Properties

Label 7569.2.a.bt.1.11
Level 75697569
Weight 22
Character 7569.1
Self dual yes
Analytic conductor 60.43960.439
Analytic rank 11
Dimension 1212
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [7569,2,Mod(1,7569)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(7569, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("7569.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: N N == 7569=32292 7569 = 3^{2} \cdot 29^{2}
Weight: k k == 2 2
Character orbit: [χ][\chi] == 7569.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,6,0,8,-2,0,-10,0,0,-20,14,0,-16,0,0,-4,22,0,-16] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(19)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 60.438769289960.4387692899
Analytic rank: 11
Dimension: 1212
Coefficient field: Q[x]/(x12)\mathbb{Q}[x]/(x^{12} - \cdots)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x126x11+2x10+38x930x890x7+55x6+90x530x4++1 x^{12} - 6 x^{11} + 2 x^{10} + 38 x^{9} - 30 x^{8} - 90 x^{7} + 55 x^{6} + 90 x^{5} - 30 x^{4} + \cdots + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2]\Z[a_1, a_2]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 87)
Fricke sign: +1+1
Sato-Tate group: SU(2)\mathrm{SU}(2)

Embedding invariants

Embedding label 1.11
Root 1.32079-1.32079 of defining polynomial
Character χ\chi == 7569.1

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
f(q)f(q) == q+2.32079q2+3.38605q41.90061q53.42040q7+3.21673q84.41092q100.827442q11+5.42009q137.93802q14+0.693250q16+6.71892q174.41458q196.43558q201.92032q220.154530q231.38766q25+12.5789q2611.5817q28+5.73382q314.82458q32+15.5932q34+6.50087q359.73479q3710.2453q386.11377q40+5.43514q414.46599q432.80176q440.358631q461.21724q47+4.69915q493.22047q50+18.3527q520.466064q53+1.57265q5511.0025q5611.5925q5911.2197q61+13.3070q6212.5833q6410.3015q6512.9498q67+22.7506q68+15.0871q703.37310q71+0.980407q7322.5924q7414.9480q76+2.83018q774.86752q791.31760q80+12.6138q82+7.72823q8312.7701q8510.3646q862.66166q88+4.65736q8918.5389q910.523246q922.82496q94+8.39042q9510.0143q97+10.9057q98+O(q100)q+2.32079 q^{2} +3.38605 q^{4} -1.90061 q^{5} -3.42040 q^{7} +3.21673 q^{8} -4.41092 q^{10} -0.827442 q^{11} +5.42009 q^{13} -7.93802 q^{14} +0.693250 q^{16} +6.71892 q^{17} -4.41458 q^{19} -6.43558 q^{20} -1.92032 q^{22} -0.154530 q^{23} -1.38766 q^{25} +12.5789 q^{26} -11.5817 q^{28} +5.73382 q^{31} -4.82458 q^{32} +15.5932 q^{34} +6.50087 q^{35} -9.73479 q^{37} -10.2453 q^{38} -6.11377 q^{40} +5.43514 q^{41} -4.46599 q^{43} -2.80176 q^{44} -0.358631 q^{46} -1.21724 q^{47} +4.69915 q^{49} -3.22047 q^{50} +18.3527 q^{52} -0.466064 q^{53} +1.57265 q^{55} -11.0025 q^{56} -11.5925 q^{59} -11.2197 q^{61} +13.3070 q^{62} -12.5833 q^{64} -10.3015 q^{65} -12.9498 q^{67} +22.7506 q^{68} +15.0871 q^{70} -3.37310 q^{71} +0.980407 q^{73} -22.5924 q^{74} -14.9480 q^{76} +2.83018 q^{77} -4.86752 q^{79} -1.31760 q^{80} +12.6138 q^{82} +7.72823 q^{83} -12.7701 q^{85} -10.3646 q^{86} -2.66166 q^{88} +4.65736 q^{89} -18.5389 q^{91} -0.523246 q^{92} -2.82496 q^{94} +8.39042 q^{95} -10.0143 q^{97} +10.9057 q^{98} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 12q+6q2+8q42q510q720q10+14q1116q134q16+22q1716q194q20+12q222q232q258q264q284q31+16q32++6q98+O(q100) 12 q + 6 q^{2} + 8 q^{4} - 2 q^{5} - 10 q^{7} - 20 q^{10} + 14 q^{11} - 16 q^{13} - 4 q^{16} + 22 q^{17} - 16 q^{19} - 4 q^{20} + 12 q^{22} - 2 q^{23} - 2 q^{25} - 8 q^{26} - 4 q^{28} - 4 q^{31} + 16 q^{32}+ \cdots + 6 q^{98}+O(q^{100}) Copy content Toggle raw display

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 2.32079 1.64104 0.820522 0.571615i 0.193683π-0.193683\pi
0.820522 + 0.571615i 0.193683π0.193683\pi
33 0 0
44 3.38605 1.69303
55 −1.90061 −0.849981 −0.424990 0.905198i 0.639723π-0.639723\pi
−0.424990 + 0.905198i 0.639723π0.639723\pi
66 0 0
77 −3.42040 −1.29279 −0.646395 0.763003i 0.723724π-0.723724\pi
−0.646395 + 0.763003i 0.723724π0.723724\pi
88 3.21673 1.13729
99 0 0
1010 −4.41092 −1.39486
1111 −0.827442 −0.249483 −0.124742 0.992189i 0.539810π-0.539810\pi
−0.124742 + 0.992189i 0.539810π0.539810\pi
1212 0 0
1313 5.42009 1.50326 0.751631 0.659584i 0.229268π-0.229268\pi
0.751631 + 0.659584i 0.229268π0.229268\pi
1414 −7.93802 −2.12153
1515 0 0
1616 0.693250 0.173313
1717 6.71892 1.62958 0.814788 0.579758i 0.196853π-0.196853\pi
0.814788 + 0.579758i 0.196853π0.196853\pi
1818 0 0
1919 −4.41458 −1.01278 −0.506388 0.862306i 0.669019π-0.669019\pi
−0.506388 + 0.862306i 0.669019π0.669019\pi
2020 −6.43558 −1.43904
2121 0 0
2222 −1.92032 −0.409413
2323 −0.154530 −0.0322217 −0.0161109 0.999870i 0.505128π-0.505128\pi
−0.0161109 + 0.999870i 0.505128π0.505128\pi
2424 0 0
2525 −1.38766 −0.277533
2626 12.5789 2.46692
2727 0 0
2828 −11.5817 −2.18873
2929 0 0
3030 0 0
