Properties

Label 7569.2.a.bt.1.11
Level $7569$
Weight $2$
Character 7569.1
Self dual yes
Analytic conductor $60.439$
Analytic rank $1$
Dimension $12$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [7569,2,Mod(1,7569)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(7569, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("7569.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 7569 = 3^{2} \cdot 29^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7569.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(60.4387692899\)
Analytic rank: \(1\)
Dimension: \(12\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 6 x^{11} + 2 x^{10} + 38 x^{9} - 30 x^{8} - 90 x^{7} + 55 x^{6} + 90 x^{5} - 30 x^{4} + \cdots + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 87)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.11
Root \(-1.32079\) of defining polynomial
Character \(\chi\) \(=\) 7569.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.32079 q^{2} +3.38605 q^{4} -1.90061 q^{5} -3.42040 q^{7} +3.21673 q^{8} -4.41092 q^{10} -0.827442 q^{11} +5.42009 q^{13} -7.93802 q^{14} +0.693250 q^{16} +6.71892 q^{17} -4.41458 q^{19} -6.43558 q^{20} -1.92032 q^{22} -0.154530 q^{23} -1.38766 q^{25} +12.5789 q^{26} -11.5817 q^{28} +5.73382 q^{31} -4.82458 q^{32} +15.5932 q^{34} +6.50087 q^{35} -9.73479 q^{37} -10.2453 q^{38} -6.11377 q^{40} +5.43514 q^{41} -4.46599 q^{43} -2.80176 q^{44} -0.358631 q^{46} -1.21724 q^{47} +4.69915 q^{49} -3.22047 q^{50} +18.3527 q^{52} -0.466064 q^{53} +1.57265 q^{55} -11.0025 q^{56} -11.5925 q^{59} -11.2197 q^{61} +13.3070 q^{62} -12.5833 q^{64} -10.3015 q^{65} -12.9498 q^{67} +22.7506 q^{68} +15.0871 q^{70} -3.37310 q^{71} +0.980407 q^{73} -22.5924 q^{74} -14.9480 q^{76} +2.83018 q^{77} -4.86752 q^{79} -1.31760 q^{80} +12.6138 q^{82} +7.72823 q^{83} -12.7701 q^{85} -10.3646 q^{86} -2.66166 q^{88} +4.65736 q^{89} -18.5389 q^{91} -0.523246 q^{92} -2.82496 q^{94} +8.39042 q^{95} -10.0143 q^{97} +10.9057 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 6 q^{2} + 8 q^{4} - 2 q^{5} - 10 q^{7} - 20 q^{10} + 14 q^{11} - 16 q^{13} - 4 q^{16} + 22 q^{17} - 16 q^{19} - 4 q^{20} + 12 q^{22} - 2 q^{23} - 2 q^{25} - 8 q^{26} - 4 q^{28} - 4 q^{31} + 16 q^{32}+ \cdots + 6 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.32079 1.64104 0.820522 0.571615i \(-0.193683\pi\)
0.820522 + 0.571615i \(0.193683\pi\)
\(3\) 0 0
\(4\) 3.38605 1.69303
\(5\) −1.90061 −0.849981 −0.424990 0.905198i \(-0.639723\pi\)
−0.424990 + 0.905198i \(0.639723\pi\)
\(6\) 0 0
\(7\) −3.42040 −1.29279 −0.646395 0.763003i \(-0.723724\pi\)
−0.646395 + 0.763003i \(0.723724\pi\)
\(8\) 3.21673 1.13729
\(9\) 0 0
\(10\) −4.41092 −1.39486
\(11\) −0.827442 −0.249483 −0.124742 0.992189i \(-0.539810\pi\)
−0.124742 + 0.992189i \(0.539810\pi\)
\(12\) 0 0
\(13\) 5.42009 1.50326 0.751631 0.659584i \(-0.229268\pi\)
0.751631 + 0.659584i \(0.229268\pi\)
\(14\) −7.93802 −2.12153
\(15\) 0 0
\(16\) 0.693250 0.173313
\(17\) 6.71892 1.62958 0.814788 0.579758i \(-0.196853\pi\)
0.814788 + 0.579758i \(0.196853\pi\)
\(18\) 0 0
\(19\) −4.41458 −1.01278 −0.506388 0.862306i \(-0.669019\pi\)
−0.506388 + 0.862306i \(0.669019\pi\)
\(20\) −6.43558 −1.43904
\(21\) 0 0
\(22\) −1.92032 −0.409413
\(23\) −0.154530 −0.0322217 −0.0161109 0.999870i \(-0.505128\pi\)
−0.0161109 + 0.999870i \(0.505128\pi\)
\(24\) 0 0
\(25\) −1.38766 −0.277533
\(26\) 12.5789 2.46692
\(27\) 0 0
\(28\) −11.5817 −2.18873
\(29\) 0 0
\(30\) 0 0
\(31\) 5.73382 1.02982 0.514912 0.857243i \(-0.327825\pi\)
0.514912 + 0.857243i \(0.327825\pi\)
\(32\) −4.82458 −0.852874
\(33\) 0 0
\(34\) 15.5932 2.67421
\(35\) 6.50087 1.09885
\(36\) 0 0
\(37\) −9.73479 −1.60039 −0.800194 0.599741i \(-0.795270\pi\)
−0.800194 + 0.599741i \(0.795270\pi\)
\(38\) −10.2453 −1.66201
\(39\) 0 0
\(40\) −6.11377 −0.966673
\(41\) 5.43514 0.848827 0.424413 0.905469i \(-0.360480\pi\)
0.424413 + 0.905469i \(0.360480\pi\)
\(42\) 0 0
\(43\) −4.46599 −0.681058 −0.340529 0.940234i \(-0.610606\pi\)
−0.340529 + 0.940234i \(0.610606\pi\)
\(44\) −2.80176 −0.422381
\(45\) 0 0
\(46\) −0.358631 −0.0528772
\(47\) −1.21724 −0.177553 −0.0887764 0.996052i \(-0.528296\pi\)
−0.0887764 + 0.996052i \(0.528296\pi\)
\(48\) 0 0
\(49\) 4.69915 0.671307
\(50\) −3.22047 −0.455443
\(51\) 0 0
\(52\) 18.3527 2.54506
\(53\) −0.466064 −0.0640189 −0.0320094 0.999488i \(-0.510191\pi\)
−0.0320094 + 0.999488i \(0.510191\pi\)
\(54\) 0 0
\(55\) 1.57265 0.212056
\(56\) −11.0025 −1.47027
\(57\) 0 0
\(58\) 0 0
\(59\) −11.5925 −1.50921 −0.754605 0.656179i \(-0.772172\pi\)
