Properties

Label 261.2.o.b.154.1
Level $261$
Weight $2$
Character 261.154
Analytic conductor $2.084$
Analytic rank $0$
Dimension $24$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [261,2,Mod(64,261)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(261, base_ring=CyclotomicField(14))
 
chi = DirichletCharacter(H, H._module([0, 3]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("261.64");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 261 = 3^{2} \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 261.o (of order \(14\), degree \(6\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.08409549276\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(4\) over \(\Q(\zeta_{14})\)
Twist minimal: no (minimal twist has level 87)
Sato-Tate group: $\mathrm{SU}(2)[C_{14}]$

Embedding invariants

Embedding label 154.1
Character \(\chi\) \(=\) 261.154
Dual form 261.2.o.b.100.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.00695 - 2.09096i) q^{2} +(-2.11117 + 2.64732i) q^{4} +(-1.71239 + 0.824646i) q^{5} +(-2.13259 - 2.67418i) q^{7} +(3.13608 + 0.715791i) q^{8} +(3.44860 + 2.75017i) q^{10} +(-0.806696 + 0.184123i) q^{11} +(1.20608 + 5.28419i) q^{13} +(-3.44418 + 7.15191i) q^{14} +(-0.154263 - 0.675869i) q^{16} +6.71892i q^{17} +(-3.45146 - 2.75245i) q^{19} +(1.43205 - 6.27423i) q^{20} +(1.19730 + 1.50136i) q^{22} +(0.139227 + 0.0670480i) q^{23} +(-0.865194 + 1.08492i) q^{25} +(9.83456 - 7.84280i) q^{26} +11.5817 q^{28} +(-5.06676 - 1.82425i) q^{29} +(-2.48781 - 5.16599i) q^{31} +(3.77201 - 3.00808i) q^{32} +(14.0490 - 6.76563i) q^{34} +(5.85708 + 2.82062i) q^{35} +(-9.49071 - 2.16619i) q^{37} +(-2.27980 + 9.98844i) q^{38} +(-5.96049 + 1.36044i) q^{40} -5.43514i q^{41} +(-1.93772 + 4.02372i) q^{43} +(1.21564 - 2.52430i) q^{44} -0.358631i q^{46} +(1.18672 - 0.270862i) q^{47} +(-1.04566 + 4.58133i) q^{49} +(3.13973 + 0.716622i) q^{50} +(-16.5352 - 7.96294i) q^{52} +(0.419909 - 0.202218i) q^{53} +(1.22955 - 0.980530i) q^{55} +(-4.77382 - 9.91293i) q^{56} +(1.28756 + 12.4313i) q^{58} -11.5925 q^{59} +(8.77189 - 6.99535i) q^{61} +(-8.29676 + 10.4038i) q^{62} +(-11.3372 - 5.45970i) q^{64} +(-6.42288 - 8.05404i) q^{65} +(-2.88159 + 12.6251i) q^{67} +(-17.7871 - 14.1848i) q^{68} -15.0871i q^{70} +(-0.750585 - 3.28853i) q^{71} +(-0.425383 + 0.883317i) q^{73} +(5.02727 + 22.0259i) q^{74} +(14.5732 - 3.32625i) q^{76} +(2.21273 + 1.76459i) q^{77} +(4.74548 + 1.08313i) q^{79} +(0.821511 + 1.03014i) q^{80} +(-11.3647 + 5.47293i) q^{82} +(4.81847 - 6.04218i) q^{83} +(-5.54073 - 11.5054i) q^{85} +10.3646 q^{86} -2.66166 q^{88} +(-2.02075 - 4.19613i) q^{89} +(11.5588 - 14.4943i) q^{91} +(-0.471429 + 0.227028i) q^{92} +(-1.76133 - 2.20864i) q^{94} +(8.18006 + 1.86705i) q^{95} +(7.82946 + 6.24379i) q^{97} +(10.6323 - 2.42675i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q - 2 q^{4} + 4 q^{5} + 8 q^{7} + 28 q^{11} - 10 q^{13} - 22 q^{16} + 20 q^{20} + 4 q^{22} - 18 q^{23} - 18 q^{25} - 28 q^{26} + 8 q^{28} - 28 q^{29} + 28 q^{31} + 14 q^{32} + 34 q^{34} - 28 q^{37} + 4 q^{38}+ \cdots + 42 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/261\mathbb{Z}\right)^\times\).

\(n\) \(118\) \(146\)
\(\chi(n)\) \(e\left(\frac{5}{14}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00695 2.09096i −0.712022 1.47853i −0.871018 0.491251i \(-0.836540\pi\)
0.158996 0.987279i \(-0.449174\pi\)
\(3\) 0 0
\(4\) −2.11117 + 2.64732i −1.05558 + 1.32366i
\(5\) −1.71239 + 0.824646i −0.765806 + 0.368793i −0.775654 0.631159i \(-0.782580\pi\)
0.00984749 + 0.999952i \(0.496865\pi\)
\(6\) 0 0
\(7\) −2.13259 2.67418i −0.806042 1.01074i −0.999560 0.0296476i \(-0.990561\pi\)
0.193519 0.981097i \(-0.438010\pi\)
\(8\) 3.13608 + 0.715791i 1.10877 + 0.253070i
\(9\) 0 0
\(10\) 3.44860 + 2.75017i 1.09054 + 0.869679i
\(11\) −0.806696 + 0.184123i −0.243228 + 0.0555152i −0.342397 0.939555i \(-0.611239\pi\)
0.0991689 + 0.995071i \(0.468382\pi\)
\(12\) 0 0
\(13\) 1.20608 + 5.28419i 0.334507 + 1.46557i 0.810301 + 0.586015i \(0.199304\pi\)
−0.475793 + 0.879557i \(0.657839\pi\)
\(14\) −3.44418 + 7.15191i −0.920496 + 1.91143i
\(15\) 0 0
\(16\) −0.154263 0.675869i −0.0385657 0.168967i
\(17\) 6.71892i 1.62958i 0.579758 + 0.814788i \(0.303147\pi\)
−0.579758 + 0.814788i \(0.696853\pi\)
\(18\) 0 0
\(19\) −3.45146 2.75245i −0.791819 0.631455i 0.141729 0.989905i \(-0.454734\pi\)
−0.933549 + 0.358451i \(0.883305\pi\)
\(20\) 1.43205 6.27423i 0.320217 1.40296i
\(21\) 0 0
\(22\) 1.19730 + 1.50136i 0.255265 + 0.320092i
\(23\) 0.139227 + 0.0670480i 0.0290308 + 0.0139805i 0.448343 0.893862i \(-0.352014\pi\)
−0.419312 + 0.907842i \(0.637729\pi\)
\(24\) 0 0
\(25\) −0.865194 + 1.08492i −0.173039 + 0.216984i
\(26\) 9.83456 7.84280i 1.92871 1.53810i
\(27\) 0 0
\(28\) 11.5817 2.18873
\(29\) −5.06676 1.82425i −0.940875 0.338755i
\(30\) 0 0
\(31\) −2.48781 5.16599i −0.446824 0.927840i −0.995761 0.0919761i \(-0.970682\pi\)
0.548937 0.835864i \(-0.315033\pi\)
\(32\) 3.77201 3.00808i 0.666804 0.531758i
\(33\) 0 0
\(34\) 14.0490 6.76563i 2.40938 1.16030i
\(35\) 5.85708 + 2.82062i 0.990027 + 0.476772i
\(36\) 0 0
\(37\) −9.49071 2.16619i −1.56026 0.356120i −0.646677 0.762764i \(-0.723842\pi\)
−0.913587 + 0.406644i \(0.866699\pi\)
\(38\) −2.27980 + 9.98844i −0.369832 + 1.62034i
\(39\) 0 0
\(40\) −5.96049 + 1.36044i −0.942436 + 0.215105i
\(41\) 5.43514i 0.848827i −0.905469 0.424413i \(-0.860480\pi\)
0.905469 0.424413i \(-0.139520\pi\)
\(42\) 0 0
\(43\) −1.93772 + 4.02372i −0.295500 + 0.613612i −0.994872 0.101146i \(-0.967749\pi\)
0.699372 + 0.714758i \(0.253463\pi\)
\(44\) 1.21564 2.52430i 0.183264 0.380553i
\(45\) 0 0
\(46\) 0.358631i 0.0528772i
\(47\) 1.18672 0.270862i 0.173101 0.0395092i −0.135092 0.990833i \(-0.543133\pi\)
0.308193 + 0.951324i \(0.400276\pi\)
\(48\) 0 0
\(49\) −1.04566 + 4.58133i −0.149380 + 0.654476i
\(50\) 3.13973 + 0.716622i 0.444024 + 0.101346i
\(51\) 0 0
\(52\) −16.5352 7.96294i −2.29302 1.10426i
\(53\) 0.419909 0.202218i 0.0576790 0.0277767i −0.404822 0.914396i \(-0.632666\pi\)
0.462501 + 0.886619i \(0.346952\pi\)
\(54\) 0 0
\(55\) 1.22955 0.980530i 0.165792 0.132215i
\(56\) −4.77382 9.91293i −0.637928 1.32467i
\(57\) 0 0
\(58\) 1.28756 + 12.4313i 0.169064 + 1.63231i
\(59\) −11.5925 −1.50921 −0.754605 0.656179i \(-0.772172\pi\)