3131 5.73382 1.02982 0.514912 0.857243i 0.327825π-0.327825\pi
0.514912 + 0.857243i 0.327825π0.327825\pi
3232 −4.82458 −0.852874
3333 0 0
3434 15.5932 2.67421
3535 6.50087 1.09885
3636 0 0
3737 −9.73479 −1.60039 −0.800194 0.599741i 0.795270π-0.795270\pi
−0.800194 + 0.599741i 0.795270π0.795270\pi
3838 −10.2453 −1.66201
3939 0 0
4040 −6.11377 −0.966673
4141 5.43514 0.848827 0.424413 0.905469i 0.360480π-0.360480\pi
0.424413 + 0.905469i 0.360480π0.360480\pi
4242 0 0
4343 −4.46599 −0.681058 −0.340529 0.940234i 0.610606π-0.610606\pi
−0.340529 + 0.940234i 0.610606π0.610606\pi
4444 −2.80176 −0.422381
4545 0 0
4646 −0.358631 −0.0528772
4747 −1.21724 −0.177553 −0.0887764 0.996052i 0.528296π-0.528296\pi
−0.0887764 + 0.996052i 0.528296π0.528296\pi
4848 0 0
4949 4.69915 0.671307
5050 −3.22047 −0.455443
5151 0 0
5252 18.3527 2.54506
5353 −0.466064 −0.0640189 −0.0320094 0.999488i 0.510191π-0.510191\pi
−0.0320094 + 0.999488i 0.510191π0.510191\pi
5454 0 0
5555 1.57265 0.212056
5656 −11.0025 −1.47027
5757 0 0
5858 0 0
5959 −11.5925 −1.50921 −0.754605 0.656179i 0.772172π-0.772172\pi
−0.754605 + 0.656179i 0.772172π0.772172\pi
6060 0 0
6161 −11.2197 −1.43653 −0.718265 0.695769i 0.755064π-0.755064\pi
−0.718265 + 0.695769i 0.755064π0.755064\pi
6262 13.3070 1.68999
6363 0 0
6464 −12.5833 −1.57292
6565 −10.3015 −1.27774
6666 0 0
6767 −12.9498 −1.58206 −0.791032 0.611774i 0.790456π-0.790456\pi
−0.791032 + 0.611774i 0.790456π0.790456\pi
6868 22.7506 2.75892
6969 0 0
7070 15.0871 1.80326
7171 −3.37310 −0.400313 −0.200156 0.979764i 0.564145π-0.564145\pi
−0.200156 + 0.979764i 0.564145π0.564145\pi
7272 0 0
7373 0.980407 0.114748 0.0573740 0.998353i 0.481727π-0.481727\pi
0.0573740 + 0.998353i 0.481727π0.481727\pi
7474 −22.5924 −2.62631
7575 0 0
7676 −14.9480 −1.71466
7777 2.83018 0.322529
7878 0 0
7979 −4.86752 −0.547639 −0.273820 0.961781i 0.588287π-0.588287\pi
−0.273820 + 0.961781i 0.588287π0.588287\pi
8080 −1.31760 −0.147312
8181 0 0
8282 12.6138 1.39296
8383 7.72823 0.848284 0.424142 0.905596i 0.360576π-0.360576\pi
0.424142 + 0.905596i 0.360576π0.360576\pi
8484 0 0
8585 −12.7701 −1.38511
8686 −10.3646 −1.11765
8787 0 0
8888 −2.66166 −0.283734
8989 4.65736 0.493679 0.246839 0.969056i 0.420608π-0.420608\pi
0.246839 + 0.969056i 0.420608π0.420608\pi
9090 0 0
9191 −18.5389 −1.94340
9292 −0.523246 −0.0545522
9393 0 0
9494 −2.82496 −0.291372
9595 8.39042 0.860839
9696 0 0
9797 −10.0143 −1.01679 −0.508397 0.861123i 0.669762π-0.669762\pi
−0.508397 + 0.861123i 0.669762π0.669762\pi
9898 10.9057 1.10164
9999 0 0
100100 −4.69870 −0.469870
101101 −15.1822 −1.51069 −0.755344 0.655328i 0.772530π-0.772530\pi
−0.755344 + 0.655328i 0.772530π0.772530\pi
102102 0 0
103103 0.208861 0.0205797 0.0102898 0.999947i 0.496725π-0.496725\pi
0.0102898 + 0.999947i 0.496725π0.496725\pi
104104 17.4350 1.70964
105105 0 0
106106 −1.08164 −0.105058
107107 2.57414 0.248852 0.124426 0.992229i 0.460291π-0.460291\pi
0.124426 + 0.992229i 0.460291π0.460291\pi
108108 0 0
109109 −1.15217 −0.110358 −0.0551789 0.998476i 0.517573π-0.517573\pi
−0.0551789 + 0.998476i 0.517573π0.517573\pi
110110 3.64978 0.347993
111111 0 0
112112 −2.37119 −0.224057
113113 −4.34913 −0.409132 −0.204566 0.978853i 0.565578π-0.565578\pi
−0.204566 + 0.978853i 0.565578π0.565578\pi
114114 0 0
115115 0.293702 0.0273878
116116 0 0
117117 0 0
118118 −26.9036 −2.47668
119119 −22.9814 −2.10670
120120 0 0
121121 −10.3153 −0.937758
122122 −26.0385 −2.35741
123123 0 0
124124 19.4150 1.74352
125125 12.1405 1.08588
126126 0 0
127127 0.389534 0.0345655 0.0172828 0.999851i 0.494498π-0.494498\pi
0.0172828 + 0.999851i 0.494498π0.494498\pi
128128 −19.5541 −1.72835
129129 0 0
130130 −23.9076 −2.09683
131131 −0.760404 −0.0664368 −0.0332184 0.999448i 0.510576π-0.510576\pi
−0.0332184 + 0.999448i 0.510576π0.510576\pi
132132 0 0
133133 15.0997 1.30931
134134 −30.0536 −2.59624
135135 0 0
136136 21.6130 1.85330
137137 −14.9332 −1.27583 −0.637914 0.770107i 0.720203π-0.720203\pi
−0.637914 + 0.770107i 0.720203π0.720203\pi
138138 0 0
139139 3.65961 0.310404 0.155202 0.987883i 0.450397π-0.450397\pi
0.155202 + 0.987883i 0.450397π0.450397\pi
140140 22.0123 1.86038
141141 0 0
142142 −7.82824 −0.656931
143143 −4.48481 −0.375038
144144 0 0
145145 0 0
146146 2.27532 0.188307
147147 0 0
148148 −32.9625 −2.70950
149149 15.5231 1.27171 0.635853 0.771810i 0.280648π-0.280648\pi
0.635853 + 0.771810i 0.280648π0.280648\pi
150150 0 0
151151 6.58551 0.535921 0.267960 0.963430i 0.413650π-0.413650\pi
0.267960 + 0.963430i 0.413650π0.413650\pi
152152 −14.2005 −1.15182
153153 0 0
154154 6.56825 0.529285
155155 −10.8978 −0.875331
156156 0 0
157157 10.0667 0.803407 0.401704 0.915770i 0.368418π-0.368418\pi
0.401704 + 0.915770i 0.368418π0.368418\pi
158158 −11.2965 −0.898700
159159 0 0