−0.754605 + 0.656179i \(0.772172\pi\)
\(60\) 0 0
\(61\) −11.2197 −1.43653 −0.718265 0.695769i \(-0.755064\pi\)
−0.718265 + 0.695769i \(0.755064\pi\)
\(62\) 13.3070 1.68999
\(63\) 0 0
\(64\) −12.5833 −1.57292
\(65\) −10.3015 −1.27774
\(66\) 0 0
\(67\) −12.9498 −1.58206 −0.791032 0.611774i \(-0.790456\pi\)
−0.791032 + 0.611774i \(0.790456\pi\)
\(68\) 22.7506 2.75892
\(69\) 0 0
\(70\) 15.0871 1.80326
\(71\) −3.37310 −0.400313 −0.200156 0.979764i \(-0.564145\pi\)
−0.200156 + 0.979764i \(0.564145\pi\)
\(72\) 0 0
\(73\) 0.980407 0.114748 0.0573740 0.998353i \(-0.481727\pi\)
0.0573740 + 0.998353i \(0.481727\pi\)
\(74\) −22.5924 −2.62631
\(75\) 0 0
\(76\) −14.9480 −1.71466
\(77\) 2.83018 0.322529
\(78\) 0 0
\(79\) −4.86752 −0.547639 −0.273820 0.961781i \(-0.588287\pi\)
−0.273820 + 0.961781i \(0.588287\pi\)
\(80\) −1.31760 −0.147312
\(81\) 0 0
\(82\) 12.6138 1.39296
\(83\) 7.72823 0.848284 0.424142 0.905596i \(-0.360576\pi\)
0.424142 + 0.905596i \(0.360576\pi\)
\(84\) 0 0
\(85\) −12.7701 −1.38511
\(86\) −10.3646 −1.11765
\(87\) 0 0
\(88\) −2.66166 −0.283734
\(89\) 4.65736 0.493679 0.246839 0.969056i \(-0.420608\pi\)
0.246839 + 0.969056i \(0.420608\pi\)
\(90\) 0 0
\(91\) −18.5389 −1.94340
\(92\) −0.523246 −0.0545522
\(93\) 0 0
\(94\) −2.82496 −0.291372
\(95\) 8.39042 0.860839
\(96\) 0 0
\(97\) −10.0143 −1.01679 −0.508397 0.861123i \(-0.669762\pi\)
−0.508397 + 0.861123i \(0.669762\pi\)
\(98\) 10.9057 1.10164
\(99\) 0 0
\(100\) −4.69870 −0.469870
\(101\) −15.1822 −1.51069 −0.755344 0.655328i \(-0.772530\pi\)
−0.755344 + 0.655328i \(0.772530\pi\)
\(102\) 0 0
\(103\) 0.208861 0.0205797 0.0102898 0.999947i \(-0.496725\pi\)
0.0102898 + 0.999947i \(0.496725\pi\)
\(104\) 17.4350 1.70964
\(105\) 0 0
\(106\) −1.08164 −0.105058
\(107\) 2.57414 0.248852 0.124426 0.992229i \(-0.460291\pi\)
0.124426 + 0.992229i \(0.460291\pi\)
\(108\) 0 0
\(109\) −1.15217 −0.110358 −0.0551789 0.998476i \(-0.517573\pi\)
−0.0551789 + 0.998476i \(0.517573\pi\)
\(110\) 3.64978 0.347993
\(111\) 0 0
\(112\) −2.37119 −0.224057
\(113\) −4.34913 −0.409132 −0.204566 0.978853i \(-0.565578\pi\)
−0.204566 + 0.978853i \(0.565578\pi\)
\(114\) 0 0
\(115\) 0.293702 0.0273878
\(116\) 0 0
\(117\) 0 0
\(118\) −26.9036 −2.47668
\(119\) −22.9814 −2.10670
\(120\) 0 0
\(121\) −10.3153 −0.937758
\(122\) −26.0385 −2.35741
\(123\) 0 0
\(124\) 19.4150 1.74352
\(125\) 12.1405 1.08588
\(126\) 0 0
\(127\) 0.389534 0.0345655 0.0172828 0.999851i \(-0.494498\pi\)
0.0172828 + 0.999851i \(0.494498\pi\)
\(128\) −19.5541 −1.72835
\(129\) 0 0
\(130\) −23.9076 −2.09683
\(131\) −0.760404 −0.0664368 −0.0332184 0.999448i \(-0.510576\pi\)
−0.0332184 + 0.999448i \(0.510576\pi\)
\(132\) 0 0
\(133\) 15.0997 1.30931
\(134\) −30.0536 −2.59624
\(135\) 0 0
\(136\) 21.6130 1.85330
\(137\) −14.9332 −1.27583 −0.637914 0.770107i \(-0.720203\pi\)
−0.637914 + 0.770107i \(0.720203\pi\)
\(138\) 0 0
\(139\) 3.65961 0.310404 0.155202 0.987883i \(-0.450397\pi\)
0.155202 + 0.987883i \(0.450397\pi\)
\(140\) 22.0123 1.86038
\(141\) 0 0
\(142\) −7.82824 −0.656931
\(143\) −4.48481 −0.375038
\(144\) 0 0
\(145\) 0 0
\(146\) 2.27532 0.188307
\(147\) 0 0
\(148\) −32.9625 −2.70950
\(149\) 15.5231 1.27171 0.635853 0.771810i \(-0.280648\pi\)
0.635853 + 0.771810i \(0.280648\pi\)
\(150\) 0 0
\(151\) 6.58551 0.535921 0.267960 0.963430i \(-0.413650\pi\)
0.267960 + 0.963430i \(0.413650\pi\)
\(152\) −14.2005 −1.15182
\(153\) 0 0
\(154\) 6.56825 0.529285
\(155\) −10.8978 −0.875331
\(156\) 0 0
\(157\) 10.0667 0.803407 0.401704 0.915770i \(-0.368418\pi\)
0.401704 + 0.915770i \(0.368418\pi\)
\(158\) −11.2965 −0.898700
\(159\) 0 0
\(160\) 9.16968 0.724926
\(161\) 0.528554 0.0416559
\(162\) 0 0
\(163\) −1.47844 −0.115801 −0.0579004 0.998322i \(-0.518441\pi\)
−0.0579004 + 0.998322i \(0.518441\pi\)
\(164\) 18.4037 1.43709
\(165\) 0 0
\(166\) 17.9356 1.39207
\(167\) −12.4760 −0.965423 −0.482711 0.875779i \(-0.660348\pi\)
−0.482711 + 0.875779i \(0.660348\pi\)
\(168\) 0 0
\(169\) 16.3773 1.25980
\(170\) −29.6366 −2.27303
\(171\) 0 0
\(172\) −15.1221 −1.15305
\(173\) −2.64519 −0.201110 −0.100555 0.994931i \(-0.532062\pi\)
−0.100555 + 0.994931i \(0.532062\pi\)
\(174\) 0 0
\(175\) 4.74636 0.358791
\(176\) −0.573624 −0.0432385
\(177\) 0 0
\(178\) 10.8087 0.810149
\(179\) −6.35825 −0.475238 −0.237619 0.971358i \(-0.576367\pi\)
−0.237619 + 0.971358i \(0.576367\pi\)
\(180\) 0 0
\(181\) −17.2344 −1.28102 −0.640512 0.767948i \(-0.721278\pi\)
−0.640512 + 0.767948i \(0.721278\pi\)
\(182\) −43.0248 −3.18921
\(183\) 0 0
\(184\) −0.497082 −0.0366453
