Properties

Label 2601.2.a.i.1.1
Level $2601$
Weight $2$
Character 2601.1
Self dual yes
Analytic conductor $20.769$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2601,2,Mod(1,2601)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2601, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2601.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2601 = 3^{2} \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2601.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(20.7690895657\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 51)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 2601.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{2} -1.00000 q^{4} -4.00000 q^{7} -3.00000 q^{8} -4.00000 q^{11} +2.00000 q^{13} -4.00000 q^{14} -1.00000 q^{16} +4.00000 q^{19} -4.00000 q^{22} +4.00000 q^{23} -5.00000 q^{25} +2.00000 q^{26} +4.00000 q^{28} +4.00000 q^{31} +5.00000 q^{32} -8.00000 q^{37} +4.00000 q^{38} +8.00000 q^{41} +4.00000 q^{43} +4.00000 q^{44} +4.00000 q^{46} +8.00000 q^{47} +9.00000 q^{49} -5.00000 q^{50} -2.00000 q^{52} +6.00000 q^{53} +12.0000 q^{56} -12.0000 q^{59} -8.00000 q^{61} +4.00000 q^{62} +7.00000 q^{64} +12.0000 q^{67} +12.0000 q^{71} -8.00000 q^{74} -4.00000 q^{76} +16.0000 q^{77} -4.00000 q^{79} +8.00000 q^{82} +12.0000 q^{83} +4.00000 q^{86} +12.0000 q^{88} +10.0000 q^{89} -8.00000 q^{91} -4.00000 q^{92} +8.00000 q^{94} -16.0000 q^{97} +9.00000 q^{98} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107 0.353553 0.935414i \(-0.384973\pi\)
0.353553 + 0.935414i \(0.384973\pi\)
\(3\) 0 0
\(4\) −1.00000 −0.500000
\(5\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(6\) 0 0
\(7\) −4.00000 −1.51186 −0.755929 0.654654i \(-0.772814\pi\)
−0.755929 + 0.654654i \(0.772814\pi\)
\(8\) −3.00000 −1.06066
\(9\) 0 0
\(10\) 0 0
\(11\) −4.00000 −1.20605 −0.603023 0.797724i \(-0.706037\pi\)
−0.603023 + 0.797724i \(0.706037\pi\)
\(12\) 0 0
\(13\) 2.00000 0.554700 0.277350 0.960769i \(-0.410544\pi\)
0.277350 + 0.960769i \(0.410544\pi\)
\(14\) −4.00000 −1.06904
\(15\) 0 0
\(16\) −1.00000 −0.250000
\(17\) 0 0
\(18\) 0 0
\(19\) 4.00000 0.917663 0.458831 0.888523i \(-0.348268\pi\)
0.458831 + 0.888523i \(0.348268\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) −4.00000 −0.852803
\(23\) 4.00000 0.834058 0.417029 0.908893i \(-0.363071\pi\)
0.417029 + 0.908893i \(0.363071\pi\)
\(24\) 0 0
\(25\) −5.00000 −1.00000
\(26\) 2.00000 0.392232
\(27\) 0 0
\(28\) 4.00000 0.755929
\(29\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(30\) 0 0
\(31\) 4.00000 0.718421 0.359211 0.933257i \(-0.383046\pi\)
0.359211 + 0.933257i \(0.383046\pi\)
\(32\) 5.00000 0.883883
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −8.00000 −1.31519 −0.657596 0.753371i \(-0.728427\pi\)
−0.657596 + 0.753371i \(0.728427\pi\)
\(38\) 4.00000 0.648886
\(39\) 0 0
\(40\) 0 0
\(41\) 8.00000 1.24939 0.624695 0.780869i \(-0.285223\pi\)
0.624695 + 0.780869i \(0.285223\pi\)
\(42\) 0 0
\(43\) 4.00000 0.609994 0.304997 0.952353i \(-0.401344\pi\)
0.304997 + 0.952353i \(0.401344\pi\)
\(44\) 4.00000 0.603023
\(45\) 0 0
\(46\) 4.00000 0.589768
\(47\) 8.00000 1.16692 0.583460 0.812142i \(-0.301699\pi\)
0.583460 + 0.812142i \(0.301699\pi\)
\(48\) 0 0
\(49\) 9.00000 1.28571
\(50\) −5.00000 −0.707107
\(51\) 0 0
\(52\) −2.00000 −0.277350
\(53\) 6.00000 0.824163 0.412082 0.911147i \(-0.364802\pi\)
0.412082 + 0.911147i \(0.364802\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 12.0000 1.60357
\(57\) 0 0
\(58\) 0 0
\(59\) −12.0000 −1.56227 −0.781133 0.624364i \(-0.785358\pi\)
−0.781133 + 0.624364i \(0.785358\pi\)
\(60\) 0 0
\(61\) −8.00000 −1.02430 −0.512148 0.858898i \(-0.671150\pi\)
−0.512148 + 0.858898i \(0.671150\pi\)
\(62\) 4.00000 0.508001
\(63\) 0 0
\(64\) 7.00000 0.875000
\(65\) 0 0
\(66\) 0 0
\(67\) 12.0000 1.46603 0.733017 0.680211i \(-0.238112\pi\)
0.733017 + 0.680211i \(0.238112\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 12.0000 1.42414 0.712069 0.702109i \(-0.247758\pi\)
0.712069 + 0.702109i \(0.247758\pi\)
\(72\) 0 0
\(73\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(74\) −8.00000 −0.929981
\(75\) 0 0
\(76\) −4.00000 −0.458831
\(77\) 16.0000 1.82337
\(78\) 0 0
\(79\) −4.00000 −0.450035 −0.225018 0.974355i \(-0.572244\pi\)
−0.225018 + 0.974355i \(0.572244\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 8.00000 0.883452
\(83\) 12.0000 1.31717 0.658586 0.752506i \(-0.271155\pi\)