−0.754605 + 0.656179i \(0.772172\pi\)
\(60\) 0 0
\(61\) 8.77189 6.99535i 1.12312 0.895662i 0.127757 0.991805i \(-0.459222\pi\)
0.995368 + 0.0961432i \(0.0306507\pi\)
\(62\) −8.29676 + 10.4038i −1.05369 + 1.32129i
\(63\) 0 0
\(64\) −11.3372 5.45970i −1.41715 0.682463i
\(65\) −6.42288 8.05404i −0.796660 0.998980i
\(66\) 0 0
\(67\) −2.88159 + 12.6251i −0.352042 + 1.54240i 0.420415 + 0.907332i \(0.361885\pi\)
−0.772457 + 0.635067i \(0.780973\pi\)
\(68\) −17.7871 14.1848i −2.15701 1.72016i
\(69\) 0 0
\(70\) 15.0871i 1.80326i
\(71\) −0.750585 3.28853i −0.0890780 0.390276i 0.910660 0.413156i \(-0.135574\pi\)
−0.999738 + 0.0228799i \(0.992716\pi\)
\(72\) 0 0
\(73\) −0.425383 + 0.883317i −0.0497873 + 0.103384i −0.924378 0.381477i \(-0.875416\pi\)
0.874591 + 0.484861i \(0.161130\pi\)
\(74\) 5.02727 + 22.0259i 0.584409 + 2.56046i
\(75\) 0 0
\(76\) 14.5732 3.32625i 1.67167 0.381547i
\(77\) 2.21273 + 1.76459i 0.252164 + 0.201094i
\(78\) 0 0
\(79\) 4.74548 + 1.08313i 0.533909 + 0.121861i 0.480971 0.876737i \(-0.340284\pi\)
0.0529379 + 0.998598i \(0.483141\pi\)
\(80\) 0.821511 + 1.03014i 0.0918477 + 0.115173i
\(81\) 0 0
\(82\) −11.3647 + 5.47293i −1.25502 + 0.604384i
\(83\) 4.81847 6.04218i 0.528896 0.663215i −0.443575 0.896237i \(-0.646290\pi\)
0.972471 + 0.233022i \(0.0748615\pi\)
\(84\) 0 0
\(85\) −5.54073 11.5054i −0.600976 1.24794i
\(86\) 10.3646 1.11765
\(87\) 0 0
\(88\) −2.66166 −0.283734
\(89\) −2.02075 4.19613i −0.214199 0.444789i 0.765990 0.642852i \(-0.222249\pi\)
−0.980189 + 0.198063i \(0.936535\pi\)
\(90\) 0 0
\(91\) 11.5588 14.4943i 1.21169 1.51941i
\(92\) −0.471429 + 0.227028i −0.0491498 + 0.0236693i
\(93\) 0 0
\(94\) −1.76133 2.20864i −0.181668 0.227804i
\(95\) 8.18006 + 1.86705i 0.839256 + 0.191555i
\(96\) 0 0
\(97\) 7.82946 + 6.24379i 0.794961 + 0.633960i 0.934382 0.356273i \(-0.115953\pi\)
−0.139421 + 0.990233i \(0.544524\pi\)
\(98\) 10.6323 2.42675i 1.07402 0.245139i
\(99\) 0 0
\(100\) −1.04556 4.58089i −0.104556 0.458089i
\(101\) −6.58733 + 13.6787i −0.655463 + 1.36108i 0.262698 + 0.964878i \(0.415388\pi\)
−0.918162 + 0.396206i \(0.870327\pi\)
\(102\) 0 0
\(103\) −0.0464759 0.203624i −0.00457941 0.0200637i 0.972587 0.232541i \(-0.0747040\pi\)
−0.977166 + 0.212477i \(0.931847\pi\)
\(104\) 17.4350i 1.70964i
\(105\) 0 0
\(106\) −0.845657 0.674389i −0.0821375 0.0655025i
\(107\) −0.572801 + 2.50960i −0.0553747 + 0.242613i −0.995039 0.0994854i \(-0.968280\pi\)
0.939664 + 0.342098i \(0.111137\pi\)
\(108\) 0 0
\(109\) 0.718366 + 0.900802i 0.0688070 + 0.0862812i 0.815044 0.579399i \(-0.196713\pi\)
−0.746237 + 0.665681i \(0.768141\pi\)
\(110\) −3.28834 1.58358i −0.313531 0.150988i
\(111\) 0 0
\(112\) −1.47841 + 1.85387i −0.139697 + 0.175175i
\(113\) −3.40029 + 2.71164i −0.319872 + 0.255089i −0.770241 0.637753i \(-0.779864\pi\)
0.450369 + 0.892843i \(0.351293\pi\)
\(114\) 0 0
\(115\) −0.293702 −0.0273878
\(116\) 15.5262 9.56206i 1.44157 0.887815i
\(117\) 0 0
\(118\) 11.6731 + 24.2393i 1.07459 + 2.23141i
\(119\) 17.9676 14.3287i 1.64709 1.31351i
\(120\) 0 0
\(121\) −9.29380 + 4.47566i −0.844891 + 0.406878i
\(122\) −23.4598 11.2977i −2.12395 1.02284i
\(123\) 0 0
\(124\) 18.9282 + 4.32025i 1.69981 + 0.387970i
\(125\) 2.70151 11.8361i 0.241631 1.05865i
\(126\) 0 0
\(127\) 0.379767 0.0866794i 0.0336989 0.00769155i −0.205638 0.978628i \(-0.565927\pi\)
0.239337 + 0.970937i \(0.423070\pi\)
\(128\) 19.5541i 1.72835i
\(129\) 0 0
\(130\) −10.3731 + 21.5400i −0.909782 + 1.88918i
\(131\) 0.329927 0.685100i 0.0288258 0.0598575i −0.886059 0.463573i \(-0.846567\pi\)
0.914885 + 0.403716i \(0.132281\pi\)
\(132\) 0 0
\(133\) 15.0997i 1.30931i
\(134\) 29.3001 6.68756i 2.53114 0.577717i
\(135\) 0 0
\(136\) −4.80934 + 21.0711i −0.412397 + 1.80683i
\(137\) 14.5588 + 3.32295i 1.24384 + 0.283899i 0.793285 0.608850i \(-0.208369\pi\)
0.450555 + 0.892749i \(0.351226\pi\)
\(138\) 0 0
\(139\) −3.29720 1.58785i −0.279665 0.134679i 0.288794 0.957391i \(-0.406746\pi\)
−0.568459 + 0.822712i \(0.692460\pi\)
\(140\) −19.8324 + 9.55077i −1.67614 + 0.807187i
\(141\) 0 0
\(142\) −6.12036 + 4.88083i −0.513609 + 0.409590i
\(143\) −1.94588 4.04067i −0.162723 0.337898i
\(144\) 0 0
\(145\) 10.1807 1.05445i 0.845458 0.0875671i
\(146\) 2.27532 0.188307
\(147\) 0 0
\(148\) 25.7711 20.5518i 2.11837 1.68935i
\(149\) −9.67852 + 12.1365i −0.792896 + 0.994260i 0.206978 + 0.978346i \(0.433637\pi\)
−0.999873 + 0.0159140i \(0.994934\pi\)
\(150\) 0 0
\(151\) 5.93334 + 2.85734i 0.482848 + 0.232527i 0.659441 0.751757i \(-0.270793\pi\)
−0.176593 + 0.984284i \(0.556507\pi\)
\(152\) −8.85390 11.1024i −0.718146 0.900526i
\(153\) 0 0
\(154\) 1.46157 6.40357i 0.117777 0.516015i
\(155\) 8.52023 + 6.79466i 0.684361 + 0.545760i
\(156\) 0 0
\(157\) 10.0667i 0.803407i −0.915770 0.401704i \(-0.868418\pi\)
0.915770 0.401704i \(-0.131582\pi\)
\(158\) −2.51370 11.0133i −0.199980 0.876168i
\(159\) 0 0
\(160\) −3.97857 + 8.26159i −0.314534 + 0.653136i
\(161\) −0.117614 0.515302i −0.00926931 0.0406115i
\(162\) 0 0
\(163\) 1.44138 0.328985i 0.112897 0.0257681i −0.165699 0.986176i \(-0.552988\pi\)
0.278596 + 0.960408i \(0.410131\pi\)
\(164\) 14.3886 + 11.4745i 1.12356 + 0.896009i
\(165\) 0 0
\(166\) −17.4859 3.99104i −1.35717 0.309765i
\(167\) 7.77867 + 9.75414i 0.601931 + 0.754798i 0.985678 0.168640i \(-0.0539377\pi\)
−0.383746 + 0.923439i \(0.625366\pi\)
\(168\) 0 0
\(169\) −14.7555 + 7.10586i −1.13504 + 0.546605i
\(170\) −18.4781 + 23.1708i −1.41721 + 1.77712i
\(171\) 0 0
\(172\) −6.56123 13.6245i −0.500289 1.03886i
\(173\) 2.64519 0.201110 0.100555 0.994931i \(-0.467938\pi\)
0.100555 + 0.994931i \(0.467938\pi\)
\(174\) 0 0
\(175\) 4.74636 0.358791
\(176\) 0.248886 + 0.516817i 0.0187605 + 0.0389566i
\(177\) 0 0
\(178\) −6.73914 + 8.45061i −0.505120 + 0.633400i
\(179\) −5.72859 + 2.75874i −0.428175 + 0.206198i −0.635544 0.772065i \(-0.719224\pi\)
0.207369 + 0.978263i \(0.433510\pi\)
\(180\) 0 0
\(181\) −10.7455 13.4744i −0.798705 1.00154i −0.999759 0.0219643i \(-0.993008\pi\)
0.201054 0.979580i \(-0.435563\pi\)
\(182\) −41.9461 9.57391i −3.10925 0.709666i
\(183\) 0 0
\(184\) 0.388634 + 0.309925i 0.0286505 + 0.0228480i
\(185\) 18.0382 4.11710i 1.32619 0.302695i
\(186\) 0 0
\(187\) −1.23711 5.42012i −0.0904663 0.396359i
\(188\) −1.78831 + 3.71347i −0.130426 + 0.270833i
