Properties

Label 261.2.k.b.226.2
Level $261$
Weight $2$
Character 261.226
Analytic conductor $2.084$
Analytic rank $0$
Dimension $18$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [261,2,Mod(82,261)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(261, base_ring=CyclotomicField(14))
 
chi = DirichletCharacter(H, H._module([0, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("261.82");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 261 = 3^{2} \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 261.k (of order \(7\), degree \(6\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.08409549276\)
Analytic rank: \(0\)
Dimension: \(18\)
Relative dimension: \(3\) over \(\Q(\zeta_{7})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{18} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{18} - 5 x^{17} + 15 x^{16} - 32 x^{15} + 66 x^{14} - 115 x^{13} + 272 x^{12} - 387 x^{11} + 762 x^{10} + \cdots + 49 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 87)
Sato-Tate group: $\mathrm{SU}(2)[C_{7}]$

Embedding invariants

Embedding label 226.2
Root \(0.0185039 + 0.0810709i\) of defining polynomial
Character \(\chi\) \(=\) 261.226
Dual form 261.2.k.b.82.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.0518468 - 0.0650138i) q^{2} +(0.443503 + 1.94311i) q^{4} +(-1.20357 + 1.50923i) q^{5} +(-0.0765305 + 0.335302i) q^{7} +(0.299165 + 0.144070i) q^{8} +(0.0357195 + 0.156498i) q^{10} +(-2.18408 + 1.05180i) q^{11} +(-3.27160 + 1.57552i) q^{13} +(0.0178314 + 0.0223599i) q^{14} +(-3.56654 + 1.71755i) q^{16} +6.15354 q^{17} +(0.300553 + 1.31681i) q^{19} +(-3.46640 - 1.66933i) q^{20} +(-0.0448561 + 0.196528i) q^{22} +(2.16114 + 2.70998i) q^{23} +(0.283411 + 1.24171i) q^{25} +(-0.0671914 + 0.294385i) q^{26} -0.685471 q^{28} +(4.26305 - 3.29035i) q^{29} +(6.85222 - 8.59242i) q^{31} +(-0.221024 + 0.968370i) q^{32} +(0.319041 - 0.400065i) q^{34} +(-0.413938 - 0.519062i) q^{35} +(2.78149 + 1.33950i) q^{37} +(0.101193 + 0.0487322i) q^{38} +(-0.577502 + 0.278110i) q^{40} -5.28313 q^{41} +(-0.00526324 - 0.00659989i) q^{43} +(-3.01241 - 3.77744i) q^{44} +0.288234 q^{46} +(-5.22270 + 2.51512i) q^{47} +(6.20021 + 2.98586i) q^{49} +(0.0954221 + 0.0459528i) q^{50} +(-4.51238 - 5.65834i) q^{52} +(2.58271 - 3.23861i) q^{53} +(1.04129 - 4.56219i) q^{55} +(-0.0712023 + 0.0892849i) q^{56} +(0.00710697 - 0.447751i) q^{58} -5.76819 q^{59} +(1.38805 - 6.08144i) q^{61} +(-0.203360 - 0.890979i) q^{62} +(-4.88474 - 6.12527i) q^{64} +(1.55978 - 6.83384i) q^{65} +(-9.92346 - 4.77889i) q^{67} +(2.72912 + 11.9570i) q^{68} -0.0552076 q^{70} +(11.5818 - 5.57748i) q^{71} +(0.286311 + 0.359022i) q^{73} +(0.231297 - 0.111387i) q^{74} +(-2.42541 + 1.16802i) q^{76} +(-0.185521 - 0.812820i) q^{77} +(11.2434 + 5.41452i) q^{79} +(1.70040 - 7.44993i) q^{80} +(-0.273913 + 0.343476i) q^{82} +(0.640518 + 2.80629i) q^{83} +(-7.40623 + 9.28712i) q^{85} -0.000701966 q^{86} -0.804933 q^{88} +(7.62150 - 9.55706i) q^{89} +(-0.277897 - 1.21755i) q^{91} +(-4.30733 + 5.40122i) q^{92} +(-0.107263 + 0.469948i) q^{94} +(-2.34911 - 1.13127i) q^{95} +(0.606191 + 2.65590i) q^{97} +(0.515584 - 0.248292i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 18 q + 2 q^{2} - 6 q^{4} + 7 q^{5} - 4 q^{7} + 3 q^{8} + 6 q^{10} + 6 q^{11} - 11 q^{13} + 2 q^{14} + 18 q^{16} + 32 q^{17} + 2 q^{19} - 51 q^{20} + 20 q^{22} + 6 q^{23} + 4 q^{25} + 3 q^{26} - 48 q^{28}+ \cdots + 11 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/261\mathbb{Z}\right)^\times\).

\(n\) \(118\) \(146\)
\(\chi(n)\) \(e\left(\frac{5}{7}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.0518468 0.0650138i 0.0366612 0.0459717i −0.763163 0.646206i \(-0.776355\pi\)
0.799824 + 0.600234i \(0.204926\pi\)
\(3\) 0 0
\(4\) 0.443503 + 1.94311i 0.221752 + 0.971557i
\(5\) −1.20357 + 1.50923i −0.538253 + 0.674948i −0.974372 0.224941i \(-0.927781\pi\)
0.436119 + 0.899889i \(0.356353\pi\)
\(6\) 0 0
\(7\) −0.0765305 + 0.335302i −0.0289258 + 0.126732i −0.987329 0.158684i \(-0.949275\pi\)
0.958404 + 0.285417i \(0.0921319\pi\)
\(8\) 0.299165 + 0.144070i 0.105771 + 0.0509365i
\(9\) 0 0
\(10\) 0.0357195 + 0.156498i 0.0112955 + 0.0494889i
\(11\) −2.18408 + 1.05180i −0.658525 + 0.317129i −0.733134 0.680084i \(-0.761943\pi\)
0.0746095 + 0.997213i \(0.476229\pi\)
\(12\) 0 0
\(13\) −3.27160 + 1.57552i −0.907378 + 0.436970i −0.828548 0.559918i \(-0.810833\pi\)
−0.0788298 + 0.996888i \(0.525118\pi\)
\(14\) 0.0178314 + 0.0223599i 0.00476564 + 0.00597593i
\(15\) 0 0
\(16\) −3.56654 + 1.71755i −0.891634 + 0.429389i
\(17\) 6.15354 1.49245 0.746227 0.665692i \(-0.231863\pi\)
0.746227 + 0.665692i \(0.231863\pi\)
\(18\) 0 0
\(19\) 0.300553 + 1.31681i 0.0689516 + 0.302097i 0.997631 0.0687856i \(-0.0219125\pi\)
−0.928680 + 0.370882i \(0.879055\pi\)
\(20\) −3.46640 1.66933i −0.775110 0.373273i
\(21\) 0 0
\(22\) −0.0448561 + 0.196528i −0.00956336 + 0.0418998i
\(23\) 2.16114 + 2.70998i 0.450628 + 0.565070i 0.954310 0.298820i \(-0.0965929\pi\)
−0.503681 + 0.863889i \(0.668021\pi\)
\(24\) 0 0
\(25\) 0.283411 + 1.24171i 0.0566823 + 0.248341i
\(26\) −0.0671914 + 0.294385i −0.0131773 + 0.0577336i
\(27\) 0 0
\(28\) −0.685471 −0.129542
\(29\) 4.26305 3.29035i 0.791628 0.611003i
\(30\) 0 0
\(31\) 6.85222 8.59242i 1.23070 1.54324i 0.489411 0.872053i \(-0.337212\pi\)
0.741285 0.671190i \(-0.234217\pi\)
\(32\) −0.221024 + 0.968370i −0.0390719 + 0.171185i
\(33\) 0 0
\(34\) 0.319041 0.400065i 0.0547152 0.0686106i
\(35\) −0.413938 0.519062i −0.0699683 0.0877375i
\(36\) 0 0
\(37\) 2.78149 + 1.33950i 0.457275 + 0.220212i 0.648318 0.761370i \(-0.275473\pi\)
−0.191043 + 0.981582i \(0.561187\pi\)
\(38\) 0.101193 + 0.0487322i 0.0164158 + 0.00790541i
\(39\) 0 0
\(40\) −0.577502 + 0.278110i −0.0913111 + 0.0439731i
\(41\) −5.28313 −0.825086 −0.412543 0.910938i \(-0.635359\pi\)
−0.412543 + 0.910938i \(0.635359\pi\)
\(42\) 0 0
\(43\) −0.00526324 0.00659989i −0.000802636 0.00100647i 0.781430 0.623993i \(-0.214491\pi\)
−0.782233 + 0.622986i \(0.785919\pi\)
\(44\) −3.01241 3.77744i −0.454138 0.569470i
\(45\) 0 0
\(46\) 0.288234 0.0424978
\(47\) −5.22270 + 2.51512i −0.761809 + 0.366868i −0.774105 0.633057i \(-0.781800\pi\)
0.0122968 + 0.999924i \(0.496086\pi\)
\(48\) 0 0
\(49\) 6.20021 + 2.98586i 0.885745 + 0.426552i
\(50\) 0.0954221 + 0.0459528i 0.0134947 + 0.00649871i
\(51\) 0 0
\(52\) −4.51238 5.65834i −0.625754 0.784671i
\(53\) 2.58271 3.23861i 0.354762 0.444857i −0.572143 0.820154i \(-0.693888\pi\)