0.658586 + 0.752506i \(0.271155\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 4.00000 0.431331
\(87\) 0 0
\(88\) 12.0000 1.27920
\(89\) 10.0000 1.06000 0.529999 0.847998i \(-0.322192\pi\)
0.529999 + 0.847998i \(0.322192\pi\)
\(90\) 0 0
\(91\) −8.00000 −0.838628
\(92\) −4.00000 −0.417029
\(93\) 0 0
\(94\) 8.00000 0.825137
\(95\) 0 0
\(96\) 0 0
\(97\) −16.0000 −1.62455 −0.812277 0.583272i \(-0.801772\pi\)
−0.812277 + 0.583272i \(0.801772\pi\)
\(98\) 9.00000 0.909137
\(99\) 0 0
\(100\) 5.00000 0.500000
\(101\) 6.00000 0.597022 0.298511 0.954406i \(-0.403510\pi\)
0.298511 + 0.954406i \(0.403510\pi\)
\(102\) 0 0
\(103\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(104\) −6.00000 −0.588348
\(105\) 0 0
\(106\) 6.00000 0.582772
\(107\) −12.0000 −1.16008 −0.580042 0.814587i \(-0.696964\pi\)
−0.580042 + 0.814587i \(0.696964\pi\)
\(108\) 0 0
\(109\) 8.00000 0.766261 0.383131 0.923694i \(-0.374846\pi\)
0.383131 + 0.923694i \(0.374846\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 4.00000 0.377964
\(113\) 8.00000 0.752577 0.376288 0.926503i \(-0.377200\pi\)
0.376288 + 0.926503i \(0.377200\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 0 0
\(118\) −12.0000 −1.10469
\(119\) 0 0
\(120\) 0 0
\(121\) 5.00000 0.454545
\(122\) −8.00000 −0.724286
\(123\) 0 0
\(124\) −4.00000 −0.359211
\(125\) 0 0
\(126\) 0 0
\(127\) −8.00000 −0.709885 −0.354943 0.934888i \(-0.615500\pi\)
−0.354943 + 0.934888i \(0.615500\pi\)
\(128\) −3.00000 −0.265165
\(129\) 0 0
\(130\) 0 0
\(131\) 4.00000 0.349482 0.174741 0.984614i \(-0.444091\pi\)
0.174741 + 0.984614i \(0.444091\pi\)
\(132\) 0 0
\(133\) −16.0000 −1.38738
\(134\) 12.0000 1.03664
\(135\) 0 0
\(136\) 0 0
\(137\) 10.0000 0.854358 0.427179 0.904167i \(-0.359507\pi\)
0.427179 + 0.904167i \(0.359507\pi\)
\(138\) 0 0
\(139\) −4.00000 −0.339276 −0.169638 0.985506i \(-0.554260\pi\)
−0.169638 + 0.985506i \(0.554260\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 12.0000 1.00702
\(143\) −8.00000 −0.668994
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 0 0
\(148\) 8.00000 0.657596
\(149\) −6.00000 −0.491539 −0.245770 0.969328i \(-0.579041\pi\)
−0.245770 + 0.969328i \(0.579041\pi\)
\(150\) 0 0
\(151\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(152\) −12.0000 −0.973329
\(153\) 0 0
\(154\) 16.0000 1.28932
\(155\) 0 0
\(156\) 0 0
\(157\) −2.00000 −0.159617 −0.0798087 0.996810i \(-0.525431\pi\)
−0.0798087 + 0.996810i \(0.525431\pi\)
\(158\) −4.00000 −0.318223
\(159\) 0 0
\(160\) 0 0
\(161\) −16.0000 −1.26098
\(162\) 0 0
\(163\) 20.0000 1.56652 0.783260 0.621694i \(-0.213555\pi\)
0.783260 + 0.621694i \(0.213555\pi\)
\(164\) −8.00000 −0.624695
\(165\) 0 0
\(166\) 12.0000 0.931381
\(167\) 12.0000 0.928588 0.464294 0.885681i \(-0.346308\pi\)
0.464294 + 0.885681i \(0.346308\pi\)
\(168\) 0 0
\(169\) −9.00000 −0.692308
\(170\) 0 0
\(171\) 0 0
\(172\) −4.00000 −0.304997
\(173\) −16.0000 −1.21646 −0.608229 0.793762i \(-0.708120\pi\)
−0.608229 + 0.793762i \(0.708120\pi\)
\(174\) 0 0
\(175\) 20.0000 1.51186
\(176\) 4.00000 0.301511
\(177\) 0 0
\(178\) 10.0000 0.749532
\(179\) 4.00000 0.298974 0.149487 0.988764i \(-0.452238\pi\)
0.149487 + 0.988764i \(0.452238\pi\)
\(180\) 0 0
\(181\) −8.00000 −0.594635 −0.297318 0.954779i \(-0.596092\pi\)
−0.297318 + 0.954779i \(0.596092\pi\)
\(182\) −8.00000 −0.592999
\(183\) 0 0
\(184\) −12.0000 −0.884652
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) −8.00000 −0.583460
\(189\) 0 0
\(190\) 0 0
\(191\) 8.00000 0.578860 0.289430 0.957199i \(-0.406534\pi\)
0.289430 + 0.957199i \(0.406534\pi\)
\(192\) 0 0
\(193\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(194\) −16.0000 −1.14873
\(195\) 0 0
\(196\) −9.00000 −0.642857
\(197\) −16.0000 −1.13995 −0.569976 0.821661i \(-0.693048\pi\)
−0.569976 + 0.821661i \(0.693048\pi\)
\(198\) 0 0
\(199\) 20.0000 1.41776 0.708881 0.705328i \(-0.249200\pi\)
0.708881 + 0.705328i \(0.249200\pi\)
\(200\) 15.0000 1.06066
\(201\) 0 0
\(202\) 6.00000 0.422159
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) −2.00000 −0.138675
\(209\) −16.0000 −1.10674
\(210\) 0 0
\(211\) 4.00000 0.275371 0.137686 0.990476i \(-0.456034\pi\)
0.137686 + 0.990476i \(0.456034\pi\)
\(212\) −6.00000 −0.412082
\(213\) 0 0
\(214\) −12.0000 −0.820303
\(215\) 0 0
\(216\) 0 0
\(217\) −16.0000 −1.08615
\(218\) 8.00000 0.541828