160160 9.16968 0.724926
161161 0.528554 0.0416559
162162 0 0
163163 −1.47844 −0.115801 −0.0579004 0.998322i 0.518441π-0.518441\pi
−0.0579004 + 0.998322i 0.518441π0.518441\pi
164164 18.4037 1.43709
165165 0 0
166166 17.9356 1.39207
167167 −12.4760 −0.965423 −0.482711 0.875779i 0.660348π-0.660348\pi
−0.482711 + 0.875779i 0.660348π0.660348\pi
168168 0 0
169169 16.3773 1.25980
170170 −29.6366 −2.27303
171171 0 0
172172 −15.1221 −1.15305
173173 −2.64519 −0.201110 −0.100555 0.994931i 0.532062π-0.532062\pi
−0.100555 + 0.994931i 0.532062π0.532062\pi
174174 0 0
175175 4.74636 0.358791
176176 −0.573624 −0.0432385
177177 0 0
178178 10.8087 0.810149
179179 −6.35825 −0.475238 −0.237619 0.971358i 0.576367π-0.576367\pi
−0.237619 + 0.971358i 0.576367π0.576367\pi
180180 0 0
181181 −17.2344 −1.28102 −0.640512 0.767948i 0.721278π-0.721278\pi
−0.640512 + 0.767948i 0.721278π0.721278\pi
182182 −43.0248 −3.18921
183183 0 0
184184 −0.497082 −0.0366453
185185 18.5021 1.36030
186186 0 0
187187 −5.55951 −0.406552
188188 −4.12164 −0.300602
189189 0 0
190190 19.4724 1.41268
191191 −16.4482 −1.19015 −0.595074 0.803671i 0.702877π-0.702877\pi
−0.595074 + 0.803671i 0.702877π0.702877\pi
192192 0 0
193193 −12.5041 −0.900067 −0.450033 0.893012i 0.648588π-0.648588\pi
−0.450033 + 0.893012i 0.648588π0.648588\pi
194194 −23.2410 −1.66860
195195 0 0
196196 15.9116 1.13654
197197 14.1460 1.00786 0.503930 0.863745i 0.331887π-0.331887\pi
0.503930 + 0.863745i 0.331887π0.331887\pi
198198 0 0
199199 12.9194 0.915830 0.457915 0.888996i 0.348596π-0.348596\pi
0.457915 + 0.888996i 0.348596π0.348596\pi
200200 −4.46374 −0.315634
201201 0 0
202202 −35.2347 −2.47911
203203 0 0
204204 0 0
205205 −10.3301 −0.721487
206206 0.484721 0.0337721
207207 0 0
208208 3.75748 0.260534
209209 3.65281 0.252670
210210 0 0
211211 13.7490 0.946518 0.473259 0.880923i 0.343078π-0.343078\pi
0.473259 + 0.880923i 0.343078π0.343078\pi
212212 −1.57812 −0.108386
213213 0 0
214214 5.97404 0.408377
215215 8.48813 0.578886
216216 0 0
217217 −19.6120 −1.33135
218218 −2.67394 −0.181102
219219 0 0
220220 5.32507 0.359016
221221 36.4171 2.44968
222222 0 0
223223 −13.4989 −0.903955 −0.451978 0.892029i 0.649281π-0.649281\pi
−0.451978 + 0.892029i 0.649281π0.649281\pi
224224 16.5020 1.10259
225225 0 0
226226 −10.0934 −0.671403
227227 26.9707 1.79011 0.895053 0.445959i 0.147137π-0.147137\pi
0.895053 + 0.445959i 0.147137π0.147137\pi
228228 0 0
229229 10.9171 0.721424 0.360712 0.932677i 0.382534π-0.382534\pi
0.360712 + 0.932677i 0.382534π0.382534\pi
230230 0.681619 0.0449446
231231 0 0
232232 0 0
233233 5.48306 0.359207 0.179604 0.983739i 0.442518π-0.442518\pi
0.179604 + 0.983739i 0.442518π0.442518\pi
234234 0 0
235235 2.31351 0.150917
236236 −39.2527 −2.55513
237237 0 0
238238 −53.3349 −3.45719
239239 0.760826 0.0492138 0.0246069 0.999697i 0.492167π-0.492167\pi
0.0246069 + 0.999697i 0.492167π0.492167\pi
240240 0 0
241241 −25.0342 −1.61259 −0.806297 0.591511i 0.798532π-0.798532\pi
−0.806297 + 0.591511i 0.798532π0.798532\pi
242242 −23.9397 −1.53890
243243 0 0
244244 −37.9904 −2.43208
245245 −8.93127 −0.570598
246246 0 0
247247 −23.9274 −1.52247
248248 18.4442 1.17121
249249 0 0
250250 28.1755 1.78197
251251 10.4978 0.662617 0.331308 0.943523i 0.392510π-0.392510\pi
0.331308 + 0.943523i 0.392510π0.392510\pi
252252 0 0
253253 0.127864 0.00803877
254254 0.904025 0.0567236
255255 0 0
256256 −20.2142 −1.26339
257257 0.271801 0.0169545 0.00847725 0.999964i 0.497302π-0.497302\pi
0.00847725 + 0.999964i 0.497302π0.497302\pi
258258 0 0
259259 33.2969 2.06897
260260 −34.8814 −2.16325
261261 0 0
262262 −1.76474 −0.109026
263263 7.34264 0.452767 0.226383 0.974038i 0.427310π-0.427310\pi
0.226383 + 0.974038i 0.427310π0.427310\pi
264264 0 0
265265 0.885809 0.0544148
266266 35.0431 2.14863
267267 0 0
268268 −43.8486 −2.67848
269269 30.0231 1.83054 0.915269 0.402843i 0.131978π-0.131978\pi
0.915269 + 0.402843i 0.131978π0.131978\pi
270270 0 0
271271 0.175497 0.0106607 0.00533036 0.999986i 0.498303π-0.498303\pi
0.00533036 + 0.999986i 0.498303π0.498303\pi
272272 4.65789 0.282426
273273 0 0
274274 −34.6568 −2.09369
275275 1.14821 0.0692397
276276 0 0
277277 2.93089 0.176100 0.0880502 0.996116i 0.471936π-0.471936\pi
0.0880502 + 0.996116i 0.471936π0.471936\pi
278278 8.49318 0.509387
279279 0 0
280280 20.9116 1.24970
281281 10.1937 0.608105 0.304052 0.952655i 0.401660π-0.401660\pi
0.304052 + 0.952655i 0.401660π0.401660\pi
282282 0 0
283283 −19.2316 −1.14320 −0.571599 0.820533i 0.693677π-0.693677\pi
−0.571599 + 0.820533i 0.693677π0.693677\pi
284284 −11.4215 −0.677740
285285 0 0
286286 −10.4083 −0.615454
287287 −18.5904 −1.09736
288288 0 0
289289 28.1439 1.65552
290290 0 0
291291 0 0
292292 3.31971 0.194271
293293 11.1238 0.649860 0.324930 0.945738i 0.394659π-0.394659\pi