0.926905 + 0.375297i \(0.122459\pi\)
\(54\) 0 0
\(55\) 1.04129 4.56219i 0.140408 0.615166i
\(56\) −0.0712023 + 0.0892849i −0.00951481 + 0.0119312i
\(57\) 0 0
\(58\) 0.00710697 0.447751i 0.000933191 0.0587926i
\(59\) −5.76819 −0.750955 −0.375477 0.926832i \(-0.622521\pi\)
−0.375477 + 0.926832i \(0.622521\pi\)
\(60\) 0 0
\(61\) 1.38805 6.08144i 0.177722 0.778649i −0.804957 0.593333i \(-0.797812\pi\)
0.982679 0.185316i \(-0.0593310\pi\)
\(62\) −0.203360 0.890979i −0.0258268 0.113154i
\(63\) 0 0
\(64\) −4.88474 6.12527i −0.610593 0.765659i
\(65\) 1.55978 6.83384i 0.193467 0.847634i
\(66\) 0 0
\(67\) −9.92346 4.77889i −1.21234 0.583834i −0.285174 0.958476i \(-0.592051\pi\)
−0.927170 + 0.374642i \(0.877766\pi\)
\(68\) 2.72912 + 11.9570i 0.330954 + 1.45000i
\(69\) 0 0
\(70\) −0.0552076 −0.00659856
\(71\) 11.5818 5.57748i 1.37450 0.661925i 0.406682 0.913570i \(-0.366686\pi\)
0.967820 + 0.251645i \(0.0809714\pi\)
\(72\) 0 0
\(73\) 0.286311 + 0.359022i 0.0335102 + 0.0420204i 0.798304 0.602254i \(-0.205731\pi\)
−0.764794 + 0.644275i \(0.777159\pi\)
\(74\) 0.231297 0.111387i 0.0268878 0.0129485i
\(75\) 0 0
\(76\) −2.42541 + 1.16802i −0.278214 + 0.133981i
\(77\) −0.185521 0.812820i −0.0211421 0.0926295i
\(78\) 0 0
\(79\) 11.2434 + 5.41452i 1.26498 + 0.609181i 0.941487 0.337050i \(-0.109429\pi\)
0.323491 + 0.946231i \(0.395143\pi\)
\(80\) 1.70040 7.44993i 0.190110 0.832927i
\(81\) 0 0
\(82\) −0.273913 + 0.343476i −0.0302487 + 0.0379306i
\(83\) 0.640518 + 2.80629i 0.0703060 + 0.308031i 0.997839 0.0657114i \(-0.0209317\pi\)
−0.927533 + 0.373742i \(0.878075\pi\)
\(84\) 0 0
\(85\) −7.40623 + 9.28712i −0.803318 + 1.00733i
\(86\) −0.000701966 0 −7.56950e−5 0
\(87\) 0 0
\(88\) −0.804933 −0.0858061
\(89\) 7.62150 9.55706i 0.807878 1.01305i −0.191624 0.981468i \(-0.561375\pi\)
0.999501 0.0315781i \(-0.0100533\pi\)
\(90\) 0 0
\(91\) −0.277897 1.21755i −0.0291316 0.127634i
\(92\) −4.30733 + 5.40122i −0.449070 + 0.563116i
\(93\) 0 0
\(94\) −0.107263 + 0.469948i −0.0110633 + 0.0484715i
\(95\) −2.34911 1.13127i −0.241013 0.116066i
\(96\) 0 0
\(97\) 0.606191 + 2.65590i 0.0615494 + 0.269666i 0.996334 0.0855498i \(-0.0272647\pi\)
−0.934784 + 0.355215i \(0.884408\pi\)
\(98\) 0.515584 0.248292i 0.0520818 0.0250813i
\(99\) 0 0
\(100\) −2.28708 + 1.10140i −0.228708 + 0.110140i
\(101\) 11.3909 + 14.2838i 1.13344 + 1.42129i 0.892673 + 0.450704i \(0.148827\pi\)
0.240765 + 0.970583i \(0.422602\pi\)
\(102\) 0 0
\(103\) 14.4782 6.97235i 1.42658 0.687006i 0.448224 0.893921i \(-0.352057\pi\)
0.978359 + 0.206916i \(0.0663425\pi\)
\(104\) −1.20573 −0.118232
\(105\) 0 0
\(106\) −0.0766494 0.335823i −0.00744485 0.0326180i
\(107\) −14.5741 7.01851i −1.40893 0.678505i −0.433978 0.900923i \(-0.642890\pi\)
−0.974951 + 0.222419i \(0.928605\pi\)
\(108\) 0 0
\(109\) −2.04709 + 8.96888i −0.196075 + 0.859063i 0.777169 + 0.629292i \(0.216655\pi\)
−0.973245 + 0.229771i \(0.926202\pi\)
\(110\) −0.242618 0.304233i −0.0231327 0.0290075i
\(111\) 0 0
\(112\) −0.302950 1.32731i −0.0286261 0.125419i
\(113\) −4.50744 + 19.7484i −0.424024 + 1.85777i 0.0840533 + 0.996461i \(0.473213\pi\)
−0.508078 + 0.861311i \(0.669644\pi\)
\(114\) 0 0
\(115\) −6.69107 −0.623945
\(116\) 8.28421 + 6.82431i 0.769169 + 0.633621i
\(117\) 0 0
\(118\) −0.299062 + 0.375012i −0.0275309 + 0.0345227i
\(119\) −0.470934 + 2.06329i −0.0431704 + 0.189142i
\(120\) 0 0
\(121\) −3.19446 + 4.00573i −0.290406 + 0.364157i
\(122\) −0.323412 0.405546i −0.0292803 0.0367164i
\(123\) 0 0
\(124\) 19.7350 + 9.50389i 1.77226 + 0.853475i
\(125\) −10.9112 5.25455i −0.975926 0.469981i
\(126\) 0 0
\(127\) −8.61739 + 4.14992i −0.764670 + 0.368246i −0.775214 0.631699i \(-0.782358\pi\)
0.0105441 + 0.999944i \(0.496644\pi\)
\(128\) −2.63803 −0.233171
\(129\) 0 0
\(130\) −0.363425 0.455720i −0.0318745 0.0399693i
\(131\) −10.4762 13.1367i −0.915307 1.14776i −0.988618 0.150449i \(-0.951928\pi\)
0.0733108 0.997309i \(-0.476644\pi\)
\(132\) 0 0
\(133\) −0.464530 −0.0402799
\(134\) −0.825193 + 0.397392i −0.0712859 + 0.0343295i
\(135\) 0 0
\(136\) 1.84093 + 0.886543i 0.157858 + 0.0760204i
\(137\) −5.18170 2.49538i −0.442703 0.213194i 0.199234 0.979952i \(-0.436155\pi\)
−0.641937 + 0.766757i \(0.721869\pi\)
\(138\) 0 0
\(139\) 0.976909 + 1.22501i 0.0828603 + 0.103904i 0.821534 0.570160i \(-0.193119\pi\)
−0.738673 + 0.674064i \(0.764547\pi\)
\(140\) 0.825014 1.03453i 0.0697264 0.0874341i
\(141\) 0 0
\(142\) 0.237864 1.04215i 0.0199611 0.0874552i
\(143\) 5.48830 6.88211i 0.458955 0.575511i
\(144\) 0 0
\(145\) −0.164981 + 10.3941i −0.0137009 + 0.863183i
\(146\) 0.0381857 0.00316027
\(147\) 0 0
\(148\) −1.36919 + 5.99883i −0.112547 + 0.493101i
\(149\) 2.81077 + 12.3148i 0.230267 + 1.00887i 0.949418 + 0.314014i \(0.101674\pi\)
−0.719151 + 0.694854i \(0.755469\pi\)
\(150\) 0 0
\(151\) −6.40179 8.02760i −0.520971 0.653277i 0.449844 0.893107i \(-0.351480\pi\)
−0.970815 + 0.239831i \(0.922908\pi\)
\(152\) −0.0997981 + 0.437244i −0.00809469 + 0.0354652i
\(153\) 0 0
\(154\) −0.0624632 0.0300807i −0.00503343 0.00242397i
\(155\) 4.72080 + 20.6832i 0.379184 + 1.66131i
\(156\) 0 0
\(157\) −3.78665 −0.302207 −0.151104 0.988518i \(-0.548283\pi\)
−0.151104 + 0.988518i \(0.548283\pi\)
\(158\) 0.934952 0.450249i 0.0743808 0.0358199i
\(159\) 0 0
\(160\) −1.19548 1.49908i −0.0945106 0.118513i
\(161\) −1.07405 + 0.517237i −0.0846473 + 0.0407640i
\(162\) 0 0
\(163\) 5.47952 2.63880i 0.429189 0.206687i −0.206802 0.978383i \(-0.566306\pi\)
0.635991 + 0.771696i \(0.280591\pi\)
\(164\) −2.34308 10.2657i −0.182964 0.801618i
\(165\) 0 0
\(166\) 0.215657 + 0.103855i 0.0167382 + 0.00806069i
\(167\) −1.70796 + 7.48305i −0.132166 + 0.579056i 0.864862 + 0.502010i \(0.167406\pi\)
−0.997028 + 0.0770460i \(0.975451\pi\)
\(168\) 0 0
\(169\) 0.115724 0.145113i 0.00890183 0.0111625i
\(170\) 0.219802 + 0.963014i 0.0168580 + 0.0738598i
\(171\) 0 0
\(172\) 0.0104901 0.0131541i 0.000799861 0.00100299i
\(173\) 14.9932 1.13991 0.569956 0.821675i \(-0.306960\pi\)
0.569956 + 0.821675i \(0.306960\pi\)
\(174\) 0 0
\(175\) −0.438036 −0.0331124
\(176\) 5.98308 7.50255i 0.450992 0.565526i
\(177\) 0 0
\(178\) −0.226191 0.991006i −0.0169537 0.0742790i
\(179\) 10.0259 12.5720i 0.749369 0.939679i −0.250225 0.968188i \(-0.580505\pi\)
0.999594 + 0.0285091i \(0.00907596\pi\)
\(180\) 0 0
\(181\) 1.26245 5.53117i 0.0938375 0.411129i −0.906091 0.423083i \(-0.860948\pi\)
0.999929 + 0.0119539i \(0.00380512\pi\)