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) −16.0000 −1.07144 −0.535720 0.844396i \(-0.679960\pi\)
−0.535720 + 0.844396i \(0.679960\pi\)
\(224\) −20.0000 −1.33631
\(225\) 0 0
\(226\) 8.00000 0.532152
\(227\) 12.0000 0.796468 0.398234 0.917284i \(-0.369623\pi\)
0.398234 + 0.917284i \(0.369623\pi\)
\(228\) 0 0
\(229\) −10.0000 −0.660819 −0.330409 0.943838i \(-0.607187\pi\)
−0.330409 + 0.943838i \(0.607187\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 8.00000 0.524097 0.262049 0.965055i \(-0.415602\pi\)
0.262049 + 0.965055i \(0.415602\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 12.0000 0.781133
\(237\) 0 0
\(238\) 0 0
\(239\) 8.00000 0.517477 0.258738 0.965947i \(-0.416693\pi\)
0.258738 + 0.965947i \(0.416693\pi\)
\(240\) 0 0
\(241\) 16.0000 1.03065 0.515325 0.856995i \(-0.327671\pi\)
0.515325 + 0.856995i \(0.327671\pi\)
\(242\) 5.00000 0.321412
\(243\) 0 0
\(244\) 8.00000 0.512148
\(245\) 0 0
\(246\) 0 0
\(247\) 8.00000 0.509028
\(248\) −12.0000 −0.762001
\(249\) 0 0
\(250\) 0 0
\(251\) −12.0000 −0.757433 −0.378717 0.925513i \(-0.623635\pi\)
−0.378717 + 0.925513i \(0.623635\pi\)
\(252\) 0 0
\(253\) −16.0000 −1.00591
\(254\) −8.00000 −0.501965
\(255\) 0 0
\(256\) −17.0000 −1.06250
\(257\) −2.00000 −0.124757 −0.0623783 0.998053i \(-0.519869\pi\)
−0.0623783 + 0.998053i \(0.519869\pi\)
\(258\) 0 0
\(259\) 32.0000 1.98838
\(260\) 0 0
\(261\) 0 0
\(262\) 4.00000 0.247121
\(263\) 24.0000 1.47990 0.739952 0.672660i \(-0.234848\pi\)
0.739952 + 0.672660i \(0.234848\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) −16.0000 −0.981023
\(267\) 0 0
\(268\) −12.0000 −0.733017
\(269\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(270\) 0 0
\(271\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 10.0000 0.604122
\(275\) 20.0000 1.20605
\(276\) 0 0
\(277\) 8.00000 0.480673 0.240337 0.970690i \(-0.422742\pi\)
0.240337 + 0.970690i \(0.422742\pi\)
\(278\) −4.00000 −0.239904
\(279\) 0 0
\(280\) 0 0
\(281\) 10.0000 0.596550 0.298275 0.954480i \(-0.403589\pi\)
0.298275 + 0.954480i \(0.403589\pi\)
\(282\) 0 0
\(283\) 4.00000 0.237775 0.118888 0.992908i \(-0.462067\pi\)
0.118888 + 0.992908i \(0.462067\pi\)
\(284\) −12.0000 −0.712069
\(285\) 0 0
\(286\) −8.00000 −0.473050
\(287\) −32.0000 −1.88890
\(288\) 0 0
\(289\) 0 0
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 10.0000 0.584206 0.292103 0.956387i \(-0.405645\pi\)
0.292103 + 0.956387i \(0.405645\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 24.0000 1.39497
\(297\) 0 0
\(298\) −6.00000 −0.347571
\(299\) 8.00000 0.462652
\(300\) 0 0
\(301\) −16.0000 −0.922225
\(302\) 0 0
\(303\) 0 0
\(304\) −4.00000 −0.229416
\(305\) 0 0
\(306\) 0 0
\(307\) −12.0000 −0.684876 −0.342438 0.939540i \(-0.611253\pi\)
−0.342438 + 0.939540i \(0.611253\pi\)
\(308\) −16.0000 −0.911685
\(309\) 0 0
\(310\) 0 0
\(311\) 12.0000 0.680458 0.340229 0.940343i \(-0.389495\pi\)
0.340229 + 0.940343i \(0.389495\pi\)
\(312\) 0 0
\(313\) −16.0000 −0.904373 −0.452187 0.891923i \(-0.649356\pi\)
−0.452187 + 0.891923i \(0.649356\pi\)
\(314\) −2.00000 −0.112867
\(315\) 0 0
\(316\) 4.00000 0.225018
\(317\) 32.0000 1.79730 0.898650 0.438667i \(-0.144549\pi\)
0.898650 + 0.438667i \(0.144549\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 0 0
\(322\) −16.0000 −0.891645
\(323\) 0 0
\(324\) 0 0
\(325\) −10.0000 −0.554700
\(326\) 20.0000 1.10770
\(327\) 0 0
\(328\) −24.0000 −1.32518
\(329\) −32.0000 −1.76422
\(330\) 0 0
\(331\) 20.0000 1.09930 0.549650 0.835395i \(-0.314761\pi\)
0.549650 + 0.835395i \(0.314761\pi\)
\(332\) −12.0000 −0.658586
\(333\) 0 0
\(334\) 12.0000 0.656611
\(335\) 0 0
\(336\) 0 0
\(337\) 16.0000 0.871576 0.435788 0.900049i \(-0.356470\pi\)
0.435788 + 0.900049i \(0.356470\pi\)
\(338\) −9.00000 −0.489535
\(339\) 0 0
\(340\) 0 0
\(341\) −16.0000 −0.866449
\(342\) 0 0
\(343\) −8.00000 −0.431959
\(344\) −12.0000 −0.646997
\(345\) 0 0
\(346\) −16.0000 −0.860165
\(347\) −4.00000 −0.214731 −0.107366 0.994220i \(-0.534242\pi\)
−0.107366 + 0.994220i \(0.534242\pi\)
\(348\) 0 0
\(349\) 2.00000 0.107058 0.0535288 0.998566i \(-0.482953\pi\)
0.0535288 + 0.998566i \(0.482953\pi\)
\(350\) 20.0000 1.06904
\(351\) 0 0
\(352\) −20.0000 −1.06600
\(353\) −18.0000 −0.958043 −0.479022 0.877803i \(-0.659008\pi\)
−0.479022 + 0.877803i \(0.659008\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) −10.0000 −0.529999
\(357\) 0 0
\(358\) 4.00000 0.211407
\(359\) 32.0000 1.68890 0.844448 0.535638i \(-0.179929\pi\)