0.324930 + 0.945738i 0.394659π0.394659\pi
294294 0 0
295295 22.0328 1.28280
296296 −31.3142 −1.82010
297297 0 0
298298 36.0259 2.08693
299299 −0.837565 −0.0484377
300300 0 0
301301 15.2755 0.880465
302302 15.2836 0.879470
303303 0 0
304304 −3.06041 −0.175527
305305 21.3243 1.22102
306306 0 0
307307 −3.09566 −0.176678 −0.0883392 0.996090i 0.528156π-0.528156\pi
−0.0883392 + 0.996090i 0.528156π0.528156\pi
308308 9.58315 0.546051
309309 0 0
310310 −25.2914 −1.43646
311311 −14.6432 −0.830342 −0.415171 0.909743i 0.636278π-0.636278\pi
−0.415171 + 0.909743i 0.636278π0.636278\pi
312312 0 0
313313 −6.68806 −0.378031 −0.189016 0.981974i 0.560530π-0.560530\pi
−0.189016 + 0.981974i 0.560530π0.560530\pi
314314 23.3626 1.31843
315315 0 0
316316 −16.4817 −0.927168
317317 5.56851 0.312759 0.156379 0.987697i 0.450018π-0.450018\pi
0.156379 + 0.987697i 0.450018π0.450018\pi
318318 0 0
319319 0 0
320320 23.9161 1.33695
321321 0 0
322322 1.22666 0.0683592
323323 −29.6612 −1.65039
324324 0 0
325325 −7.52125 −0.417204
326326 −3.43116 −0.190034
327327 0 0
328328 17.4834 0.965360
329329 4.16345 0.229539
330330 0 0
331331 −34.6315 −1.90352 −0.951759 0.306847i 0.900726π-0.900726\pi
−0.951759 + 0.306847i 0.900726π0.900726\pi
332332 26.1682 1.43617
333333 0 0
334334 −28.9542 −1.58430
335335 24.6125 1.34472
336336 0 0
337337 −8.82837 −0.480912 −0.240456 0.970660i 0.577297π-0.577297\pi
−0.240456 + 0.970660i 0.577297π0.577297\pi
338338 38.0083 2.06738
339339 0 0
340340 −43.2402 −2.34503
341341 −4.74440 −0.256924
342342 0 0
343343 7.86984 0.424931
344344 −14.3659 −0.774558
345345 0 0
346346 −6.13892 −0.330031
347347 16.3136 0.875759 0.437880 0.899034i 0.355730π-0.355730\pi
0.437880 + 0.899034i 0.355730π0.355730\pi
348348 0 0
349349 −9.44632 −0.505650 −0.252825 0.967512i 0.581360π-0.581360\pi
−0.252825 + 0.967512i 0.581360π0.581360\pi
350350 11.0153 0.588793
351351 0 0
352352 3.99206 0.212778
353353 14.9647 0.796490 0.398245 0.917279i 0.369619π-0.369619\pi
0.398245 + 0.917279i 0.369619π0.369619\pi
354354 0 0
355355 6.41096 0.340258
356356 15.7701 0.835811
357357 0 0
358358 −14.7562 −0.779887
359359 −15.4219 −0.813934 −0.406967 0.913443i 0.633414π-0.633414\pi
−0.406967 + 0.913443i 0.633414π0.633414\pi
360360 0 0
361361 0.488553 0.0257133
362362 −39.9974 −2.10222
363363 0 0
364364 −62.7736 −3.29023
365365 −1.86338 −0.0975336
366366 0 0
367367 −33.3456 −1.74063 −0.870313 0.492499i 0.836083π-0.836083\pi
−0.870313 + 0.492499i 0.836083π0.836083\pi
368368 −0.107128 −0.00558442
369369 0 0
370370 42.9394 2.23231
371371 1.59413 0.0827630
372372 0 0
373373 −3.25578 −0.168578 −0.0842888 0.996441i 0.526862π-0.526862\pi
−0.0842888 + 0.996441i 0.526862π0.526862\pi
374374 −12.9024 −0.667170
375375 0 0
376376 −3.91554 −0.201929
377377 0 0
378378 0 0
379379 25.9336 1.33212 0.666059 0.745899i 0.267980π-0.267980\pi
0.666059 + 0.745899i 0.267980π0.267980\pi
380380 28.4104 1.45742
381381 0 0
382382 −38.1727 −1.95309
383383 −29.5945 −1.51221 −0.756105 0.654450i 0.772900π-0.772900\pi
−0.756105 + 0.654450i 0.772900π0.772900\pi
384384 0 0
385385 −5.37909 −0.274144
386386 −29.0194 −1.47705
387387 0 0
388388 −33.9088 −1.72146
389389 −11.6584 −0.591103 −0.295551 0.955327i 0.595503π-0.595503\pi
−0.295551 + 0.955327i 0.595503π0.595503\pi
390390 0 0
391391 −1.03827 −0.0525077
392392 15.1159 0.763469
393393 0 0
394394 32.8298 1.65394
395395 9.25129 0.465483
396396 0 0
397397 21.5610 1.08211 0.541057 0.840986i 0.318024π-0.318024\pi
0.541057 + 0.840986i 0.318024π0.318024\pi
398398 29.9831 1.50292
399399 0 0
400400 −0.961997 −0.0480999
401401 −20.0052 −0.999010 −0.499505 0.866311i 0.666485π-0.666485\pi
−0.499505 + 0.866311i 0.666485π0.666485\pi
402402 0 0
403403 31.0778 1.54810
404404 −51.4079 −2.55764
405405 0 0
406406 0 0
407407 8.05497 0.399270
408408 0 0
409409 28.4623 1.40737 0.703686 0.710511i 0.251536π-0.251536\pi
0.703686 + 0.710511i 0.251536π0.251536\pi
410410 −23.9740 −1.18399
411411 0 0
412412 0.707214 0.0348419
413413 39.6509 1.95109
414414 0 0
415415 −14.6884 −0.721025
416416 −26.1497 −1.28209
417417 0 0
418418 8.47740 0.414643
419419 −11.0690 −0.540754 −0.270377 0.962755i 0.587148π-0.587148\pi
−0.270377 + 0.962755i 0.587148π0.587148\pi
420420 0 0
421421 26.7707 1.30472 0.652362 0.757907i 0.273778π-0.273778\pi
0.652362 + 0.757907i 0.273778π0.273778\pi
422422 31.9084 1.55328
423423 0 0
424424 −1.49921 −0.0728078
425425 −9.32359 −0.452261
426426 0 0
427427 38.3758 1.85713
428428 8.71619 0.421313
429429 0 0
430430 19.6992 0.949978
431431 −33.1348 −1.59605 −0.798025 0.602625i 0.794122π-0.794122\pi
−0.798025 + 0.602625i 0.794122π0.794122\pi
432432 0 0
433433 −5.32076 −0.255699 −0.127850 0.991794i 0.540808π-0.540808\pi
−0.127850 + 0.991794i 0.540808π0.540808\pi
434434 −45.5152 −2.18480
