Properties

Label 7569.2.a.bk.1.5
Level $7569$
Weight $2$
Character 7569.1
Self dual yes
Analytic conductor $60.439$
Analytic rank $0$
Dimension $9$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [7569,2,Mod(1,7569)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(7569, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("7569.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 7569 = 3^{2} \cdot 29^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7569.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(60.4387692899\)
Analytic rank: \(0\)
Dimension: \(9\)
Coefficient field: \(\mathbb{Q}[x]/(x^{9} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{9} - x^{8} - 14x^{7} + 9x^{6} + 70x^{5} - 23x^{4} - 141x^{3} + 14x^{2} + 84x - 7 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 87)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.5
Root \(0.0831558\) of defining polynomial
Character \(\chi\) \(=\) 7569.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.0831558 q^{2} -1.99309 q^{4} -1.93038 q^{5} +0.343925 q^{7} +0.332048 q^{8} +0.160522 q^{10} -2.42414 q^{11} +3.63120 q^{13} -0.0285993 q^{14} +3.95856 q^{16} -6.15354 q^{17} +1.35067 q^{19} +3.84741 q^{20} +0.201582 q^{22} +3.46619 q^{23} -1.27364 q^{25} -0.301955 q^{26} -0.685471 q^{28} -10.9901 q^{31} -0.993273 q^{32} +0.511703 q^{34} -0.663905 q^{35} +3.08722 q^{37} -0.112316 q^{38} -0.640979 q^{40} +5.28313 q^{41} +0.00844158 q^{43} +4.83153 q^{44} -0.288234 q^{46} -5.79676 q^{47} -6.88172 q^{49} +0.105911 q^{50} -7.23729 q^{52} +4.14234 q^{53} +4.67952 q^{55} +0.114200 q^{56} -5.76819 q^{59} +6.23784 q^{61} +0.913892 q^{62} -7.83452 q^{64} -7.00959 q^{65} +11.0142 q^{67} +12.2645 q^{68} +0.0552076 q^{70} -12.8548 q^{71} -0.459207 q^{73} -0.256721 q^{74} -2.69201 q^{76} -0.833724 q^{77} +12.4792 q^{79} -7.64152 q^{80} -0.439323 q^{82} -2.87846 q^{83} +11.8787 q^{85} -0.000701966 q^{86} -0.804933 q^{88} -12.2239 q^{89} +1.24886 q^{91} -6.90842 q^{92} +0.482034 q^{94} -2.60731 q^{95} +2.72420 q^{97} +0.572255 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 9 q - q^{2} + 11 q^{4} + 5 q^{7} - 12 q^{8} + 4 q^{10} - 3 q^{11} + 5 q^{13} - 15 q^{14} - 5 q^{16} - 16 q^{17} - q^{19} - 8 q^{20} + 24 q^{22} + 10 q^{23} + 9 q^{25} - 12 q^{26} - 24 q^{28} - 4 q^{31}+ \cdots + 12 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.0831558 −0.0588000 −0.0294000 0.999568i \(-0.509360\pi\)
−0.0294000 + 0.999568i \(0.509360\pi\)
\(3\) 0 0
\(4\) −1.99309 −0.996543
\(5\) −1.93038 −0.863291 −0.431646 0.902043i \(-0.642067\pi\)
−0.431646 + 0.902043i \(0.642067\pi\)
\(6\) 0 0
\(7\) 0.343925 0.129991 0.0649957 0.997886i \(-0.479297\pi\)
0.0649957 + 0.997886i \(0.479297\pi\)
\(8\) 0.332048 0.117397
\(9\) 0 0
\(10\) 0.160522 0.0507616
\(11\) −2.42414 −0.730907 −0.365454 0.930830i \(-0.619086\pi\)
−0.365454 + 0.930830i \(0.619086\pi\)
\(12\) 0 0
\(13\) 3.63120 1.00711 0.503557 0.863962i \(-0.332024\pi\)
0.503557 + 0.863962i \(0.332024\pi\)
\(14\) −0.0285993 −0.00764350
\(15\) 0 0
\(16\) 3.95856 0.989640
\(17\) −6.15354 −1.49245 −0.746227 0.665692i \(-0.768137\pi\)
−0.746227 + 0.665692i \(0.768137\pi\)
\(18\) 0 0
\(19\) 1.35067 0.309866 0.154933 0.987925i \(-0.450484\pi\)
0.154933 + 0.987925i \(0.450484\pi\)
\(20\) 3.84741 0.860307
\(21\) 0 0
\(22\) 0.201582 0.0429774
\(23\) 3.46619 0.722751 0.361376 0.932420i \(-0.382307\pi\)
0.361376 + 0.932420i \(0.382307\pi\)
\(24\) 0 0
\(25\) −1.27364 −0.254728
\(26\) −0.301955 −0.0592183
\(27\) 0 0
\(28\) −0.685471 −0.129542
\(29\) 0 0
\(30\) 0 0
\(31\) −10.9901 −1.97388 −0.986941 0.161080i \(-0.948502\pi\)
−0.986941 + 0.161080i \(0.948502\pi\)
\(32\) −0.993273 −0.175588
\(33\) 0 0
\(34\) 0.511703 0.0877563
\(35\) −0.663905 −0.112220
\(36\) 0 0
\(37\) 3.08722 0.507536 0.253768 0.967265i \(-0.418330\pi\)
0.253768 + 0.967265i \(0.418330\pi\)
\(38\) −0.112316 −0.0182201
\(39\) 0 0
\(40\) −0.640979 −0.101348
\(41\) 5.28313 0.825086 0.412543 0.910938i \(-0.364641\pi\)
0.412543 + 0.910938i \(0.364641\pi\)
\(42\) 0 0
\(43\) 0.00844158 0.00128733 0.000643664 1.00000i \(-0.499795\pi\)
0.000643664 1.00000i \(0.499795\pi\)
\(44\) 4.83153 0.728380
\(45\) 0 0
\(46\) −0.288234 −0.0424978
\(47\) −5.79676 −0.845544 −0.422772 0.906236i \(-0.638943\pi\)
−0.422772 + 0.906236i \(0.638943\pi\)
\(48\) 0 0
\(49\) −6.88172 −0.983102
\(50\) 0.105911 0.0149780
\(51\) 0 0
\(52\) −7.23729 −1.00363
\(53\) 4.14234 0.568994 0.284497 0.958677i \(-0.408173\pi\)
0.284497 + 0.958677i \(0.408173\pi\)
\(54\) 0 0
\(55\) 4.67952 0.630986
\(56\) 0.114200 0.0152606
\(57\) 0 0
\(58\) 0 0
\(59\) −5.76819 −0.750955 −0.375477 0.926832i \(-0.622521\pi\)