\(182\) −0.0935655 0.0450588i −0.00693554 0.00333998i
\(183\) 0 0
\(184\) 0.256109 + 1.12209i 0.0188806 + 0.0827213i
\(185\) −5.36933 + 2.58573i −0.394761 + 0.190107i
\(186\) 0 0
\(187\) −13.4398 + 6.47228i −0.982817 + 0.473300i
\(188\) −7.20344 9.03283i −0.525365 0.658787i
\(189\) 0 0
\(190\) −0.195342 + 0.0940716i −0.0141716 + 0.00682467i
\(191\) −0.636893 −0.0460839 −0.0230420 0.999734i \(-0.507335\pi\)
−0.0230420 + 0.999734i \(0.507335\pi\)
\(192\) 0 0
\(193\) 2.52413 + 11.0589i 0.181691 + 0.796039i 0.980826 + 0.194887i \(0.0624341\pi\)
−0.799135 + 0.601152i \(0.794709\pi\)
\(194\) 0.204099 + 0.0982890i 0.0146535 + 0.00705674i
\(195\) 0 0
\(196\) −3.05206 + 13.3720i −0.218004 + 0.955140i
\(197\) 10.5545 + 13.2349i 0.751976 + 0.942949i 0.999665 0.0258911i \(-0.00824231\pi\)
−0.247688 + 0.968840i \(0.579671\pi\)
\(198\) 0 0
\(199\) −1.93102 8.46037i −0.136887 0.599740i −0.996108 0.0881362i \(-0.971909\pi\)
0.859222 0.511603i \(-0.170948\pi\)
\(200\) −0.0941063 + 0.412306i −0.00665432 + 0.0291545i
\(201\) 0 0
\(202\) 1.51922 0.106892
\(203\) 0.777008 + 1.68122i 0.0545353 + 0.117999i
\(204\) 0 0
\(205\) 6.35862 7.97346i 0.444105 0.556891i
\(206\) 0.297351 1.30278i 0.0207174 0.0907689i
\(207\) 0 0
\(208\) 8.96224 11.2383i 0.621419 0.779235i
\(209\) −2.04145 2.55989i −0.141210 0.177072i
\(210\) 0 0
\(211\) −11.4887 5.53267i −0.790916 0.380885i −0.00560320 0.999984i \(-0.501784\pi\)
−0.785313 + 0.619099i \(0.787498\pi\)
\(212\) 7.43843 + 3.58216i 0.510873 + 0.246024i
\(213\) 0 0
\(214\) −1.21192 + 0.583629i −0.0828451 + 0.0398961i
\(215\) 0.0162954 0.00111134
\(216\) 0 0
\(217\) 2.35665 + 2.95515i 0.159980 + 0.200608i
\(218\) 0.476966 + 0.598096i 0.0323042 + 0.0405082i
\(219\) 0 0
\(220\) 9.32667 0.628804
\(221\) −20.1319 + 9.69502i −1.35422 + 0.652158i
\(222\) 0 0
\(223\) −17.2436 8.30407i −1.15472 0.556082i −0.244268 0.969708i \(-0.578548\pi\)
−0.910447 + 0.413626i \(0.864262\pi\)
\(224\) −0.307781 0.148220i −0.0205645 0.00990334i
\(225\) 0 0
\(226\) 1.05022 + 1.31694i 0.0698597 + 0.0876013i
\(227\) 15.4320 19.3511i 1.02426 1.28438i 0.0661958 0.997807i \(-0.478914\pi\)
0.958060 0.286569i \(-0.0925148\pi\)
\(228\) 0 0
\(229\) 4.32439 18.9464i 0.285764 1.25201i −0.604514 0.796595i \(-0.706632\pi\)
0.890277 0.455419i \(-0.150510\pi\)
\(230\) −0.346910 + 0.435012i −0.0228746 + 0.0286838i
\(231\) 0 0
\(232\) 1.74940 0.370180i 0.114854 0.0243035i
\(233\) −18.2842 −1.19784 −0.598918 0.800810i \(-0.704402\pi\)
−0.598918 + 0.800810i \(0.704402\pi\)
\(234\) 0 0
\(235\) 2.48999 10.9094i 0.162429 0.711649i
\(236\) −2.55821 11.2083i −0.166525 0.729596i
\(237\) 0 0
\(238\) 0.109726 + 0.137592i 0.00711250 + 0.00891879i
\(239\) 1.82330 7.98840i 0.117939 0.516727i −0.881101 0.472928i \(-0.843197\pi\)
0.999040 0.0437983i \(-0.0139459\pi\)
\(240\) 0 0
\(241\) 6.43502 + 3.09894i 0.414516 + 0.199620i 0.629506 0.776996i \(-0.283257\pi\)
−0.214989 + 0.976616i \(0.568972\pi\)
\(242\) 0.0948052 + 0.415369i 0.00609431 + 0.0267009i
\(243\) 0 0
\(244\) 12.4325 0.795912
\(245\) −11.9688 + 5.76385i −0.764656 + 0.368239i
\(246\) 0 0
\(247\) −3.05795 3.83454i −0.194572 0.243986i
\(248\) 3.28786 1.58335i 0.208779 0.100543i
\(249\) 0 0
\(250\) −0.907328 + 0.436946i −0.0573845 + 0.0276349i
\(251\) 0.516642 + 2.26356i 0.0326102 + 0.142874i 0.988612 0.150486i \(-0.0480837\pi\)
−0.956002 + 0.293360i \(0.905227\pi\)
\(252\) 0 0
\(253\) −7.57044 3.64573i −0.475950 0.229205i
\(254\) −0.176982 + 0.775409i −0.0111048 + 0.0486535i
\(255\) 0 0
\(256\) 9.63271 12.0790i 0.602045 0.754940i
\(257\) −5.06951 22.2110i −0.316228 1.38548i −0.844112 0.536167i \(-0.819872\pi\)
0.527884 0.849316i \(-0.322985\pi\)
\(258\) 0 0
\(259\) −0.662005 + 0.830127i −0.0411350 + 0.0515816i
\(260\) 13.9707 0.866426
\(261\) 0 0
\(262\) −1.39722 −0.0863207
\(263\) 0.595714 0.747002i 0.0367333 0.0460621i −0.763126 0.646250i \(-0.776336\pi\)
0.799859 + 0.600188i \(0.204908\pi\)
\(264\) 0 0
\(265\) 1.77934 + 7.79580i 0.109304 + 0.478892i
\(266\) −0.0240844 + 0.0302009i −0.00147671 + 0.00185173i
\(267\) 0 0
\(268\) 4.88484 21.4019i 0.298389 1.30733i
\(269\) 13.6464 + 6.57178i 0.832038 + 0.400688i 0.800879 0.598826i \(-0.204366\pi\)
0.0311589 + 0.999514i \(0.490080\pi\)
\(270\) 0 0
\(271\) 1.83597 + 8.04392i 0.111527 + 0.488633i 0.999582 + 0.0288962i \(0.00919922\pi\)
−0.888055 + 0.459737i \(0.847944\pi\)
\(272\) −21.9468 + 10.5690i −1.33072 + 0.640842i
\(273\) 0 0
\(274\) −0.430889 + 0.207505i −0.0260309 + 0.0125358i
\(275\) −1.92502 2.41389i −0.116083 0.145563i
\(276\) 0 0
\(277\) −15.0761 + 7.26026i −0.905834 + 0.436227i −0.827992 0.560739i \(-0.810517\pi\)
−0.0778412 + 0.996966i \(0.524803\pi\)
\(278\) 0.130292 0.00781439
\(279\) 0 0
\(280\) −0.0490544 0.214921i −0.00293156 0.0128440i
\(281\) −19.9509 9.60786i −1.19017 0.573157i −0.269313 0.963053i \(-0.586797\pi\)
−0.920859 + 0.389896i \(0.872511\pi\)
\(282\) 0 0
\(283\) 3.92964 17.2169i 0.233593 1.02344i −0.713040 0.701123i \(-0.752682\pi\)
0.946633 0.322314i \(-0.104461\pi\)
\(284\) 15.9742 + 20.0310i 0.947896 + 1.18862i
\(285\) 0 0
\(286\) −0.162882 0.713631i −0.00963139 0.0421979i
\(287\) 0.404320 1.77144i 0.0238663 0.104565i
\(288\) 0 0
\(289\) 20.8661 1.22742
\(290\) 0.667206 + 0.549627i 0.0391797 + 0.0322752i
\(291\) 0 0
\(292\) −0.570642 + 0.715562i −0.0333943 + 0.0418751i
\(293\) 5.15017 22.5644i 0.300876 1.31823i −0.567931 0.823076i \(-0.692256\pi\)
0.868808 0.495150i \(-0.164887\pi\)
\(294\) 0 0
\(295\) 6.94243 8.70553i 0.404204 0.506856i
\(296\) 0.639144 + 0.801461i 0.0371495 + 0.0465840i
\(297\) 0 0
\(298\) 0.946362 + 0.455744i 0.0548213 + 0.0264005i
\(299\) −11.3400 5.46105i −0.655809 0.315821i
\(300\) 0 0
\(301\) 0.00261575 0.00125968i 0.000150770 7.26068e-5i
\(302\) −0.853817 −0.0491317
\(303\) 0 0
\(304\) −3.33362 4.18023i −0.191196 0.239753i
\(305\) 7.50768 + 9.41434i 0.429889 + 0.539063i
\(306\) 0 0
\(307\) −22.9984 −1.31259 −0.656293 0.754506i \(-0.727876\pi\)
−0.656293 + 0.754506i \(0.727876\pi\)
\(308\) 1.49712 0.720977i 0.0853065 0.0410815i
\(309\) 0 0
\(310\) 1.58945 + 0.765439i 0.0902747 + 0.0434740i
\(311\) 3.67659 + 1.77055i 0.208480 + 0.100399i 0.535210 0.844719i \(-0.320232\pi\)
−0.326730 + 0.945118i \(0.605947\pi\)
\(312\) 0 0
\(313\) 17.9270 + 22.4797i 1.01329 + 1.27063i 0.962318 + 0.271928i \(0.0876612\pi\)
0.0509742 + 0.998700i \(0.483767\pi\)
\(314\) −0.196325 + 0.246184i −0.0110793 + 0.0138930i
\(315\) 0 0