435435 0 0
436436 −3.90131 −0.186839
437437 0.682185 0.0326333
438438 0 0
439439 −31.1536 −1.48688 −0.743439 0.668804i 0.766807π-0.766807\pi
−0.743439 + 0.668804i 0.766807π0.766807\pi
440440 5.05879 0.241168
441441 0 0
442442 84.5164 4.02003
443443 12.9023 0.613005 0.306503 0.951870i 0.400841π-0.400841\pi
0.306503 + 0.951870i 0.400841π0.400841\pi
444444 0 0
445445 −8.85184 −0.419618
446446 −31.3281 −1.48343
447447 0 0
448448 43.0400 2.03345
449449 33.8506 1.59751 0.798754 0.601658i 0.205493π-0.205493\pi
0.798754 + 0.601658i 0.205493π0.205493\pi
450450 0 0
451451 −4.49726 −0.211768
452452 −14.7264 −0.692671
453453 0 0
454454 62.5932 2.93764
455455 35.2353 1.65185
456456 0 0
457457 −7.63489 −0.357145 −0.178572 0.983927i 0.557148π-0.557148\pi
−0.178572 + 0.983927i 0.557148π0.557148\pi
458458 25.3363 1.18389
459459 0 0
460460 0.994490 0.0463683
461461 16.9643 0.790108 0.395054 0.918658i 0.370726π-0.370726\pi
0.395054 + 0.918658i 0.370726π0.370726\pi
462462 0 0
463463 9.31660 0.432979 0.216490 0.976285i 0.430539π-0.430539\pi
0.216490 + 0.976285i 0.430539π0.430539\pi
464464 0 0
465465 0 0
466466 12.7250 0.589475
467467 −25.3522 −1.17316 −0.586579 0.809892i 0.699526π-0.699526\pi
−0.586579 + 0.809892i 0.699526π0.699526\pi
468468 0 0
469469 44.2934 2.04528
470470 5.36916 0.247661
471471 0 0
472472 −37.2899 −1.71641
473473 3.69535 0.169912
474474 0 0
475475 6.12595 0.281078
476476 −77.8162 −3.56670
477477 0 0
478478 1.76572 0.0807620
479479 −23.0247 −1.05203 −0.526013 0.850476i 0.676314π-0.676314\pi
−0.526013 + 0.850476i 0.676314π0.676314\pi
480480 0 0
481481 −52.7634 −2.40580
482482 −58.0990 −2.64634
483483 0 0
484484 −34.9283 −1.58765
485485 19.0332 0.864255
486486 0 0
487487 1.53425 0.0695234 0.0347617 0.999396i 0.488933π-0.488933\pi
0.0347617 + 0.999396i 0.488933π0.488933\pi
488488 −36.0907 −1.63375
489489 0 0
490490 −20.7276 −0.936376
491491 20.1498 0.909346 0.454673 0.890658i 0.349756π-0.349756\pi
0.454673 + 0.890658i 0.349756π0.349756\pi
492492 0 0
493493 0 0
494494 −55.5305 −2.49843
495495 0 0
496496 3.97497 0.178481
497497 11.5373 0.517521
498498 0 0
499499 34.7057 1.55364 0.776821 0.629721i 0.216831π-0.216831\pi
0.776821 + 0.629721i 0.216831π0.216831\pi
500500 41.1083 1.83842
501501 0 0
502502 24.3632 1.08738
503503 28.8361 1.28574 0.642870 0.765975i 0.277743π-0.277743\pi
0.642870 + 0.765975i 0.277743π0.277743\pi
504504 0 0
505505 28.8556 1.28406
506506 0.296746 0.0131920
507507 0 0
508508 1.31898 0.0585204
509509 3.10101 0.137450 0.0687249 0.997636i 0.478107π-0.478107\pi
0.0687249 + 0.997636i 0.478107π0.478107\pi
510510 0 0
511511 −3.35339 −0.148345
512512 −7.80465 −0.344920
513513 0 0
514514 0.630793 0.0278231
515515 −0.396964 −0.0174923
516516 0 0
517517 1.00720 0.0442964
518518 77.2750 3.39527
519519 0 0
520520 −33.1372 −1.45316
521521 33.4475 1.46536 0.732680 0.680573i 0.238269π-0.238269\pi
0.732680 + 0.680573i 0.238269π0.238269\pi
522522 0 0
523523 −23.5081 −1.02794 −0.513969 0.857809i 0.671825π-0.671825\pi
−0.513969 + 0.857809i 0.671825π0.671825\pi
524524 −2.57477 −0.112479
525525 0 0
526526 17.0407 0.743010
527527 38.5251 1.67818
528528 0 0
529529 −22.9761 −0.998962
530530 2.05577 0.0892971
531531 0 0
532532 51.1282 2.21669
533533 29.4590 1.27601
534534 0 0
535535 −4.89245 −0.211519
536536 −41.6559 −1.79926
537537 0 0
538538 69.6771 3.00399
539539 −3.88827 −0.167480
540540 0 0
541541 32.7727 1.40901 0.704503 0.709701i 0.251170π-0.251170\pi
0.704503 + 0.709701i 0.251170π0.251170\pi
542542 0.407292 0.0174947
543543 0 0
544544 −32.4160 −1.38982
545545 2.18983 0.0938020
546546 0 0
547547 −28.1424 −1.20328 −0.601642 0.798766i 0.705486π-0.705486\pi
−0.601642 + 0.798766i 0.705486π0.705486\pi
548548 −50.5646 −2.16001
549549 0 0
550550 2.66475 0.113625
551551 0 0
552552 0 0
553553 16.6489 0.707983
554554 6.80198 0.288989
555555 0 0
556556 12.3916 0.525523
557557 13.2791 0.562652 0.281326 0.959612i 0.409226π-0.409226\pi
0.281326 + 0.959612i 0.409226π0.409226\pi
558558 0 0
559559 −24.2061 −1.02381
560560 4.50673 0.190444
561561 0 0
562562 23.6574 0.997927
563563 −12.5201 −0.527658 −0.263829 0.964569i 0.584986π-0.584986\pi
−0.263829 + 0.964569i 0.584986π0.584986\pi
564564 0 0
565565 8.26602 0.347754
566566 −44.6324 −1.87604
567567 0 0
568568 −10.8504 −0.455271
569569 12.9397 0.542461 0.271230 0.962514i 0.412569π-0.412569\pi
0.271230 + 0.962514i 0.412569π0.412569\pi
570570 0 0
571571 20.4961 0.857734 0.428867 0.903368i 0.358913π-0.358913\pi
0.428867 + 0.903368i 0.358913π0.358913\pi
572572 −15.1858 −0.634950
573573 0 0
574574 −43.1443 −1.80081
575575 0.214435 0.00894257
576576 0 0
577577 2.35603 0.0980827 0.0490414 0.998797i 0.484383π-0.484383\pi
0.0490414 + 0.998797i 0.484383π0.484383\pi
578578 65.3159 2.71678
579579 0 0
580580 0 0