0.844448 + 0.535638i \(0.179929\pi\)
\(360\) 0 0
\(361\) −3.00000 −0.157895
\(362\) −8.00000 −0.420471
\(363\) 0 0
\(364\) 8.00000 0.419314
\(365\) 0 0
\(366\) 0 0
\(367\) 12.0000 0.626395 0.313197 0.949688i \(-0.398600\pi\)
0.313197 + 0.949688i \(0.398600\pi\)
\(368\) −4.00000 −0.208514
\(369\) 0 0
\(370\) 0 0
\(371\) −24.0000 −1.24602
\(372\) 0 0
\(373\) 26.0000 1.34623 0.673114 0.739538i \(-0.264956\pi\)
0.673114 + 0.739538i \(0.264956\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) −24.0000 −1.23771
\(377\) 0 0
\(378\) 0 0
\(379\) −20.0000 −1.02733 −0.513665 0.857991i \(-0.671713\pi\)
−0.513665 + 0.857991i \(0.671713\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 8.00000 0.409316
\(383\) −16.0000 −0.817562 −0.408781 0.912633i \(-0.634046\pi\)
−0.408781 + 0.912633i \(0.634046\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 16.0000 0.812277
\(389\) −6.00000 −0.304212 −0.152106 0.988364i \(-0.548606\pi\)
−0.152106 + 0.988364i \(0.548606\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) −27.0000 −1.36371
\(393\) 0 0
\(394\) −16.0000 −0.806068
\(395\) 0 0
\(396\) 0 0
\(397\) −8.00000 −0.401508 −0.200754 0.979642i \(-0.564339\pi\)
−0.200754 + 0.979642i \(0.564339\pi\)
\(398\) 20.0000 1.00251
\(399\) 0 0
\(400\) 5.00000 0.250000
\(401\) 24.0000 1.19850 0.599251 0.800561i \(-0.295465\pi\)
0.599251 + 0.800561i \(0.295465\pi\)
\(402\) 0 0
\(403\) 8.00000 0.398508
\(404\) −6.00000 −0.298511
\(405\) 0 0
\(406\) 0 0
\(407\) 32.0000 1.58618
\(408\) 0 0
\(409\) 10.0000 0.494468 0.247234 0.968956i \(-0.420478\pi\)
0.247234 + 0.968956i \(0.420478\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 48.0000 2.36193
\(414\) 0 0
\(415\) 0 0
\(416\) 10.0000 0.490290
\(417\) 0 0
\(418\) −16.0000 −0.782586
\(419\) −4.00000 −0.195413 −0.0977064 0.995215i \(-0.531151\pi\)
−0.0977064 + 0.995215i \(0.531151\pi\)
\(420\) 0 0
\(421\) −22.0000 −1.07221 −0.536107 0.844150i \(-0.680106\pi\)
−0.536107 + 0.844150i \(0.680106\pi\)
\(422\) 4.00000 0.194717
\(423\) 0 0
\(424\) −18.0000 −0.874157
\(425\) 0 0
\(426\) 0 0
\(427\) 32.0000 1.54859
\(428\) 12.0000 0.580042
\(429\) 0 0
\(430\) 0 0
\(431\) 20.0000 0.963366 0.481683 0.876346i \(-0.340026\pi\)
0.481683 + 0.876346i \(0.340026\pi\)
\(432\) 0 0
\(433\) 2.00000 0.0961139 0.0480569 0.998845i \(-0.484697\pi\)
0.0480569 + 0.998845i \(0.484697\pi\)
\(434\) −16.0000 −0.768025
\(435\) 0 0
\(436\) −8.00000 −0.383131
\(437\) 16.0000 0.765384
\(438\) 0 0
\(439\) 36.0000 1.71819 0.859093 0.511819i \(-0.171028\pi\)
0.859093 + 0.511819i \(0.171028\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 20.0000 0.950229 0.475114 0.879924i \(-0.342407\pi\)
0.475114 + 0.879924i \(0.342407\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) −16.0000 −0.757622
\(447\) 0 0
\(448\) −28.0000 −1.32288
\(449\) −8.00000 −0.377543 −0.188772 0.982021i \(-0.560451\pi\)
−0.188772 + 0.982021i \(0.560451\pi\)
\(450\) 0 0
\(451\) −32.0000 −1.50682
\(452\) −8.00000 −0.376288
\(453\) 0 0
\(454\) 12.0000 0.563188
\(455\) 0 0
\(456\) 0 0
\(457\) −38.0000 −1.77757 −0.888783 0.458329i \(-0.848448\pi\)
−0.888783 + 0.458329i \(0.848448\pi\)
\(458\) −10.0000 −0.467269
\(459\) 0 0
\(460\) 0 0
\(461\) −34.0000 −1.58354 −0.791769 0.610821i \(-0.790840\pi\)
−0.791769 + 0.610821i \(0.790840\pi\)
\(462\) 0 0
\(463\) −40.0000 −1.85896 −0.929479 0.368875i \(-0.879743\pi\)
−0.929479 + 0.368875i \(0.879743\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 8.00000 0.370593
\(467\) 4.00000 0.185098 0.0925490 0.995708i \(-0.470499\pi\)
0.0925490 + 0.995708i \(0.470499\pi\)
\(468\) 0 0
\(469\) −48.0000 −2.21643
\(470\) 0 0
\(471\) 0 0
\(472\) 36.0000 1.65703
\(473\) −16.0000 −0.735681
\(474\) 0 0
\(475\) −20.0000 −0.917663
\(476\) 0 0
\(477\) 0 0
\(478\) 8.00000 0.365911
\(479\) 12.0000 0.548294 0.274147 0.961688i \(-0.411605\pi\)
0.274147 + 0.961688i \(0.411605\pi\)
\(480\) 0 0
\(481\) −16.0000 −0.729537
\(482\) 16.0000 0.728780
\(483\) 0 0
\(484\) −5.00000 −0.227273
\(485\) 0 0
\(486\) 0 0
\(487\) −4.00000 −0.181257 −0.0906287 0.995885i \(-0.528888\pi\)
−0.0906287 + 0.995885i \(0.528888\pi\)
\(488\) 24.0000 1.08643
\(489\) 0 0
\(490\) 0 0
\(491\) −20.0000 −0.902587 −0.451294 0.892375i \(-0.649037\pi\)
−0.451294 + 0.892375i \(0.649037\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 8.00000 0.359937
\(495\) 0 0
\(496\) −4.00000 −0.179605