\(189\) 0 0
\(190\) −4.33301 18.9842i −0.314350 1.37726i
\(191\) 16.4482i 1.19015i −0.803671 0.595074i \(-0.797123\pi\)
0.803671 0.595074i \(-0.202877\pi\)
\(192\) 0 0
\(193\) −9.77612 7.79620i −0.703701 0.561183i 0.204933 0.978776i \(-0.434302\pi\)
−0.908634 + 0.417593i \(0.862874\pi\)
\(194\) 5.17160 22.6583i 0.371299 1.62677i
\(195\) 0 0
\(196\) −9.92070 12.4402i −0.708621 0.888583i
\(197\) −12.7451 6.13771i −0.908050 0.437294i −0.0792604 0.996854i \(-0.525256\pi\)
−0.828790 + 0.559560i \(0.810970\pi\)
\(198\) 0 0
\(199\) 8.05509 10.1008i 0.571010 0.716024i −0.409540 0.912292i \(-0.634311\pi\)
0.980550 + 0.196268i \(0.0628822\pi\)
\(200\) −3.48989 + 2.78310i −0.246773 + 0.196795i
\(201\) 0 0
\(202\) 35.2347 2.47911
\(203\) 5.92694 + 17.4398i 0.415989 + 1.22403i
\(204\) 0 0
\(205\) 4.48207 + 9.30711i 0.313041 + 0.650037i
\(206\) −0.378970 + 0.302219i −0.0264041 + 0.0210566i
\(207\) 0 0
\(208\) 3.38537 1.63031i 0.234733 0.113041i
\(209\) 3.29107 + 1.58490i 0.227648 + 0.109629i
\(210\) 0 0
\(211\) 13.4042 + 3.05943i 0.922787 + 0.210620i 0.657417 0.753527i \(-0.271649\pi\)
0.265369 + 0.964147i \(0.414506\pi\)
\(212\) −0.351164 + 1.53855i −0.0241181 + 0.105668i
\(213\) 0 0
\(214\) 5.82426 1.32935i 0.398138 0.0908724i
\(215\) 8.48813i 0.578886i
\(216\) 0 0
\(217\) −8.50931 + 17.6698i −0.577650 + 1.19950i
\(218\) 1.16018 2.40914i 0.0785772 0.163167i
\(219\) 0 0
\(220\) 5.32507i 0.359016i
\(221\) −35.5041 + 8.10357i −2.38826 + 0.545105i
\(222\) 0 0
\(223\) 3.00379 13.1605i 0.201149 0.881291i −0.769090 0.639141i \(-0.779290\pi\)
0.970239 0.242150i \(-0.0778527\pi\)
\(224\) −16.0883 3.67204i −1.07494 0.245349i
\(225\) 0 0
\(226\) 9.09384 + 4.37936i 0.604913 + 0.291311i
\(227\) −24.2997 + 11.7021i −1.61283 + 0.776698i −0.999910 0.0134459i \(-0.995720\pi\)
−0.612921 + 0.790144i \(0.710006\pi\)
\(228\) 0 0
\(229\) 8.53536 6.80672i 0.564032 0.449801i −0.299499 0.954097i \(-0.596819\pi\)
0.863531 + 0.504296i \(0.168248\pi\)
\(230\) 0.295744 + 0.614118i 0.0195008 + 0.0404937i
\(231\) 0 0
\(232\) −14.5840 9.34775i −0.957488 0.613710i
\(233\) 5.48306 0.359207 0.179604 0.983739i \(-0.442518\pi\)
0.179604 + 0.983739i \(0.442518\pi\)
\(234\) 0 0
\(235\) −1.80877 + 1.44245i −0.117991 + 0.0940949i
\(236\) 24.4737 30.6890i 1.59310 1.99768i
\(237\) 0 0
\(238\) −48.0531 23.1412i −3.11482 1.50002i
\(239\) 0.474367 + 0.594838i 0.0306843 + 0.0384769i 0.796937 0.604063i \(-0.206452\pi\)
−0.766253 + 0.642539i \(0.777881\pi\)
\(240\) 0 0
\(241\) −5.57063 + 24.4065i −0.358836 + 1.57216i 0.397263 + 0.917705i \(0.369960\pi\)
−0.756098 + 0.654458i \(0.772897\pi\)
\(242\) 18.7168 + 14.9262i 1.20316 + 0.959490i
\(243\) 0 0
\(244\) 37.9904i 2.43208i
\(245\) −1.98739 8.70734i −0.126970 0.556292i
\(246\) 0 0
\(247\) 10.3817 21.5579i 0.660573 1.37169i
\(248\) −4.10422 17.9817i −0.260618 1.14184i
\(249\) 0 0
\(250\) −27.4691 + 6.26964i −1.73730 + 0.396527i
\(251\) 8.20753 + 6.54528i 0.518054 + 0.413135i 0.847304 0.531108i \(-0.178224\pi\)
−0.329249 + 0.944243i \(0.606796\pi\)
\(252\) 0 0
\(253\) −0.124659 0.0284525i −0.00783722 0.00178879i
\(254\) −0.563650 0.706795i −0.0353666 0.0443483i
\(255\) 0 0
\(256\) 18.2123 8.77060i 1.13827 0.548162i
\(257\) 0.169465 0.212503i 0.0105710 0.0132556i −0.776518 0.630095i \(-0.783016\pi\)
0.787089 + 0.616840i \(0.211587\pi\)
\(258\) 0 0
\(259\) 14.4470 + 29.9995i 0.897691 + 1.86408i
\(260\) 34.8814 2.16325
\(261\) 0 0
\(262\) −1.76474 −0.109026
\(263\) −3.18585 6.61549i −0.196448 0.407929i 0.779354 0.626584i \(-0.215547\pi\)
−0.975802 + 0.218655i \(0.929833\pi\)
\(264\) 0 0
\(265\) −0.552293 + 0.692553i −0.0339271 + 0.0425432i
\(266\) 31.5727 15.2046i 1.93585 0.932255i
\(267\) 0 0
\(268\) −27.3391 34.2822i −1.67000 2.09412i
\(269\) 29.2703 + 6.68076i 1.78464 + 0.407333i 0.981962 0.189077i \(-0.0605495\pi\)
0.802680 + 0.596410i \(0.203407\pi\)
\(270\) 0 0
\(271\) −0.137209 0.109421i −0.00833488 0.00664684i 0.619314 0.785144i \(-0.287411\pi\)
−0.627648 + 0.778497i \(0.715982\pi\)
\(272\) 4.54111 1.03648i 0.275345 0.0628457i
\(273\) 0 0
\(274\) −7.71185 33.7878i −0.465890 2.04120i
\(275\) 0.498190 1.03450i 0.0300420 0.0623828i
\(276\) 0 0
\(277\) −0.652185 2.85741i −0.0391860 0.171685i 0.951548 0.307499i \(-0.0994922\pi\)
−0.990734 + 0.135814i \(0.956635\pi\)
\(278\) 8.49318i 0.509387i
\(279\) 0 0
\(280\) 16.3493 + 13.0381i 0.977059 + 0.779178i
\(281\) −2.26831 + 9.93812i −0.135316 + 0.592858i 0.861112 + 0.508415i \(0.169768\pi\)
−0.996428 + 0.0844434i \(0.973089\pi\)
\(282\) 0 0
\(283\) 11.9907 + 15.0359i 0.712773 + 0.893789i 0.997905 0.0646996i \(-0.0206089\pi\)
−0.285132 + 0.958488i \(0.592038\pi\)
\(284\) 10.2904 + 4.95560i 0.610623 + 0.294061i
\(285\) 0 0
\(286\) −6.48946 + 8.13752i −0.383730 + 0.481182i
\(287\) −14.5345 + 11.5909i −0.857947 + 0.684190i
\(288\) 0 0
\(289\) −28.1439 −1.65552
\(290\) −12.4562 20.2256i −0.731456 1.18769i
\(291\) 0 0
\(292\) −1.44037 2.99096i −0.0842912 0.175033i
\(293\) −8.69694 + 6.93558i −0.508081 + 0.405181i −0.843699 0.536817i \(-0.819626\pi\)
0.335618 + 0.941998i \(0.391055\pi\)
\(294\) 0 0
\(295\) 19.8509 9.55968i 1.15576 0.556586i
\(296\) −28.2131 13.5867i −1.63986 0.789713i
\(297\) 0 0
\(298\) 35.1227 + 8.01652i 2.03460 + 0.464385i
\(299\) −0.186376 + 0.816566i −0.0107784 + 0.0472232i
\(300\) 0 0
\(301\) 14.8925 3.39912i 0.858390 0.195922i
\(302\) 15.2836i 0.879470i
\(303\) 0 0
\(304\) −1.32786 + 2.75733i −0.0761581 + 0.158144i
\(305\) −9.25225 + 19.2125i −0.529782 + 1.10010i
\(306\) 0 0
\(307\) 3.09566i 0.176678i −0.996090 0.0883392i \(-0.971844\pi\)
0.996090 0.0883392i \(-0.0281559\pi\)
\(308\) −9.34288 + 2.13245i −0.532360 + 0.121508i
\(309\) 0 0
\(310\) 5.62787 24.6573i 0.319642 1.40044i
\(311\) 14.2761 + 3.25843i 0.809523 + 0.184768i 0.607199 0.794550i \(-0.292293\pi\)
0.202325 + 0.979318i \(0.435150\pi\)
\(312\) 0 0
\(313\) 6.02573 + 2.90184i 0.340594 + 0.164022i 0.596360 0.802717i \(-0.296613\pi\)
−0.255765 + 0.966739i \(0.582327\pi\)
\(314\) −21.0490 + 10.1366i −1.18786 + 0.572044i
\(315\) 0 0
\(316\) −12.8859 + 10.2762i −0.724889 + 0.578080i
\(317\) 2.41609 + 5.01705i 0.135701 + 0.281786i 0.957735 0.287653i \(-0.0928749\pi\)
−0.822034 + 0.569439i \(0.807161\pi\)
\(318\) 0 0
\(319\) 4.42323 + 0.538708i 0.247653 + 0.0301619i
\(320\) 23.9161 1.33695