\(316\) −5.53457 + 24.2485i −0.311344 + 1.36409i
\(317\) −7.18877 + 9.01443i −0.403762 + 0.506301i −0.941594 0.336751i \(-0.890672\pi\)
0.537832 + 0.843052i \(0.319243\pi\)
\(318\) 0 0
\(319\) −5.85005 + 11.6703i −0.327540 + 0.653409i
\(320\) 15.1236 0.845434
\(321\) 0 0
\(322\) −0.0220587 + 0.0966455i −0.00122928 + 0.00538584i
\(323\) 1.84947 + 8.10304i 0.102907 + 0.450865i
\(324\) 0 0
\(325\) −2.88354 3.61584i −0.159950 0.200571i
\(326\) 0.112537 0.493058i 0.00623286 0.0273080i
\(327\) 0 0
\(328\) −1.58053 0.761142i −0.0872700 0.0420270i
\(329\) −0.443628 1.94366i −0.0244580 0.107158i
\(330\) 0 0
\(331\) 12.3038 0.676277 0.338139 0.941096i \(-0.390203\pi\)
0.338139 + 0.941096i \(0.390203\pi\)
\(332\) −5.16888 + 2.48920i −0.283679 + 0.136613i
\(333\) 0 0
\(334\) 0.397950 + 0.499013i 0.0217748 + 0.0273048i
\(335\) 19.1560 9.22506i 1.04661 0.504019i
\(336\) 0 0
\(337\) −27.5590 + 13.2717i −1.50123 + 0.722956i −0.990593 0.136838i \(-0.956306\pi\)
−0.510640 + 0.859794i \(0.670592\pi\)
\(338\) −0.00343445 0.0150473i −0.000186809 0.000818465i
\(339\) 0 0
\(340\) −21.3306 10.2723i −1.15681 0.557093i
\(341\) −5.92832 + 25.9737i −0.321037 + 1.40655i
\(342\) 0 0
\(343\) −2.97671 + 3.73267i −0.160727 + 0.201545i
\(344\) −0.000623729 0.00273273i −3.36292e−5 0.000147339i
\(345\) 0 0
\(346\) 0.777349 0.974765i 0.0417906 0.0524037i
\(347\) 2.30431 0.123702 0.0618508 0.998085i \(-0.480300\pi\)
0.0618508 + 0.998085i \(0.480300\pi\)
\(348\) 0 0
\(349\) 9.12305 0.488345 0.244173 0.969732i \(-0.421484\pi\)
0.244173 + 0.969732i \(0.421484\pi\)
\(350\) −0.0227108 + 0.0284784i −0.00121394 + 0.00152223i
\(351\) 0 0
\(352\) −0.535795 2.34747i −0.0285579 0.125121i
\(353\) 9.08165 11.3880i 0.483368 0.606124i −0.479020 0.877804i \(-0.659008\pi\)
0.962388 + 0.271680i \(0.0875793\pi\)
\(354\) 0 0
\(355\) −5.52177 + 24.1924i −0.293065 + 1.28400i
\(356\) 21.9506 + 10.5709i 1.16338 + 0.560255i
\(357\) 0 0
\(358\) −0.297547 1.30364i −0.0157259 0.0688995i
\(359\) 3.37960 1.62753i 0.178368 0.0858976i −0.342569 0.939493i \(-0.611297\pi\)
0.520937 + 0.853595i \(0.325583\pi\)
\(360\) 0 0
\(361\) 15.4748 7.45225i 0.814461 0.392224i
\(362\) −0.294148 0.368851i −0.0154601 0.0193864i
\(363\) 0 0
\(364\) 2.24259 1.07997i 0.117543 0.0566060i
\(365\) −0.886443 −0.0463986
\(366\) 0 0
\(367\) −3.10389 13.5990i −0.162022 0.709864i −0.989035 0.147681i \(-0.952819\pi\)
0.827013 0.562182i \(-0.190038\pi\)
\(368\) −12.3623 5.95338i −0.644430 0.310341i
\(369\) 0 0
\(370\) −0.110274 + 0.483143i −0.00573288 + 0.0251174i
\(371\) 0.888257 + 1.11384i 0.0461160 + 0.0578276i
\(372\) 0 0
\(373\) 1.70453 + 7.46802i 0.0882571 + 0.386679i 0.999693 0.0247617i \(-0.00788271\pi\)
−0.911436 + 0.411441i \(0.865026\pi\)
\(374\) −0.276024 + 1.20934i −0.0142729 + 0.0625335i
\(375\) 0 0
\(376\) −1.92480 −0.0992641
\(377\) −8.76297 + 17.4812i −0.451316 + 0.900329i
\(378\) 0 0
\(379\) −7.83725 + 9.82760i −0.402573 + 0.504810i −0.941254 0.337700i \(-0.890351\pi\)
0.538681 + 0.842510i \(0.318923\pi\)
\(380\) 1.15635 5.06630i 0.0593195 0.259896i
\(381\) 0 0
\(382\) −0.0330208 + 0.0414068i −0.00168949 + 0.00211856i
\(383\) −14.6837 18.4128i −0.750305 0.940852i 0.249315 0.968422i \(-0.419794\pi\)
−0.999620 + 0.0275703i \(0.991223\pi\)
\(384\) 0 0
\(385\) 1.45002 + 0.698293i 0.0738999 + 0.0355883i
\(386\) 0.849851 + 0.409267i 0.0432563 + 0.0208311i
\(387\) 0 0
\(388\) −4.89187 + 2.35580i −0.248347 + 0.119598i
\(389\) 21.2485 1.07734 0.538671 0.842516i \(-0.318927\pi\)
0.538671 + 0.842516i \(0.318927\pi\)
\(390\) 0 0
\(391\) 13.2986 + 16.6760i 0.672542 + 0.843340i
\(392\) 1.42471 + 1.78653i 0.0719588 + 0.0902335i
\(393\) 0 0
\(394\) 1.40767 0.0709173
\(395\) −21.7040 + 10.4521i −1.09204 + 0.525901i
\(396\) 0 0
\(397\) −13.2705 6.39072i −0.666026 0.320741i 0.0701450 0.997537i \(-0.477654\pi\)
−0.736171 + 0.676796i \(0.763368\pi\)
\(398\) −0.650158 0.313100i −0.0325895 0.0156943i
\(399\) 0 0
\(400\) −3.14350 3.94182i −0.157175 0.197091i
\(401\) 7.87447 9.87428i 0.393233 0.493098i −0.545323 0.838226i \(-0.683593\pi\)
0.938556 + 0.345128i \(0.112164\pi\)
\(402\) 0 0
\(403\) −8.88021 + 38.9067i −0.442355 + 1.93808i
\(404\) −22.7031 + 28.4688i −1.12952 + 1.41637i
\(405\) 0 0
\(406\) 0.149588 + 0.0366496i 0.00742393 + 0.00181889i
\(407\) −7.48388 −0.370962
\(408\) 0 0
\(409\) 7.51172 32.9110i 0.371430 1.62734i −0.351335 0.936250i \(-0.614272\pi\)
0.722766 0.691093i \(-0.242871\pi\)
\(410\) −0.188711 0.826797i −0.00931977 0.0408326i
\(411\) 0 0
\(412\) 19.9692 + 25.0406i 0.983812 + 1.23366i
\(413\) 0.441443 1.93409i 0.0217220 0.0951702i
\(414\) 0 0
\(415\) −5.00625 2.41088i −0.245747 0.118346i
\(416\) −0.802583 3.51634i −0.0393499 0.172403i
\(417\) 0 0
\(418\) −0.272271 −0.0133172
\(419\) −22.2013 + 10.6916i −1.08461 + 0.522319i −0.888787 0.458321i \(-0.848451\pi\)
−0.195819 + 0.980640i \(0.562737\pi\)
\(420\) 0 0
\(421\) 7.64133 + 9.58193i 0.372416 + 0.466995i 0.932358 0.361537i \(-0.117748\pi\)
−0.559942 + 0.828532i \(0.689177\pi\)
\(422\) −0.955354 + 0.460074i −0.0465059 + 0.0223961i
\(423\) 0 0
\(424\) 1.23924 0.596788i 0.0601830 0.0289826i
\(425\) 1.74398 + 7.64090i 0.0845957 + 0.370638i
\(426\) 0 0
\(427\) 1.93289 + 0.930832i 0.0935392 + 0.0450461i
\(428\) 7.17411 31.4318i 0.346774 1.51931i
\(429\) 0 0
\(430\) 0.000844866 0.00105943i 4.07431e−5 5.10902e-5i
\(431\) −1.86817 8.18500i −0.0899867 0.394257i 0.909797 0.415053i \(-0.136237\pi\)
−0.999784 + 0.0207960i \(0.993380\pi\)
\(432\) 0 0
\(433\) 5.76203 7.22535i 0.276905 0.347228i −0.623859 0.781537i \(-0.714436\pi\)
0.900764 + 0.434309i \(0.143007\pi\)
\(434\) 0.314310 0.0150874
\(435\) 0 0
\(436\) −18.3354 −0.878108
\(437\) −2.91899 + 3.66030i −0.139634 + 0.175096i
\(438\) 0 0
\(439\) −3.87697 16.9861i −0.185038 0.810704i −0.979184 0.202976i \(-0.934939\pi\)
0.794146 0.607727i \(-0.207919\pi\)
\(440\) 0.968794 1.21483i 0.0461854 0.0579147i
\(441\) 0 0
\(442\) −0.413465 + 1.81151i −0.0196665 + 0.0861647i
\(443\) 26.1256 + 12.5814i 1.24127 + 0.597762i 0.935156 0.354235i \(-0.115259\pi\)
0.306109 + 0.951997i \(0.400973\pi\)
\(444\) 0 0
\(445\) 5.25079 + 23.0052i 0.248911 + 1.09055i
\(446\) −1.43390 + 0.690532i −0.0678973 + 0.0326976i
\(447\) 0 0
\(448\) 2.42765 1.16909i 0.114696 0.0552345i
\(449\) 8.67883 + 10.8829i 0.409579 + 0.513596i 0.943244 0.332100i \(-0.107757\pi\)
−0.533665 + 0.845696i \(0.679186\pi\)
\(450\) 0 0
\(451\) 11.5388 5.55678i 0.543339 0.261658i
\(452\) −40.3724 −1.89896