−0.375477 + 0.926832i \(0.622521\pi\)
\(60\) 0 0
\(61\) 6.23784 0.798673 0.399337 0.916804i \(-0.369240\pi\)
0.399337 + 0.916804i \(0.369240\pi\)
\(62\) 0.913892 0.116064
\(63\) 0 0
\(64\) −7.83452 −0.979315
\(65\) −7.00959 −0.869432
\(66\) 0 0
\(67\) 11.0142 1.34560 0.672800 0.739824i \(-0.265091\pi\)
0.672800 + 0.739824i \(0.265091\pi\)
\(68\) 12.2645 1.48729
\(69\) 0 0
\(70\) 0.0552076 0.00659856
\(71\) −12.8548 −1.52558 −0.762791 0.646645i \(-0.776171\pi\)
−0.762791 + 0.646645i \(0.776171\pi\)
\(72\) 0 0
\(73\) −0.459207 −0.0537461 −0.0268731 0.999639i \(-0.508555\pi\)
−0.0268731 + 0.999639i \(0.508555\pi\)
\(74\) −0.256721 −0.0298432
\(75\) 0 0
\(76\) −2.69201 −0.308794
\(77\) −0.833724 −0.0950116
\(78\) 0 0
\(79\) 12.4792 1.40402 0.702010 0.712167i \(-0.252286\pi\)
0.702010 + 0.712167i \(0.252286\pi\)
\(80\) −7.64152 −0.854347
\(81\) 0 0
\(82\) −0.439323 −0.0485151
\(83\) −2.87846 −0.315952 −0.157976 0.987443i \(-0.550497\pi\)
−0.157976 + 0.987443i \(0.550497\pi\)
\(84\) 0 0
\(85\) 11.8787 1.28842
\(86\) −0.000701966 0 −7.56950e−5 0
\(87\) 0 0
\(88\) −0.804933 −0.0858061
\(89\) −12.2239 −1.29574 −0.647868 0.761753i \(-0.724339\pi\)
−0.647868 + 0.761753i \(0.724339\pi\)
\(90\) 0 0
\(91\) 1.24886 0.130916
\(92\) −6.90842 −0.720253
\(93\) 0 0
\(94\) 0.482034 0.0497180
\(95\) −2.60731 −0.267504
\(96\) 0 0
\(97\) 2.72420 0.276601 0.138300 0.990390i \(-0.455836\pi\)
0.138300 + 0.990390i \(0.455836\pi\)
\(98\) 0.572255 0.0578064
\(99\) 0 0
\(100\) 2.53847 0.253847
\(101\) −18.2696 −1.81789 −0.908947 0.416911i \(-0.863113\pi\)
−0.908947 + 0.416911i \(0.863113\pi\)
\(102\) 0 0
\(103\) −16.0696 −1.58339 −0.791694 0.610918i \(-0.790800\pi\)
−0.791694 + 0.610918i \(0.790800\pi\)
\(104\) 1.20573 0.118232
\(105\) 0 0
\(106\) −0.344459 −0.0334569
\(107\) 16.1760 1.56379 0.781897 0.623408i \(-0.214252\pi\)
0.781897 + 0.623408i \(0.214252\pi\)
\(108\) 0 0
\(109\) 9.19953 0.881155 0.440577 0.897715i \(-0.354774\pi\)
0.440577 + 0.897715i \(0.354774\pi\)
\(110\) −0.389129 −0.0371020
\(111\) 0 0
\(112\) 1.36145 0.128645
\(113\) −20.2563 −1.90555 −0.952774 0.303679i \(-0.901785\pi\)
−0.952774 + 0.303679i \(0.901785\pi\)
\(114\) 0 0
\(115\) −6.69107 −0.623945
\(116\) 0 0
\(117\) 0 0
\(118\) 0.479659 0.0441562
\(119\) −2.11636 −0.194006
\(120\) 0 0
\(121\) −5.12352 −0.465775
\(122\) −0.518713 −0.0469620
\(123\) 0 0
\(124\) 21.9042 1.96706
\(125\) 12.1105 1.08320
\(126\) 0 0
\(127\) −9.56458 −0.848719 −0.424360 0.905494i \(-0.639501\pi\)
−0.424360 + 0.905494i \(0.639501\pi\)
\(128\) 2.63803 0.233171
\(129\) 0 0
\(130\) 0.582888 0.0511227
\(131\) 16.8025 1.46804 0.734019 0.679129i \(-0.237642\pi\)
0.734019 + 0.679129i \(0.237642\pi\)
\(132\) 0 0
\(133\) 0.464530 0.0402799
\(134\) −0.915896 −0.0791213
\(135\) 0 0
\(136\) −2.04327 −0.175209
\(137\) −5.75126 −0.491363 −0.245682 0.969351i \(-0.579012\pi\)
−0.245682 + 0.969351i \(0.579012\pi\)
\(138\) 0 0
\(139\) 1.56684 0.132898 0.0664488 0.997790i \(-0.478833\pi\)
0.0664488 + 0.997790i \(0.478833\pi\)
\(140\) 1.32322 0.111832
\(141\) 0 0
\(142\) 1.06895 0.0897043
\(143\) −8.80255 −0.736106
\(144\) 0 0
\(145\) 0 0
\(146\) 0.0381857 0.00316027
\(147\) 0 0
\(148\) −6.15310 −0.505782
\(149\) −12.6315 −1.03481 −0.517406 0.855740i \(-0.673102\pi\)
−0.517406 + 0.855740i \(0.673102\pi\)
\(150\) 0 0
\(151\) −10.2677 −0.835572 −0.417786 0.908545i \(-0.637194\pi\)
−0.417786 + 0.908545i \(0.637194\pi\)
\(152\) 0.448489 0.0363772
\(153\) 0 0
\(154\) 0.0693290 0.00558669
\(155\) 21.2151 1.70404
\(156\) 0 0
\(157\) 3.78665 0.302207 0.151104 0.988518i \(-0.451717\pi\)
0.151104 + 0.988518i \(0.451717\pi\)
\(158\) −1.03772 −0.0825564
\(159\) 0 0
\(160\) 1.91739 0.151583
\(161\) 1.19211 0.0939514
\(162\) 0 0
\(163\) 6.08181 0.476364 0.238182 0.971221i \(-0.423448\pi\)
0.238182 + 0.971221i \(0.423448\pi\)
\(164\) −10.5297 −0.822233
\(165\) 0 0
\(166\) 0.239361 0.0185780
\(167\) 7.67550 0.593948 0.296974 0.954886i \(-0.404023\pi\)
0.296974 + 0.954886i \(0.404023\pi\)
\(168\) 0 0
\(169\) 0.185607 0.0142774
\(170\) −0.987780 −0.0757593
\(171\) 0 0
\(172\) −0.0168248 −0.00128288
\(173\) 14.9932 1.13991 0.569956 0.821675i \(-0.306960\pi\)
0.569956 + 0.821675i \(0.306960\pi\)
\(174\) 0 0
\(175\) −0.438036 −0.0331124
\(176\) −9.59612 −0.723335
\(177\) 0 0
\(178\) 1.01649 0.0761893
\(179\) 16.0802 1.20189 0.600947 0.799289i \(-0.294790\pi\)
0.600947 + 0.799289i \(0.294790\pi\)
\(180\) 0 0
\(181\) −5.67342 −0.421702 −0.210851 0.977518i \(-0.567623\pi\)
−0.210851 + 0.977518i \(0.567623\pi\)
\(182\) −0.103850 −0.00769787
\(183\) 0 0
\(184\) 1.15094 0.0848487