\(321\) 0 0
\(322\) −0.959043 + 0.764811i −0.0534454 + 0.0426213i
\(323\) 18.4935 23.1901i 1.02900 1.29033i
\(324\) 0 0
\(325\) −6.77641 3.26335i −0.375888 0.181018i
\(326\) −2.13929 2.68259i −0.118484 0.148575i
\(327\) 0 0
\(328\) 3.89043 17.0451i 0.214813 0.941157i
\(329\) −3.25512 2.59587i −0.179461 0.143115i
\(330\) 0 0
\(331\) 34.6315i 1.90352i 0.306847 + 0.951759i \(0.400726\pi\)
−0.306847 + 0.951759i \(0.599274\pi\)
\(332\) 5.82297 + 25.5121i 0.319577 + 1.40016i
\(333\) 0 0
\(334\) 12.5627 26.0868i 0.687403 1.42741i
\(335\) −5.47680 23.9954i −0.299229 1.31101i
\(336\) 0 0
\(337\) 8.60703 1.96450i 0.468855 0.107013i 0.0184351 0.999830i \(-0.494132\pi\)
0.450419 + 0.892817i \(0.351274\pi\)
\(338\) 29.7161 + 23.6978i 1.61634 + 1.28899i
\(339\) 0 0
\(340\) 42.1560 + 9.62184i 2.28623 + 0.521818i
\(341\) 2.95809 + 3.70932i 0.160189 + 0.200871i
\(342\) 0 0
\(343\) −7.09048 + 3.41460i −0.382850 + 0.184371i
\(344\) −8.95700 + 11.2317i −0.482929 + 0.605574i
\(345\) 0 0
\(346\) −2.66358 5.53098i −0.143195 0.297347i
\(347\) −16.3136 −0.875759 −0.437880 0.899034i \(-0.644270\pi\)
−0.437880 + 0.899034i \(0.644270\pi\)
\(348\) 0 0
\(349\) −9.44632 −0.505650 −0.252825 0.967512i \(-0.581360\pi\)
−0.252825 + 0.967512i \(0.581360\pi\)
\(350\) −4.77936 9.92444i −0.255468 0.530484i
\(351\) 0 0
\(352\) −2.48901 + 3.12112i −0.132665 + 0.166356i
\(353\) 13.4827 6.49294i 0.717613 0.345584i −0.0391859 0.999232i \(-0.512476\pi\)
0.756799 + 0.653648i \(0.226762\pi\)
\(354\) 0 0
\(355\) 3.99717 + 5.01229i 0.212148 + 0.266025i
\(356\) 15.3747 + 3.50917i 0.814856 + 0.185986i
\(357\) 0 0
\(358\) 11.5368 + 9.20031i 0.609740 + 0.486252i
\(359\) −15.0352 + 3.43168i −0.793527 + 0.181117i −0.600024 0.799982i \(-0.704842\pi\)
−0.193503 + 0.981100i \(0.561985\pi\)
\(360\) 0 0
\(361\) 0.108713 + 0.476304i 0.00572175 + 0.0250686i
\(362\) −17.3542 + 36.0364i −0.912118 + 1.89403i
\(363\) 0 0
\(364\) 13.9684 + 61.1997i 0.732145 + 3.20774i
\(365\) 1.86338i 0.0975336i
\(366\) 0 0
\(367\) −26.0706 20.7906i −1.36088 1.08526i −0.987506 0.157580i \(-0.949631\pi\)
−0.373370 0.927683i \(-0.621798\pi\)
\(368\) 0.0238382 0.104442i 0.00124265 0.00544441i
\(369\) 0 0
\(370\) −26.7723 33.5714i −1.39182 1.74529i
\(371\) −1.43626 0.691666i −0.0745668 0.0359095i
\(372\) 0 0
\(373\) −2.02994 + 2.54547i −0.105106 + 0.131799i −0.831602 0.555371i \(-0.812576\pi\)
0.726496 + 0.687171i \(0.241148\pi\)
\(374\) −10.0875 + 8.04454i −0.521614 + 0.415973i
\(375\) 0 0
\(376\) 3.91554 0.201929
\(377\) 3.52876 28.9740i 0.181741 1.49224i
\(378\) 0 0
\(379\) −11.2522 23.3653i −0.577984 1.20020i −0.961024 0.276465i \(-0.910837\pi\)
0.383040 0.923732i \(-0.374877\pi\)
\(380\) −22.2122 + 17.7136i −1.13946 + 0.908689i
\(381\) 0 0
\(382\) −34.3924 + 16.5625i −1.75967 + 0.847412i
\(383\) −26.6637 12.8406i −1.36245 0.656123i −0.397272 0.917701i \(-0.630043\pi\)
−0.965182 + 0.261578i \(0.915757\pi\)
\(384\) 0 0
\(385\) −5.24422 1.19696i −0.267270 0.0610027i
\(386\) −6.45743 + 28.2918i −0.328675 + 1.44002i
\(387\) 0 0
\(388\) −33.0586 + 7.54542i −1.67830 + 0.383061i
\(389\) 11.6584i 0.591103i 0.955327 + 0.295551i \(0.0955033\pi\)
−0.955327 + 0.295551i \(0.904497\pi\)
\(390\) 0 0
\(391\) −0.450490 + 0.935452i −0.0227823 + 0.0473078i
\(392\) −6.55855 + 13.6190i −0.331257 + 0.687862i
\(393\) 0 0
\(394\) 32.8298i 1.65394i
\(395\) −9.01934 + 2.05861i −0.453812 + 0.103580i
\(396\) 0 0
\(397\) −4.79777 + 21.0204i −0.240793 + 1.05498i 0.699504 + 0.714628i \(0.253404\pi\)
−0.940297 + 0.340354i \(0.889453\pi\)
\(398\) −29.2314 6.67187i −1.46524 0.334430i
\(399\) 0 0
\(400\) 0.866730 + 0.417395i 0.0433365 + 0.0208697i
\(401\) 18.0240 8.67991i 0.900077 0.433454i 0.0741601 0.997246i \(-0.476372\pi\)
0.825917 + 0.563792i \(0.190658\pi\)
\(402\) 0 0
\(403\) 24.2976 19.3767i 1.21035 0.965222i
\(404\) −22.3050 46.3169i −1.10972 2.30435i
\(405\) 0 0
\(406\) 30.4977 29.9540i 1.51358 1.48659i
\(407\) 8.05497 0.399270
\(408\) 0 0
\(409\) −22.2527 + 17.7460i −1.10033 + 0.877482i −0.993160 0.116759i \(-0.962749\pi\)
−0.107167 + 0.994241i \(0.534178\pi\)
\(410\) 14.9475 18.7436i 0.738207 0.925682i
\(411\) 0 0
\(412\) 0.637178 + 0.306849i 0.0313915 + 0.0151173i
\(413\) 24.7219 + 31.0003i 1.21649 + 1.52543i
\(414\) 0 0
\(415\) −3.26848 + 14.3201i −0.160443 + 0.702947i
\(416\) 20.4446 + 16.3040i 1.00238 + 0.799372i
\(417\) 0 0
\(418\) 8.47740i 0.414643i
\(419\) −2.46307 10.7914i −0.120329 0.527196i −0.998781 0.0493649i \(-0.984280\pi\)
0.878452 0.477831i \(-0.158577\pi\)
\(420\) 0 0
\(421\) −11.6154 + 24.1196i −0.566099 + 1.17552i 0.399802 + 0.916602i \(0.369079\pi\)
−0.965900 + 0.258914i \(0.916635\pi\)
\(422\) −7.10029 31.1084i −0.345637 1.51433i
\(423\) 0 0
\(424\) 1.46162 0.333605i 0.0709824 0.0162013i
\(425\) −7.28948 5.81316i −0.353592 0.281980i
\(426\) 0 0
\(427\) −37.4136 8.53941i −1.81057 0.413251i
\(428\) −5.43445 6.81459i −0.262684 0.329396i
\(429\) 0 0
\(430\) −17.7483 + 8.54714i −0.855900 + 0.412180i
\(431\) −20.6592 + 25.9059i −0.995120 + 1.24784i −0.0264091 + 0.999651i \(0.508407\pi\)
−0.968711 + 0.248190i \(0.920164\pi\)
\(432\) 0 0
\(433\) −2.30859 4.79384i −0.110944 0.230377i 0.838103 0.545512i \(-0.183665\pi\)
−0.949047 + 0.315135i \(0.897950\pi\)
\(434\) 45.5152 2.18480
\(435\) 0 0
\(436\) −3.90131 −0.186839
\(437\) −0.295989 0.614628i −0.0141591 0.0294016i
\(438\) 0 0
\(439\) 19.4239 24.3568i 0.927053 1.16249i −0.0593651 0.998236i \(-0.518908\pi\)
0.986418 0.164252i \(-0.0525210\pi\)
\(440\) 4.55781 2.19493i 0.217285 0.104639i
\(441\) 0 0
\(442\) 52.6951 + 66.0776i 2.50645 + 3.14299i
\(443\) 12.5788 + 2.87103i 0.597636 + 0.136407i 0.510629 0.859801i \(-0.329413\pi\)
0.0870071 + 0.996208i \(0.472270\pi\)
\(444\) 0 0
\(445\) 6.92065 + 5.51903i 0.328070 + 0.261627i
\(446\) −30.5427 + 6.97117i −1.44624 + 0.330094i
\(447\) 0 0
\(448\) 9.57731 + 41.9609i 0.452485 + 1.98247i
\(449\) 14.6872 30.4983i 0.693132 1.43930i −0.195509 0.980702i \(-0.562636\pi\)
0.888642 0.458602i \(-0.151650\pi\)
\(450\) 0 0
\(451\) 1.00074 + 4.38451i 0.0471228 + 0.206458i
\(452\) 14.7264i 0.692671i
\(453\) 0 0
\(454\) 48.9373 + 39.0262i 2.29674 + 1.83159i
\(455\) −7.84058 + 34.3518i −0.367572 + 1.61044i
\(456\) 0 0
\(457\) 4.76027 + 5.96919i 0.222676 + 0.279227i 0.880603 0.473855i \(-0.157138\pi\)