\(497\) −48.0000 −2.15309
\(498\) 0 0
\(499\) 36.0000 1.61158 0.805791 0.592200i \(-0.201741\pi\)
0.805791 + 0.592200i \(0.201741\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) −12.0000 −0.535586
\(503\) −12.0000 −0.535054 −0.267527 0.963550i \(-0.586206\pi\)
−0.267527 + 0.963550i \(0.586206\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) −16.0000 −0.711287
\(507\) 0 0
\(508\) 8.00000 0.354943
\(509\) 18.0000 0.797836 0.398918 0.916987i \(-0.369386\pi\)
0.398918 + 0.916987i \(0.369386\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) −11.0000 −0.486136
\(513\) 0 0
\(514\) −2.00000 −0.0882162
\(515\) 0 0
\(516\) 0 0
\(517\) −32.0000 −1.40736
\(518\) 32.0000 1.40600
\(519\) 0 0
\(520\) 0 0
\(521\) −24.0000 −1.05146 −0.525730 0.850652i \(-0.676208\pi\)
−0.525730 + 0.850652i \(0.676208\pi\)
\(522\) 0 0
\(523\) −12.0000 −0.524723 −0.262362 0.964970i \(-0.584501\pi\)
−0.262362 + 0.964970i \(0.584501\pi\)
\(524\) −4.00000 −0.174741
\(525\) 0 0
\(526\) 24.0000 1.04645
\(527\) 0 0
\(528\) 0 0
\(529\) −7.00000 −0.304348
\(530\) 0 0
\(531\) 0 0
\(532\) 16.0000 0.693688
\(533\) 16.0000 0.693037
\(534\) 0 0
\(535\) 0 0
\(536\) −36.0000 −1.55496
\(537\) 0 0
\(538\) 0 0
\(539\) −36.0000 −1.55063
\(540\) 0 0
\(541\) −40.0000 −1.71973 −0.859867 0.510518i \(-0.829454\pi\)
−0.859867 + 0.510518i \(0.829454\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) −36.0000 −1.53925 −0.769624 0.638497i \(-0.779557\pi\)
−0.769624 + 0.638497i \(0.779557\pi\)
\(548\) −10.0000 −0.427179
\(549\) 0 0
\(550\) 20.0000 0.852803
\(551\) 0 0
\(552\) 0 0
\(553\) 16.0000 0.680389
\(554\) 8.00000 0.339887
\(555\) 0 0
\(556\) 4.00000 0.169638
\(557\) −18.0000 −0.762684 −0.381342 0.924434i \(-0.624538\pi\)
−0.381342 + 0.924434i \(0.624538\pi\)
\(558\) 0 0
\(559\) 8.00000 0.338364
\(560\) 0 0
\(561\) 0 0
\(562\) 10.0000 0.421825
\(563\) 44.0000 1.85438 0.927189 0.374593i \(-0.122217\pi\)
0.927189 + 0.374593i \(0.122217\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 4.00000 0.168133
\(567\) 0 0
\(568\) −36.0000 −1.51053
\(569\) 26.0000 1.08998 0.544988 0.838444i \(-0.316534\pi\)
0.544988 + 0.838444i \(0.316534\pi\)
\(570\) 0 0
\(571\) 20.0000 0.836974 0.418487 0.908223i \(-0.362561\pi\)
0.418487 + 0.908223i \(0.362561\pi\)
\(572\) 8.00000 0.334497
\(573\) 0 0
\(574\) −32.0000 −1.33565
\(575\) −20.0000 −0.834058
\(576\) 0 0
\(577\) 30.0000 1.24892 0.624458 0.781058i \(-0.285320\pi\)
0.624458 + 0.781058i \(0.285320\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −48.0000 −1.99138
\(582\) 0 0
\(583\) −24.0000 −0.993978
\(584\) 0 0
\(585\) 0 0
\(586\) 10.0000 0.413096
\(587\) 12.0000 0.495293 0.247647 0.968850i \(-0.420343\pi\)
0.247647 + 0.968850i \(0.420343\pi\)
\(588\) 0 0
\(589\) 16.0000 0.659269
\(590\) 0 0
\(591\) 0 0
\(592\) 8.00000 0.328798
\(593\) −46.0000 −1.88899 −0.944497 0.328521i \(-0.893450\pi\)
−0.944497 + 0.328521i \(0.893450\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 6.00000 0.245770
\(597\) 0 0
\(598\) 8.00000 0.327144
\(599\) 8.00000 0.326871 0.163436 0.986554i \(-0.447742\pi\)
0.163436 + 0.986554i \(0.447742\pi\)
\(600\) 0 0
\(601\) 16.0000 0.652654 0.326327 0.945257i \(-0.394189\pi\)
0.326327 + 0.945257i \(0.394189\pi\)
\(602\) −16.0000 −0.652111
\(603\) 0 0
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 4.00000 0.162355 0.0811775 0.996700i \(-0.474132\pi\)
0.0811775 + 0.996700i \(0.474132\pi\)
\(608\) 20.0000 0.811107
\(609\) 0 0
\(610\) 0 0
\(611\) 16.0000 0.647291
\(612\) 0 0
\(613\) 6.00000 0.242338 0.121169 0.992632i \(-0.461336\pi\)
0.121169 + 0.992632i \(0.461336\pi\)
\(614\) −12.0000 −0.484281
\(615\) 0 0
\(616\) −48.0000 −1.93398
\(617\) −24.0000 −0.966204 −0.483102 0.875564i \(-0.660490\pi\)
−0.483102 + 0.875564i \(0.660490\pi\)
\(618\) 0 0
\(619\) 36.0000 1.44696 0.723481 0.690344i \(-0.242541\pi\)
0.723481 + 0.690344i \(0.242541\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 12.0000 0.481156
\(623\) −40.0000 −1.60257
\(624\) 0 0
\(625\) 25.0000 1.00000
\(626\) −16.0000 −0.639489
\(627\) 0 0
\(628\) 2.00000 0.0798087
\(629\) 0 0
\(630\) 0 0
\(631\) 8.00000 0.318475 0.159237 0.987240i \(-0.449096\pi\)
0.159237 + 0.987240i \(0.449096\pi\)
\(632\) 12.0000 0.477334
\(633\) 0 0
\(634\) 32.0000 1.27088
\(635\) 0 0
\(636\) 0 0
\(637\) 18.0000 0.713186
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 8.00000 0.315981 0.157991 0.987441i \(-0.449498\pi\)