\(185\) −5.95951 −0.438152
\(186\) 0 0
\(187\) 14.9171 1.09084
\(188\) 11.5534 0.842620
\(189\) 0 0
\(190\) 0.216813 0.0157293
\(191\) 0.636893 0.0460839 0.0230420 0.999734i \(-0.492665\pi\)
0.0230420 + 0.999734i \(0.492665\pi\)
\(192\) 0 0
\(193\) 11.3433 0.816510 0.408255 0.912868i \(-0.366137\pi\)
0.408255 + 0.912868i \(0.366137\pi\)
\(194\) −0.226533 −0.0162641
\(195\) 0 0
\(196\) 13.7158 0.979703
\(197\) 16.9281 1.20608 0.603038 0.797712i \(-0.293957\pi\)
0.603038 + 0.797712i \(0.293957\pi\)
\(198\) 0 0
\(199\) 8.67794 0.615163 0.307581 0.951522i \(-0.400480\pi\)
0.307581 + 0.951522i \(0.400480\pi\)
\(200\) −0.422910 −0.0299042
\(201\) 0 0
\(202\) 1.51922 0.106892
\(203\) 0 0
\(204\) 0 0
\(205\) −10.1984 −0.712290
\(206\) 1.33628 0.0931032
\(207\) 0 0
\(208\) 14.3743 0.996679
\(209\) −3.27423 −0.226483
\(210\) 0 0
\(211\) −12.7515 −0.877850 −0.438925 0.898524i \(-0.644641\pi\)
−0.438925 + 0.898524i \(0.644641\pi\)
\(212\) −8.25603 −0.567027
\(213\) 0 0
\(214\) −1.34513 −0.0919511
\(215\) −0.0162954 −0.00111134
\(216\) 0 0
\(217\) −3.77977 −0.256588
\(218\) −0.764994 −0.0518119
\(219\) 0 0
\(220\) −9.32667 −0.628804
\(221\) −22.3447 −1.50307
\(222\) 0 0
\(223\) 19.1389 1.28164 0.640819 0.767692i \(-0.278595\pi\)
0.640819 + 0.767692i \(0.278595\pi\)
\(224\) −0.341611 −0.0228249
\(225\) 0 0
\(226\) 1.68443 0.112046
\(227\) 24.7509 1.64278 0.821389 0.570368i \(-0.193200\pi\)
0.821389 + 0.570368i \(0.193200\pi\)
\(228\) 0 0
\(229\) 19.4336 1.28421 0.642106 0.766616i \(-0.278061\pi\)
0.642106 + 0.766616i \(0.278061\pi\)
\(230\) 0.556401 0.0366880
\(231\) 0 0
\(232\) 0 0
\(233\) −18.2842 −1.19784 −0.598918 0.800810i \(-0.704402\pi\)
−0.598918 + 0.800810i \(0.704402\pi\)
\(234\) 0 0
\(235\) 11.1899 0.729951
\(236\) 11.4965 0.748359
\(237\) 0 0
\(238\) 0.175987 0.0114076
\(239\) −8.19384 −0.530015 −0.265008 0.964246i \(-0.585374\pi\)
−0.265008 + 0.964246i \(0.585374\pi\)
\(240\) 0 0
\(241\) −7.14233 −0.460078 −0.230039 0.973181i \(-0.573885\pi\)
−0.230039 + 0.973181i \(0.573885\pi\)
\(242\) 0.426051 0.0273876
\(243\) 0 0
\(244\) −12.4325 −0.795912
\(245\) 13.2843 0.848704
\(246\) 0 0
\(247\) 4.90456 0.312070
\(248\) −3.64925 −0.231727
\(249\) 0 0
\(250\) −1.00706 −0.0636919
\(251\) 2.32177 0.146549 0.0732744 0.997312i \(-0.476655\pi\)
0.0732744 + 0.997312i \(0.476655\pi\)
\(252\) 0 0
\(253\) −8.40256 −0.528264
\(254\) 0.795350 0.0499047
\(255\) 0 0
\(256\) 15.4497 0.965605
\(257\) 22.7822 1.42111 0.710557 0.703640i \(-0.248443\pi\)
0.710557 + 0.703640i \(0.248443\pi\)
\(258\) 0 0
\(259\) 1.06177 0.0659754
\(260\) 13.9707 0.866426
\(261\) 0 0
\(262\) −1.39722 −0.0863207
\(263\) −0.955452 −0.0589157 −0.0294578 0.999566i \(-0.509378\pi\)
−0.0294578 + 0.999566i \(0.509378\pi\)
\(264\) 0 0
\(265\) −7.99628 −0.491208
\(266\) −0.0386284 −0.00236846
\(267\) 0 0
\(268\) −21.9523 −1.34095
\(269\) 15.1464 0.923493 0.461746 0.887012i \(-0.347223\pi\)
0.461746 + 0.887012i \(0.347223\pi\)
\(270\) 0 0
\(271\) 8.25078 0.501199 0.250600 0.968091i \(-0.419372\pi\)
0.250600 + 0.968091i \(0.419372\pi\)
\(272\) −24.3592 −1.47699
\(273\) 0 0
\(274\) 0.478250 0.0288922
\(275\) 3.08749 0.186182
\(276\) 0 0
\(277\) 16.7332 1.00540 0.502700 0.864461i \(-0.332340\pi\)
0.502700 + 0.864461i \(0.332340\pi\)
\(278\) −0.130292 −0.00781439
\(279\) 0 0
\(280\) −0.220448 −0.0131743
\(281\) 22.1439 1.32099 0.660496 0.750830i \(-0.270346\pi\)
0.660496 + 0.750830i \(0.270346\pi\)
\(282\) 0 0
\(283\) −17.6596 −1.04976 −0.524878 0.851177i \(-0.675889\pi\)
−0.524878 + 0.851177i \(0.675889\pi\)
\(284\) 25.6207 1.52031
\(285\) 0 0
\(286\) 0.731983 0.0432831
\(287\) 1.81700 0.107254
\(288\) 0 0
\(289\) 20.8661 1.22742
\(290\) 0 0
\(291\) 0 0
\(292\) 0.915239 0.0535603
\(293\) 23.1447 1.35213 0.676063 0.736844i \(-0.263685\pi\)
0.676063 + 0.736844i \(0.263685\pi\)
\(294\) 0 0
\(295\) 11.1348 0.648293
\(296\) 1.02511 0.0595831
\(297\) 0 0
\(298\) 1.05038 0.0608470
\(299\) 12.5864 0.727893
\(300\) 0 0
\(301\) 0.00290327 0.000167342 0
\(302\) 0.853817 0.0491317
\(303\) 0 0
\(304\) 5.34672 0.306655
\(305\) −12.0414 −0.689488
\(306\) 0 0
\(307\) 22.9984 1.31259 0.656293 0.754506i \(-0.272124\pi\)
0.656293 + 0.754506i \(0.272124\pi\)
\(308\) 1.66168 0.0946831
\(309\) 0 0
\(310\) −1.76416 −0.100197
\(311\) 4.08071 0.231396 0.115698 0.993284i \(-0.463090\pi\)
0.115698 + 0.993284i \(0.463090\pi\)
\(312\) 0 0
\(313\) 28.7526 1.62519 0.812597 0.582826i \(-0.198053\pi\)
0.812597 + 0.582826i \(0.198053\pi\)
\(314\) −0.314882 −0.0177698
\(315\) 0 0
\(316\) −24.8721 −1.39917
\(317\) 11.5299 0.647583 0.323792 0.946128i \(-0.395042\pi\)