−0.657927 + 0.753082i \(0.728566\pi\)
\(458\) −22.8273 10.9930i −1.06665 0.513670i
\(459\) 0 0
\(460\) 0.620054 0.777523i 0.0289102 0.0362522i
\(461\) 13.2633 10.5771i 0.617731 0.492624i −0.263908 0.964548i \(-0.585012\pi\)
0.881639 + 0.471924i \(0.156440\pi\)
\(462\) 0 0
\(463\) −9.31660 −0.432979 −0.216490 0.976285i \(-0.569461\pi\)
−0.216490 + 0.976285i \(0.569461\pi\)
\(464\) −0.451342 + 3.70588i −0.0209530 + 0.172041i
\(465\) 0 0
\(466\) −5.52118 11.4648i −0.255764 0.531099i
\(467\) 19.8211 15.8068i 0.917212 0.731452i −0.0463531 0.998925i \(-0.514760\pi\)
0.963565 + 0.267473i \(0.0861885\pi\)
\(468\) 0 0
\(469\) 39.9069 19.2182i 1.84273 0.887413i
\(470\) 4.83744 + 2.32959i 0.223135 + 0.107456i
\(471\) 0 0
\(472\) −36.3550 8.29778i −1.67337 0.381936i
\(473\) 0.822293 3.60270i 0.0378091 0.165652i
\(474\) 0 0
\(475\) 5.97236 1.36315i 0.274031 0.0625458i
\(476\) 77.8162i 3.56670i
\(477\) 0 0
\(478\) 0.766115 1.59086i 0.0350413 0.0727640i
\(479\) 9.99005 20.7446i 0.456457 0.947843i −0.538024 0.842929i \(-0.680829\pi\)
0.994481 0.104914i \(-0.0334566\pi\)
\(480\) 0 0
\(481\) 52.7634i 2.40580i
\(482\) 56.6424 12.9282i 2.57999 0.588866i
\(483\) 0 0
\(484\) 7.77228 34.0526i 0.353285 1.54784i
\(485\) −18.5560 4.23530i −0.842586 0.192315i
\(486\) 0 0
\(487\) −1.38231 0.665685i −0.0626384 0.0301651i 0.402302 0.915507i \(-0.368210\pi\)
−0.464941 + 0.885342i \(0.653924\pi\)
\(488\) 32.5166 15.6592i 1.47196 0.708857i
\(489\) 0 0
\(490\) −16.2055 + 12.9234i −0.732089 + 0.583821i
\(491\) 8.74266 + 18.1543i 0.394551 + 0.819293i 0.999731 + 0.0232042i \(0.00738680\pi\)
−0.605180 + 0.796089i \(0.706899\pi\)
\(492\) 0 0
\(493\) 12.2570 34.0432i 0.552027 1.53323i
\(494\) −55.5305 −2.49843
\(495\) 0 0
\(496\) −3.10776 + 2.47835i −0.139542 + 0.111281i
\(497\) −7.19342 + 9.02026i −0.322669 + 0.404614i
\(498\) 0 0
\(499\) 31.2688 + 15.0583i 1.39978 + 0.674100i 0.973117 0.230309i \(-0.0739738\pi\)
0.426666 + 0.904409i \(0.359688\pi\)
\(500\) 25.6306 + 32.1398i 1.14624 + 1.43734i
\(501\) 0 0
\(502\) 5.42132 23.7524i 0.241966 1.06012i
\(503\) −22.5450 17.9790i −1.00523 0.801646i −0.0250384 0.999686i \(-0.507971\pi\)
−0.980194 + 0.198041i \(0.936542\pi\)
\(504\) 0 0
\(505\) 28.8556i 1.28406i
\(506\) 0.0660322 + 0.289306i 0.00293549 + 0.0128612i
\(507\) 0 0
\(508\) −0.572285 + 1.18836i −0.0253910 + 0.0527250i
\(509\) −0.690039 3.02326i −0.0305854 0.134004i 0.957330 0.288997i \(-0.0933216\pi\)
−0.987916 + 0.154993i \(0.950464\pi\)
\(510\) 0 0
\(511\) 3.26931 0.746199i 0.144626 0.0330099i
\(512\) −6.10192 4.86612i −0.269669 0.215054i
\(513\) 0 0
\(514\) −0.614978 0.140365i −0.0271255 0.00619122i
\(515\) 0.247503 + 0.310359i 0.0109063 + 0.0136760i
\(516\) 0 0
\(517\) −0.907452 + 0.437006i −0.0399097 + 0.0192195i
\(518\) 48.1802 60.4160i 2.11691 2.65453i
\(519\) 0 0
\(520\) −14.3777 29.8556i −0.630503 1.30925i
\(521\) −33.4475 −1.46536 −0.732680 0.680573i \(-0.761731\pi\)
−0.732680 + 0.680573i \(0.761731\pi\)
\(522\) 0 0
\(523\) −23.5081 −1.02794 −0.513969 0.857809i \(-0.671825\pi\)
−0.513969 + 0.857809i \(0.671825\pi\)
\(524\) 1.11715 + 2.31979i 0.0488029 + 0.101340i
\(525\) 0 0
\(526\) −10.6247 + 13.3230i −0.463259 + 0.580909i
\(527\) 34.7099 16.7154i 1.51199 0.728134i
\(528\) 0 0
\(529\) −14.3254 17.9635i −0.622842 0.781020i
\(530\) 2.00423 + 0.457453i 0.0870582 + 0.0198705i
\(531\) 0 0
\(532\) −39.9737 31.8779i −1.73308 1.38208i
\(533\) 28.7204 6.55523i 1.24402 0.283939i
\(534\) 0 0
\(535\) −1.08867 4.76979i −0.0470675 0.206216i
\(536\) −18.0738 + 37.5307i −0.780671 + 1.62108i
\(537\) 0 0
\(538\) −15.5046 67.9302i −0.668452 2.92868i
\(539\) 3.88827i 0.167480i
\(540\) 0 0
\(541\) 25.6227 + 20.4334i 1.10161 + 0.878501i 0.993294 0.115616i \(-0.0368841\pi\)
0.108312 + 0.994117i \(0.465456\pi\)
\(542\) −0.0906310 + 0.397081i −0.00389294 + 0.0170561i
\(543\) 0 0
\(544\) 20.2110 + 25.3438i 0.866541 + 1.08661i
\(545\) −1.97297 0.950132i −0.0845127 0.0406992i
\(546\) 0 0
\(547\) −17.5465 + 22.0026i −0.750235 + 0.940765i −0.999618 0.0276401i \(-0.991201\pi\)
0.249383 + 0.968405i \(0.419772\pi\)
\(548\) −39.5330 + 31.5265i −1.68876 + 1.34675i
\(549\) 0 0
\(550\) −2.66475 −0.113625
\(551\) 12.4666 + 20.2423i 0.531094 + 0.862353i
\(552\) 0 0
\(553\) −7.22368 15.0001i −0.307182 0.637870i
\(554\) −5.31800 + 4.24097i −0.225940 + 0.180181i
\(555\) 0 0
\(556\) 11.1645 5.37653i 0.473480 0.228016i
\(557\) 11.9640 + 5.76157i 0.506932 + 0.244125i 0.669826 0.742518i \(-0.266369\pi\)
−0.162894 + 0.986644i \(0.552083\pi\)
\(558\) 0 0
\(559\) −23.5992 5.38636i −0.998139 0.227819i
\(560\) 1.00284 4.39373i 0.0423778 0.185669i
\(561\) 0 0
\(562\) 23.0643 5.26426i 0.972907 0.222060i
\(563\) 12.5201i 0.527658i 0.964569 + 0.263829i \(0.0849855\pi\)
−0.964569 + 0.263829i \(0.915014\pi\)
\(564\) 0 0
\(565\) 3.58649 7.44743i 0.150885 0.313316i
\(566\) 19.3653 40.2124i 0.813983 1.69025i
\(567\) 0 0
\(568\) 10.8504i 0.455271i
\(569\) −12.6153 + 2.87936i −0.528860 + 0.120709i −0.478610 0.878028i \(-0.658859\pi\)
−0.0502506 + 0.998737i \(0.516002\pi\)
\(570\) 0 0
\(571\) −4.56081 + 19.9822i −0.190864 + 0.836229i 0.785286 + 0.619133i \(0.212516\pi\)
−0.976150 + 0.217096i \(0.930341\pi\)
\(572\) 14.8051 + 3.37916i 0.619030 + 0.141290i
\(573\) 0 0
\(574\) 38.8717 + 18.7196i 1.62247 + 0.781342i
\(575\) −0.193200 + 0.0930400i −0.00805698 + 0.00388004i
\(576\) 0 0
\(577\) 1.84202 1.46896i 0.0766841 0.0611536i −0.584398 0.811468i \(-0.698669\pi\)
0.661082 + 0.750314i \(0.270098\pi\)
\(578\) 28.3395 + 58.8476i 1.17877 + 2.44774i
\(579\) 0 0
\(580\) −18.7016 + 29.1776i −0.776544 + 1.21153i
\(581\) −26.4337 −1.09665
\(582\) 0 0
\(583\) −0.301506 + 0.240443i −0.0124871 + 0.00995814i
\(584\) −1.96631 + 2.46567i −0.0813663 + 0.102030i
\(585\) 0 0
\(586\) 23.2594 + 11.2011i 0.960837 + 0.462715i
\(587\) −5.07686 6.36618i −0.209544 0.262760i 0.665942 0.746004i \(-0.268030\pi\)
−0.875486 + 0.483244i \(0.839459\pi\)
\(588\) 0 0
\(589\) −5.63255 + 24.6778i −0.232085 + 1.01683i
\(590\) −39.9778 31.8812i −1.64586 1.31253i
\(591\) 0 0
\(592\) 6.74864i 0.277367i
\(593\) 7.80289 + 34.1867i 0.320426 + 1.40388i 0.836797 + 0.547514i \(0.184426\pi\)
−0.516370 + 0.856365i \(0.672717\pi\)
\(594\) 0 0
\(595\) −18.9515 + 39.3532i −0.776936 + 1.61333i
\(596\) −11.6962 51.2444i −0.479095 2.09905i