0.157991 + 0.987441i \(0.449498\pi\)
\(642\) 0 0
\(643\) −4.00000 −0.157745 −0.0788723 0.996885i \(-0.525132\pi\)
−0.0788723 + 0.996885i \(0.525132\pi\)
\(644\) 16.0000 0.630488
\(645\) 0 0
\(646\) 0 0
\(647\) −32.0000 −1.25805 −0.629025 0.777385i \(-0.716546\pi\)
−0.629025 + 0.777385i \(0.716546\pi\)
\(648\) 0 0
\(649\) 48.0000 1.88416
\(650\) −10.0000 −0.392232
\(651\) 0 0
\(652\) −20.0000 −0.783260
\(653\) 32.0000 1.25226 0.626128 0.779720i \(-0.284639\pi\)
0.626128 + 0.779720i \(0.284639\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) −8.00000 −0.312348
\(657\) 0 0
\(658\) −32.0000 −1.24749
\(659\) 4.00000 0.155818 0.0779089 0.996960i \(-0.475176\pi\)
0.0779089 + 0.996960i \(0.475176\pi\)
\(660\) 0 0
\(661\) 42.0000 1.63361 0.816805 0.576913i \(-0.195743\pi\)
0.816805 + 0.576913i \(0.195743\pi\)
\(662\) 20.0000 0.777322
\(663\) 0 0
\(664\) −36.0000 −1.39707
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) −12.0000 −0.464294
\(669\) 0 0
\(670\) 0 0
\(671\) 32.0000 1.23535
\(672\) 0 0
\(673\) 32.0000 1.23351 0.616755 0.787155i \(-0.288447\pi\)
0.616755 + 0.787155i \(0.288447\pi\)
\(674\) 16.0000 0.616297
\(675\) 0 0
\(676\) 9.00000 0.346154
\(677\) 48.0000 1.84479 0.922395 0.386248i \(-0.126229\pi\)
0.922395 + 0.386248i \(0.126229\pi\)
\(678\) 0 0
\(679\) 64.0000 2.45609
\(680\) 0 0
\(681\) 0 0
\(682\) −16.0000 −0.612672
\(683\) −12.0000 −0.459167 −0.229584 0.973289i \(-0.573736\pi\)
−0.229584 + 0.973289i \(0.573736\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) −8.00000 −0.305441
\(687\) 0 0
\(688\) −4.00000 −0.152499
\(689\) 12.0000 0.457164
\(690\) 0 0
\(691\) 20.0000 0.760836 0.380418 0.924815i \(-0.375780\pi\)
0.380418 + 0.924815i \(0.375780\pi\)
\(692\) 16.0000 0.608229
\(693\) 0 0
\(694\) −4.00000 −0.151838
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) 2.00000 0.0757011
\(699\) 0 0
\(700\) −20.0000 −0.755929
\(701\) −34.0000 −1.28416 −0.642081 0.766637i \(-0.721929\pi\)
−0.642081 + 0.766637i \(0.721929\pi\)
\(702\) 0 0
\(703\) −32.0000 −1.20690
\(704\) −28.0000 −1.05529
\(705\) 0 0
\(706\) −18.0000 −0.677439
\(707\) −24.0000 −0.902613
\(708\) 0 0
\(709\) 40.0000 1.50223 0.751116 0.660171i \(-0.229516\pi\)
0.751116 + 0.660171i \(0.229516\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) −30.0000 −1.12430
\(713\) 16.0000 0.599205
\(714\) 0 0
\(715\) 0 0
\(716\) −4.00000 −0.149487
\(717\) 0 0
\(718\) 32.0000 1.19423
\(719\) −36.0000 −1.34257 −0.671287 0.741198i \(-0.734258\pi\)
−0.671287 + 0.741198i \(0.734258\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) −3.00000 −0.111648
\(723\) 0 0
\(724\) 8.00000 0.297318
\(725\) 0 0
\(726\) 0 0
\(727\) 8.00000 0.296704 0.148352 0.988935i \(-0.452603\pi\)
0.148352 + 0.988935i \(0.452603\pi\)
\(728\) 24.0000 0.889499
\(729\) 0 0
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 34.0000 1.25582 0.627909 0.778287i \(-0.283911\pi\)
0.627909 + 0.778287i \(0.283911\pi\)
\(734\) 12.0000 0.442928
\(735\) 0 0
\(736\) 20.0000 0.737210
\(737\) −48.0000 −1.76810
\(738\) 0 0
\(739\) 4.00000 0.147142 0.0735712 0.997290i \(-0.476560\pi\)
0.0735712 + 0.997290i \(0.476560\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) −24.0000 −0.881068
\(743\) −36.0000 −1.32071 −0.660356 0.750953i \(-0.729595\pi\)
−0.660356 + 0.750953i \(0.729595\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 26.0000 0.951928
\(747\) 0 0
\(748\) 0 0
\(749\) 48.0000 1.75388
\(750\) 0 0
\(751\) 20.0000 0.729810 0.364905 0.931045i \(-0.381101\pi\)
0.364905 + 0.931045i \(0.381101\pi\)
\(752\) −8.00000 −0.291730
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 38.0000 1.38113 0.690567 0.723269i \(-0.257361\pi\)
0.690567 + 0.723269i \(0.257361\pi\)
\(758\) −20.0000 −0.726433
\(759\) 0 0
\(760\) 0 0
\(761\) −6.00000 −0.217500 −0.108750 0.994069i \(-0.534685\pi\)
−0.108750 + 0.994069i \(0.534685\pi\)
\(762\) 0 0
\(763\) −32.0000 −1.15848
\(764\) −8.00000 −0.289430
\(765\) 0 0
\(766\) −16.0000 −0.578103
\(767\) −24.0000 −0.866590
\(768\) 0 0
\(769\) −34.0000 −1.22607 −0.613036 0.790055i \(-0.710052\pi\)
−0.613036 + 0.790055i \(0.710052\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −6.00000 −0.215805 −0.107903 0.994161i \(-0.534413\pi\)
−0.107903 + 0.994161i \(0.534413\pi\)
\(774\) 0 0
\(775\) −20.0000 −0.718421
\(776\) 48.0000 1.72310
\(777\) 0 0
\(778\) −6.00000 −0.215110
\(779\) 32.0000 1.14652
\(780\) 0 0