0.323792 + 0.946128i \(0.395042\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 15.1236 0.845434
\(321\) 0 0
\(322\) −0.0991309 −0.00552435
\(323\) −8.31143 −0.462460
\(324\) 0 0
\(325\) −4.62484 −0.256540
\(326\) −0.505738 −0.0280102
\(327\) 0 0
\(328\) 1.75425 0.0968624
\(329\) −1.99365 −0.109913
\(330\) 0 0
\(331\) −12.3038 −0.676277 −0.338139 0.941096i \(-0.609797\pi\)
−0.338139 + 0.941096i \(0.609797\pi\)
\(332\) 5.73702 0.314860
\(333\) 0 0
\(334\) −0.638262 −0.0349241
\(335\) −21.2616 −1.16165
\(336\) 0 0
\(337\) −30.5882 −1.66624 −0.833122 0.553089i \(-0.813449\pi\)
−0.833122 + 0.553089i \(0.813449\pi\)
\(338\) −0.0154343 −0.000839513 0
\(339\) 0 0
\(340\) −23.6752 −1.28397
\(341\) 26.6416 1.44273
\(342\) 0 0
\(343\) −4.77427 −0.257786
\(344\) 0.00280301 0.000151128 0
\(345\) 0 0
\(346\) −1.24677 −0.0670268
\(347\) 2.30431 0.123702 0.0618508 0.998085i \(-0.480300\pi\)
0.0618508 + 0.998085i \(0.480300\pi\)
\(348\) 0 0
\(349\) 9.12305 0.488345 0.244173 0.969732i \(-0.421484\pi\)
0.244173 + 0.969732i \(0.421484\pi\)
\(350\) 0.0364253 0.00194701
\(351\) 0 0
\(352\) 2.40784 0.128338
\(353\) 14.5658 0.775262 0.387631 0.921815i \(-0.373294\pi\)
0.387631 + 0.921815i \(0.373294\pi\)
\(354\) 0 0
\(355\) 24.8146 1.31702
\(356\) 24.3634 1.29126
\(357\) 0 0
\(358\) −1.33717 −0.0706714
\(359\) 3.75107 0.197974 0.0989869 0.995089i \(-0.468440\pi\)
0.0989869 + 0.995089i \(0.468440\pi\)
\(360\) 0 0
\(361\) −17.1757 −0.903983
\(362\) 0.471778 0.0247961
\(363\) 0 0
\(364\) −2.48908 −0.130463
\(365\) 0.886443 0.0463986
\(366\) 0 0
\(367\) −13.9488 −0.728119 −0.364060 0.931376i \(-0.618610\pi\)
−0.364060 + 0.931376i \(0.618610\pi\)
\(368\) 13.7211 0.715263
\(369\) 0 0
\(370\) 0.495568 0.0257633
\(371\) 1.42465 0.0739643
\(372\) 0 0
\(373\) −7.66007 −0.396624 −0.198312 0.980139i \(-0.563546\pi\)
−0.198312 + 0.980139i \(0.563546\pi\)
\(374\) −1.24044 −0.0641417
\(375\) 0 0
\(376\) −1.92480 −0.0992641
\(377\) 0 0
\(378\) 0 0
\(379\) 12.5700 0.645676 0.322838 0.946454i \(-0.395363\pi\)
0.322838 + 0.946454i \(0.395363\pi\)
\(380\) 5.19659 0.266580
\(381\) 0 0
\(382\) −0.0529613 −0.00270974
\(383\) −23.5509 −1.20340 −0.601698 0.798724i \(-0.705509\pi\)
−0.601698 + 0.798724i \(0.705509\pi\)
\(384\) 0 0
\(385\) 1.60940 0.0820227
\(386\) −0.943263 −0.0480108
\(387\) 0 0
\(388\) −5.42956 −0.275644
\(389\) −21.2485 −1.07734 −0.538671 0.842516i \(-0.681073\pi\)
−0.538671 + 0.842516i \(0.681073\pi\)
\(390\) 0 0
\(391\) −21.3294 −1.07867
\(392\) −2.28506 −0.115413
\(393\) 0 0
\(394\) −1.40767 −0.0709173
\(395\) −24.0896 −1.21208
\(396\) 0 0
\(397\) 14.7291 0.739233 0.369617 0.929184i \(-0.379489\pi\)
0.369617 + 0.929184i \(0.379489\pi\)
\(398\) −0.721621 −0.0361716
\(399\) 0 0
\(400\) −5.04178 −0.252089
\(401\) 12.6297 0.630696 0.315348 0.948976i \(-0.397879\pi\)
0.315348 + 0.948976i \(0.397879\pi\)
\(402\) 0 0
\(403\) −39.9073 −1.98792
\(404\) 36.4129 1.81161
\(405\) 0 0
\(406\) 0 0
\(407\) −7.48388 −0.370962
\(408\) 0 0
\(409\) 33.7573 1.66919 0.834597 0.550862i \(-0.185701\pi\)
0.834597 + 0.550862i \(0.185701\pi\)
\(410\) 0.848059 0.0418827
\(411\) 0 0
\(412\) 32.0281 1.57791
\(413\) −1.98383 −0.0976177
\(414\) 0 0
\(415\) 5.55652 0.272759
\(416\) −3.60677 −0.176837
\(417\) 0 0
\(418\) 0.272271 0.0133172
\(419\) 24.6416 1.20382 0.601911 0.798563i \(-0.294406\pi\)
0.601911 + 0.798563i \(0.294406\pi\)
\(420\) 0 0
\(421\) −12.2557 −0.597309 −0.298654 0.954361i \(-0.596538\pi\)
−0.298654 + 0.954361i \(0.596538\pi\)
\(422\) 1.06036 0.0516176
\(423\) 0 0
\(424\) 1.37546 0.0667981
\(425\) 7.83740 0.380170
\(426\) 0 0
\(427\) 2.14535 0.103821
\(428\) −32.2402 −1.55839
\(429\) 0 0
\(430\) 0.00135506 6.53468e−5 0
\(431\) 8.39549 0.404397 0.202198 0.979345i \(-0.435191\pi\)
0.202198 + 0.979345i \(0.435191\pi\)
\(432\) 0 0
\(433\) −9.24157 −0.444122 −0.222061 0.975033i \(-0.571278\pi\)
−0.222061 + 0.975033i \(0.571278\pi\)
\(434\) 0.314310 0.0150874
\(435\) 0 0
\(436\) −18.3354 −0.878108
\(437\) 4.68170 0.223956
\(438\) 0 0
\(439\) 17.4230 0.831552 0.415776 0.909467i \(-0.363510\pi\)
0.415776 + 0.909467i \(0.363510\pi\)
\(440\) 1.55382 0.0740757
\(441\) 0 0
\(442\) 1.85809 0.0883806
\(443\) 28.9972 1.37770 0.688850 0.724904i \(-0.258116\pi\)
0.688850 + 0.724904i \(0.258116\pi\)
\(444\) 0 0
\(445\) 23.5968 1.11860
\(446\) −1.59151 −0.0753603
\(447\) 0 0
\(448\) −2.69449 −0.127303
\(449\) −13.9198 −0.656914 −0.328457 0.944519i \(-0.606529\pi\)
−0.328457 + 0.944519i \(0.606529\pi\)
\(450\) 0 0
\(451\) −12.8071 −0.603061
\(452\) 40.3724 1.89896
\(453\) 0 0
\(454\) −2.05818 −0.0965954
\(455\) −2.41077 −0.113019
\(456\) 0 0