\(597\) 0 0
\(598\) 1.89508 0.432539i 0.0774954 0.0176878i
\(599\) −20.1222 16.0469i −0.822171 0.655659i 0.119261 0.992863i \(-0.461948\pi\)
−0.941432 + 0.337204i \(0.890519\pi\)
\(600\) 0 0
\(601\) 0.871592 + 0.198935i 0.0355530 + 0.00811473i 0.240260 0.970708i \(-0.422767\pi\)
−0.204707 + 0.978823i \(0.565624\pi\)
\(602\) −22.1034 27.7168i −0.900869 1.12965i
\(603\) 0 0
\(604\) −20.0906 + 9.67512i −0.817475 + 0.393675i
\(605\) 12.2238 15.3282i 0.496969 0.623180i
\(606\) 0 0
\(607\) −1.84678 3.83488i −0.0749585 0.155653i 0.860122 0.510088i \(-0.170387\pi\)
−0.935080 + 0.354436i \(0.884673\pi\)
\(608\) −21.2985 −0.863769
\(609\) 0 0
\(610\) 49.4891 2.00375
\(611\) 2.86257 + 5.94419i 0.115807 + 0.240476i
\(612\) 0 0
\(613\) 8.60900 10.7953i 0.347714 0.436020i −0.576964 0.816770i \(-0.695763\pi\)
0.924678 + 0.380750i \(0.124334\pi\)
\(614\) −6.47288 + 3.11718i −0.261224 + 0.125799i
\(615\) 0 0
\(616\) 5.67622 + 7.11775i 0.228701 + 0.286782i
\(617\) −4.99156 1.13929i −0.200953 0.0458662i 0.120860 0.992670i \(-0.461435\pi\)
−0.321812 + 0.946803i \(0.604292\pi\)
\(618\) 0 0
\(619\) −31.5229 25.1387i −1.26701 1.01041i −0.998894 0.0470219i \(-0.985027\pi\)
−0.268118 0.963386i \(-0.586402\pi\)
\(620\) −35.9753 + 8.21113i −1.44480 + 0.329767i
\(621\) 0 0
\(622\) −7.56212 33.1318i −0.303213 1.32846i
\(623\) −6.91178 + 14.3525i −0.276915 + 0.575019i
\(624\) 0 0
\(625\) 3.59062 + 15.7315i 0.143625 + 0.629261i
\(626\) 15.5216i 0.620366i
\(627\) 0 0
\(628\) 26.6497 + 21.2524i 1.06344 + 0.848064i
\(629\) 14.5545 63.7673i 0.580325 2.54257i
\(630\) 0 0
\(631\) 1.53439 + 1.92407i 0.0610832 + 0.0765959i 0.811434 0.584443i \(-0.198687\pi\)
−0.750351 + 0.661039i \(0.770116\pi\)
\(632\) 14.1069 + 6.79355i 0.561144 + 0.270233i
\(633\) 0 0
\(634\) 8.05756 10.1039i 0.320007 0.401276i
\(635\) −0.578832 + 0.461603i −0.0229702 + 0.0183182i
\(636\) 0 0
\(637\) −25.4698 −1.00915
\(638\) −3.32756 9.79123i −0.131739 0.387638i
\(639\) 0 0
\(640\) −16.1252 33.4843i −0.637404 1.32358i
\(641\) −13.3801 + 10.6703i −0.528482 + 0.421450i −0.851041 0.525099i \(-0.824028\pi\)
0.322559 + 0.946549i \(0.395457\pi\)
\(642\) 0 0
\(643\) −36.0341 + 17.3531i −1.42105 + 0.684340i −0.977309 0.211816i \(-0.932062\pi\)
−0.443738 + 0.896157i \(0.646348\pi\)
\(644\) 1.61248 + 0.776527i 0.0635404 + 0.0305995i
\(645\) 0 0
\(646\) −67.1115 15.3178i −2.64047 0.602669i
\(647\) −1.67703 + 7.34755i −0.0659308 + 0.288862i −0.997136 0.0756346i \(-0.975902\pi\)
0.931205 + 0.364496i \(0.118759\pi\)
\(648\) 0 0
\(649\) 9.35160 2.13444i 0.367082 0.0837841i
\(650\) 17.4552i 0.684650i
\(651\) 0 0
\(652\) −2.17206 + 4.51033i −0.0850645 + 0.176638i
\(653\) −17.3043 + 35.9328i −0.677170 + 1.40616i 0.224820 + 0.974400i \(0.427821\pi\)
−0.901990 + 0.431757i \(0.857894\pi\)
\(654\) 0 0
\(655\) 1.44524i 0.0564700i
\(656\) −3.67344 + 0.838440i −0.143424 + 0.0327356i
\(657\) 0 0
\(658\) −2.15011 + 9.42023i −0.0838199 + 0.367239i
\(659\) −8.75482 1.99823i −0.341039 0.0778400i 0.0485712 0.998820i \(-0.484533\pi\)
−0.389610 + 0.920980i \(0.627390\pi\)
\(660\) 0 0
\(661\) −22.0949 10.6403i −0.859390 0.413860i −0.0483357 0.998831i \(-0.515392\pi\)
−0.811054 + 0.584971i \(0.801106\pi\)
\(662\) 72.4129 34.8722i 2.81441 1.35535i
\(663\) 0 0
\(664\) 19.4361 15.4998i 0.754266 0.601507i
\(665\) −12.4519 25.8566i −0.482863 1.00267i
\(666\) 0 0
\(667\) −0.583116 0.593701i −0.0225783 0.0229882i
\(668\) −42.2444 −1.63449
\(669\) 0 0
\(670\) −44.6585 + 35.6140i −1.72531 + 1.37589i
\(671\) −5.78824 + 7.25822i −0.223453 + 0.280201i
\(672\) 0 0
\(673\) 19.2378 + 9.26446i 0.741564 + 0.357119i 0.766221 0.642577i \(-0.222135\pi\)
−0.0246564 + 0.999696i \(0.507849\pi\)
\(674\) −12.7745 16.0188i −0.492057 0.617020i
\(675\) 0 0
\(676\) 12.3398 54.0642i 0.474608 2.07939i
\(677\) 6.90970 + 5.51030i 0.265561 + 0.211778i 0.747213 0.664585i \(-0.231392\pi\)
−0.481652 + 0.876363i \(0.659963\pi\)
\(678\) 0 0
\(679\) 34.2528i 1.31450i
\(680\) −9.14070 40.0480i −0.350530 1.53577i
\(681\) 0 0
\(682\) 4.77738 9.92034i 0.182935 0.379869i
\(683\) 7.09180 + 31.0712i 0.271360 + 1.18891i 0.908409 + 0.418083i \(0.137298\pi\)
−0.637049 + 0.770823i \(0.719845\pi\)
\(684\) 0 0
\(685\) −27.6706 + 6.31564i −1.05724 + 0.241308i
\(686\) 14.2795 + 11.3876i 0.545196 + 0.434779i
\(687\) 0 0
\(688\) 3.01843 + 0.688936i 0.115076 + 0.0262654i
\(689\) 1.57500 + 1.97499i 0.0600028 + 0.0752412i
\(690\) 0 0
\(691\) 6.23726 3.00371i 0.237277 0.114266i −0.311467 0.950257i \(-0.600820\pi\)
0.548744 + 0.835990i \(0.315106\pi\)
\(692\) −5.58445 + 7.00267i −0.212289 + 0.266202i
\(693\) 0 0
\(694\) 16.4270 + 34.1110i 0.623560 + 1.29484i
\(695\) 6.95551 0.263838
\(696\) 0 0
\(697\) 36.5183 1.38323
\(698\) 9.51199 + 19.7518i 0.360034 + 0.747618i
\(699\) 0 0
\(700\) −10.0204 + 12.5652i −0.378735 + 0.474918i
\(701\) −40.3171 + 19.4157i −1.52276 + 0.733321i −0.993359 0.115052i \(-0.963296\pi\)
−0.529398 + 0.848374i \(0.677582\pi\)
\(702\) 0 0
\(703\) 26.7945 + 33.5992i 1.01057 + 1.26722i
\(704\) 10.1509 + 2.31688i 0.382577 + 0.0873208i
\(705\) 0 0
\(706\) −27.1529 21.6537i −1.02191 0.814949i
\(707\) 50.6274 11.5554i 1.90404 0.434584i
\(708\) 0 0
\(709\) 1.40825 + 6.16993i 0.0528878 + 0.231717i 0.994463 0.105086i \(-0.0335117\pi\)
−0.941575 + 0.336802i \(0.890655\pi\)
\(710\) 6.45552 13.4050i 0.242272 0.503082i
\(711\) 0 0
\(712\) −3.33369 14.6059i −0.124935 0.547378i
\(713\) 0.886046i 0.0331827i
\(714\) 0 0
\(715\) 6.66424 + 5.31456i 0.249229 + 0.198753i
\(716\) 4.79074 20.9896i 0.179038 0.784418i
\(717\) 0 0
\(718\) 22.3152 + 27.9824i 0.832797 + 1.04429i
\(719\) 41.6772 + 20.0707i 1.55430 + 0.748511i 0.996667 0.0815773i \(-0.0259958\pi\)
0.557632 + 0.830088i \(0.311710\pi\)
\(720\) 0 0
\(721\) −0.445413 + 0.558531i −0.0165881 + 0.0208008i
\(722\) 0.886461 0.706929i 0.0329907 0.0263092i
\(723\) 0 0
\(724\) 58.3566 2.16881
\(725\) 6.36290 3.91870i 0.236312 0.145537i
\(726\) 0 0
\(727\) −9.14331 18.9863i −0.339107 0.704162i 0.659774 0.751464i \(-0.270652\pi\)
−0.998881 + 0.0473020i \(0.984938\pi\)
\(728\) 46.6242 37.1816i 1.72801 1.37804i
\(729\) 0 0
\(730\) −3.89624 + 1.87633i −0.144206 + 0.0694461i
\(731\) −27.0351 13.0194i −0.999928 0.481540i
\(732\) 0 0
\(733\) 30.5332 + 6.96900i 1.12777 + 0.257406i 0.745409 0.666607i \(-0.232254\pi\)