\(185\) 18.5021 1.36030
\(186\) 0 0
\(187\) −5.55951 −0.406552
\(188\) −4.12164 −0.300602
\(189\) 0 0
\(190\) 19.4724 1.41268
\(191\) −16.4482 −1.19015 −0.595074 0.803671i \(-0.702877\pi\)
−0.595074 + 0.803671i \(0.702877\pi\)
\(192\) 0 0
\(193\) −12.5041 −0.900067 −0.450033 0.893012i \(-0.648588\pi\)
−0.450033 + 0.893012i \(0.648588\pi\)
\(194\) −23.2410 −1.66860
\(195\) 0 0
\(196\) 15.9116 1.13654
\(197\) 14.1460 1.00786 0.503930 0.863745i \(-0.331887\pi\)
0.503930 + 0.863745i \(0.331887\pi\)
\(198\) 0 0
\(199\) 12.9194 0.915830 0.457915 0.888996i \(-0.348596\pi\)
0.457915 + 0.888996i \(0.348596\pi\)
\(200\) −4.46374 −0.315634
\(201\) 0 0
\(202\) −35.2347 −2.47911
\(203\) 0 0
\(204\) 0 0
\(205\) −10.3301 −0.721487
\(206\) 0.484721 0.0337721
\(207\) 0 0
\(208\) 3.75748 0.260534
\(209\) 3.65281 0.252670
\(210\) 0 0
\(211\) 13.7490 0.946518 0.473259 0.880923i \(-0.343078\pi\)
0.473259 + 0.880923i \(0.343078\pi\)
\(212\) −1.57812 −0.108386
\(213\) 0 0
\(214\) 5.97404 0.408377
\(215\) 8.48813 0.578886
\(216\) 0 0
\(217\) −19.6120 −1.33135
\(218\) −2.67394 −0.181102
\(219\) 0 0
\(220\) 5.32507 0.359016
\(221\) 36.4171 2.44968
\(222\) 0 0
\(223\) −13.4989 −0.903955 −0.451978 0.892029i \(-0.649281\pi\)
−0.451978 + 0.892029i \(0.649281\pi\)
\(224\) 16.5020 1.10259
\(225\) 0 0
\(226\) −10.0934 −0.671403
\(227\) 26.9707 1.79011 0.895053 0.445959i \(-0.147137\pi\)
0.895053 + 0.445959i \(0.147137\pi\)
\(228\) 0 0
\(229\) 10.9171 0.721424 0.360712 0.932677i \(-0.382534\pi\)
0.360712 + 0.932677i \(0.382534\pi\)
\(230\) 0.681619 0.0449446
\(231\) 0 0
\(232\) 0 0
\(233\) 5.48306 0.359207 0.179604 0.983739i \(-0.442518\pi\)
0.179604 + 0.983739i \(0.442518\pi\)
\(234\) 0 0
\(235\) 2.31351 0.150917
\(236\) −39.2527 −2.55513
\(237\) 0 0
\(238\) −53.3349 −3.45719
\(239\) 0.760826 0.0492138 0.0246069 0.999697i \(-0.492167\pi\)
0.0246069 + 0.999697i \(0.492167\pi\)
\(240\) 0 0
\(241\) −25.0342 −1.61259 −0.806297 0.591511i \(-0.798532\pi\)
−0.806297 + 0.591511i \(0.798532\pi\)
\(242\) −23.9397 −1.53890
\(243\) 0 0
\(244\) −37.9904 −2.43208
\(245\) −8.93127 −0.570598
\(246\) 0 0
\(247\) −23.9274 −1.52247
\(248\) 18.4442 1.17121
\(249\) 0 0
\(250\) 28.1755 1.78197
\(251\) 10.4978 0.662617 0.331308 0.943523i \(-0.392510\pi\)
0.331308 + 0.943523i \(0.392510\pi\)
\(252\) 0 0
\(253\) 0.127864 0.00803877
\(254\) 0.904025 0.0567236
\(255\) 0 0
\(256\) −20.2142 −1.26339
\(257\) 0.271801 0.0169545 0.00847725 0.999964i \(-0.497302\pi\)
0.00847725 + 0.999964i \(0.497302\pi\)
\(258\) 0 0
\(259\) 33.2969 2.06897
\(260\) −34.8814 −2.16325
\(261\) 0 0
\(262\) −1.76474 −0.109026
\(263\) 7.34264 0.452767 0.226383 0.974038i \(-0.427310\pi\)
0.226383 + 0.974038i \(0.427310\pi\)
\(264\) 0 0
\(265\) 0.885809 0.0544148
\(266\) 35.0431 2.14863
\(267\) 0 0
\(268\) −43.8486 −2.67848
\(269\) 30.0231 1.83054 0.915269 0.402843i \(-0.131978\pi\)
0.915269 + 0.402843i \(0.131978\pi\)
\(270\) 0 0
\(271\) 0.175497 0.0106607 0.00533036 0.999986i \(-0.498303\pi\)
0.00533036 + 0.999986i \(0.498303\pi\)
\(272\) 4.65789 0.282426
\(273\) 0 0
\(274\) −34.6568 −2.09369
\(275\) 1.14821 0.0692397
\(276\) 0 0
\(277\) 2.93089 0.176100 0.0880502 0.996116i \(-0.471936\pi\)
0.0880502 + 0.996116i \(0.471936\pi\)
\(278\) 8.49318 0.509387
\(279\) 0 0
\(280\) 20.9116 1.24970
\(281\) 10.1937 0.608105 0.304052 0.952655i \(-0.401660\pi\)
0.304052 + 0.952655i \(0.401660\pi\)
\(282\) 0 0
\(283\) −19.2316 −1.14320 −0.571599 0.820533i \(-0.693677\pi\)
−0.571599 + 0.820533i \(0.693677\pi\)
\(284\) −11.4215 −0.677740
\(285\) 0 0
\(286\) −10.4083 −0.615454
\(287\) −18.5904 −1.09736
\(288\) 0 0
\(289\) 28.1439 1.65552
\(290\) 0 0
\(291\) 0 0
\(292\) 3.31971 0.194271
\(293\) 11.1238 0.649860 0.324930 0.945738i \(-0.394659\pi\)
0.324930 + 0.945738i \(0.394659\pi\)
\(294\) 0 0
\(295\) 22.0328 1.28280
\(296\) −31.3142 −1.82010
\(297\) 0 0
\(298\) 36.0259 2.08693
\(299\) −0.837565 −0.0484377
\(300\) 0 0
\(301\) 15.2755 0.880465
\(302\) 15.2836 0.879470
\(303\) 0 0
\(304\) −3.06041 −0.175527
\(305\) 21.3243 1.22102
\(306\) 0 0
\(307\) −3.09566 −0.176678 −0.0883392 0.996090i \(-0.528156\pi\)
−0.0883392 + 0.996090i \(0.528156\pi\)
\(308\) 9.58315 0.546051
\(309\) 0 0
\(310\) −25.2914 −1.43646
\(311\) −14.6432 −0.830342 −0.415171 0.909743i \(-0.636278\pi\)
−0.415171 + 0.909743i \(0.636278\pi\)
\(312\) 0 0
\(313\) −6.68806 −0.378031 −0.189016 0.981974i \(-0.560530\pi\)
−0.189016 + 0.981974i \(0.560530\pi\)
\(314\) 23.3626 1.31843
\(315\) 0 0
\(316\) −16.4817 −0.927168
\(317\) 5.56851 0.312759 0.156379 0.987697i \(-0.450018\pi\)