\(457\) −0.999387 −0.0467494 −0.0233747 0.999727i \(-0.507441\pi\)
−0.0233747 + 0.999727i \(0.507441\pi\)
\(458\) −1.61602 −0.0755117
\(459\) 0 0
\(460\) 13.3359 0.621788
\(461\) 15.5235 0.723003 0.361502 0.932371i \(-0.382264\pi\)
0.361502 + 0.932371i \(0.382264\pi\)
\(462\) 0 0
\(463\) 35.8295 1.66514 0.832568 0.553923i \(-0.186870\pi\)
0.832568 + 0.553923i \(0.186870\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 1.52043 0.0704328
\(467\) −4.17634 −0.193258 −0.0966290 0.995320i \(-0.530806\pi\)
−0.0966290 + 0.995320i \(0.530806\pi\)
\(468\) 0 0
\(469\) 3.78806 0.174916
\(470\) −0.930508 −0.0429211
\(471\) 0 0
\(472\) −1.91532 −0.0881597
\(473\) −0.0204636 −0.000940918 0
\(474\) 0 0
\(475\) −1.72027 −0.0789314
\(476\) 4.21808 0.193335
\(477\) 0 0
\(478\) 0.681365 0.0311649
\(479\) −18.5452 −0.847351 −0.423675 0.905814i \(-0.639260\pi\)
−0.423675 + 0.905814i \(0.639260\pi\)
\(480\) 0 0
\(481\) 11.2103 0.511147
\(482\) 0.593927 0.0270526
\(483\) 0 0
\(484\) 10.2116 0.464164
\(485\) −5.25874 −0.238787
\(486\) 0 0
\(487\) 19.5628 0.886474 0.443237 0.896404i \(-0.353830\pi\)
0.443237 + 0.896404i \(0.353830\pi\)
\(488\) 2.07126 0.0937617
\(489\) 0 0
\(490\) −1.10467 −0.0499038
\(491\) 2.39192 0.107946 0.0539728 0.998542i \(-0.482812\pi\)
0.0539728 + 0.998542i \(0.482812\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) −0.407843 −0.0183497
\(495\) 0 0
\(496\) −43.5050 −1.95343
\(497\) −4.42108 −0.198312
\(498\) 0 0
\(499\) −17.3897 −0.778468 −0.389234 0.921139i \(-0.627260\pi\)
−0.389234 + 0.921139i \(0.627260\pi\)
\(500\) −24.1373 −1.07945
\(501\) 0 0
\(502\) −0.193069 −0.00861707
\(503\) 20.1486 0.898381 0.449191 0.893436i \(-0.351712\pi\)
0.449191 + 0.893436i \(0.351712\pi\)
\(504\) 0 0
\(505\) 35.2673 1.56937
\(506\) 0.698721 0.0310619
\(507\) 0 0
\(508\) 19.0630 0.845785
\(509\) −28.9399 −1.28274 −0.641369 0.767232i \(-0.721633\pi\)
−0.641369 + 0.767232i \(0.721633\pi\)
\(510\) 0 0
\(511\) −0.157933 −0.00698653
\(512\) −6.56080 −0.289949
\(513\) 0 0
\(514\) −1.89447 −0.0835615
\(515\) 31.0205 1.36692
\(516\) 0 0
\(517\) 14.0522 0.618014
\(518\) −0.0882926 −0.00387935
\(519\) 0 0
\(520\) −2.32752 −0.102069
\(521\) 3.28970 0.144125 0.0720623 0.997400i \(-0.477042\pi\)
0.0720623 + 0.997400i \(0.477042\pi\)
\(522\) 0 0
\(523\) −0.291341 −0.0127395 −0.00636974 0.999980i \(-0.502028\pi\)
−0.00636974 + 0.999980i \(0.502028\pi\)
\(524\) −33.4887 −1.46296
\(525\) 0 0
\(526\) 0.0794513 0.00346424
\(527\) 67.6281 2.94593
\(528\) 0 0
\(529\) −10.9855 −0.477630
\(530\) 0.664937 0.0288830
\(531\) 0 0
\(532\) −0.925848 −0.0401406
\(533\) 19.1841 0.830955
\(534\) 0 0
\(535\) −31.2258 −1.35001
\(536\) 3.65725 0.157969
\(537\) 0 0
\(538\) −1.25951 −0.0543014
\(539\) 16.6823 0.718556
\(540\) 0 0
\(541\) −27.6565 −1.18905 −0.594523 0.804078i \(-0.702659\pi\)
−0.594523 + 0.804078i \(0.702659\pi\)
\(542\) −0.686101 −0.0294705
\(543\) 0 0
\(544\) 6.11215 0.262056
\(545\) −17.7586 −0.760693
\(546\) 0 0
\(547\) 5.06702 0.216650 0.108325 0.994116i \(-0.465451\pi\)
0.108325 + 0.994116i \(0.465451\pi\)
\(548\) 11.4627 0.489664
\(549\) 0 0
\(550\) −0.256742 −0.0109475
\(551\) 0 0
\(552\) 0 0
\(553\) 4.29191 0.182510
\(554\) −1.39146 −0.0591175
\(555\) 0 0
\(556\) −3.12285 −0.132438
\(557\) −16.1639 −0.684885 −0.342443 0.939539i \(-0.611254\pi\)
−0.342443 + 0.939539i \(0.611254\pi\)
\(558\) 0 0
\(559\) 0.0306531 0.00129649
\(560\) −2.62811 −0.111058
\(561\) 0 0
\(562\) −1.84139 −0.0776744
\(563\) 7.45712 0.314280 0.157140 0.987576i \(-0.449773\pi\)
0.157140 + 0.987576i \(0.449773\pi\)
\(564\) 0 0
\(565\) 39.1022 1.64504
\(566\) 1.46850 0.0617257
\(567\) 0 0
\(568\) −4.26841 −0.179098
\(569\) 17.6440 0.739675 0.369837 0.929097i \(-0.379413\pi\)
0.369837 + 0.929097i \(0.379413\pi\)
\(570\) 0 0
\(571\) 29.2430 1.22378 0.611890 0.790943i \(-0.290410\pi\)
0.611890 + 0.790943i \(0.290410\pi\)
\(572\) 17.5442 0.733561
\(573\) 0 0
\(574\) −0.151094 −0.00630654
\(575\) −4.41468 −0.184105
\(576\) 0 0
\(577\) 17.0793 0.711023 0.355511 0.934672i \(-0.384307\pi\)
0.355511 + 0.934672i \(0.384307\pi\)
\(578\) −1.73514 −0.0721722
\(579\) 0 0
\(580\) 0 0
\(581\) −0.989975 −0.0410711
\(582\) 0 0
\(583\) −10.0416 −0.415882
\(584\) −0.152479 −0.00630962
\(585\) 0 0
\(586\) −1.92461 −0.0795051
\(587\) 34.0645 1.40599 0.702996 0.711193i \(-0.251845\pi\)
0.702996 + 0.711193i \(0.251845\pi\)
\(588\) 0 0
\(589\) −14.8441 −0.611639
\(590\) −0.925923 −0.0381196
\(591\) 0 0
\(592\) 12.2210 0.502278
\(593\) 42.8511 1.75969 0.879843 0.475265i \(-0.157648\pi\)
0.879843 + 0.475265i \(0.157648\pi\)
\(594\) 0 0
\(595\) 4.08537 0.167484
\(596\) 25.1756 1.03123