0.382360 + 0.924013i \(0.375111\pi\)
\(734\) −17.2205 + 75.4477i −0.635619 + 2.78483i
\(735\) 0 0
\(736\) 0.726850 0.165899i 0.0267920 0.00611511i
\(737\) 10.7152i 0.394698i
\(738\) 0 0
\(739\) 20.2629 42.0764i 0.745383 1.54780i −0.0886328 0.996064i \(-0.528250\pi\)
0.834016 0.551740i \(-0.186036\pi\)
\(740\) −27.1824 + 56.4448i −0.999245 + 2.07495i
\(741\) 0 0
\(742\) 3.69963i 0.135818i
\(743\) 7.43840 1.69777i 0.272889 0.0622850i −0.0838866 0.996475i \(-0.526733\pi\)
0.356775 + 0.934190i \(0.383876\pi\)
\(744\) 0 0
\(745\) 6.56515 28.7638i 0.240529 1.05382i
\(746\) 7.36652 + 1.68136i 0.269707 + 0.0615590i
\(747\) 0 0
\(748\) 16.9606 + 8.16778i 0.620140 + 0.298643i
\(749\) 7.93267 3.82017i 0.289854 0.139586i
\(750\) 0 0
\(751\) −41.1510 + 32.8168i −1.50162 + 1.19750i −0.576923 + 0.816799i \(0.695747\pi\)
−0.924697 + 0.380703i \(0.875682\pi\)
\(752\) −0.366134 0.760285i −0.0133515 0.0277247i
\(753\) 0 0
\(754\) −64.1366 + 21.7969i −2.33572 + 0.793796i
\(755\) −12.5165 −0.455522
\(756\) 0 0
\(757\) 13.7753 10.9854i 0.500671 0.399272i −0.340329 0.940306i \(-0.610539\pi\)
0.841000 + 0.541034i \(0.181967\pi\)
\(758\) −37.5255 + 47.0555i −1.36299 + 1.70913i
\(759\) 0 0
\(760\) 24.3169 + 11.7104i 0.882068 + 0.424782i
\(761\) 0.853678 + 1.07048i 0.0309458 + 0.0388048i 0.797064 0.603895i \(-0.206386\pi\)
−0.766118 + 0.642700i \(0.777814\pi\)
\(762\) 0 0
\(763\) 0.876929 3.84208i 0.0317469 0.139092i
\(764\) 43.5436 + 34.7249i 1.57535 + 1.25630i
\(765\) 0 0
\(766\) 68.6826i 2.48160i
\(767\) −13.9815 61.2568i −0.504842 2.21186i
\(768\) 0 0
\(769\) −6.94776 + 14.4272i −0.250543 + 0.520257i −0.987871 0.155278i \(-0.950373\pi\)
0.737328 + 0.675535i \(0.236087\pi\)
\(770\) 2.77789 + 12.1707i 0.100108 + 0.438602i
\(771\) 0 0
\(772\) 41.2781 9.42146i 1.48563 0.339086i
\(773\) −26.5907 21.2053i −0.956399 0.762703i 0.0150656 0.999887i \(-0.495204\pi\)
−0.971465 + 0.237184i \(0.923776\pi\)
\(774\) 0 0
\(775\) 7.75712 + 1.77051i 0.278644 + 0.0635987i
\(776\) 20.0846 + 25.1853i 0.720995 + 0.904099i
\(777\) 0 0
\(778\) 24.3771 11.7394i 0.873963 0.420878i
\(779\) −14.9600 + 18.7592i −0.535996 + 0.672118i
\(780\) 0 0
\(781\) 1.21099 + 2.51464i 0.0433325 + 0.0899809i
\(782\) 2.40961 0.0861675
\(783\) 0 0
\(784\) 3.25768 0.116346
\(785\) 8.30143 + 17.2381i 0.296291 + 0.615254i
\(786\) 0 0
\(787\) −31.1762 + 39.0937i −1.11131 + 1.39354i −0.201014 + 0.979588i \(0.564424\pi\)
−0.910298 + 0.413953i \(0.864148\pi\)
\(788\) 43.1556 20.7826i 1.53735 0.740350i
\(789\) 0 0
\(790\) 13.3865 + 16.7861i 0.476270 + 0.597224i
\(791\) 14.5028 + 3.31017i 0.515660 + 0.117696i
\(792\) 0 0
\(793\) 47.5444 + 37.9154i 1.68835 + 1.34641i
\(794\) 48.7838 11.1346i 1.73127 0.395152i
\(795\) 0 0
\(796\) 9.73433 + 42.6489i 0.345024 + 1.51165i
\(797\) −9.48100 + 19.6875i −0.335834 + 0.697367i −0.998679 0.0513901i \(-0.983635\pi\)
0.662844 + 0.748757i \(0.269349\pi\)
\(798\) 0 0
\(799\) 1.81990 + 7.97349i 0.0643833 + 0.282082i
\(800\) 6.69490i 0.236700i
\(801\) 0 0
\(802\) −36.2986 28.9472i −1.28175 1.02216i
\(803\) 0.180516 0.790891i 0.00637026 0.0279099i
\(804\) 0 0
\(805\) 0.626344 + 0.785411i 0.0220757 + 0.0276821i
\(806\) −64.9823 31.2938i −2.28891 1.10228i
\(807\) 0 0
\(808\) −30.4495 + 38.1825i −1.07121 + 1.34325i
\(809\) −3.61100 + 2.87968i −0.126956 + 0.101244i −0.684909 0.728628i \(-0.740158\pi\)
0.557953 + 0.829872i \(0.311587\pi\)
\(810\) 0 0
\(811\) −5.86604 −0.205985 −0.102992 0.994682i \(-0.532842\pi\)
−0.102992 + 0.994682i \(0.532842\pi\)
\(812\) −58.6816 21.1279i −2.05932 0.741443i
\(813\) 0 0
\(814\) −8.11096 16.8426i −0.284289 0.590332i
\(815\) −2.19691 + 1.75198i −0.0769544 + 0.0613691i
\(816\) 0 0
\(817\) 17.7631 8.55424i 0.621451 0.299275i
\(818\) 59.5135 + 28.6602i 2.08084 + 1.00208i
\(819\) 0 0
\(820\) −34.1013 7.78341i −1.19087 0.271808i
\(821\) 2.65143 11.6167i 0.0925354 0.405424i −0.907353 0.420370i \(-0.861900\pi\)
0.999888 + 0.0149456i \(0.00475750\pi\)
\(822\) 0 0
\(823\) 9.13650 2.08535i 0.318478 0.0726906i −0.0602935 0.998181i \(-0.519204\pi\)
0.378772 + 0.925490i \(0.376347\pi\)
\(824\) 0.671850i 0.0234050i
\(825\) 0 0
\(826\) 39.9265 82.9083i 1.38922 2.88475i
\(827\) −16.9637 + 35.2256i −0.589887 + 1.22491i 0.365845 + 0.930676i \(0.380780\pi\)
−0.955732 + 0.294238i \(0.904934\pi\)
\(828\) 0 0
\(829\) 6.57154i 0.228239i 0.993467 + 0.114119i \(0.0364047\pi\)
−0.993467 + 0.114119i \(0.963595\pi\)
\(830\) 33.2340 7.58544i 1.15357 0.263294i
\(831\) 0 0
\(832\) 15.1765 66.4928i 0.526152 2.30522i
\(833\) −30.7816 7.02569i −1.06652 0.243426i
\(834\) 0 0
\(835\) −21.3639 10.2883i −0.739327 0.356041i
\(836\) −11.1437 + 5.36654i −0.385414 + 0.185606i
\(837\) 0 0
\(838\) −20.0842 + 16.0166i −0.693798 + 0.553285i
\(839\) −8.06762 16.7526i −0.278525 0.578363i 0.714036 0.700109i \(-0.246865\pi\)
−0.992561 + 0.121745i \(0.961151\pi\)
\(840\) 0 0
\(841\) 22.3442 + 18.4861i 0.770490 + 0.637452i
\(842\) 62.1291 2.14111
\(843\) 0 0
\(844\) −36.3979 + 29.0264i −1.25287 + 0.999130i
\(845\) 19.4074 24.3361i 0.667634 0.837187i
\(846\) 0 0
\(847\) 31.7885 + 15.3085i 1.09227 + 0.526008i
\(848\) −0.201449 0.252609i −0.00691779 0.00867463i
\(849\) 0 0
\(850\) −4.81492 + 21.0956i −0.165151 + 0.723572i
\(851\) −1.17612 0.937925i −0.0403169 0.0321517i
\(852\) 0 0
\(853\) 15.0581i 0.515578i −0.966201 0.257789i \(-0.917006\pi\)
0.966201 0.257789i \(-0.0829939\pi\)
\(854\) 19.8181 + 86.8290i 0.678163 + 2.97123i
\(855\) 0 0
\(856\) −3.59270 + 7.46032i −0.122796 + 0.254989i
\(857\) 1.46838 + 6.43339i 0.0501589 + 0.219760i 0.993795 0.111223i \(-0.0354767\pi\)
−0.943637 + 0.330983i \(0.892620\pi\)
\(858\) 0 0
\(859\) −10.3600 + 2.36460i −0.353479 + 0.0806792i −0.395573 0.918434i \(-0.629454\pi\)
0.0420946 + 0.999114i \(0.486597\pi\)
\(860\) 22.4708 + 17.9199i 0.766249 + 0.611063i
\(861\) 0 0
\(862\) 74.9709 + 17.1116i 2.55352 + 0.582824i
\(863\) 25.7393 + 32.2760i 0.876175 + 1.09869i 0.994398 + 0.105701i \(0.0337088\pi\)
−0.118223 + 0.992987i \(0.537720\pi\)
\(864\) 0 0
\(865\) −4.52961 + 2.18135i −0.154011 + 0.0741680i
\(866\) −7.69907 + 9.65433i −0.261625 + 0.328067i
\(867\) 0 0
\(868\) −28.8130 59.8308i −0.977977 2.03079i
\(869\) −4.02759 −0.136627
\(870\) 0 0
\(871\) −70.1888 −2.37826
\(872\) 1.60807 + 3.33919i 0.0544561 + 0.113079i