\(453\) 0 0
\(454\) −0.457989 2.00658i −0.0214945 0.0941736i
\(455\) 2.17203 + 1.04599i 0.101826 + 0.0490370i
\(456\) 0 0
\(457\) 0.222385 0.974330i 0.0104027 0.0455773i −0.969460 0.245249i \(-0.921130\pi\)
0.979863 + 0.199672i \(0.0639875\pi\)
\(458\) −1.00757 1.26346i −0.0470807 0.0590374i
\(459\) 0 0
\(460\) −2.96751 13.0015i −0.138361 0.606198i
\(461\) 3.45431 15.1343i 0.160883 0.704876i −0.828553 0.559910i \(-0.810836\pi\)
0.989437 0.144966i \(-0.0463072\pi\)
\(462\) 0 0
\(463\) 35.8295 1.66514 0.832568 0.553923i \(-0.186870\pi\)
0.832568 + 0.553923i \(0.186870\pi\)
\(464\) −9.55296 + 19.0572i −0.443485 + 0.884708i
\(465\) 0 0
\(466\) −0.947976 + 1.18872i −0.0439141 + 0.0550666i
\(467\) −0.929323 + 4.07163i −0.0430039 + 0.188413i −0.991868 0.127273i \(-0.959377\pi\)
0.948864 + 0.315686i \(0.102235\pi\)
\(468\) 0 0
\(469\) 2.36182 2.96163i 0.109059 0.136755i
\(470\) −0.580162 0.727500i −0.0267609 0.0335571i
\(471\) 0 0
\(472\) −1.72564 0.831026i −0.0794291 0.0382510i
\(473\) 0.0184371 + 0.00887883i 0.000847738 + 0.000408249i
\(474\) 0 0
\(475\) −1.54991 + 0.746397i −0.0711148 + 0.0342471i
\(476\) −4.21808 −0.193335
\(477\) 0 0
\(478\) −0.424824 0.532713i −0.0194310 0.0243657i
\(479\) 11.5627 + 14.4992i 0.528315 + 0.662486i 0.972351 0.233523i \(-0.0750254\pi\)
−0.444037 + 0.896009i \(0.646454\pi\)
\(480\) 0 0
\(481\) −11.2103 −0.511147
\(482\) 0.535109 0.257695i 0.0243736 0.0117377i
\(483\) 0 0
\(484\) −9.20035 4.43065i −0.418198 0.201393i
\(485\) −4.73796 2.28168i −0.215140 0.103606i
\(486\) 0 0
\(487\) 12.1972 + 15.2948i 0.552708 + 0.693074i 0.977191 0.212362i \(-0.0681157\pi\)
−0.424483 + 0.905436i \(0.639544\pi\)
\(488\) 1.29141 1.61938i 0.0584595 0.0733058i
\(489\) 0 0
\(490\) −0.245812 + 1.07697i −0.0111046 + 0.0486526i
\(491\) −1.49134 + 1.87008i −0.0673030 + 0.0843953i −0.814343 0.580383i \(-0.802903\pi\)
0.747040 + 0.664779i \(0.231474\pi\)
\(492\) 0 0
\(493\) 26.2329 20.2473i 1.18147 0.911894i
\(494\) −0.407843 −0.0183497
\(495\) 0 0
\(496\) −9.68078 + 42.4142i −0.434680 + 1.90446i
\(497\) 0.983782 + 4.31023i 0.0441287 + 0.193340i
\(498\) 0 0
\(499\) −10.8423 13.5958i −0.485367 0.608631i 0.477492 0.878636i \(-0.341546\pi\)
−0.962859 + 0.270005i \(0.912974\pi\)
\(500\) 5.37104 23.5321i 0.240200 1.05239i
\(501\) 0 0
\(502\) 0.173949 + 0.0837693i 0.00776371 + 0.00373881i
\(503\) 4.48348 + 19.6434i 0.199909 + 0.875857i 0.970990 + 0.239120i \(0.0768590\pi\)
−0.771081 + 0.636737i \(0.780284\pi\)
\(504\) 0 0
\(505\) −35.2673 −1.56937
\(506\) −0.629526 + 0.303164i −0.0279858 + 0.0134773i
\(507\) 0 0
\(508\) −11.8856 14.9041i −0.527338 0.661261i
\(509\) 26.0740 12.5566i 1.15571 0.556560i 0.244964 0.969532i \(-0.421224\pi\)
0.910743 + 0.412973i \(0.135509\pi\)
\(510\) 0 0
\(511\) −0.142292 + 0.0685244i −0.00629465 + 0.00303134i
\(512\) −1.45991 6.39630i −0.0645197 0.282679i
\(513\) 0 0
\(514\) −1.70686 0.821980i −0.0752863 0.0362560i
\(515\) −6.90270 + 30.2427i −0.304169 + 1.33265i
\(516\) 0 0
\(517\) 8.76139 10.9864i 0.385325 0.483183i
\(518\) 0.0196469 + 0.0860789i 0.000863237 + 0.00378209i
\(519\) 0 0
\(520\) 1.45119 1.81973i 0.0636387 0.0798004i
\(521\) 3.28970 0.144125 0.0720623 0.997400i \(-0.477042\pi\)
0.0720623 + 0.997400i \(0.477042\pi\)
\(522\) 0 0
\(523\) −0.291341 −0.0127395 −0.00636974 0.999980i \(-0.502028\pi\)
−0.00636974 + 0.999980i \(0.502028\pi\)
\(524\) 20.8799 26.1826i 0.912142 1.14379i
\(525\) 0 0
\(526\) −0.0176796 0.0774593i −0.000770867 0.00337739i
\(527\) 42.1655 52.8738i 1.83676 2.30322i
\(528\) 0 0
\(529\) 2.44450 10.7101i 0.106283 0.465655i
\(530\) 0.599088 + 0.288505i 0.0260227 + 0.0125319i
\(531\) 0 0
\(532\) −0.206021 0.902635i −0.00893212 0.0391342i
\(533\) 17.2843 8.32367i 0.748665 0.360538i
\(534\) 0 0
\(535\) 28.1335 13.5484i 1.21632 0.585747i
\(536\) −2.28026 2.85935i −0.0984921 0.123505i
\(537\) 0 0
\(538\) 1.13478 0.546482i 0.0489239 0.0235605i
\(539\) −16.6823 −0.718556
\(540\) 0 0
\(541\) −6.15415 26.9631i −0.264588 1.15923i −0.916212 0.400693i \(-0.868769\pi\)
0.651625 0.758542i \(-0.274088\pi\)
\(542\) 0.618155 + 0.297688i 0.0265520 + 0.0127868i
\(543\) 0 0
\(544\) −1.36008 + 5.95891i −0.0583130 + 0.255486i
\(545\) −11.0723 13.8842i −0.474285 0.594734i
\(546\) 0 0
\(547\) −1.12752 4.93998i −0.0482091 0.211218i 0.945086 0.326821i \(-0.105977\pi\)
−0.993296 + 0.115602i \(0.963120\pi\)
\(548\) 2.55070 11.1754i 0.108961 0.477387i
\(549\) 0 0
\(550\) −0.256742 −0.0109475
\(551\) 5.61404 + 4.62469i 0.239166 + 0.197019i
\(552\) 0 0
\(553\) −2.67596 + 3.35555i −0.113793 + 0.142692i
\(554\) −0.309629 + 1.35657i −0.0131549 + 0.0576353i
\(555\) 0 0
\(556\) −1.94706 + 2.44154i −0.0825739 + 0.103544i
\(557\) −10.0780 12.6374i −0.427019 0.535465i 0.521051 0.853525i \(-0.325540\pi\)
−0.948070 + 0.318060i \(0.896969\pi\)
\(558\) 0 0
\(559\) 0.0276175 + 0.0132999i 0.00116809 + 0.000562524i
\(560\) 2.36784 + 1.14029i 0.100060 + 0.0481862i
\(561\) 0 0
\(562\) −1.65904 + 0.798949i −0.0699822 + 0.0337016i
\(563\) −7.45712 −0.314280 −0.157140 0.987576i \(-0.550227\pi\)
−0.157140 + 0.987576i \(0.550227\pi\)
\(564\) 0 0
\(565\) −24.3799 30.5714i −1.02567 1.28615i
\(566\) −0.915595 1.14812i −0.0384853 0.0482591i
\(567\) 0 0
\(568\) 4.26841 0.179098
\(569\) 15.8967 7.65544i 0.666424 0.320933i −0.0699080 0.997553i \(-0.522271\pi\)
0.736332 + 0.676621i \(0.236556\pi\)
\(570\) 0 0
\(571\) −26.3470 12.6880i −1.10259 0.530978i −0.208116 0.978104i \(-0.566733\pi\)
−0.894471 + 0.447126i \(0.852448\pi\)
\(572\) 15.8068 + 7.61216i 0.660916 + 0.318280i
\(573\) 0 0
\(574\) −0.0942056 0.118130i −0.00393206 0.00493065i
\(575\) −2.75251 + 3.45154i −0.114788 + 0.143939i
\(576\) 0 0
\(577\) 3.80051 16.6511i 0.158217 0.693196i −0.832129 0.554582i \(-0.812878\pi\)
0.990347 0.138614i \(-0.0442647\pi\)
\(578\) 1.08184 1.35658i 0.0449986 0.0564265i
\(579\) 0 0
\(580\) −20.2701 + 4.28924i −0.841670 + 0.178101i
\(581\) −0.989975 −0.0410711
\(582\) 0 0
\(583\) −2.23447 + 9.78986i −0.0925424 + 0.405455i
\(584\) 0.0339297 + 0.148656i 0.00140402 + 0.00615142i
\(585\) 0 0
\(586\) −1.19998 1.50472i −0.0495706 0.0621596i
\(587\) −7.58007 + 33.2104i −0.312863 + 1.37074i 0.536931 + 0.843626i \(0.319584\pi\)
−0.849794 + 0.527115i \(0.823274\pi\)
\(588\) 0 0
\(589\) 13.3740 + 6.44059i 0.551067 + 0.265380i
\(590\) −0.206037 0.902708i −0.00848242 0.0371639i
\(591\) 0 0
\(592\) −12.2210 −0.502278
\(593\) −38.6075 + 18.5924i −1.58542 + 0.763499i −0.998921 0.0464494i \(-0.985209\pi\)