\(597\) 0 0
\(598\) −1.04664 −0.0428001
\(599\) 5.69345 0.232628 0.116314 0.993212i \(-0.462892\pi\)
0.116314 + 0.993212i \(0.462892\pi\)
\(600\) 0 0
\(601\) 8.96083 0.365520 0.182760 0.983158i \(-0.441497\pi\)
0.182760 + 0.983158i \(0.441497\pi\)
\(602\) −0.000241424 0 −9.83969e−6 0
\(603\) 0 0
\(604\) 20.4644 0.832683
\(605\) 9.89034 0.402099
\(606\) 0 0
\(607\) −28.3175 −1.14937 −0.574685 0.818374i \(-0.694876\pi\)
−0.574685 + 0.818374i \(0.694876\pi\)
\(608\) −1.34159 −0.0544086
\(609\) 0 0
\(610\) 1.00131 0.0405419
\(611\) −21.0492 −0.851558
\(612\) 0 0
\(613\) −32.0123 −1.29296 −0.646482 0.762929i \(-0.723760\pi\)
−0.646482 + 0.762929i \(0.723760\pi\)
\(614\) −1.91245 −0.0771801
\(615\) 0 0
\(616\) −0.276836 −0.0111541
\(617\) −6.10052 −0.245598 −0.122799 0.992432i \(-0.539187\pi\)
−0.122799 + 0.992432i \(0.539187\pi\)
\(618\) 0 0
\(619\) −0.710979 −0.0285766 −0.0142883 0.999898i \(-0.504548\pi\)
−0.0142883 + 0.999898i \(0.504548\pi\)
\(620\) −42.2835 −1.69814
\(621\) 0 0
\(622\) −0.339335 −0.0136061
\(623\) −4.20412 −0.168434
\(624\) 0 0
\(625\) −17.0096 −0.680386
\(626\) −2.39095 −0.0955615
\(627\) 0 0
\(628\) −7.54711 −0.301162
\(629\) −18.9974 −0.757475
\(630\) 0 0
\(631\) −27.0861 −1.07828 −0.539140 0.842216i \(-0.681251\pi\)
−0.539140 + 0.842216i \(0.681251\pi\)
\(632\) 4.14370 0.164827
\(633\) 0 0
\(634\) −0.958777 −0.0380779
\(635\) 18.4633 0.732692
\(636\) 0 0
\(637\) −24.9889 −0.990095
\(638\) 0 0
\(639\) 0 0
\(640\) −5.09240 −0.201295
\(641\) 27.4704 1.08501 0.542507 0.840051i \(-0.317475\pi\)
0.542507 + 0.840051i \(0.317475\pi\)
\(642\) 0 0
\(643\) −26.5921 −1.04869 −0.524345 0.851506i \(-0.675690\pi\)
−0.524345 + 0.851506i \(0.675690\pi\)
\(644\) −2.37598 −0.0936266
\(645\) 0 0
\(646\) 0.691143 0.0271927
\(647\) 24.3504 0.957314 0.478657 0.878002i \(-0.341124\pi\)
0.478657 + 0.878002i \(0.341124\pi\)
\(648\) 0 0
\(649\) 13.9829 0.548878
\(650\) 0.384582 0.0150846
\(651\) 0 0
\(652\) −12.1216 −0.474717
\(653\) 20.7490 0.811973 0.405986 0.913879i \(-0.366928\pi\)
0.405986 + 0.913879i \(0.366928\pi\)
\(654\) 0 0
\(655\) −32.4351 −1.26734
\(656\) 20.9136 0.816538
\(657\) 0 0
\(658\) 0.165783 0.00646291
\(659\) −13.3618 −0.520504 −0.260252 0.965541i \(-0.583806\pi\)
−0.260252 + 0.965541i \(0.583806\pi\)
\(660\) 0 0
\(661\) 34.6065 1.34604 0.673018 0.739626i \(-0.264998\pi\)
0.673018 + 0.739626i \(0.264998\pi\)
\(662\) 1.02313 0.0397651
\(663\) 0 0
\(664\) −0.955788 −0.0370918
\(665\) −0.896719 −0.0347733
\(666\) 0 0
\(667\) 0 0
\(668\) −15.2979 −0.591894
\(669\) 0 0
\(670\) 1.76803 0.0683048
\(671\) −15.1214 −0.583756
\(672\) 0 0
\(673\) 36.9298 1.42354 0.711770 0.702413i \(-0.247894\pi\)
0.711770 + 0.702413i \(0.247894\pi\)
\(674\) 2.54358 0.0979752
\(675\) 0 0
\(676\) −0.369930 −0.0142281
\(677\) −3.93509 −0.151238 −0.0756189 0.997137i \(-0.524093\pi\)
−0.0756189 + 0.997137i \(0.524093\pi\)
\(678\) 0 0
\(679\) 0.936920 0.0359557
\(680\) 3.94429 0.151257
\(681\) 0 0
\(682\) −2.21541 −0.0848323
\(683\) −3.88519 −0.148663 −0.0743314 0.997234i \(-0.523682\pi\)
−0.0743314 + 0.997234i \(0.523682\pi\)
\(684\) 0 0
\(685\) 11.1021 0.424190
\(686\) 0.397008 0.0151578
\(687\) 0 0
\(688\) 0.0334165 0.00127399
\(689\) 15.0417 0.573041
\(690\) 0 0
\(691\) 7.66976 0.291771 0.145886 0.989301i \(-0.453397\pi\)
0.145886 + 0.989301i \(0.453397\pi\)
\(692\) −29.8827 −1.13597
\(693\) 0 0
\(694\) −0.191616 −0.00727366
\(695\) −3.02459 −0.114729
\(696\) 0 0
\(697\) −32.5100 −1.23140
\(698\) −0.758634 −0.0287147
\(699\) 0 0
\(700\) 0.873043 0.0329979
\(701\) −39.3445 −1.48602 −0.743011 0.669279i \(-0.766603\pi\)
−0.743011 + 0.669279i \(0.766603\pi\)
\(702\) 0 0
\(703\) 4.16983 0.157268
\(704\) 18.9920 0.715788
\(705\) 0 0
\(706\) −1.21123 −0.0455854
\(707\) −6.28337 −0.236311
\(708\) 0 0
\(709\) 37.5849 1.41153 0.705765 0.708446i \(-0.250603\pi\)
0.705765 + 0.708446i \(0.250603\pi\)
\(710\) −2.06348 −0.0774409
\(711\) 0 0
\(712\) −4.05894 −0.152115
\(713\) −38.0939 −1.42663
\(714\) 0 0
\(715\) 16.9923 0.635474
\(716\) −32.0493 −1.19774
\(717\) 0 0
\(718\) −0.311923 −0.0116409
\(719\) −4.63300 −0.172782 −0.0863910 0.996261i \(-0.527533\pi\)
−0.0863910 + 0.996261i \(0.527533\pi\)
\(720\) 0 0
\(721\) −5.52674 −0.205827
\(722\) 1.42826 0.0531542
\(723\) 0 0
\(724\) 11.3076 0.420244
\(725\) 0 0
\(726\) 0 0
\(727\) −5.51391 −0.204500 −0.102250 0.994759i \(-0.532604\pi\)
−0.102250 + 0.994759i \(0.532604\pi\)
\(728\) 0.414682 0.0153691
\(729\) 0 0
\(730\) −0.0737129 −0.00272824
\(731\) −0.0519456 −0.00192128
\(732\) 0 0
\(733\) −43.4421 −1.60457 −0.802285 0.596941i \(-0.796383\pi\)