0.156379 + 0.987697i \(0.450018\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 23.9161 1.33695
\(321\) 0 0
\(322\) 1.22666 0.0683592
\(323\) −29.6612 −1.65039
\(324\) 0 0
\(325\) −7.52125 −0.417204
\(326\) −3.43116 −0.190034
\(327\) 0 0
\(328\) 17.4834 0.965360
\(329\) 4.16345 0.229539
\(330\) 0 0
\(331\) −34.6315 −1.90352 −0.951759 0.306847i \(-0.900726\pi\)
−0.951759 + 0.306847i \(0.900726\pi\)
\(332\) 26.1682 1.43617
\(333\) 0 0
\(334\) −28.9542 −1.58430
\(335\) 24.6125 1.34472
\(336\) 0 0
\(337\) −8.82837 −0.480912 −0.240456 0.970660i \(-0.577297\pi\)
−0.240456 + 0.970660i \(0.577297\pi\)
\(338\) 38.0083 2.06738
\(339\) 0 0
\(340\) −43.2402 −2.34503
\(341\) −4.74440 −0.256924
\(342\) 0 0
\(343\) 7.86984 0.424931
\(344\) −14.3659 −0.774558
\(345\) 0 0
\(346\) −6.13892 −0.330031
\(347\) 16.3136 0.875759 0.437880 0.899034i \(-0.355730\pi\)
0.437880 + 0.899034i \(0.355730\pi\)
\(348\) 0 0
\(349\) −9.44632 −0.505650 −0.252825 0.967512i \(-0.581360\pi\)
−0.252825 + 0.967512i \(0.581360\pi\)
\(350\) 11.0153 0.588793
\(351\) 0 0
\(352\) 3.99206 0.212778
\(353\) 14.9647 0.796490 0.398245 0.917279i \(-0.369619\pi\)
0.398245 + 0.917279i \(0.369619\pi\)
\(354\) 0 0
\(355\) 6.41096 0.340258
\(356\) 15.7701 0.835811
\(357\) 0 0
\(358\) −14.7562 −0.779887
\(359\) −15.4219 −0.813934 −0.406967 0.913443i \(-0.633414\pi\)
−0.406967 + 0.913443i \(0.633414\pi\)
\(360\) 0 0
\(361\) 0.488553 0.0257133
\(362\) −39.9974 −2.10222
\(363\) 0 0
\(364\) −62.7736 −3.29023
\(365\) −1.86338 −0.0975336
\(366\) 0 0
\(367\) −33.3456 −1.74063 −0.870313 0.492499i \(-0.836083\pi\)
−0.870313 + 0.492499i \(0.836083\pi\)
\(368\) −0.107128 −0.00558442
\(369\) 0 0
\(370\) 42.9394 2.23231
\(371\) 1.59413 0.0827630
\(372\) 0 0
\(373\) −3.25578 −0.168578 −0.0842888 0.996441i \(-0.526862\pi\)
−0.0842888 + 0.996441i \(0.526862\pi\)
\(374\) −12.9024 −0.667170
\(375\) 0 0
\(376\) −3.91554 −0.201929
\(377\) 0 0
\(378\) 0 0
\(379\) 25.9336 1.33212 0.666059 0.745899i \(-0.267980\pi\)
0.666059 + 0.745899i \(0.267980\pi\)
\(380\) 28.4104 1.45742
\(381\) 0 0
\(382\) −38.1727 −1.95309
\(383\) −29.5945 −1.51221 −0.756105 0.654450i \(-0.772900\pi\)
−0.756105 + 0.654450i \(0.772900\pi\)
\(384\) 0 0
\(385\) −5.37909 −0.274144
\(386\) −29.0194 −1.47705
\(387\) 0 0
\(388\) −33.9088 −1.72146
\(389\) −11.6584 −0.591103 −0.295551 0.955327i \(-0.595503\pi\)
−0.295551 + 0.955327i \(0.595503\pi\)
\(390\) 0 0
\(391\) −1.03827 −0.0525077
\(392\) 15.1159 0.763469
\(393\) 0 0
\(394\) 32.8298 1.65394
\(395\) 9.25129 0.465483
\(396\) 0 0
\(397\) 21.5610 1.08211 0.541057 0.840986i \(-0.318024\pi\)
0.541057 + 0.840986i \(0.318024\pi\)
\(398\) 29.9831 1.50292
\(399\) 0 0
\(400\) −0.961997 −0.0480999
\(401\) −20.0052 −0.999010 −0.499505 0.866311i \(-0.666485\pi\)
−0.499505 + 0.866311i \(0.666485\pi\)
\(402\) 0 0
\(403\) 31.0778 1.54810
\(404\) −51.4079 −2.55764
\(405\) 0 0
\(406\) 0 0
\(407\) 8.05497 0.399270
\(408\) 0 0
\(409\) 28.4623 1.40737 0.703686 0.710511i \(-0.251536\pi\)
0.703686 + 0.710511i \(0.251536\pi\)
\(410\) −23.9740 −1.18399
\(411\) 0 0
\(412\) 0.707214 0.0348419
\(413\) 39.6509 1.95109
\(414\) 0 0
\(415\) −14.6884 −0.721025
\(416\) −26.1497 −1.28209
\(417\) 0 0
\(418\) 8.47740 0.414643
\(419\) −11.0690 −0.540754 −0.270377 0.962755i \(-0.587148\pi\)
−0.270377 + 0.962755i \(0.587148\pi\)
\(420\) 0 0
\(421\) 26.7707 1.30472 0.652362 0.757907i \(-0.273778\pi\)
0.652362 + 0.757907i \(0.273778\pi\)
\(422\) 31.9084 1.55328
\(423\) 0 0
\(424\) −1.49921 −0.0728078
\(425\) −9.32359 −0.452261
\(426\) 0 0
\(427\) 38.3758 1.85713
\(428\) 8.71619 0.421313
\(429\) 0 0
\(430\) 19.6992 0.949978
\(431\) −33.1348 −1.59605 −0.798025 0.602625i \(-0.794122\pi\)
−0.798025 + 0.602625i \(0.794122\pi\)
\(432\) 0 0
\(433\) −5.32076 −0.255699 −0.127850 0.991794i \(-0.540808\pi\)
−0.127850 + 0.991794i \(0.540808\pi\)
\(434\) −45.5152 −2.18480
\(435\) 0 0
\(436\) −3.90131 −0.186839
\(437\) 0.682185 0.0326333
\(438\) 0 0
\(439\) −31.1536 −1.48688 −0.743439 0.668804i \(-0.766807\pi\)
−0.743439 + 0.668804i \(0.766807\pi\)
\(440\) 5.05879 0.241168
\(441\) 0 0
\(442\) 84.5164 4.02003
\(443\) 12.9023 0.613005 0.306503 0.951870i \(-0.400841\pi\)
0.306503 + 0.951870i \(0.400841\pi\)
\(444\) 0 0
\(445\) −8.85184 −0.419618
\(446\) −31.3281 −1.48343
\(447\) 0 0
\(448\) 43.0400 2.03345
\(449\) 33.8506 1.59751 0.798754 0.601658i \(-0.205493\pi\)
0.798754 + 0.601658i \(0.205493\pi\)
\(450\) 0 0
\(451\) −4.49726 −0.211768
\(452\) −14.7264 −0.692671
\(453\) 0 0
\(454\) 62.5932 2.93764