\(781\) −48.0000 −1.71758
\(782\) 0 0
\(783\) 0 0
\(784\) −9.00000 −0.321429
\(785\) 0 0
\(786\) 0 0
\(787\) 12.0000 0.427754 0.213877 0.976861i \(-0.431391\pi\)
0.213877 + 0.976861i \(0.431391\pi\)
\(788\) 16.0000 0.569976
\(789\) 0 0
\(790\) 0 0
\(791\) −32.0000 −1.13779
\(792\) 0 0
\(793\) −16.0000 −0.568177
\(794\) −8.00000 −0.283909
\(795\) 0 0
\(796\) −20.0000 −0.708881
\(797\) −18.0000 −0.637593 −0.318796 0.947823i \(-0.603279\pi\)
−0.318796 + 0.947823i \(0.603279\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) −25.0000 −0.883883
\(801\) 0 0
\(802\) 24.0000 0.847469
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 8.00000 0.281788
\(807\) 0 0
\(808\) −18.0000 −0.633238
\(809\) 40.0000 1.40633 0.703163 0.711029i \(-0.251771\pi\)
0.703163 + 0.711029i \(0.251771\pi\)
\(810\) 0 0
\(811\) −4.00000 −0.140459 −0.0702295 0.997531i \(-0.522373\pi\)
−0.0702295 + 0.997531i \(0.522373\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 32.0000 1.12160
\(815\) 0 0
\(816\) 0 0
\(817\) 16.0000 0.559769
\(818\) 10.0000 0.349642
\(819\) 0 0
\(820\) 0 0
\(821\) 32.0000 1.11681 0.558404 0.829569i \(-0.311414\pi\)
0.558404 + 0.829569i \(0.311414\pi\)
\(822\) 0 0
\(823\) 44.0000 1.53374 0.766872 0.641800i \(-0.221812\pi\)
0.766872 + 0.641800i \(0.221812\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 48.0000 1.67013
\(827\) 12.0000 0.417281 0.208640 0.977992i \(-0.433096\pi\)
0.208640 + 0.977992i \(0.433096\pi\)
\(828\) 0 0
\(829\) −2.00000 −0.0694629 −0.0347314 0.999397i \(-0.511058\pi\)
−0.0347314 + 0.999397i \(0.511058\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 14.0000 0.485363
\(833\) 0 0
\(834\) 0 0
\(835\) 0 0
\(836\) 16.0000 0.553372
\(837\) 0 0
\(838\) −4.00000 −0.138178
\(839\) −44.0000 −1.51905 −0.759524 0.650479i \(-0.774568\pi\)
−0.759524 + 0.650479i \(0.774568\pi\)
\(840\) 0 0
\(841\) −29.0000 −1.00000
\(842\) −22.0000 −0.758170
\(843\) 0 0
\(844\) −4.00000 −0.137686
\(845\) 0 0
\(846\) 0 0
\(847\) −20.0000 −0.687208
\(848\) −6.00000 −0.206041
\(849\) 0 0
\(850\) 0 0
\(851\) −32.0000 −1.09695
\(852\) 0 0
\(853\) 24.0000 0.821744 0.410872 0.911693i \(-0.365224\pi\)
0.410872 + 0.911693i \(0.365224\pi\)
\(854\) 32.0000 1.09502
\(855\) 0 0
\(856\) 36.0000 1.23045
\(857\) −8.00000 −0.273275 −0.136637 0.990621i \(-0.543630\pi\)
−0.136637 + 0.990621i \(0.543630\pi\)
\(858\) 0 0
\(859\) 4.00000 0.136478 0.0682391 0.997669i \(-0.478262\pi\)
0.0682391 + 0.997669i \(0.478262\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 20.0000 0.681203
\(863\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 2.00000 0.0679628
\(867\) 0 0
\(868\) 16.0000 0.543075
\(869\) 16.0000 0.542763
\(870\) 0 0
\(871\) 24.0000 0.813209
\(872\) −24.0000 −0.812743
\(873\) 0 0
\(874\) 16.0000 0.541208
\(875\) 0 0
\(876\) 0 0
\(877\) −40.0000 −1.35070 −0.675352 0.737496i \(-0.736008\pi\)
−0.675352 + 0.737496i \(0.736008\pi\)
\(878\) 36.0000 1.21494
\(879\) 0 0
\(880\) 0 0
\(881\) 24.0000 0.808581 0.404290 0.914631i \(-0.367519\pi\)
0.404290 + 0.914631i \(0.367519\pi\)
\(882\) 0 0
\(883\) −20.0000 −0.673054 −0.336527 0.941674i \(-0.609252\pi\)
−0.336527 + 0.941674i \(0.609252\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 20.0000 0.671913
\(887\) −4.00000 −0.134307 −0.0671534 0.997743i \(-0.521392\pi\)
−0.0671534 + 0.997743i \(0.521392\pi\)
\(888\) 0 0
\(889\) 32.0000 1.07325
\(890\) 0 0
\(891\) 0 0
\(892\) 16.0000 0.535720
\(893\) 32.0000 1.07084
\(894\) 0 0
\(895\) 0 0
\(896\) 12.0000 0.400892
\(897\) 0 0
\(898\) −8.00000 −0.266963
\(899\) 0 0
\(900\) 0 0
\(901\) 0 0
\(902\) −32.0000 −1.06548
\(903\) 0 0
\(904\) −24.0000 −0.798228
\(905\) 0 0
\(906\) 0 0
\(907\) −28.0000 −0.929725 −0.464862 0.885383i \(-0.653896\pi\)
−0.464862 + 0.885383i \(0.653896\pi\)
\(908\) −12.0000 −0.398234
\(909\) 0 0
\(910\) 0 0
\(911\) −28.0000 −0.927681 −0.463841 0.885919i \(-0.653529\pi\)
−0.463841 + 0.885919i \(0.653529\pi\)
\(912\) 0 0
\(913\) −48.0000 −1.58857
\(914\) −38.0000 −1.25693
\(915\) 0 0
\(916\) 10.0000 0.330409
\(917\) −16.0000 −0.528367
\(918\) 0 0
\(919\) 24.0000 0.791687 0.395843 0.918318i \(-0.370452\pi\)
0.395843 + 0.918318i \(0.370452\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) −34.0000 −1.11973
\(923\) 24.0000 0.789970
\(924\) 0 0
\(925\) 40.0000 1.31519
\(926\) −40.0000 −1.31448
\(927\) 0 0
\(928\) 0 0
\(929\) −24.0000 −0.787414 −0.393707 0.919236i \(-0.628808\pi\)