−0.802285 + 0.596941i \(0.796383\pi\)
\(734\) 1.15992 0.0428134
\(735\) 0 0
\(736\) −3.44288 −0.126906
\(737\) −26.7000 −0.983509
\(738\) 0 0
\(739\) −44.2848 −1.62904 −0.814522 0.580133i \(-0.803001\pi\)
−0.814522 + 0.580133i \(0.803001\pi\)
\(740\) 11.8778 0.436637
\(741\) 0 0
\(742\) −0.118468 −0.00434910
\(743\) −35.4033 −1.29882 −0.649411 0.760438i \(-0.724984\pi\)
−0.649411 + 0.760438i \(0.724984\pi\)
\(744\) 0 0
\(745\) 24.3836 0.893345
\(746\) 0.636980 0.0233215
\(747\) 0 0
\(748\) −29.7310 −1.08707
\(749\) 5.56333 0.203280
\(750\) 0 0
\(751\) 3.55544 0.129740 0.0648698 0.997894i \(-0.479337\pi\)
0.0648698 + 0.997894i \(0.479337\pi\)
\(752\) −22.9468 −0.836784
\(753\) 0 0
\(754\) 0 0
\(755\) 19.8205 0.721342
\(756\) 0 0
\(757\) −21.6056 −0.785268 −0.392634 0.919695i \(-0.628436\pi\)
−0.392634 + 0.919695i \(0.628436\pi\)
\(758\) −1.04527 −0.0379658
\(759\) 0 0
\(760\) −0.865753 −0.0314041
\(761\) −16.5313 −0.599260 −0.299630 0.954055i \(-0.596863\pi\)
−0.299630 + 0.954055i \(0.596863\pi\)
\(762\) 0 0
\(763\) 3.16395 0.114543
\(764\) −1.26938 −0.0459246
\(765\) 0 0
\(766\) 1.95839 0.0707597
\(767\) −20.9455 −0.756297
\(768\) 0 0
\(769\) 0.202502 0.00730241 0.00365120 0.999993i \(-0.498838\pi\)
0.00365120 + 0.999993i \(0.498838\pi\)
\(770\) −0.133831 −0.00482294
\(771\) 0 0
\(772\) −22.6082 −0.813687
\(773\) −14.5159 −0.522100 −0.261050 0.965325i \(-0.584069\pi\)
−0.261050 + 0.965325i \(0.584069\pi\)
\(774\) 0 0
\(775\) 13.9974 0.502803
\(776\) 0.904565 0.0324720
\(777\) 0 0
\(778\) 1.76694 0.0633477
\(779\) 7.13578 0.255666
\(780\) 0 0
\(781\) 31.1618 1.11506
\(782\) 1.77366 0.0634260
\(783\) 0 0
\(784\) −27.2417 −0.972917
\(785\) −7.30966 −0.260893
\(786\) 0 0
\(787\) −34.0857 −1.21503 −0.607513 0.794310i \(-0.707833\pi\)
−0.607513 + 0.794310i \(0.707833\pi\)
\(788\) −33.7391 −1.20191
\(789\) 0 0
\(790\) 2.00319 0.0712702
\(791\) −6.96663 −0.247705
\(792\) 0 0
\(793\) 22.6508 0.804355
\(794\) −1.22481 −0.0434669
\(795\) 0 0
\(796\) −17.2959 −0.613036
\(797\) 14.3592 0.508628 0.254314 0.967122i \(-0.418150\pi\)
0.254314 + 0.967122i \(0.418150\pi\)
\(798\) 0 0
\(799\) 35.6706 1.26193
\(800\) 1.26507 0.0447271
\(801\) 0 0
\(802\) −1.05023 −0.0370849
\(803\) 1.11318 0.0392834
\(804\) 0 0
\(805\) −2.30122 −0.0811075
\(806\) 3.31852 0.116890
\(807\) 0 0
\(808\) −6.06639 −0.213415
\(809\) −28.3982 −0.998429 −0.499214 0.866479i \(-0.666378\pi\)
−0.499214 + 0.866479i \(0.666378\pi\)
\(810\) 0 0
\(811\) −41.4768 −1.45645 −0.728224 0.685339i \(-0.759654\pi\)
−0.728224 + 0.685339i \(0.759654\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0.622328 0.0218126
\(815\) −11.7402 −0.411241
\(816\) 0 0
\(817\) 0.0114018 0.000398899 0
\(818\) −2.80712 −0.0981486
\(819\) 0 0
\(820\) 20.3264 0.709827
\(821\) 45.2453 1.57907 0.789535 0.613705i \(-0.210322\pi\)
0.789535 + 0.613705i \(0.210322\pi\)
\(822\) 0 0
\(823\) 1.80834 0.0630349 0.0315174 0.999503i \(-0.489966\pi\)
0.0315174 + 0.999503i \(0.489966\pi\)
\(824\) −5.33589 −0.185885
\(825\) 0 0
\(826\) 0.164967 0.00573992
\(827\) −22.9341 −0.797497 −0.398748 0.917060i \(-0.630555\pi\)
−0.398748 + 0.917060i \(0.630555\pi\)
\(828\) 0 0
\(829\) 9.99341 0.347085 0.173543 0.984826i \(-0.444479\pi\)
0.173543 + 0.984826i \(0.444479\pi\)
\(830\) −0.462057 −0.0160382
\(831\) 0 0
\(832\) −28.4487 −0.986281
\(833\) 42.3469 1.46723
\(834\) 0 0
\(835\) −14.8166 −0.512750
\(836\) 6.52581 0.225700
\(837\) 0 0
\(838\) −2.04909 −0.0707848
\(839\) 24.1584 0.834042 0.417021 0.908897i \(-0.363074\pi\)
0.417021 + 0.908897i \(0.363074\pi\)
\(840\) 0 0
\(841\) 0 0
\(842\) 1.01914 0.0351218
\(843\) 0 0
\(844\) 25.4149 0.874815
\(845\) −0.358291 −0.0123256
\(846\) 0 0
\(847\) −1.76211 −0.0605467
\(848\) 16.3977 0.563099
\(849\) 0 0
\(850\) −0.651725 −0.0223540
\(851\) 10.7009 0.366823
\(852\) 0 0
\(853\) −12.9629 −0.443842 −0.221921 0.975065i \(-0.571233\pi\)
−0.221921 + 0.975065i \(0.571233\pi\)
\(854\) −0.178398 −0.00610466
\(855\) 0 0
\(856\) 5.37121 0.183584
\(857\) 21.5162 0.734980 0.367490 0.930027i \(-0.380217\pi\)
0.367490 + 0.930027i \(0.380217\pi\)
\(858\) 0 0
\(859\) 4.60632 0.157165 0.0785827 0.996908i \(-0.474961\pi\)
0.0785827 + 0.996908i \(0.474961\pi\)
\(860\) 0.0324782 0.00110750
\(861\) 0 0
\(862\) −0.698134 −0.0237785
\(863\) 19.2332 0.654707 0.327354 0.944902i \(-0.393843\pi\)
0.327354 + 0.944902i \(0.393843\pi\)
\(864\) 0 0
\(865\) −28.9425 −0.984076
\(866\) 0.768490 0.0261144
\(867\) 0 0
\(868\) 7.53341 0.255701
\(869\) −30.2514 −1.02621
\(870\) 0 0
\(871\) 39.9948 1.35517
\(872\) 3.05469 0.103445
\(873\) 0 0
\(874\) −0.389310 −0.0131686
\(875\) 4.16510 0.140806