−0.586501 + 0.809948i \(0.699495\pi\)
\(594\) 0 0
\(595\) −2.54719 3.19407i −0.104424 0.130944i
\(596\) −22.6825 + 10.9233i −0.929110 + 0.447436i
\(597\) 0 0
\(598\) −0.942986 + 0.454118i −0.0385616 + 0.0185703i
\(599\) 1.26691 + 5.55071i 0.0517646 + 0.226796i 0.994193 0.107613i \(-0.0343207\pi\)
−0.942428 + 0.334408i \(0.891464\pi\)
\(600\) 0 0
\(601\) 8.07342 + 3.88796i 0.329322 + 0.158593i 0.591237 0.806498i \(-0.298640\pi\)
−0.261915 + 0.965091i \(0.584354\pi\)
\(602\) 5.37218e−5 0 0.000235371i 2.18954e−6 0 9.59299e-6i
\(603\) 0 0
\(604\) 12.7593 15.9997i 0.519169 0.651018i
\(605\) −2.20081 9.64236i −0.0894755 0.392018i
\(606\) 0 0
\(607\) 17.6557 22.1395i 0.716621 0.898614i −0.281520 0.959555i \(-0.590839\pi\)
0.998141 + 0.0609410i \(0.0194101\pi\)
\(608\) −1.34159 −0.0544086
\(609\) 0 0
\(610\) 1.00131 0.0405419
\(611\) 13.1239 16.4569i 0.530938 0.665775i
\(612\) 0 0
\(613\) 7.12340 + 31.2097i 0.287712 + 1.26055i 0.887657 + 0.460506i \(0.152332\pi\)
−0.599945 + 0.800041i \(0.704811\pi\)
\(614\) −1.19239 + 1.49521i −0.0481210 + 0.0603418i
\(615\) 0 0
\(616\) 0.0616019 0.269896i 0.00248201 0.0108744i
\(617\) −5.49638 2.64692i −0.221276 0.106561i 0.319962 0.947430i \(-0.396330\pi\)
−0.541238 + 0.840870i \(0.682044\pi\)
\(618\) 0 0
\(619\) −0.158208 0.693153i −0.00635890 0.0278602i 0.971649 0.236428i \(-0.0759768\pi\)
−0.978008 + 0.208568i \(0.933120\pi\)
\(620\) −38.0961 + 18.3461i −1.52998 + 0.736797i
\(621\) 0 0
\(622\) 0.305730 0.147232i 0.0122587 0.00590346i
\(623\) 2.62122 + 3.28691i 0.105017 + 0.131687i
\(624\) 0 0
\(625\) 15.3252 7.38021i 0.613006 0.295208i
\(626\) 2.39095 0.0955615
\(627\) 0 0
\(628\) −1.67939 7.35788i −0.0670149 0.293612i
\(629\) 17.1160 + 8.24265i 0.682461 + 0.328656i
\(630\) 0 0
\(631\) 6.02722 26.4070i 0.239940 1.05125i −0.701130 0.713033i \(-0.747321\pi\)
0.941070 0.338212i \(-0.109822\pi\)
\(632\) 2.58355 + 3.23967i 0.102768 + 0.128867i
\(633\) 0 0
\(634\) 0.213348 + 0.934739i 0.00847313 + 0.0371232i
\(635\) 4.10846 18.0003i 0.163039 0.714322i
\(636\) 0 0
\(637\) −24.9889 −0.990095
\(638\) 0.455421 + 0.985399i 0.0180303 + 0.0390123i
\(639\) 0 0
\(640\) 3.17506 3.98140i 0.125505 0.157379i
\(641\) 6.11273 26.7816i 0.241438 1.05781i −0.698270 0.715834i \(-0.746047\pi\)
0.939709 0.341976i \(-0.111096\pi\)
\(642\) 0 0
\(643\) −16.5799 + 20.7905i −0.653848 + 0.819899i −0.992658 0.120956i \(-0.961404\pi\)
0.338810 + 0.940855i \(0.389976\pi\)
\(644\) −1.48140 1.85761i −0.0583752 0.0732002i
\(645\) 0 0
\(646\) 0.622699 + 0.299876i 0.0244997 + 0.0117985i
\(647\) −21.9390 10.5653i −0.862510 0.415363i −0.0503045 0.998734i \(-0.516019\pi\)
−0.812206 + 0.583371i \(0.801733\pi\)
\(648\) 0 0
\(649\) 12.5982 6.06697i 0.494522 0.238149i
\(650\) −0.384582 −0.0150846
\(651\) 0 0
\(652\) 7.55767 + 9.47702i 0.295981 + 0.371149i
\(653\) −12.9368 16.2223i −0.506257 0.634826i 0.461371 0.887207i \(-0.347358\pi\)
−0.967628 + 0.252381i \(0.918786\pi\)
\(654\) 0 0
\(655\) 32.4351 1.26734
\(656\) 18.8425 9.07406i 0.735675 0.354283i
\(657\) 0 0
\(658\) −0.149366 0.0719307i −0.00582288 0.00280415i
\(659\) −12.0386 5.79749i −0.468958 0.225838i 0.184454 0.982841i \(-0.440948\pi\)
−0.653411 + 0.757003i \(0.726663\pi\)
\(660\) 0 0
\(661\) 21.5768 + 27.0564i 0.839240 + 1.05237i 0.997883 + 0.0650374i \(0.0207167\pi\)
−0.158643 + 0.987336i \(0.550712\pi\)
\(662\) 0.637912 0.799916i 0.0247932 0.0310896i
\(663\) 0 0
\(664\) −0.212683 + 0.931825i −0.00825370 + 0.0361618i
\(665\) 0.559095 0.701083i 0.0216808 0.0271868i
\(666\) 0 0
\(667\) 18.1298 + 4.44187i 0.701989 + 0.171990i
\(668\) −15.2979 −0.591894
\(669\) 0 0
\(670\) 0.393423 1.72370i 0.0151992 0.0665922i
\(671\) 3.36483 + 14.7423i 0.129898 + 0.569120i
\(672\) 0 0
\(673\) 23.0254 + 28.8729i 0.887562 + 1.11297i 0.992950 + 0.118537i \(0.0378204\pi\)
−0.105387 + 0.994431i \(0.533608\pi\)
\(674\) −0.566001 + 2.47981i −0.0218015 + 0.0955187i
\(675\) 0 0
\(676\) 0.333295 + 0.160506i 0.0128190 + 0.00617332i
\(677\) −0.875640 3.83643i −0.0336536 0.147446i 0.955310 0.295607i \(-0.0955218\pi\)
−0.988963 + 0.148161i \(0.952665\pi\)
\(678\) 0 0
\(679\) −0.936920 −0.0359557
\(680\) −3.55368 + 1.71136i −0.136277 + 0.0656278i
\(681\) 0 0
\(682\) 1.38128 + 1.73207i 0.0528921 + 0.0663245i
\(683\) 3.50044 1.68572i 0.133941 0.0645024i −0.365713 0.930728i \(-0.619175\pi\)
0.499654 + 0.866225i \(0.333461\pi\)
\(684\) 0 0
\(685\) 10.0026 4.81702i 0.382182 0.184049i
\(686\) 0.0883426 + 0.387054i 0.00337294 + 0.0147778i
\(687\) 0 0
\(688\) 0.0301072 + 0.0144989i 0.00114783 + 0.000552764i
\(689\) −3.34708 + 14.6645i −0.127514 + 0.558674i
\(690\) 0 0
\(691\) 4.78202 5.99646i 0.181917 0.228116i −0.682509 0.730877i \(-0.739111\pi\)
0.864425 + 0.502761i \(0.167683\pi\)
\(692\) 6.64953 + 29.1335i 0.252777 + 1.10749i
\(693\) 0 0
\(694\) 0.119471 0.149812i 0.00453505 0.00568678i
\(695\) −3.02459 −0.114729
\(696\) 0 0
\(697\) −32.5100 −1.23140
\(698\) 0.473001 0.593124i 0.0179033 0.0224501i
\(699\) 0 0
\(700\) −0.194270 0.851154i −0.00734273 0.0321706i
\(701\) −24.5309 + 30.7608i −0.926520 + 1.16182i 0.0600034 + 0.998198i \(0.480889\pi\)
−0.986523 + 0.163621i \(0.947683\pi\)
\(702\) 0 0
\(703\) −0.927874 + 4.06528i −0.0349954 + 0.153325i
\(704\) 17.1112 + 8.24033i 0.644903 + 0.310569i
\(705\) 0 0
\(706\) −0.269525 1.18087i −0.0101437 0.0444425i
\(707\) −5.66113 + 2.72625i −0.212909 + 0.102531i
\(708\) 0 0
\(709\) −33.8628 + 16.3075i −1.27175 + 0.612440i −0.943256 0.332067i \(-0.892254\pi\)
−0.328490 + 0.944508i \(0.606540\pi\)
\(710\) 1.28656 + 1.61329i 0.0482836 + 0.0605457i
\(711\) 0 0
\(712\) 3.65698 1.76111i 0.137051 0.0660003i
\(713\) 38.0939 1.42663
\(714\) 0 0
\(715\) 3.78113 + 16.5662i 0.141406 + 0.619542i
\(716\) 28.8754 + 13.9057i 1.07913 + 0.519679i
\(717\) 0 0
\(718\) 0.0694094 0.304102i 0.00259034 0.0113490i
\(719\) −2.88863 3.62223i −0.107728 0.135086i 0.725045 0.688702i \(-0.241819\pi\)
−0.832772 + 0.553616i \(0.813248\pi\)
\(720\) 0 0
\(721\) 1.22982 + 5.38818i 0.0458007 + 0.200666i
\(722\) 0.317817 1.39245i 0.0118279 0.0518216i
\(723\) 0 0
\(724\) 11.3076 0.420244
\(725\) 5.29385 + 4.36093i 0.196609 + 0.161961i
\(726\) 0 0
\(727\) 3.43787 4.31095i 0.127503 0.159884i −0.713982 0.700164i \(-0.753110\pi\)
0.841485 + 0.540280i \(0.181682\pi\)
\(728\) 0.0922753 0.404285i 0.00341995 0.0149838i
\(729\) 0 0
\(730\) −0.0459592 + 0.0576311i −0.00170103 + 0.00213302i