−0.393707 + 0.919236i \(0.628808\pi\)
\(930\) 0 0
\(931\) 36.0000 1.17985
\(932\) −8.00000 −0.262049
\(933\) 0 0
\(934\) 4.00000 0.130884
\(935\) 0 0
\(936\) 0 0
\(937\) −26.0000 −0.849383 −0.424691 0.905338i \(-0.639617\pi\)
−0.424691 + 0.905338i \(0.639617\pi\)
\(938\) −48.0000 −1.56726
\(939\) 0 0
\(940\) 0 0
\(941\) 48.0000 1.56476 0.782378 0.622804i \(-0.214007\pi\)
0.782378 + 0.622804i \(0.214007\pi\)
\(942\) 0 0
\(943\) 32.0000 1.04206
\(944\) 12.0000 0.390567
\(945\) 0 0
\(946\) −16.0000 −0.520205
\(947\) −12.0000 −0.389948 −0.194974 0.980808i \(-0.562462\pi\)
−0.194974 + 0.980808i \(0.562462\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) −20.0000 −0.648886
\(951\) 0 0
\(952\) 0 0
\(953\) 42.0000 1.36051 0.680257 0.732974i \(-0.261868\pi\)
0.680257 + 0.732974i \(0.261868\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) −8.00000 −0.258738
\(957\) 0 0
\(958\) 12.0000 0.387702
\(959\) −40.0000 −1.29167
\(960\) 0 0
\(961\) −15.0000 −0.483871
\(962\) −16.0000 −0.515861
\(963\) 0 0
\(964\) −16.0000 −0.515325
\(965\) 0 0
\(966\) 0 0
\(967\) −24.0000 −0.771788 −0.385894 0.922543i \(-0.626107\pi\)
−0.385894 + 0.922543i \(0.626107\pi\)
\(968\) −15.0000 −0.482118
\(969\) 0 0
\(970\) 0 0
\(971\) 36.0000 1.15529 0.577647 0.816286i \(-0.303971\pi\)
0.577647 + 0.816286i \(0.303971\pi\)
\(972\) 0 0
\(973\) 16.0000 0.512936
\(974\) −4.00000 −0.128168
\(975\) 0 0
\(976\) 8.00000 0.256074
\(977\) −46.0000 −1.47167 −0.735835 0.677161i \(-0.763210\pi\)
−0.735835 + 0.677161i \(0.763210\pi\)
\(978\) 0 0
\(979\) −40.0000 −1.27841
\(980\) 0 0
\(981\) 0 0
\(982\) −20.0000 −0.638226
\(983\) −20.0000 −0.637901 −0.318950 0.947771i \(-0.603330\pi\)
−0.318950 + 0.947771i \(0.603330\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) −8.00000 −0.254514
\(989\) 16.0000 0.508770
\(990\) 0 0
\(991\) −12.0000 −0.381193 −0.190596 0.981669i \(-0.561042\pi\)
−0.190596 + 0.981669i \(0.561042\pi\)
\(992\) 20.0000 0.635001
\(993\) 0 0
\(994\) −48.0000 −1.52247
\(995\) 0 0
\(996\) 0 0
\(997\) 8.00000 0.253363 0.126681 0.991943i \(-0.459567\pi\)
0.126681 + 0.991943i \(0.459567\pi\)
\(998\) 36.0000 1.13956
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2601.2.a.i.1.1 1
3.2 odd 2 867.2.a.a.1.1 1
17.4 even 4 153.2.d.a.118.1 2
17.13 even 4 153.2.d.a.118.2 2
17.16 even 2 2601.2.a.j.1.1 1
51.2 odd 8 867.2.e.d.616.1 4
51.5 even 16 867.2.h.d.688.2 8
51.8 odd 8 867.2.e.d.829.2 4
51.11 even 16 867.2.h.d.733.2 8
51.14 even 16 867.2.h.d.757.2 8
51.20 even 16 867.2.h.d.757.1 8
51.23 even 16 867.2.h.d.733.1 8
51.26 odd 8 867.2.e.d.829.1 4
51.29 even 16 867.2.h.d.688.1 8
51.32 odd 8 867.2.e.d.616.2 4
51.38 odd 4 51.2.d.b.16.2 yes 2
51.41 even 16 867.2.h.d.712.2 8
51.44 even 16 867.2.h.d.712.1 8
51.47 odd 4 51.2.d.b.16.1 2
51.50 odd 2 867.2.a.b.1.1 1
68.47 odd 4 2448.2.c.j.577.1 2
68.55 odd 4 2448.2.c.j.577.2 2
204.47 even 4 816.2.c.c.577.2 2
204.191 even 4 816.2.c.c.577.1 2
255.38 even 4 1275.2.d.b.424.1 2
255.47 even 4 1275.2.d.b.424.2 2
255.89 odd 4 1275.2.g.a.526.1 2
255.98 even 4 1275.2.d.d.424.1 2
255.149 odd 4 1275.2.g.a.526.2 2
255.242 even 4 1275.2.d.d.424.2 2
408.149 odd 4 3264.2.c.e.577.2 2
408.251 even 4 3264.2.c.d.577.1 2
408.293 odd 4 3264.2.c.e.577.1 2
408.395 even 4 3264.2.c.d.577.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
51.2.d.b.16.1 2 51.47 odd 4
51.2.d.b.16.2 yes 2 51.38 odd 4
153.2.d.a.118.1 2 17.4 even 4
153.2.d.a.118.2 2 17.13 even 4
816.2.c.c.577.1 2 204.191 even 4
816.2.c.c.577.2 2 204.47 even 4
867.2.a.a.1.1 1 3.2 odd 2
867.2.a.b.1.1 1 51.50 odd 2
867.2.e.d.616.1 4 51.2 odd 8
867.2.e.d.616.2 4 51.32 odd 8
867.2.e.d.829.1 4 51.26 odd 8
867.2.e.d.829.2 4 51.8 odd 8
867.2.h.d.688.1 8 51.29 even 16
867.2.h.d.688.2 8 51.5 even 16
867.2.h.d.712.1 8 51.44 even 16
867.2.h.d.712.2 8 51.41 even 16
867.2.h.d.733.1 8 51.23 even 16
867.2.h.d.733.2 8 51.11 even 16
867.2.h.d.757.1 8 51.20 even 16
867.2.h.d.757.2 8 51.14 even 16
1275.2.d.b.424.1 2 255.38 even 4
1275.2.d.b.424.2 2 255.47 even 4
1275.2.d.d.424.1 2 255.98 even 4
1275.2.d.d.424.2 2 255.242 even 4
1275.2.g.a.526.1 2 255.89 odd 4
1275.2.g.a.526.2 2 255.149 odd 4
2448.2.c.j.577.1 2 68.47 odd 4
2448.2.c.j.577.2 2 68.55 odd 4
2601.2.a.i.1.1 1 1.1 even 1 trivial
2601.2.a.j.1.1 1 17.16 even 2
3264.2.c.d.577.1 2 408.251 even 4
3264.2.c.d.577.2 2 408.395 even 4
3264.2.c.e.577.1 2 408.293 odd 4
3264.2.c.e.577.2 2 408.149 odd 4