\(455\) 35.2353 1.65185
\(456\) 0 0
\(457\) −7.63489 −0.357145 −0.178572 0.983927i \(-0.557148\pi\)
−0.178572 + 0.983927i \(0.557148\pi\)
\(458\) 25.3363 1.18389
\(459\) 0 0
\(460\) 0.994490 0.0463683
\(461\) 16.9643 0.790108 0.395054 0.918658i \(-0.370726\pi\)
0.395054 + 0.918658i \(0.370726\pi\)
\(462\) 0 0
\(463\) 9.31660 0.432979 0.216490 0.976285i \(-0.430539\pi\)
0.216490 + 0.976285i \(0.430539\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 12.7250 0.589475
\(467\) −25.3522 −1.17316 −0.586579 0.809892i \(-0.699526\pi\)
−0.586579 + 0.809892i \(0.699526\pi\)
\(468\) 0 0
\(469\) 44.2934 2.04528
\(470\) 5.36916 0.247661
\(471\) 0 0
\(472\) −37.2899 −1.71641
\(473\) 3.69535 0.169912
\(474\) 0 0
\(475\) 6.12595 0.281078
\(476\) −77.8162 −3.56670
\(477\) 0 0
\(478\) 1.76572 0.0807620
\(479\) −23.0247 −1.05203 −0.526013 0.850476i \(-0.676314\pi\)
−0.526013 + 0.850476i \(0.676314\pi\)
\(480\) 0 0
\(481\) −52.7634 −2.40580
\(482\) −58.0990 −2.64634
\(483\) 0 0
\(484\) −34.9283 −1.58765
\(485\) 19.0332 0.864255
\(486\) 0 0
\(487\) 1.53425 0.0695234 0.0347617 0.999396i \(-0.488933\pi\)
0.0347617 + 0.999396i \(0.488933\pi\)
\(488\) −36.0907 −1.63375
\(489\) 0 0
\(490\) −20.7276 −0.936376
\(491\) 20.1498 0.909346 0.454673 0.890658i \(-0.349756\pi\)
0.454673 + 0.890658i \(0.349756\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) −55.5305 −2.49843
\(495\) 0 0
\(496\) 3.97497 0.178481
\(497\) 11.5373 0.517521
\(498\) 0 0
\(499\) 34.7057 1.55364 0.776821 0.629721i \(-0.216831\pi\)
0.776821 + 0.629721i \(0.216831\pi\)
\(500\) 41.1083 1.83842
\(501\) 0 0
\(502\) 24.3632 1.08738
\(503\) 28.8361 1.28574 0.642870 0.765975i \(-0.277743\pi\)
0.642870 + 0.765975i \(0.277743\pi\)
\(504\) 0 0
\(505\) 28.8556 1.28406
\(506\) 0.296746 0.0131920
\(507\) 0 0
\(508\) 1.31898 0.0585204
\(509\) 3.10101 0.137450 0.0687249 0.997636i \(-0.478107\pi\)
0.0687249 + 0.997636i \(0.478107\pi\)
\(510\) 0 0
\(511\) −3.35339 −0.148345
\(512\) −7.80465 −0.344920
\(513\) 0 0
\(514\) 0.630793 0.0278231
\(515\) −0.396964 −0.0174923
\(516\) 0 0
\(517\) 1.00720 0.0442964
\(518\) 77.2750 3.39527
\(519\) 0 0
\(520\) −33.1372 −1.45316
\(521\) 33.4475 1.46536 0.732680 0.680573i \(-0.238269\pi\)
0.732680 + 0.680573i \(0.238269\pi\)
\(522\) 0 0
\(523\) −23.5081 −1.02794 −0.513969 0.857809i \(-0.671825\pi\)
−0.513969 + 0.857809i \(0.671825\pi\)
\(524\) −2.57477 −0.112479
\(525\) 0 0
\(526\) 17.0407 0.743010
\(527\) 38.5251 1.67818
\(528\) 0 0
\(529\) −22.9761 −0.998962
\(530\) 2.05577 0.0892971
\(531\) 0 0
\(532\) 51.1282 2.21669
\(533\) 29.4590 1.27601
\(534\) 0 0
\(535\) −4.89245 −0.211519
\(536\) −41.6559 −1.79926
\(537\) 0 0
\(538\) 69.6771 3.00399
\(539\) −3.88827 −0.167480
\(540\) 0 0
\(541\) 32.7727 1.40901 0.704503 0.709701i \(-0.251170\pi\)
0.704503 + 0.709701i \(0.251170\pi\)
\(542\) 0.407292 0.0174947
\(543\) 0 0
\(544\) −32.4160 −1.38982
\(545\) 2.18983 0.0938020
\(546\) 0 0
\(547\) −28.1424 −1.20328 −0.601642 0.798766i \(-0.705486\pi\)
−0.601642 + 0.798766i \(0.705486\pi\)
\(548\) −50.5646 −2.16001
\(549\) 0 0
\(550\) 2.66475 0.113625
\(551\) 0 0
\(552\) 0 0
\(553\) 16.6489 0.707983
\(554\) 6.80198 0.288989
\(555\) 0 0
\(556\) 12.3916 0.525523
\(557\) 13.2791 0.562652 0.281326 0.959612i \(-0.409226\pi\)
0.281326 + 0.959612i \(0.409226\pi\)
\(558\) 0 0
\(559\) −24.2061 −1.02381
\(560\) 4.50673 0.190444
\(561\) 0 0
\(562\) 23.6574 0.997927
\(563\) −12.5201 −0.527658 −0.263829 0.964569i \(-0.584986\pi\)
−0.263829 + 0.964569i \(0.584986\pi\)
\(564\) 0 0
\(565\) 8.26602 0.347754
\(566\) −44.6324 −1.87604
\(567\) 0 0
\(568\) −10.8504 −0.455271
\(569\) 12.9397 0.542461 0.271230 0.962514i \(-0.412569\pi\)
0.271230 + 0.962514i \(0.412569\pi\)
\(570\) 0 0
\(571\) 20.4961 0.857734 0.428867 0.903368i \(-0.358913\pi\)
0.428867 + 0.903368i \(0.358913\pi\)
\(572\) −15.1858 −0.634950
\(573\) 0 0
\(574\) −43.1443 −1.80081
\(575\) 0.214435 0.00894257
\(576\) 0 0
\(577\) 2.35603 0.0980827 0.0490414 0.998797i \(-0.484383\pi\)
0.0490414 + 0.998797i \(0.484383\pi\)
\(578\) 65.3159 2.71678
\(579\) 0 0
\(580\) 0 0
\(581\) −26.4337 −1.09665
\(582\) 0 0
\(583\) 0.385641 0.0159716
\(584\) 3.15371 0.130501
\(585\) 0 0
\(586\) 25.8160 1.06645
\(587\) −8.14265 −0.336083 −0.168041 0.985780i \(-0.553744\pi\)
−0.168041 + 0.985780i \(0.553744\pi\)
\(588\) 0 0
\(589\) −25.3124 −1.04298
\(590\) 51.1335 2.10513
\(591\) 0 0
\(592\) −6.74864 −0.277367
\(593\) 35.0659 1.43998 0.719991 0.693983i \(-0.244146\pi\)
0.719991 + 0.693983i \(0.244146\pi\)
\(594\) 0 0
\(595\) 43.6788 1.79066