581581 −26.4337 −1.09665
582582 0 0
583583 0.385641 0.0159716
584584 3.15371 0.130501
585585 0 0
586586 25.8160 1.06645
587587 −8.14265 −0.336083 −0.168041 0.985780i 0.553744π-0.553744\pi
−0.168041 + 0.985780i 0.553744π0.553744\pi
588588 0 0
589589 −25.3124 −1.04298
590590 51.1335 2.10513
591591 0 0
592592 −6.74864 −0.277367
593593 35.0659 1.43998 0.719991 0.693983i 0.244146π-0.244146\pi
0.719991 + 0.693983i 0.244146π0.244146\pi
594594 0 0
595595 43.6788 1.79066
596596 52.5622 2.15303
597597 0 0
598598 −1.94381 −0.0794883
599599 −25.7373 −1.05160 −0.525798 0.850609i 0.676233π-0.676233\pi
−0.525798 + 0.850609i 0.676233π0.676233\pi
600600 0 0
601601 −0.894006 −0.0364673 −0.0182336 0.999834i 0.505804π-0.505804\pi
−0.0182336 + 0.999834i 0.505804π0.505804\pi
602602 35.4512 1.44488
603603 0 0
604604 22.2989 0.907328
605605 19.6055 0.797077
606606 0 0
607607 −4.25639 −0.172762 −0.0863808 0.996262i 0.527530π-0.527530\pi
−0.0863808 + 0.996262i 0.527530π0.527530\pi
608608 21.2985 0.863769
609609 0 0
610610 49.4891 2.00375
611611 −6.59755 −0.266908
612612 0 0
613613 −13.8078 −0.557691 −0.278845 0.960336i 0.589952π-0.589952\pi
−0.278845 + 0.960336i 0.589952π0.589952\pi
614614 −7.18436 −0.289937
615615 0 0
616616 9.10395 0.366808
617617 −5.11993 −0.206121 −0.103060 0.994675i 0.532863π-0.532863\pi
−0.103060 + 0.994675i 0.532863π0.532863\pi
618618 0 0
619619 40.3193 1.62057 0.810284 0.586037i 0.199313π-0.199313\pi
0.810284 + 0.586037i 0.199313π0.199313\pi
620620 −36.9005 −1.48196
621621 0 0
622622 −33.9838 −1.36263
623623 −15.9300 −0.638223
624624 0 0
625625 −16.1361 −0.645443
626626 −15.5216 −0.620366
627627 0 0
628628 34.0863 1.36019
629629 −65.4072 −2.60796
630630 0 0
631631 −2.46097 −0.0979698 −0.0489849 0.998800i 0.515599π-0.515599\pi
−0.0489849 + 0.998800i 0.515599π0.515599\pi
632632 −15.6575 −0.622823
633633 0 0
634634 12.9233 0.513251
635635 −0.740354 −0.0293800
636636 0 0
637637 25.4698 1.00915
638638 0 0
639639 0 0
640640 37.1648 1.46907
641641 17.1138 0.675953 0.337977 0.941154i 0.390258π-0.390258\pi
0.337977 + 0.941154i 0.390258π0.390258\pi
642642 0 0
643643 −39.9949 −1.57724 −0.788622 0.614879i 0.789205π-0.789205\pi
−0.788622 + 0.614879i 0.789205π0.789205\pi
644644 1.78971 0.0705246
645645 0 0
646646 −68.8374 −2.70837
647647 −7.53650 −0.296290 −0.148145 0.988966i 0.547330π-0.547330\pi
−0.148145 + 0.988966i 0.547330π0.547330\pi
648648 0 0
649649 9.59209 0.376522
650650 −17.4552 −0.684650
651651 0 0
652652 −5.00609 −0.196054
653653 39.8823 1.56072 0.780358 0.625332i 0.215037π-0.215037\pi
0.780358 + 0.625332i 0.215037π0.215037\pi
654654 0 0
655655 1.44524 0.0564700
656656 3.76791 0.147112
657657 0 0
658658 9.66249 0.376683
659659 8.97996 0.349810 0.174905 0.984585i 0.444038π-0.444038\pi
0.174905 + 0.984585i 0.444038π0.444038\pi
660660 0 0
661661 24.5234 0.953851 0.476926 0.878944i 0.341751π-0.341751\pi
0.476926 + 0.878944i 0.341751π0.341751\pi
662662 −80.3723 −3.12376
663663 0 0
664664 24.8597 0.964742
665665 −28.6986 −1.11288
666666 0 0
667667 0 0
668668 −42.2444 −1.63449
669669 0 0
670670 57.1204 2.20675
671671 9.28362 0.358390
672672 0 0
673673 21.3524 0.823074 0.411537 0.911393i 0.364992π-0.364992\pi
0.411537 + 0.911393i 0.364992π0.364992\pi
674674 −20.4888 −0.789198
675675 0 0
676676 55.4545 2.13287
677677 −8.83784 −0.339666 −0.169833 0.985473i 0.554323π-0.554323\pi
−0.169833 + 0.985473i 0.554323π0.554323\pi
678678 0 0
679679 34.2528 1.31450
680680 −41.0779 −1.57527
681681 0 0
682682 −11.0107 −0.421623
683683 −31.8703 −1.21948 −0.609741 0.792601i 0.708726π-0.708726\pi
−0.609741 + 0.792601i 0.708726π0.708726\pi
684684 0 0
685685 28.3822 1.08443
686686 18.2642 0.697331
687687 0 0
688688 −3.09605 −0.118036
689689 −2.52611 −0.0962371
690690 0 0
691691 −6.92284 −0.263357 −0.131679 0.991292i 0.542037π-0.542037\pi
−0.131679 + 0.991292i 0.542037π0.542037\pi
692692 −8.95675 −0.340485
693693 0 0
694694 37.8604 1.43716
695695 −6.95551 −0.263838
696696 0 0
697697 36.5183 1.38323
698698 −21.9229 −0.829794
699699 0 0
700700 16.0714 0.607443
701701 −44.7487 −1.69013 −0.845067 0.534661i 0.820439π-0.820439\pi
−0.845067 + 0.534661i 0.820439π0.820439\pi
702702 0 0
703703 42.9750 1.62083
704704 10.4120 0.392416
705705 0 0
706706 34.7299 1.30708
707707 51.9293 1.95300
708708 0 0
709709 6.32860 0.237676 0.118838 0.992914i 0.462083π-0.462083\pi
0.118838 + 0.992914i 0.462083π0.462083\pi
710710 14.8785 0.558379
711711 0 0
712712 14.9815 0.561455
713713 −0.886046 −0.0331827
714714 0 0
715715 8.52389 0.318775
716716 −21.5294 −0.804591
717717 0 0
718718 −35.7908 −1.33570
719719 −46.2583 −1.72514 −0.862571 0.505936i 0.831147π-0.831147\pi
−0.862571 + 0.505936i 0.831147π0.831147\pi
720720 0 0
721721 −0.714388 −0.0266052
722722 1.13383 0.0421967
723723 0 0