\(731\) −0.0323876 0.0406127i −0.00119790 0.00150212i
\(732\) 0 0
\(733\) −39.1400 18.8488i −1.44567 0.696197i −0.463831 0.885924i \(-0.653525\pi\)
−0.981837 + 0.189727i \(0.939240\pi\)
\(734\) −1.04505 0.503271i −0.0385736 0.0185761i
\(735\) 0 0
\(736\) −3.10193 + 1.49381i −0.114339 + 0.0550625i
\(737\) 26.7000 0.983509
\(738\) 0 0
\(739\) 27.6111 + 34.6233i 1.01569 + 1.27364i 0.961412 + 0.275112i \(0.0887150\pi\)
0.0542802 + 0.998526i \(0.482714\pi\)
\(740\) −7.40569 9.28645i −0.272239 0.341377i
\(741\) 0 0
\(742\) 0.118468 0.00434910
\(743\) −31.8973 + 15.3609i −1.17020 + 0.563538i −0.915041 0.403362i \(-0.867842\pi\)
−0.255157 + 0.966900i \(0.582127\pi\)
\(744\) 0 0
\(745\) −21.9688 10.5796i −0.804876 0.387608i
\(746\) 0.573899 + 0.276375i 0.0210119 + 0.0101188i
\(747\) 0 0
\(748\) −18.5370 23.2446i −0.677779 0.849908i
\(749\) 3.46868 4.34959i 0.126743 0.158930i
\(750\) 0 0
\(751\) 0.791159 3.46629i 0.0288698 0.126487i −0.958440 0.285296i \(-0.907908\pi\)
0.987309 + 0.158809i \(0.0507654\pi\)
\(752\) 14.3071 17.9405i 0.521726 0.654224i
\(753\) 0 0
\(754\) 0.682189 + 1.47606i 0.0248439 + 0.0537549i
\(755\) 19.8205 0.721342
\(756\) 0 0
\(757\) −4.80769 + 21.0639i −0.174739 + 0.765580i 0.809267 + 0.587441i \(0.199865\pi\)
−0.984005 + 0.178139i \(0.942992\pi\)
\(758\) 0.232594 + 1.01906i 0.00844818 + 0.0370139i
\(759\) 0 0
\(760\) −0.539788 0.676873i −0.0195802 0.0245528i
\(761\) 3.67857 16.1169i 0.133348 0.584236i −0.863461 0.504415i \(-0.831708\pi\)
0.996809 0.0798205i \(-0.0254347\pi\)
\(762\) 0 0
\(763\) −2.85062 1.37278i −0.103199 0.0496981i
\(764\) −0.282464 1.23755i −0.0102192 0.0447732i
\(765\) 0 0
\(766\) −1.95839 −0.0707597
\(767\) 18.8712 9.08789i 0.681400 0.328145i
\(768\) 0 0
\(769\) −0.126258 0.158322i −0.00455298 0.00570925i 0.779550 0.626340i \(-0.215448\pi\)
−0.784103 + 0.620631i \(0.786877\pi\)
\(770\) 0.120578 0.0580671i 0.00434532 0.00209259i
\(771\) 0 0
\(772\) −20.3693 + 9.80933i −0.733107 + 0.353046i
\(773\) −3.23009 14.1519i −0.116178 0.509010i −0.999212 0.0397000i \(-0.987360\pi\)
0.883033 0.469310i \(-0.155497\pi\)
\(774\) 0 0
\(775\) 12.6113 + 6.07326i 0.453010 + 0.218158i
\(776\) −0.201285 + 0.881886i −0.00722570 + 0.0316579i
\(777\) 0 0
\(778\) 1.10167 1.38145i 0.0394967 0.0495272i
\(779\) −1.58786 6.95687i −0.0568910 0.249256i
\(780\) 0 0
\(781\) −19.4291 + 24.3633i −0.695228 + 0.871788i
\(782\) 1.77366 0.0634260
\(783\) 0 0
\(784\) −27.2417 −0.972917
\(785\) 4.55750 5.71492i 0.162664 0.203974i
\(786\) 0 0
\(787\) 7.58479 + 33.2311i 0.270369 + 1.18456i 0.909579 + 0.415530i \(0.136404\pi\)
−0.639211 + 0.769032i \(0.720739\pi\)
\(788\) −21.0360 + 26.3783i −0.749377 + 0.939688i
\(789\) 0 0
\(790\) −0.445751 + 1.95296i −0.0158591 + 0.0694834i
\(791\) −6.27672 3.02271i −0.223174 0.107475i
\(792\) 0 0
\(793\) 5.04029 + 22.0829i 0.178986 + 0.784188i
\(794\) −1.10352 + 0.531426i −0.0391624 + 0.0188596i
\(795\) 0 0
\(796\) 15.5830 7.50440i 0.552326 0.265986i
\(797\) −8.95279 11.2264i −0.317124 0.397661i 0.597564 0.801821i \(-0.296135\pi\)
−0.914688 + 0.404160i \(0.867564\pi\)
\(798\) 0 0
\(799\) −32.1381 + 15.4769i −1.13696 + 0.547533i
\(800\) −1.26507 −0.0447271
\(801\) 0 0
\(802\) −0.233698 1.02390i −0.00825218 0.0361551i
\(803\) −1.00294 0.482992i −0.0353931 0.0170444i
\(804\) 0 0
\(805\) 0.512070 2.24353i 0.0180481 0.0790739i
\(806\) 2.06907 + 2.59453i 0.0728797 + 0.0913883i
\(807\) 0 0
\(808\) 1.34990 + 5.91430i 0.0474893 + 0.208064i
\(809\) −6.31920 + 27.6862i −0.222171 + 0.973396i 0.733669 + 0.679508i \(0.237807\pi\)
−0.955840 + 0.293888i \(0.905051\pi\)
\(810\) 0 0
\(811\) −41.4768 −1.45645 −0.728224 0.685339i \(-0.759654\pi\)
−0.728224 + 0.685339i \(0.759654\pi\)
\(812\) −2.92220 + 2.25544i −0.102549 + 0.0791505i
\(813\) 0 0
\(814\) −0.388015 + 0.486555i −0.0135999 + 0.0170538i
\(815\) −2.61244 + 11.4458i −0.0915098 + 0.400930i
\(816\) 0 0
\(817\) 0.00710892 0.00891430i 0.000248709 0.000311872i
\(818\) −1.75021 2.19469i −0.0611947 0.0767357i
\(819\) 0 0
\(820\) 18.3134 + 8.81927i 0.639532 + 0.307982i
\(821\) −40.7646 19.6312i −1.42269 0.685133i −0.445070 0.895496i \(-0.646821\pi\)
−0.977623 + 0.210363i \(0.932535\pi\)
\(822\) 0 0
\(823\) 1.62926 0.784611i 0.0567925 0.0273498i −0.405272 0.914196i \(-0.632823\pi\)
0.462064 + 0.886846i \(0.347109\pi\)
\(824\) 5.33589 0.185885
\(825\) 0 0
\(826\) −0.102855 0.128976i −0.00357878 0.00448765i
\(827\) 14.2992 + 17.9306i 0.497231 + 0.623508i 0.965602 0.260024i \(-0.0837304\pi\)
−0.468371 + 0.883532i \(0.655159\pi\)
\(828\) 0 0
\(829\) −9.99341 −0.347085 −0.173543 0.984826i \(-0.555521\pi\)
−0.173543 + 0.984826i \(0.555521\pi\)
\(830\) −0.416299 + 0.200479i −0.0144499 + 0.00695873i
\(831\) 0 0
\(832\) 25.6314 + 12.3434i 0.888609 + 0.427931i
\(833\) 38.1533 + 18.3736i 1.32193 + 0.636609i
\(834\) 0 0
\(835\) −9.23801 11.5841i −0.319694 0.400884i
\(836\) 4.06878 5.10209i 0.140722 0.176459i
\(837\) 0 0
\(838\) −0.455966 + 1.99772i −0.0157511 + 0.0690100i
\(839\) −15.0625 + 18.8878i −0.520016 + 0.652080i −0.970612 0.240648i \(-0.922640\pi\)
0.450596 + 0.892728i \(0.351211\pi\)
\(840\) 0 0
\(841\) 7.34716 28.0539i 0.253350 0.967375i
\(842\) 1.01914 0.0351218
\(843\) 0 0
\(844\) 5.65534 24.7777i 0.194665 0.852882i
\(845\) 0.0797272 + 0.349308i 0.00274270 + 0.0120165i
\(846\) 0 0
\(847\) −1.09866 1.37767i −0.0377502 0.0473373i
\(848\) −3.64883 + 15.9866i −0.125301 + 0.548981i
\(849\) 0 0
\(850\) 0.587184 + 0.282773i 0.0201402 + 0.00969903i
\(851\) 2.38118 + 10.4326i 0.0816257 + 0.357626i
\(852\) 0 0
\(853\) 12.9629 0.443842 0.221921 0.975065i \(-0.428767\pi\)
0.221921 + 0.975065i \(0.428767\pi\)
\(854\) 0.160731 0.0774040i 0.00550011 0.00264871i
\(855\) 0 0
\(856\) −3.34890 4.19938i −0.114463 0.143532i
\(857\) −19.3854 + 9.33554i −0.662194 + 0.318896i −0.734621 0.678478i \(-0.762640\pi\)
0.0724268 + 0.997374i \(0.476926\pi\)
\(858\) 0 0
\(859\) 4.15015 1.99861i 0.141601 0.0681915i −0.361741 0.932278i \(-0.617818\pi\)
0.503343 + 0.864087i \(0.332103\pi\)
\(860\) 0.00722708 + 0.0316639i 0.000246441 + 0.00107973i
\(861\) 0 0
\(862\) −0.628997 0.302909i −0.0214237 0.0103171i
\(863\) −4.27980 + 18.7510i −0.145686 + 0.638292i 0.848368 + 0.529407i \(0.177585\pi\)
−0.994054 + 0.108886i \(0.965272\pi\)
\(864\) 0 0
\(865\) −18.0454 + 22.6282i −0.613561 + 0.769382i
\(866\) −0.171005 0.749223i −0.00581099 0.0254596i
\(867\) 0 0
\(868\) −4.69700 + 5.88986i −0.159427 + 0.199915i
\(869\) −30.2514 −1.02621