\(873\) 0 0
\(874\) −0.987113 + 1.23780i −0.0333896 + 0.0418692i
\(875\) −37.4130 + 18.0172i −1.26479 + 0.609092i
\(876\) 0 0
\(877\) 15.2676 + 19.1450i 0.515550 + 0.646479i 0.969657 0.244468i \(-0.0786132\pi\)
−0.454107 + 0.890947i \(0.650042\pi\)
\(878\) −70.4880 16.0884i −2.37886 0.542958i
\(879\) 0 0
\(880\) −0.852383 0.679752i −0.0287338 0.0229144i
\(881\) −12.0649 + 2.75373i −0.406476 + 0.0927755i −0.420870 0.907121i \(-0.638275\pi\)
0.0143941 + 0.999896i \(0.495418\pi\)
\(882\) 0 0
\(883\) 6.42165 + 28.1351i 0.216106 + 0.946822i 0.960324 + 0.278885i \(0.0899650\pi\)
−0.744218 + 0.667936i \(0.767178\pi\)
\(884\) 53.5023 111.099i 1.79948 3.73666i
\(885\) 0 0
\(886\) −6.66304 29.1927i −0.223849 0.980747i
\(887\) 46.9153i 1.57526i 0.616147 + 0.787631i \(0.288693\pi\)
−0.616147 + 0.787631i \(0.711307\pi\)
\(888\) 0 0
\(889\) −1.04168 0.830714i −0.0349369 0.0278613i
\(890\) 4.57130 20.0282i 0.153230 0.671346i
\(891\) 0 0
\(892\) 28.4985 + 35.7360i 0.954201 + 1.19653i
\(893\) −4.84146 2.33152i −0.162013 0.0780215i
\(894\) 0 0
\(895\) 7.53462 9.44812i 0.251855 0.315816i
\(896\) 52.2911 41.7007i 1.74692 1.39312i
\(897\) 0 0
\(898\) −78.5600 −2.62158
\(899\) 3.18108 + 30.7133i 0.106095 + 1.02434i
\(900\) 0 0
\(901\) 1.35868 + 2.82134i 0.0452643 + 0.0939924i
\(902\) 8.16013 6.50748i 0.271703 0.216676i
\(903\) 0 0
\(904\) −12.6045 + 6.07003i −0.419221 + 0.201886i
\(905\) 29.5121 + 14.2123i 0.981016 + 0.472432i
\(906\) 0 0
\(907\) 20.6912 + 4.72262i 0.687039 + 0.156812i 0.551769 0.833997i \(-0.313953\pi\)
0.135270 + 0.990809i \(0.456810\pi\)
\(908\) 20.3215 89.0345i 0.674394 2.95471i
\(909\) 0 0
\(910\) 79.7233 18.1963i 2.64280 0.603202i
\(911\) 46.1944i 1.53049i −0.643739 0.765245i \(-0.722618\pi\)
0.643739 0.765245i \(-0.277382\pi\)
\(912\) 0 0
\(913\) −2.77454 + 5.76139i −0.0918239 + 0.190674i
\(914\) 7.68796 15.9642i 0.254295 0.528049i
\(915\) 0 0
\(916\) 36.9660i 1.22139i
\(917\) −2.53568 + 0.578752i −0.0837354 + 0.0191121i
\(918\) 0 0
\(919\) 11.0939 48.6055i 0.365954 1.60335i −0.371824 0.928303i \(-0.621267\pi\)
0.737777 0.675044i \(-0.235876\pi\)
\(920\) −0.921074 0.210229i −0.0303669 0.00693105i
\(921\) 0 0
\(922\) −35.4717 17.0823i −1.16820 0.562575i
\(923\) 16.4719 7.93247i 0.542180 0.261100i
\(924\) 0 0
\(925\) 10.5614 8.42247i 0.347258 0.276929i
\(926\) 9.38137 + 19.4806i 0.308291 + 0.640173i
\(927\) 0 0
\(928\) −24.5994 + 8.36013i −0.807514 + 0.274435i
\(929\) −16.6870 −0.547484 −0.273742 0.961803i \(-0.588261\pi\)
−0.273742 + 0.961803i \(0.588261\pi\)
\(930\) 0 0
\(931\) 16.2189 12.9342i 0.531554 0.423900i
\(932\) −11.5757 + 14.5154i −0.379174 + 0.475469i
\(933\) 0 0
\(934\) −53.0103 25.5284i −1.73455 0.835315i
\(935\) 6.58810 + 8.26122i 0.215454 + 0.270171i
\(936\) 0 0
\(937\) 5.03903 22.0775i 0.164618 0.721239i −0.823471 0.567358i \(-0.807966\pi\)
0.988089 0.153881i \(-0.0491772\pi\)
\(938\) −80.3687 64.0919i −2.62413 2.09268i
\(939\) 0 0
\(940\) 7.83366i 0.255506i
\(941\) −0.897147 3.93066i −0.0292461 0.128136i 0.958197 0.286108i \(-0.0923615\pi\)
−0.987444 + 0.157972i \(0.949504\pi\)
\(942\) 0 0
\(943\) 0.364416 0.756717i 0.0118670 0.0246421i
\(944\) 1.78828 + 7.83499i 0.0582037 + 0.255007i
\(945\) 0 0
\(946\) −8.36110 + 1.90837i −0.271843 + 0.0620463i
\(947\) −22.0167 17.5577i −0.715446 0.570549i 0.196676 0.980469i \(-0.436985\pi\)
−0.912122 + 0.409919i \(0.865557\pi\)
\(948\) 0 0
\(949\) −5.18066 1.18245i −0.168171 0.0383840i
\(950\) −8.86418 11.1153i −0.287592 0.360629i
\(951\) 0 0
\(952\) 66.6042 32.0749i 2.15865 1.03955i
\(953\) −20.2660 + 25.4128i −0.656482 + 0.823202i −0.992955 0.118491i \(-0.962194\pi\)
0.336473 + 0.941693i \(0.390766\pi\)
\(954\) 0 0
\(955\) 13.5639 + 28.1658i 0.438918 + 0.911423i
\(956\) −2.57620 −0.0833202
\(957\) 0 0
\(958\) −53.4355 −1.72642
\(959\) −22.1617 46.0192i −0.715639 1.48604i
\(960\) 0 0
\(961\) −1.17010 + 1.46726i −0.0377451 + 0.0473309i
\(962\) −110.326 + 53.1302i −3.55705 + 1.71299i
\(963\) 0 0
\(964\) −52.8514 66.2736i −1.70223 2.13453i
\(965\) 23.1697 + 5.28833i 0.745859 + 0.170237i
\(966\) 0 0
\(967\) 1.03303 + 0.823813i 0.0332200 + 0.0264920i 0.639959 0.768409i \(-0.278951\pi\)
−0.606739 + 0.794901i \(0.707523\pi\)
\(968\) −32.3498 + 7.38363i −1.03976 + 0.237319i
\(969\) 0 0
\(970\) 9.82922 + 43.0646i 0.315597 + 1.38272i
\(971\) 17.1222 35.5546i 0.549478 1.14100i −0.422594 0.906319i \(-0.638880\pi\)
0.972072 0.234684i \(-0.0754054\pi\)
\(972\) 0 0
\(973\) 2.78537 + 12.2035i 0.0892949 + 0.391227i
\(974\) 3.56066i 0.114091i
\(975\) 0 0
\(976\) −6.08111 4.84952i −0.194652 0.155229i
\(977\) 4.16227 18.2361i 0.133163 0.583424i −0.863681 0.504038i \(-0.831847\pi\)
0.996844 0.0793858i \(-0.0252959\pi\)
\(978\) 0 0
\(979\) 2.40274 + 3.01294i 0.0767918 + 0.0962939i
\(980\) 27.2469 + 13.1214i 0.870370 + 0.419148i
\(981\) 0 0
\(982\) 29.1565 36.5610i 0.930420 1.16671i
\(983\) 6.29633 5.02115i 0.200822 0.160150i −0.517916 0.855432i \(-0.673292\pi\)
0.718737 + 0.695282i \(0.244720\pi\)
\(984\) 0 0
\(985\) 26.8861 0.856662
\(986\) −83.5250 + 8.65098i −2.65998 + 0.275503i
\(987\) 0 0
\(988\) 35.1531 + 72.9961i 1.11837 + 2.32231i
\(989\) −0.539565 + 0.430289i −0.0171572 + 0.0136824i
\(990\) 0 0
\(991\) −54.5016 + 26.2466i −1.73130 + 0.833751i −0.745359 + 0.666663i \(0.767722\pi\)
−0.985942 + 0.167087i \(0.946564\pi\)
\(992\) −24.9238 12.0027i −0.791330 0.381085i
\(993\) 0 0
\(994\) 26.1044 + 5.95816i 0.827981 + 0.188981i
\(995\) −5.46394 + 23.9391i −0.173219 + 0.758921i
\(996\) 0 0
\(997\) 2.89082 0.659811i 0.0915532 0.0208964i −0.176499 0.984301i \(-0.556477\pi\)
0.268052 + 0.963404i \(0.413620\pi\)
\(998\) 80.5446i 2.54960i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 261.2.o.b.154.1 24
3.2 odd 2 87.2.i.a.67.4 yes 24
29.10 odd 28 7569.2.a.bn.1.2 12
29.13 even 14 inner 261.2.o.b.100.1 24
29.19 odd 28 7569.2.a.bt.1.11 12
87.68 even 28 2523.2.a.v.1.11 12
87.71 odd 14 87.2.i.a.13.4 24
87.77 even 28 2523.2.a.s.1.2 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
87.2.i.a.13.4 24 87.71 odd 14
87.2.i.a.67.4 yes 24 3.2 odd 2
261.2.o.b.100.1 24 29.13 even 14 inner
261.2.o.b.154.1 24 1.1 even 1 trivial
2523.2.a.s.1.2 12 87.77 even 28
2523.2.a.v.1.11 12 87.68 even 28
7569.2.a.bn.1.2 12 29.10 odd 28
7569.2.a.bt.1.11 12 29.19 odd 28