724724 −58.3566 −2.16881
725725 0 0
726726 0 0
727727 21.0732 0.781561 0.390780 0.920484i 0.372205π-0.372205\pi
0.390780 + 0.920484i 0.372205π0.372205\pi
728728 −59.6346 −2.21021
729729 0 0
730730 −4.32450 −0.160057
731731 −30.0066 −1.10984
732732 0 0
733733 31.3184 1.15677 0.578386 0.815763i 0.303683π-0.303683\pi
0.578386 + 0.815763i 0.303683π0.303683\pi
734734 −77.3880 −2.85644
735735 0 0
736736 0.745542 0.0274811
737737 10.7152 0.394698
738738 0 0
739739 46.7013 1.71793 0.858967 0.512032i 0.171107π-0.171107\pi
0.858967 + 0.512032i 0.171107π0.171107\pi
740740 62.6490 2.30302
741741 0 0
742742 3.69963 0.135818
743743 −7.62970 −0.279906 −0.139953 0.990158i 0.544695π-0.544695\pi
−0.139953 + 0.990158i 0.544695π0.544695\pi
744744 0 0
745745 −29.5035 −1.08093
746746 −7.55596 −0.276643
747747 0 0
748748 −18.8248 −0.688303
749749 −8.80460 −0.321713
750750 0 0
751751 −52.6341 −1.92064 −0.960322 0.278893i 0.910032π-0.910032\pi
−0.960322 + 0.278893i 0.910032π0.910032\pi
752752 −0.843853 −0.0307721
753753 0 0
754754 0 0
755755 −12.5165 −0.455522
756756 0 0
757757 −17.6192 −0.640382 −0.320191 0.947353i 0.603747π-0.603747\pi
−0.320191 + 0.947353i 0.603747π0.603747\pi
758758 60.1863 2.18606
759759 0 0
760760 26.9898 0.979022
761761 1.36919 0.0496332 0.0248166 0.999692i 0.492100π-0.492100\pi
0.0248166 + 0.999692i 0.492100π0.492100\pi
762762 0 0
763763 3.94088 0.142669
764764 −55.6944 −2.01495
765765 0 0
766766 −68.6826 −2.48160
767767 −62.8322 −2.26874
768768 0 0
769769 16.0129 0.577442 0.288721 0.957413i 0.406770π-0.406770\pi
0.288721 + 0.957413i 0.406770π0.406770\pi
770770 −12.4837 −0.449882
771771 0 0
772772 −42.3397 −1.52384
773773 −34.0107 −1.22328 −0.611640 0.791136i 0.709490π-0.709490\pi
−0.611640 + 0.791136i 0.709490π0.709490\pi
774774 0 0
775775 −7.95661 −0.285810
776776 −32.2132 −1.15639
777777 0 0
778778 −27.0566 −0.970025
779779 −23.9939 −0.859671
780780 0 0
781781 2.79104 0.0998713
782782 −2.40961 −0.0861675
783783 0 0
784784 3.25768 0.116346
785785 −19.1328 −0.682881
786786 0 0
787787 50.0028 1.78241 0.891203 0.453604i 0.149862π-0.149862\pi
0.891203 + 0.453604i 0.149862π0.149862\pi
788788 47.8991 1.70633
789789 0 0
790790 21.4703 0.763878
791791 14.8758 0.528921
792792 0 0
793793 −60.8115 −2.15948
794794 50.0384 1.77580
795795 0 0
796796 43.7457 1.55052
797797 −21.8515 −0.774019 −0.387010 0.922076i 0.626492π-0.626492\pi
−0.387010 + 0.922076i 0.626492π0.626492\pi
798798 0 0
799799 −8.17854 −0.289336
800800 6.69490 0.236700
801801 0 0
802802 −46.4277 −1.63942
803803 −0.811230 −0.0286277
804804 0 0
805805 −1.00458 −0.0354067
806806 72.1250 2.54049
807807 0 0
808808 −48.8372 −1.71809
809809 −4.61865 −0.162383 −0.0811915 0.996699i 0.525873π-0.525873\pi
−0.0811915 + 0.996699i 0.525873π0.525873\pi
810810 0 0
811811 5.86604 0.205985 0.102992 0.994682i 0.467158π-0.467158\pi
0.102992 + 0.994682i 0.467158π0.467158\pi
812812 0 0
813813 0 0
814814 18.6939 0.655220
815815 2.80995 0.0984284
816816 0 0
817817 19.7155 0.689758
818818 66.0550 2.30956
819819 0 0
820820 −34.9783 −1.22150
821821 11.9154 0.415850 0.207925 0.978145i 0.433329π-0.433329\pi
0.207925 + 0.978145i 0.433329π0.433329\pi
822822 0 0
823823 9.37146 0.326669 0.163334 0.986571i 0.447775π-0.447775\pi
0.163334 + 0.986571i 0.447775π0.447775\pi
824824 0.671850 0.0234050
825825 0 0
826826 92.0213 3.20183
827827 39.0974 1.35955 0.679776 0.733420i 0.262077π-0.262077\pi
0.679776 + 0.733420i 0.262077π0.262077\pi
828828 0 0
829829 6.57154 0.228239 0.114119 0.993467i 0.463595π-0.463595\pi
0.114119 + 0.993467i 0.463595π0.463595\pi
830830 −34.0886 −1.18323
831831 0 0
832832 −68.2027 −2.36450
833833 31.5732 1.09395
834834 0 0
835835 23.7121 0.820591
836836 12.3686 0.427777
837837 0 0
838838 −25.6887 −0.887401
839839 −18.5940 −0.641935 −0.320967 0.947090i 0.604008π-0.604008\pi
−0.320967 + 0.947090i 0.604008π0.604008\pi
840840 0 0
841841 0 0
842842 62.1291 2.14111
843843 0 0
844844 46.5547 1.60248
845845 −31.1270 −1.07080
846846 0 0
847847 35.2826 1.21232
848848 −0.323099 −0.0110953
849849 0 0
850850 −21.6381 −0.742180
851851 1.50432 0.0515673
852852 0 0
853853 15.0581 0.515578 0.257789 0.966201i 0.417006π-0.417006\pi
0.257789 + 0.966201i 0.417006π0.417006\pi
854854 89.0620 3.04764
855855 0 0
856856 8.28033 0.283016
857857 −6.59884 −0.225412 −0.112706 0.993628i 0.535952π-0.535952\pi
−0.112706 + 0.993628i 0.535952π0.535952\pi
858858 0 0
859859 10.6264 0.362569 0.181284 0.983431i 0.441975π-0.441975\pi
0.181284 + 0.983431i 0.441975π0.441975\pi
860860 28.7413 0.980069
861861 0 0
862862 −76.8989 −2.61919
863863 −41.2826 −1.40528 −0.702638 0.711548i 0.747994π-0.747994\pi
−0.702638 + 0.711548i 0.747994π0.747994\pi
864864 0 0
865865 5.02749 0.170940
866866 −12.3483 −0.419614
867867 0 0
868868 −66.4072 −2.25401