\(596\) 52.5622 2.15303
\(597\) 0 0
\(598\) −1.94381 −0.0794883
\(599\) −25.7373 −1.05160 −0.525798 0.850609i \(-0.676233\pi\)
−0.525798 + 0.850609i \(0.676233\pi\)
\(600\) 0 0
\(601\) −0.894006 −0.0364673 −0.0182336 0.999834i \(-0.505804\pi\)
−0.0182336 + 0.999834i \(0.505804\pi\)
\(602\) 35.4512 1.44488
\(603\) 0 0
\(604\) 22.2989 0.907328
\(605\) 19.6055 0.797077
\(606\) 0 0
\(607\) −4.25639 −0.172762 −0.0863808 0.996262i \(-0.527530\pi\)
−0.0863808 + 0.996262i \(0.527530\pi\)
\(608\) 21.2985 0.863769
\(609\) 0 0
\(610\) 49.4891 2.00375
\(611\) −6.59755 −0.266908
\(612\) 0 0
\(613\) −13.8078 −0.557691 −0.278845 0.960336i \(-0.589952\pi\)
−0.278845 + 0.960336i \(0.589952\pi\)
\(614\) −7.18436 −0.289937
\(615\) 0 0
\(616\) 9.10395 0.366808
\(617\) −5.11993 −0.206121 −0.103060 0.994675i \(-0.532863\pi\)
−0.103060 + 0.994675i \(0.532863\pi\)
\(618\) 0 0
\(619\) 40.3193 1.62057 0.810284 0.586037i \(-0.199313\pi\)
0.810284 + 0.586037i \(0.199313\pi\)
\(620\) −36.9005 −1.48196
\(621\) 0 0
\(622\) −33.9838 −1.36263
\(623\) −15.9300 −0.638223
\(624\) 0 0
\(625\) −16.1361 −0.645443
\(626\) −15.5216 −0.620366
\(627\) 0 0
\(628\) 34.0863 1.36019
\(629\) −65.4072 −2.60796
\(630\) 0 0
\(631\) −2.46097 −0.0979698 −0.0489849 0.998800i \(-0.515599\pi\)
−0.0489849 + 0.998800i \(0.515599\pi\)
\(632\) −15.6575 −0.622823
\(633\) 0 0
\(634\) 12.9233 0.513251
\(635\) −0.740354 −0.0293800
\(636\) 0 0
\(637\) 25.4698 1.00915
\(638\) 0 0
\(639\) 0 0
\(640\) 37.1648 1.46907
\(641\) 17.1138 0.675953 0.337977 0.941154i \(-0.390258\pi\)
0.337977 + 0.941154i \(0.390258\pi\)
\(642\) 0 0
\(643\) −39.9949 −1.57724 −0.788622 0.614879i \(-0.789205\pi\)
−0.788622 + 0.614879i \(0.789205\pi\)
\(644\) 1.78971 0.0705246
\(645\) 0 0
\(646\) −68.8374 −2.70837
\(647\) −7.53650 −0.296290 −0.148145 0.988966i \(-0.547330\pi\)
−0.148145 + 0.988966i \(0.547330\pi\)
\(648\) 0 0
\(649\) 9.59209 0.376522
\(650\) −17.4552 −0.684650
\(651\) 0 0
\(652\) −5.00609 −0.196054
\(653\) 39.8823 1.56072 0.780358 0.625332i \(-0.215037\pi\)
0.780358 + 0.625332i \(0.215037\pi\)
\(654\) 0 0
\(655\) 1.44524 0.0564700
\(656\) 3.76791 0.147112
\(657\) 0 0
\(658\) 9.66249 0.376683
\(659\) 8.97996 0.349810 0.174905 0.984585i \(-0.444038\pi\)
0.174905 + 0.984585i \(0.444038\pi\)
\(660\) 0 0
\(661\) 24.5234 0.953851 0.476926 0.878944i \(-0.341751\pi\)
0.476926 + 0.878944i \(0.341751\pi\)
\(662\) −80.3723 −3.12376
\(663\) 0 0
\(664\) 24.8597 0.964742
\(665\) −28.6986 −1.11288
\(666\) 0 0
\(667\) 0 0
\(668\) −42.2444 −1.63449
\(669\) 0 0
\(670\) 57.1204 2.20675
\(671\) 9.28362 0.358390
\(672\) 0 0
\(673\) 21.3524 0.823074 0.411537 0.911393i \(-0.364992\pi\)
0.411537 + 0.911393i \(0.364992\pi\)
\(674\) −20.4888 −0.789198
\(675\) 0 0
\(676\) 55.4545 2.13287
\(677\) −8.83784 −0.339666 −0.169833 0.985473i \(-0.554323\pi\)
−0.169833 + 0.985473i \(0.554323\pi\)
\(678\) 0 0
\(679\) 34.2528 1.31450
\(680\) −41.0779 −1.57527
\(681\) 0 0
\(682\) −11.0107 −0.421623
\(683\) −31.8703 −1.21948 −0.609741 0.792601i \(-0.708726\pi\)
−0.609741 + 0.792601i \(0.708726\pi\)
\(684\) 0 0
\(685\) 28.3822 1.08443
\(686\) 18.2642 0.697331
\(687\) 0 0
\(688\) −3.09605 −0.118036
\(689\) −2.52611 −0.0962371
\(690\) 0 0
\(691\) −6.92284 −0.263357 −0.131679 0.991292i \(-0.542037\pi\)
−0.131679 + 0.991292i \(0.542037\pi\)
\(692\) −8.95675 −0.340485
\(693\) 0 0
\(694\) 37.8604 1.43716
\(695\) −6.95551 −0.263838
\(696\) 0 0
\(697\) 36.5183 1.38323
\(698\) −21.9229 −0.829794
\(699\) 0 0
\(700\) 16.0714 0.607443
\(701\) −44.7487 −1.69013 −0.845067 0.534661i \(-0.820439\pi\)
−0.845067 + 0.534661i \(0.820439\pi\)
\(702\) 0 0
\(703\) 42.9750 1.62083
\(704\) 10.4120 0.392416
\(705\) 0 0
\(706\) 34.7299 1.30708
\(707\) 51.9293 1.95300
\(708\) 0 0
\(709\) 6.32860 0.237676 0.118838 0.992914i \(-0.462083\pi\)
0.118838 + 0.992914i \(0.462083\pi\)
\(710\) 14.8785 0.558379
\(711\) 0 0
\(712\) 14.9815 0.561455
\(713\) −0.886046 −0.0331827
\(714\) 0 0
\(715\) 8.52389 0.318775
\(716\) −21.5294 −0.804591
\(717\) 0 0
\(718\) −35.7908 −1.33570
\(719\) −46.2583 −1.72514 −0.862571 0.505936i \(-0.831147\pi\)
−0.862571 + 0.505936i \(0.831147\pi\)
\(720\) 0 0
\(721\) −0.714388 −0.0266052
\(722\) 1.13383 0.0421967
\(723\) 0 0
\(724\) −58.3566 −2.16881
\(725\) 0 0
\(726\) 0 0
\(727\) 21.0732 0.781561 0.390780 0.920484i \(-0.372205\pi\)
0.390780 + 0.920484i \(0.372205\pi\)
\(728\) −59.6346 −2.21021
\(729\) 0 0
\(730\) −4.32450 −0.160057
\(731\) −30.0066 −1.10984
\(732\) 0 0
\(733\) 31.3184 1.15677 0.578386 0.815763i \(-0.303683\pi\)