\(876\) 0 0
\(877\) −27.8752 −0.941279 −0.470640 0.882326i \(-0.655977\pi\)
−0.470640 + 0.882326i \(0.655977\pi\)
\(878\) −1.44882 −0.0488953
\(879\) 0 0
\(880\) 18.5241 0.624449
\(881\) 27.7676 0.935514 0.467757 0.883857i \(-0.345062\pi\)
0.467757 + 0.883857i \(0.345062\pi\)
\(882\) 0 0
\(883\) −0.320213 −0.0107760 −0.00538802 0.999985i \(-0.501715\pi\)
−0.00538802 + 0.999985i \(0.501715\pi\)
\(884\) 44.5350 1.49787
\(885\) 0 0
\(886\) −2.41129 −0.0810088
\(887\) −24.7909 −0.832397 −0.416198 0.909274i \(-0.636638\pi\)
−0.416198 + 0.909274i \(0.636638\pi\)
\(888\) 0 0
\(889\) −3.28950 −0.110326
\(890\) −1.96221 −0.0657735
\(891\) 0 0
\(892\) −38.1455 −1.27721
\(893\) −7.82952 −0.262005
\(894\) 0 0
\(895\) −31.0410 −1.03758
\(896\) 0.907285 0.0303103
\(897\) 0 0
\(898\) 1.15751 0.0386266
\(899\) 0 0
\(900\) 0 0
\(901\) −25.4901 −0.849197
\(902\) 1.06498 0.0354600
\(903\) 0 0
\(904\) −6.72605 −0.223705
\(905\) 10.9518 0.364052
\(906\) 0 0
\(907\) 44.0205 1.46168 0.730839 0.682550i \(-0.239129\pi\)
0.730839 + 0.682550i \(0.239129\pi\)
\(908\) −49.3307 −1.63710
\(909\) 0 0
\(910\) 0.200470 0.00664550
\(911\) 58.6374 1.94275 0.971373 0.237561i \(-0.0763480\pi\)
0.971373 + 0.237561i \(0.0763480\pi\)
\(912\) 0 0
\(913\) 6.97781 0.230932
\(914\) 0.0831048 0.00274886
\(915\) 0 0
\(916\) −38.7329 −1.27977
\(917\) 5.77879 0.190832
\(918\) 0 0
\(919\) −36.3681 −1.19967 −0.599837 0.800122i \(-0.704768\pi\)
−0.599837 + 0.800122i \(0.704768\pi\)
\(920\) −2.22176 −0.0732491
\(921\) 0 0
\(922\) −1.29087 −0.0425126
\(923\) −46.6783 −1.53643
\(924\) 0 0
\(925\) −3.93201 −0.129284
\(926\) −2.97943 −0.0979101
\(927\) 0 0
\(928\) 0 0
\(929\) −0.895129 −0.0293682 −0.0146841 0.999892i \(-0.504674\pi\)
−0.0146841 + 0.999892i \(0.504674\pi\)
\(930\) 0 0
\(931\) −9.29495 −0.304630
\(932\) 36.4419 1.19369
\(933\) 0 0
\(934\) 0.347287 0.0113636
\(935\) −28.7956 −0.941717
\(936\) 0 0
\(937\) 23.2168 0.758460 0.379230 0.925302i \(-0.376189\pi\)
0.379230 + 0.925302i \(0.376189\pi\)
\(938\) −0.314999 −0.0102851
\(939\) 0 0
\(940\) −22.3025 −0.727427
\(941\) −26.3658 −0.859501 −0.429750 0.902948i \(-0.641398\pi\)
−0.429750 + 0.902948i \(0.641398\pi\)
\(942\) 0 0
\(943\) 18.3123 0.596332
\(944\) −22.8337 −0.743175
\(945\) 0 0
\(946\) 0.00170167 5.53260e−5 0
\(947\) 50.9638 1.65610 0.828051 0.560653i \(-0.189450\pi\)
0.828051 + 0.560653i \(0.189450\pi\)
\(948\) 0 0
\(949\) −1.66747 −0.0541284
\(950\) 0.143050 0.00464117
\(951\) 0 0
\(952\) −0.702732 −0.0227757
\(953\) 25.1414 0.814410 0.407205 0.913337i \(-0.366503\pi\)
0.407205 + 0.913337i \(0.366503\pi\)
\(954\) 0 0
\(955\) −1.22944 −0.0397839
\(956\) 16.3310 0.528183
\(957\) 0 0
\(958\) 1.54214 0.0498243
\(959\) −1.97800 −0.0638730
\(960\) 0 0
\(961\) 89.7826 2.89621
\(962\) −0.932203 −0.0300554
\(963\) 0 0
\(964\) 14.2353 0.458488
\(965\) −21.8969 −0.704886
\(966\) 0 0
\(967\) −50.2105 −1.61466 −0.807330 0.590100i \(-0.799088\pi\)
−0.807330 + 0.590100i \(0.799088\pi\)
\(968\) −1.70126 −0.0546804
\(969\) 0 0
\(970\) 0.437294 0.0140407
\(971\) −32.5354 −1.04411 −0.522055 0.852912i \(-0.674834\pi\)
−0.522055 + 0.852912i \(0.674834\pi\)
\(972\) 0 0
\(973\) 0.538875 0.0172755
\(974\) −1.62676 −0.0521247
\(975\) 0 0
\(976\) 24.6929 0.790399
\(977\) 32.6634 1.04500 0.522498 0.852641i \(-0.325000\pi\)
0.522498 + 0.852641i \(0.325000\pi\)
\(978\) 0 0
\(979\) 29.6326 0.947062
\(980\) −26.4768 −0.845769
\(981\) 0 0
\(982\) −0.198902 −0.00634721
\(983\) 1.79101 0.0571245 0.0285622 0.999592i \(-0.490907\pi\)
0.0285622 + 0.999592i \(0.490907\pi\)
\(984\) 0 0
\(985\) −32.6776 −1.04120
\(986\) 0 0
\(987\) 0 0
\(988\) −9.77521 −0.310991
\(989\) 0.0292602 0.000930419 0
\(990\) 0 0
\(991\) 28.6772 0.910960 0.455480 0.890246i \(-0.349468\pi\)
0.455480 + 0.890246i \(0.349468\pi\)
\(992\) 10.9162 0.346589
\(993\) 0 0
\(994\) 0.367638 0.0116608
\(995\) −16.7517 −0.531065
\(996\) 0 0
\(997\) 34.6674 1.09793 0.548964 0.835846i \(-0.315023\pi\)
0.548964 + 0.835846i \(0.315023\pi\)
\(998\) 1.44605 0.0457739
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 7569.2.a.bk.1.5 9
3.2 odd 2 2523.2.a.q.1.5 9
29.9 even 14 261.2.k.b.226.2 18
29.13 even 14 261.2.k.b.82.2 18
29.28 even 2 7569.2.a.bl.1.5 9
87.38 odd 14 87.2.g.b.52.2 18
87.71 odd 14 87.2.g.b.82.2 yes 18
87.86 odd 2 2523.2.a.p.1.5 9
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
87.2.g.b.52.2 18 87.38 odd 14
87.2.g.b.82.2 yes 18 87.71 odd 14
261.2.k.b.82.2 18 29.13 even 14
261.2.k.b.226.2 18 29.9 even 14
2523.2.a.p.1.5 9 87.86 odd 2
2523.2.a.q.1.5 9 3.2 odd 2
7569.2.a.bk.1.5 9 1.1 even 1 trivial
7569.2.a.bl.1.5 9 29.28 even 2