869869 4.02759 0.136627
870870 0 0
871871 −70.1888 −2.37826
872872 −3.70622 −0.125509
873873 0 0
874874 1.58321 0.0535528
875875 −41.5253 −1.40381
876876 0 0
877877 24.4873 0.826878 0.413439 0.910532i 0.364327π-0.364327\pi
0.413439 + 0.910532i 0.364327π0.364327\pi
878878 −72.3008 −2.44003
879879 0 0
880880 1.09024 0.0367519
881881 −12.3751 −0.416929 −0.208465 0.978030i 0.566847π-0.566847\pi
−0.208465 + 0.978030i 0.566847π0.566847\pi
882882 0 0
883883 28.8587 0.971171 0.485586 0.874189i 0.338606π-0.338606\pi
0.485586 + 0.874189i 0.338606π0.338606\pi
884884 123.310 4.14737
885885 0 0
886886 29.9434 1.00597
887887 46.9153 1.57526 0.787631 0.616147i 0.211307π-0.211307\pi
0.787631 + 0.616147i 0.211307π0.211307\pi
888888 0 0
889889 −1.33236 −0.0446860
890890 −20.5432 −0.688611
891891 0 0
892892 −45.7081 −1.53042
893893 5.37361 0.179821
894894 0 0
895895 12.0846 0.403943
896896 66.8828 2.23440
897897 0 0
898898 78.5600 2.62158
899899 0 0
900900 0 0
901901 −3.13145 −0.104324
902902 −10.4372 −0.347521
903903 0 0
904904 −13.9900 −0.465300
905905 32.7560 1.08885
906906 0 0
907907 21.2233 0.704707 0.352354 0.935867i 0.385381π-0.385381\pi
0.352354 + 0.935867i 0.385381π0.385381\pi
908908 91.3242 3.03070
909909 0 0
910910 81.7735 2.71077
911911 46.1944 1.53049 0.765245 0.643739i 0.222618π-0.222618\pi
0.765245 + 0.643739i 0.222618π0.222618\pi
912912 0 0
913913 −6.39466 −0.211632
914914 −17.7189 −0.586091
915915 0 0
916916 36.9660 1.22139
917917 2.60089 0.0858888
918918 0 0
919919 −49.8555 −1.64458 −0.822290 0.569068i 0.807304π-0.807304\pi
−0.822290 + 0.569068i 0.807304π0.807304\pi
920920 0.944761 0.0311478
921921 0 0
922922 39.3706 1.29660
923923 −18.2825 −0.601775
924924 0 0
925925 13.5086 0.444160
926926 21.6219 0.710538
927927 0 0
928928 0 0
929929 −16.6870 −0.547484 −0.273742 0.961803i 0.588261π-0.588261\pi
−0.273742 + 0.961803i 0.588261π0.588261\pi
930930 0 0
931931 −20.7448 −0.679883
932932 18.5659 0.608147
933933 0 0
934934 −58.8370 −1.92521
935935 10.5665 0.345561
936936 0 0
937937 22.6452 0.739787 0.369893 0.929074i 0.379394π-0.379394\pi
0.369893 + 0.929074i 0.379394π0.379394\pi
938938 102.795 3.35639
939939 0 0
940940 7.83366 0.255506
941941 −4.03174 −0.131431 −0.0657155 0.997838i 0.520933π-0.520933\pi
−0.0657155 + 0.997838i 0.520933π0.520933\pi
942942 0 0
943943 −0.839892 −0.0273506
944944 −8.03648 −0.261565
945945 0 0
946946 8.57612 0.278834
947947 −28.1604 −0.915090 −0.457545 0.889186i 0.651271π-0.651271\pi
−0.457545 + 0.889186i 0.651271π0.651271\pi
948948 0 0
949949 5.31389 0.172496
950950 14.2170 0.461262
951951 0 0
952952 −73.9251 −2.39592
953953 −32.5042 −1.05291 −0.526457 0.850201i 0.676480π-0.676480\pi
−0.526457 + 0.850201i 0.676480π0.676480\pi
954954 0 0
955955 31.2616 1.01160
956956 2.57620 0.0833202
957957 0 0
958958 −53.4355 −1.72642
959959 51.0775 1.64938
960960 0 0
961961 1.87669 0.0605384
962962 −122.453 −3.94803
963963 0 0
964964 −84.7671 −2.73016
965965 23.7655 0.765040
966966 0 0
967967 −1.32129 −0.0424899 −0.0212450 0.999774i 0.506763π-0.506763\pi
−0.0212450 + 0.999774i 0.506763π0.506763\pi
968968 −33.1817 −1.06650
969969 0 0
970970 44.1721 1.41828
971971 39.4627 1.26642 0.633209 0.773981i 0.281737π-0.281737\pi
0.633209 + 0.773981i 0.281737π0.281737\pi
972972 0 0
973973 −12.5173 −0.401288
974974 3.56066 0.114091
975975 0 0
976976 −7.77803 −0.248969
977977 −18.7051 −0.598428 −0.299214 0.954186i 0.596724π-0.596724\pi
−0.299214 + 0.954186i 0.596724π0.596724\pi
978978 0 0
979979 −3.85369 −0.123164
980980 −30.2418 −0.966037
981981 0 0
982982 46.7633 1.49228
983983 8.05331 0.256861 0.128430 0.991719i 0.459006π-0.459006\pi
0.128430 + 0.991719i 0.459006π0.459006\pi
984984 0 0
985985 −26.8861 −0.856662
986986 0 0
987987 0 0
988988 −81.0195 −2.57758
989989 0.690129 0.0219448
990990 0 0
991991 −60.4922 −1.92160 −0.960800 0.277244i 0.910579π-0.910579\pi
−0.960800 + 0.277244i 0.910579π0.910579\pi
992992 −27.6633 −0.878310
993993 0 0
994994 26.7757 0.849274
995995 −24.5547 −0.778438
996996 0 0
997997 2.96516 0.0939076 0.0469538 0.998897i 0.485049π-0.485049\pi
0.0469538 + 0.998897i 0.485049π0.485049\pi
998998 80.5446 2.54960
999999 0 0
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 7569.2.a.bt.1.11 12
3.2 odd 2 2523.2.a.s.1.2 12
29.19 odd 28 261.2.o.b.100.1 24
29.26 odd 28 261.2.o.b.154.1 24
29.28 even 2 7569.2.a.bn.1.2 12
87.26 even 28 87.2.i.a.67.4 yes 24
87.77 even 28 87.2.i.a.13.4 24
87.86 odd 2 2523.2.a.v.1.11 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
87.2.i.a.13.4 24 87.77 even 28
87.2.i.a.67.4 yes 24 87.26 even 28
261.2.o.b.100.1 24 29.19 odd 28
261.2.o.b.154.1 24 29.26 odd 28
2523.2.a.s.1.2 12 3.2 odd 2
2523.2.a.v.1.11 12 87.86 odd 2
7569.2.a.bn.1.2 12 29.28 even 2
7569.2.a.bt.1.11 12 1.1 even 1 trivial