0.578386 + 0.815763i \(0.303683\pi\)
\(734\) −77.3880 −2.85644
\(735\) 0 0
\(736\) 0.745542 0.0274811
\(737\) 10.7152 0.394698
\(738\) 0 0
\(739\) 46.7013 1.71793 0.858967 0.512032i \(-0.171107\pi\)
0.858967 + 0.512032i \(0.171107\pi\)
\(740\) 62.6490 2.30302
\(741\) 0 0
\(742\) 3.69963 0.135818
\(743\) −7.62970 −0.279906 −0.139953 0.990158i \(-0.544695\pi\)
−0.139953 + 0.990158i \(0.544695\pi\)
\(744\) 0 0
\(745\) −29.5035 −1.08093
\(746\) −7.55596 −0.276643
\(747\) 0 0
\(748\) −18.8248 −0.688303
\(749\) −8.80460 −0.321713
\(750\) 0 0
\(751\) −52.6341 −1.92064 −0.960322 0.278893i \(-0.910032\pi\)
−0.960322 + 0.278893i \(0.910032\pi\)
\(752\) −0.843853 −0.0307721
\(753\) 0 0
\(754\) 0 0
\(755\) −12.5165 −0.455522
\(756\) 0 0
\(757\) −17.6192 −0.640382 −0.320191 0.947353i \(-0.603747\pi\)
−0.320191 + 0.947353i \(0.603747\pi\)
\(758\) 60.1863 2.18606
\(759\) 0 0
\(760\) 26.9898 0.979022
\(761\) 1.36919 0.0496332 0.0248166 0.999692i \(-0.492100\pi\)
0.0248166 + 0.999692i \(0.492100\pi\)
\(762\) 0 0
\(763\) 3.94088 0.142669
\(764\) −55.6944 −2.01495
\(765\) 0 0
\(766\) −68.6826 −2.48160
\(767\) −62.8322 −2.26874
\(768\) 0 0
\(769\) 16.0129 0.577442 0.288721 0.957413i \(-0.406770\pi\)
0.288721 + 0.957413i \(0.406770\pi\)
\(770\) −12.4837 −0.449882
\(771\) 0 0
\(772\) −42.3397 −1.52384
\(773\) −34.0107 −1.22328 −0.611640 0.791136i \(-0.709490\pi\)
−0.611640 + 0.791136i \(0.709490\pi\)
\(774\) 0 0
\(775\) −7.95661 −0.285810
\(776\) −32.2132 −1.15639
\(777\) 0 0
\(778\) −27.0566 −0.970025
\(779\) −23.9939 −0.859671
\(780\) 0 0
\(781\) 2.79104 0.0998713
\(782\) −2.40961 −0.0861675
\(783\) 0 0
\(784\) 3.25768 0.116346
\(785\) −19.1328 −0.682881
\(786\) 0 0
\(787\) 50.0028 1.78241 0.891203 0.453604i \(-0.149862\pi\)
0.891203 + 0.453604i \(0.149862\pi\)
\(788\) 47.8991 1.70633
\(789\) 0 0
\(790\) 21.4703 0.763878
\(791\) 14.8758 0.528921
\(792\) 0 0
\(793\) −60.8115 −2.15948
\(794\) 50.0384 1.77580
\(795\) 0 0
\(796\) 43.7457 1.55052
\(797\) −21.8515 −0.774019 −0.387010 0.922076i \(-0.626492\pi\)
−0.387010 + 0.922076i \(0.626492\pi\)
\(798\) 0 0
\(799\) −8.17854 −0.289336
\(800\) 6.69490 0.236700
\(801\) 0 0
\(802\) −46.4277 −1.63942
\(803\) −0.811230 −0.0286277
\(804\) 0 0
\(805\) −1.00458 −0.0354067
\(806\) 72.1250 2.54049
\(807\) 0 0
\(808\) −48.8372 −1.71809
\(809\) −4.61865 −0.162383 −0.0811915 0.996699i \(-0.525873\pi\)
−0.0811915 + 0.996699i \(0.525873\pi\)
\(810\) 0 0
\(811\) 5.86604 0.205985 0.102992 0.994682i \(-0.467158\pi\)
0.102992 + 0.994682i \(0.467158\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 18.6939 0.655220
\(815\) 2.80995 0.0984284
\(816\) 0 0
\(817\) 19.7155 0.689758
\(818\) 66.0550 2.30956
\(819\) 0 0
\(820\) −34.9783 −1.22150
\(821\) 11.9154 0.415850 0.207925 0.978145i \(-0.433329\pi\)
0.207925 + 0.978145i \(0.433329\pi\)
\(822\) 0 0
\(823\) 9.37146 0.326669 0.163334 0.986571i \(-0.447775\pi\)
0.163334 + 0.986571i \(0.447775\pi\)
\(824\) 0.671850 0.0234050
\(825\) 0 0
\(826\) 92.0213 3.20183
\(827\) 39.0974 1.35955 0.679776 0.733420i \(-0.262077\pi\)
0.679776 + 0.733420i \(0.262077\pi\)
\(828\) 0 0
\(829\) 6.57154 0.228239 0.114119 0.993467i \(-0.463595\pi\)
0.114119 + 0.993467i \(0.463595\pi\)
\(830\) −34.0886 −1.18323
\(831\) 0 0
\(832\) −68.2027 −2.36450
\(833\) 31.5732 1.09395
\(834\) 0 0
\(835\) 23.7121 0.820591
\(836\) 12.3686 0.427777
\(837\) 0 0
\(838\) −25.6887 −0.887401
\(839\) −18.5940 −0.641935 −0.320967 0.947090i \(-0.604008\pi\)
−0.320967 + 0.947090i \(0.604008\pi\)
\(840\) 0 0
\(841\) 0 0
\(842\) 62.1291 2.14111
\(843\) 0 0
\(844\) 46.5547 1.60248
\(845\) −31.1270 −1.07080
\(846\) 0 0
\(847\) 35.2826 1.21232
\(848\) −0.323099 −0.0110953
\(849\) 0 0
\(850\) −21.6381 −0.742180
\(851\) 1.50432 0.0515673
\(852\) 0 0
\(853\) 15.0581 0.515578 0.257789 0.966201i \(-0.417006\pi\)
0.257789 + 0.966201i \(0.417006\pi\)
\(854\) 89.0620 3.04764
\(855\) 0 0
\(856\) 8.28033 0.283016
\(857\) −6.59884 −0.225412 −0.112706 0.993628i \(-0.535952\pi\)
−0.112706 + 0.993628i \(0.535952\pi\)
\(858\) 0 0
\(859\) 10.6264 0.362569 0.181284 0.983431i \(-0.441975\pi\)
0.181284 + 0.983431i \(0.441975\pi\)
\(860\) 28.7413 0.980069
\(861\) 0 0
\(862\) −76.8989 −2.61919
\(863\) −41.2826 −1.40528 −0.702638 0.711548i \(-0.747994\pi\)
−0.702638 + 0.711548i \(0.747994\pi\)
\(864\) 0 0
\(865\) 5.02749 0.170940
\(866\) −12.3483 −0.419614
\(867\) 0 0
\(868\) −66.4072 −2.25401
\(869\) 4.02759 0.136627
\(870\) 0 0
\(871\) −70.1888 −2.37826
\(872\) −3.70622 −0.125509
\(873\) 0 0
\(874\) 1.58321 0.0535528
\(875\) −41.5253 −1.40381
