.34315 −0.0745832
\(988\) 0 0
\(989\) 92.9117 2.95442
\(990\) 0 0
\(991\) 55.5980 1.76613 0.883064 0.469253i \(-0.155477\pi\)
0.883064 + 0.469253i \(0.155477\pi\)
\(992\) 0 0
\(993\) −8.82843 −0.280162
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 3.17157 0.100445 0.0502224 0.998738i \(-0.484007\pi\)
0.0502224 + 0.998738i \(0.484007\pi\)
\(998\) 0 0
\(999\) −22.6274 −0.715900
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2600.2.a.w.1.1 2
4.3 odd 2 5200.2.a.bl.1.2 2
5.2 odd 4 2600.2.d.i.1249.2 4
5.3 odd 4 2600.2.d.i.1249.3 4
5.4 even 2 520.2.a.c.1.2 2
15.14 odd 2 4680.2.a.w.1.2 2
20.19 odd 2 1040.2.a.n.1.1 2
40.19 odd 2 4160.2.a.u.1.2 2
40.29 even 2 4160.2.a.bn.1.1 2
60.59 even 2 9360.2.a.ck.1.1 2
65.64 even 2 6760.2.a.n.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
520.2.a.c.1.2 2 5.4 even 2
1040.2.a.n.1.1 2 20.19 odd 2
2600.2.a.w.1.1 2 1.1 even 1 trivial
2600.2.d.i.1249.2 4 5.2 odd 4
2600.2.d.i.1249.3 4 5.3 odd 4
4160.2.a.u.1.2 2 40.19 odd 2
4160.2.a.bn.1.1 2 40.29 even 2
4680.2.a.w.1.2 2 15.14 odd 2
5200.2.a.bl.1.2 2 4.3 odd 2
6760.2.a.n.1.2 2 65.64 even 2
9360.2.a.ck.1.1 2 60.59 even 2