\(870\) 0 0
\(871\) 39.9948 1.35517
\(872\) −1.90457 + 2.38825i −0.0644967 + 0.0808763i
\(873\) 0 0
\(874\) 0.0866297 + 0.379549i 0.00293029 + 0.0128384i
\(875\) 2.59690 3.25641i 0.0877912 0.110087i
\(876\) 0 0
\(877\) 6.20282 27.1763i 0.209454 0.917679i −0.755477 0.655176i \(-0.772595\pi\)
0.964931 0.262504i \(-0.0845482\pi\)
\(878\) −1.30534 0.628619i −0.0440532 0.0212149i
\(879\) 0 0
\(880\) 4.12201 + 18.0597i 0.138953 + 0.608792i
\(881\) 25.0177 12.0479i 0.842869 0.405904i 0.0379434 0.999280i \(-0.487919\pi\)
0.804926 + 0.593375i \(0.202205\pi\)
\(882\) 0 0
\(883\) 0.288502 0.138935i 0.00970888 0.00467555i −0.429023 0.903294i \(-0.641142\pi\)
0.438732 + 0.898618i \(0.355428\pi\)
\(884\) −27.7671 34.8188i −0.933909 1.17108i
\(885\) 0 0
\(886\) 2.17250 1.04622i 0.0729864 0.0351484i
\(887\) 24.7909 0.832397 0.416198 0.909274i \(-0.363362\pi\)
0.416198 + 0.909274i \(0.363362\pi\)
\(888\) 0 0
\(889\) −0.731982 3.20702i −0.0245499 0.107560i
\(890\) 1.76789 + 0.851373i 0.0592599 + 0.0285381i
\(891\) 0 0
\(892\) 8.48817 37.1891i 0.284205 1.24518i
\(893\) −4.88163 6.12137i −0.163357 0.204844i
\(894\) 0 0
\(895\) 6.90726 + 30.2627i 0.230884 + 1.01157i
\(896\) 0.201890 0.884537i 0.00674467 0.0295503i
\(897\) 0 0
\(898\) 1.15751 0.0386266
\(899\) 0.939278 59.1761i 0.0313267 1.97363i
\(900\) 0 0
\(901\) 15.8928 19.9289i 0.529466 0.663929i
\(902\) 0.236981 1.03828i 0.00789060 0.0345710i
\(903\) 0 0
\(904\) −4.19363 + 5.25864i −0.139478 + 0.174900i
\(905\) 6.82836 + 8.56249i 0.226982 + 0.284627i
\(906\) 0 0
\(907\) 39.6611 + 19.0998i 1.31693 + 0.634198i 0.954611 0.297857i \(-0.0962718\pi\)
0.362316 + 0.932055i \(0.381986\pi\)
\(908\) 44.4455 + 21.4038i 1.47497 + 0.710310i
\(909\) 0 0
\(910\) 0.180617 0.0869805i 0.00598739 0.00288338i
\(911\) −58.6374 −1.94275 −0.971373 0.237561i \(-0.923652\pi\)
−0.971373 + 0.237561i \(0.923652\pi\)
\(912\) 0 0
\(913\) −4.35059 5.45547i −0.143984 0.180550i
\(914\) −0.0518150 0.0649740i −0.00171389 0.00214915i
\(915\) 0 0
\(916\) 38.7329 1.27977
\(917\) 5.20651 2.50732i 0.171934 0.0827990i
\(918\) 0 0
\(919\) 32.7665 + 15.7795i 1.08087 + 0.520519i 0.887594 0.460626i \(-0.152375\pi\)
0.193274 + 0.981145i \(0.438089\pi\)
\(920\) −2.00173 0.963984i −0.0659952 0.0317816i
\(921\) 0 0
\(922\) −0.804846 1.00924i −0.0265062 0.0332377i
\(923\) −29.1034 + 36.4945i −0.957951 + 1.20123i
\(924\) 0 0
\(925\) −0.874954 + 3.83343i −0.0287683 + 0.126042i
\(926\) 1.85764 2.32941i 0.0610459 0.0765492i
\(927\) 0 0
\(928\) 2.24404 + 4.85546i 0.0736643 + 0.159388i
\(929\) −0.895129 −0.0293682 −0.0146841 0.999892i \(-0.504674\pi\)
−0.0146841 + 0.999892i \(0.504674\pi\)
\(930\) 0 0
\(931\) −2.06832 + 9.06191i −0.0677865 + 0.296992i
\(932\) −8.10909 35.5282i −0.265622 1.16377i
\(933\) 0 0
\(934\) 0.216530 + 0.271520i 0.00708507 + 0.00888440i
\(935\) 6.40763 28.0736i 0.209552 0.918106i
\(936\) 0 0
\(937\) −20.9176 10.0734i −0.683349 0.329083i 0.0597994 0.998210i \(-0.480954\pi\)
−0.743148 + 0.669127i \(0.766668\pi\)
\(938\) −0.0700939 0.307102i −0.00228865 0.0100272i
\(939\) 0 0
\(940\) 22.3025 0.727427
\(941\) 23.7548 11.4397i 0.774383 0.372923i −0.00458264 0.999989i \(-0.501459\pi\)
0.778966 + 0.627066i \(0.215744\pi\)
\(942\) 0 0
\(943\) −11.4176 14.3172i −0.371807 0.466231i
\(944\) 20.5725 9.90719i 0.669577 0.322451i
\(945\) 0 0
\(946\) 0.00153315 0.000738326i 4.98470e−5 2.40051e-5i
\(947\) 11.3405 + 49.6860i 0.368517 + 1.61458i 0.730855 + 0.682533i \(0.239122\pi\)
−0.362338 + 0.932047i \(0.618021\pi\)
\(948\) 0 0
\(949\) −1.50234 0.723489i −0.0487680 0.0234854i
\(950\) −0.0318317 + 0.139464i −0.00103276 + 0.00452481i
\(951\) 0 0
\(952\) −0.438146 + 0.549418i −0.0142004 + 0.0178067i
\(953\) −5.59449 24.5111i −0.181223 0.793991i −0.981049 0.193759i \(-0.937932\pi\)
0.799826 0.600232i \(-0.204925\pi\)
\(954\) 0 0
\(955\) 0.766545 0.961218i 0.0248048 0.0311043i
\(956\) 16.3310 0.528183
\(957\) 0 0
\(958\) 1.54214 0.0498243
\(959\) 1.23326 1.54646i 0.0398241 0.0499379i
\(960\) 0 0
\(961\) −19.9785 87.5316i −0.644468 2.82360i
\(962\) −0.581219 + 0.728826i −0.0187393 + 0.0234983i
\(963\) 0 0
\(964\) −3.16765 + 13.8784i −0.102023 + 0.446992i
\(965\) −19.7284 9.50071i −0.635081 0.305839i
\(966\) 0 0
\(967\) −11.1729 48.9516i −0.359296 1.57418i −0.754953 0.655779i \(-0.772340\pi\)
0.395657 0.918398i \(-0.370517\pi\)
\(968\) −1.53278 + 0.738147i −0.0492654 + 0.0237250i
\(969\) 0 0
\(970\) −0.393989 + 0.189735i −0.0126502 + 0.00609202i
\(971\) 20.2855 + 25.4372i 0.650991 + 0.816317i 0.992329 0.123623i \(-0.0394514\pi\)
−0.341338 + 0.939941i \(0.610880\pi\)
\(972\) 0 0
\(973\) −0.485510 + 0.233809i −0.0155647 + 0.00749558i
\(974\) 1.62676 0.0521247
\(975\) 0 0
\(976\) 5.49468 + 24.0738i 0.175880 + 0.770582i
\(977\) −29.4287 14.1721i −0.941509 0.453407i −0.100807 0.994906i \(-0.532143\pi\)
−0.840701 + 0.541499i \(0.817857\pi\)
\(978\) 0 0
\(979\) −6.59387 + 28.8897i −0.210741 + 0.923317i
\(980\) −16.5080 20.7004i −0.527329 0.661249i
\(981\) 0 0
\(982\) 0.0442598 + 0.193915i 0.00141239 + 0.00618807i
\(983\) 0.398538 1.74611i 0.0127114 0.0556922i −0.968174 0.250276i \(-0.919479\pi\)
0.980886 + 0.194584i \(0.0623357\pi\)
\(984\) 0 0
\(985\) −32.6776 −1.04120
\(986\) 0.0437331 2.75526i 0.00139274 0.0877453i
\(987\) 0 0
\(988\) 6.09474 7.64257i 0.193900 0.243142i
\(989\) 0.00651100 0.0285265i 0.000207038 0.000907091i
\(990\) 0 0
\(991\) 17.8799 22.4207i 0.567975 0.712218i −0.412035 0.911168i \(-0.635182\pi\)
0.980010 + 0.198950i \(0.0637533\pi\)
\(992\) 6.80613 + 8.53462i 0.216095 + 0.270974i
\(993\) 0 0
\(994\) 0.331231 + 0.159512i 0.0105060 + 0.00505942i
\(995\) 15.0928 + 7.26829i 0.478473 + 0.230420i
\(996\) 0 0
\(997\) 31.2342 15.0416i 0.989198 0.476373i 0.131939 0.991258i \(-0.457880\pi\)
0.857259 + 0.514885i \(0.172165\pi\)
\(998\) −1.44605 −0.0457739
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 261.2.k.b.226.2 18
3.2 odd 2 87.2.g.b.52.2 18
29.13 even 14 7569.2.a.bk.1.5 9
29.16 even 7 7569.2.a.bl.1.5 9
29.24 even 7 inner 261.2.k.b.82.2 18
87.53 odd 14 87.2.g.b.82.2 yes 18
87.71 odd 14 2523.2.a.q.1.5 9
87.74 odd 14 2523.2.a.p.1.5 9
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
87.2.g.b.52.2 18 3.2 odd 2
87.2.g.b.82.2 yes 18 87.53 odd 14
261.2.k.b.82.2 18 29.24 even 7 inner
261.2.k.b.226.2 18 1.1 even 1 trivial
2523.2.a.p.1.5 9 87.74 odd 14
2523.2.a.q.1.5 9 87.71 odd 14
7569.2.a.bk.1.5 9 29.13 even 14
7569.2.a.bl.1.5 9 29.16 even 7