\(876\) 0 0
\(877\) 24.4873 0.826878 0.413439 0.910532i \(-0.364327\pi\)
0.413439 + 0.910532i \(0.364327\pi\)
\(878\) −72.3008 −2.44003
\(879\) 0 0
\(880\) 1.09024 0.0367519
\(881\) −12.3751 −0.416929 −0.208465 0.978030i \(-0.566847\pi\)
−0.208465 + 0.978030i \(0.566847\pi\)
\(882\) 0 0
\(883\) 28.8587 0.971171 0.485586 0.874189i \(-0.338606\pi\)
0.485586 + 0.874189i \(0.338606\pi\)
\(884\) 123.310 4.14737
\(885\) 0 0
\(886\) 29.9434 1.00597
\(887\) 46.9153 1.57526 0.787631 0.616147i \(-0.211307\pi\)
0.787631 + 0.616147i \(0.211307\pi\)
\(888\) 0 0
\(889\) −1.33236 −0.0446860
\(890\) −20.5432 −0.688611
\(891\) 0 0
\(892\) −45.7081 −1.53042
\(893\) 5.37361 0.179821
\(894\) 0 0
\(895\) 12.0846 0.403943
\(896\) 66.8828 2.23440
\(897\) 0 0
\(898\) 78.5600 2.62158
\(899\) 0 0
\(900\) 0 0
\(901\) −3.13145 −0.104324
\(902\) −10.4372 −0.347521
\(903\) 0 0
\(904\) −13.9900 −0.465300
\(905\) 32.7560 1.08885
\(906\) 0 0
\(907\) 21.2233 0.704707 0.352354 0.935867i \(-0.385381\pi\)
0.352354 + 0.935867i \(0.385381\pi\)
\(908\) 91.3242 3.03070
\(909\) 0 0
\(910\) 81.7735 2.71077
\(911\) 46.1944 1.53049 0.765245 0.643739i \(-0.222618\pi\)
0.765245 + 0.643739i \(0.222618\pi\)
\(912\) 0 0
\(913\) −6.39466 −0.211632
\(914\) −17.7189 −0.586091
\(915\) 0 0
\(916\) 36.9660 1.22139
\(917\) 2.60089 0.0858888
\(918\) 0 0
\(919\) −49.8555 −1.64458 −0.822290 0.569068i \(-0.807304\pi\)
−0.822290 + 0.569068i \(0.807304\pi\)
\(920\) 0.944761 0.0311478
\(921\) 0 0
\(922\) 39.3706 1.29660
\(923\) −18.2825 −0.601775
\(924\) 0 0
\(925\) 13.5086 0.444160
\(926\) 21.6219 0.710538
\(927\) 0 0
\(928\) 0 0
\(929\) −16.6870 −0.547484 −0.273742 0.961803i \(-0.588261\pi\)
−0.273742 + 0.961803i \(0.588261\pi\)
\(930\) 0 0
\(931\) −20.7448 −0.679883
\(932\) 18.5659 0.608147
\(933\) 0 0
\(934\) −58.8370 −1.92521
\(935\) 10.5665 0.345561
\(936\) 0 0
\(937\) 22.6452 0.739787 0.369893 0.929074i \(-0.379394\pi\)
0.369893 + 0.929074i \(0.379394\pi\)
\(938\) 102.795 3.35639
\(939\) 0 0
\(940\) 7.83366 0.255506
\(941\) −4.03174 −0.131431 −0.0657155 0.997838i \(-0.520933\pi\)
−0.0657155 + 0.997838i \(0.520933\pi\)
\(942\) 0 0
\(943\) −0.839892 −0.0273506
\(944\) −8.03648 −0.261565
\(945\) 0 0
\(946\) 8.57612 0.278834
\(947\) −28.1604 −0.915090 −0.457545 0.889186i \(-0.651271\pi\)
−0.457545 + 0.889186i \(0.651271\pi\)
\(948\) 0 0
\(949\) 5.31389 0.172496
\(950\) 14.2170 0.461262
\(951\) 0 0
\(952\) −73.9251 −2.39592
\(953\) −32.5042 −1.05291 −0.526457 0.850201i \(-0.676480\pi\)
−0.526457 + 0.850201i \(0.676480\pi\)
\(954\) 0 0
\(955\) 31.2616 1.01160
\(956\) 2.57620 0.0833202
\(957\) 0 0
\(958\) −53.4355 −1.72642
\(959\) 51.0775 1.64938
\(960\) 0 0
\(961\) 1.87669 0.0605384
\(962\) −122.453 −3.94803
\(963\) 0 0
\(964\) −84.7671 −2.73016
\(965\) 23.7655 0.765040
\(966\) 0 0
\(967\) −1.32129 −0.0424899 −0.0212450 0.999774i \(-0.506763\pi\)
−0.0212450 + 0.999774i \(0.506763\pi\)
\(968\) −33.1817 −1.06650
\(969\) 0 0
\(970\) 44.1721 1.41828
\(971\) 39.4627 1.26642 0.633209 0.773981i \(-0.281737\pi\)
0.633209 + 0.773981i \(0.281737\pi\)
\(972\) 0 0
\(973\) −12.5173 −0.401288
\(974\) 3.56066 0.114091
\(975\) 0 0
\(976\) −7.77803 −0.248969
\(977\) −18.7051 −0.598428 −0.299214 0.954186i \(-0.596724\pi\)
−0.299214 + 0.954186i \(0.596724\pi\)
\(978\) 0 0
\(979\) −3.85369 −0.123164
\(980\) −30.2418 −0.966037
\(981\) 0 0
\(982\) 46.7633 1.49228
\(983\) 8.05331 0.256861 0.128430 0.991719i \(-0.459006\pi\)
0.128430 + 0.991719i \(0.459006\pi\)
\(984\) 0 0
\(985\) −26.8861 −0.856662
\(986\) 0 0
\(987\) 0 0
\(988\) −81.0195 −2.57758
\(989\) 0.690129 0.0219448
\(990\) 0 0
\(991\) −60.4922 −1.92160 −0.960800 0.277244i \(-0.910579\pi\)
−0.960800 + 0.277244i \(0.910579\pi\)
\(992\) −27.6633 −0.878310
\(993\) 0 0
\(994\) 26.7757 0.849274
\(995\) −24.5547 −0.778438
\(996\) 0 0
\(997\) 2.96516 0.0939076 0.0469538 0.998897i \(-0.485049\pi\)
0.0469538 + 0.998897i \(0.485049\pi\)
\(998\) 80.5446 2.54960
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 7569.2.a.bt.1.11 12
3.2 odd 2 2523.2.a.s.1.2 12
29.19 odd 28 261.2.o.b.100.1 24
29.26 odd 28 261.2.o.b.154.1 24
29.28 even 2 7569.2.a.bn.1.2 12
87.26 even 28 87.2.i.a.67.4 yes 24
87.77 even 28 87.2.i.a.13.4 24
87.86 odd 2 2523.2.a.v.1.11 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
87.2.i.a.13.4 24 87.77 even 28
87.2.i.a.67.4 yes 24 87.26 even 28
261.2.o.b.100.1 24 29.19 odd 28
261.2.o.b.154.1 24 29.26 odd 28
2523.2.a.s.1.2 12 3.2 odd 2
2523.2.a.v.1.11 12 87.86 odd 2
7569.2.a.bn.1.2 12 29.28 even 2
7569.2.a.bt.1.11 12 1.1 even 1 trivial