Properties

Label 2640.2.f.b.1121.7
Level $2640$
Weight $2$
Character 2640.1121
Analytic conductor $21.081$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2640,2,Mod(1121,2640)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2640, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 1, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2640.1121");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2640 = 2^{4} \cdot 3 \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2640.f (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(21.0805061336\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.2051727616.3
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 11x^{6} + 37x^{4} + 36x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 330)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1121.7
Root \(2.08963i\) of defining polynomial
Character \(\chi\) \(=\) 2640.1121
Dual form 2640.2.f.b.1121.8

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.72809 - 0.117016i) q^{3} -1.00000i q^{5} -0.723074i q^{7} +(2.97261 - 0.404430i) q^{9} +(2.32366 + 2.36656i) q^{11} +4.17926i q^{13} +(-0.117016 - 1.72809i) q^{15} -4.49908 q^{17} +7.94523i q^{19} +(-0.0846115 - 1.24954i) q^{21} +8.91237i q^{23} -1.00000 q^{25} +(5.08963 - 1.04674i) q^{27} -4.98812 q^{29} +5.85944 q^{31} +(4.29243 + 3.81772i) q^{33} -0.723074 q^{35} -5.54197 q^{37} +(0.489042 + 7.22215i) q^{39} +3.53193 q^{41} +10.4443i q^{43} +(-0.404430 - 2.97261i) q^{45} -4.44431i q^{47} +6.47716 q^{49} +(-7.77483 + 0.526466i) q^{51} -2.41329i q^{53} +(2.36656 - 2.32366i) q^{55} +(0.929721 + 13.7301i) q^{57} -9.71120i q^{59} -2.59256i q^{61} +(-0.292433 - 2.14942i) q^{63} +4.17926 q^{65} +9.24313 q^{67} +(1.04289 + 15.4014i) q^{69} -3.54197i q^{71} -4.56154i q^{73} +(-1.72809 + 0.117016i) q^{75} +(1.71120 - 1.68018i) q^{77} -11.1774i q^{79} +(8.67287 - 2.40443i) q^{81} -15.3804 q^{83} +4.49908i q^{85} +(-8.61994 + 0.583692i) q^{87} -2.10351i q^{89} +3.02192 q^{91} +(10.1257 - 0.685650i) q^{93} +7.94523 q^{95} +8.27274 q^{97} +(7.86446 + 6.09510i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 2 q^{3} + 2 q^{9} + 6 q^{11} - 4 q^{15} - 4 q^{17} + 8 q^{21} - 8 q^{25} + 22 q^{27} + 4 q^{29} + 4 q^{31} + 18 q^{33} - 12 q^{37} - 8 q^{39} + 16 q^{41} - 4 q^{49} - 28 q^{51} + 6 q^{55} - 14 q^{57}+ \cdots + 10 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2640\mathbb{Z}\right)^\times\).

\(n\) \(661\) \(881\) \(991\) \(1057\) \(1201\)
\(\chi(n)\) \(1\) \(-1\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.72809 0.117016i 0.997715 0.0675594i
\(4\) 0 0
\(5\) 1.00000i 0.447214i
\(6\) 0 0
\(7\) 0.723074i 0.273296i −0.990620 0.136648i \(-0.956367\pi\)
0.990620 0.136648i \(-0.0436330\pi\)
\(8\) 0 0
\(9\) 2.97261 0.404430i 0.990871 0.134810i
\(10\) 0 0
\(11\) 2.32366 + 2.36656i 0.700611 + 0.713544i
\(12\) 0 0
\(13\) 4.17926i 1.15912i 0.814930 + 0.579559i \(0.196775\pi\)
−0.814930 + 0.579559i \(0.803225\pi\)
\(14\) 0 0
\(15\) −0.117016 1.72809i −0.0302135 0.446192i
\(16\) 0 0
\(17\) −4.49908 −1.09119 −0.545594 0.838050i \(-0.683696\pi\)
−0.545594 + 0.838050i \(0.683696\pi\)
\(18\) 0 0
\(19\) 7.94523i 1.82276i 0.411565 + 0.911380i \(0.364982\pi\)
−0.411565 + 0.911380i \(0.635018\pi\)
\(20\) 0 0
\(21\) −0.0846115 1.24954i −0.0184637 0.272672i
\(22\) 0 0
\(23\) 8.91237i 1.85836i 0.369629 + 0.929179i \(0.379485\pi\)
−0.369629 + 0.929179i \(0.620515\pi\)
\(24\) 0 0
\(25\) −1.00000 −0.200000
\(26\) 0 0
\(27\) 5.08963 1.04674i 0.979500 0.201445i
\(28\) 0 0
\(29\) −4.98812 −0.926271 −0.463135 0.886287i \(-0.653276\pi\)
−0.463135 + 0.886287i \(0.653276\pi\)
\(30\) 0 0
\(31\) 5.85944 1.05239 0.526193 0.850365i \(-0.323619\pi\)
0.526193 + 0.850365i \(0.323619\pi\)
\(32\) 0 0
\(33\) 4.29243 + 3.81772i 0.747217 + 0.664580i
\(34\) 0 0
\(35\) −0.723074 −0.122222
\(36\) 0 0
\(37\) −5.54197 −0.911095 −0.455547 0.890212i \(-0.650556\pi\)
−0.455547 + 0.890212i \(0.650556\pi\)
\(38\) 0 0
\(39\) 0.489042 + 7.22215i 0.0783093 + 1.15647i
\(40\) 0 0
\(41\) 3.53193 0.551596 0.275798 0.961216i \(-0.411058\pi\)
0.275798 + 0.961216i \(0.411058\pi\)
\(42\) 0 0
\(43\) 10.4443i 1.59274i 0.604808 + 0.796371i \(0.293250\pi\)
−0.604808 + 0.796371i \(0.706750\pi\)
\(44\) 0 0
\(45\) −0.404430 2.97261i −0.0602889 0.443131i
\(46\) 0 0
\(47\) 4.44431i 0.648269i −0.946011 0.324135i \(-0.894927\pi\)
0.946011 0.324135i \(-0.105073\pi\)
\(48\) 0 0
\(49\) 6.47716 0.925309
\(50\) 0 0
\(51\) −7.77483 + 0.526466i −1.08869 + 0.0737199i
\(52\) 0 0
\(53\) 2.41329i 0.331491i −0.986169 0.165746i \(-0.946997\pi\)
0.986169 0.165746i \(-0.0530031\pi\)
\(54\) 0 0
\(55\) 2.36656 2.32366i 0.319106 0.313323i
\(56\) 0 0
\(57\) 0.929721 + 13.7301i 0.123145 + 1.81860i
\(58\) 0 0
\(59\) 9.71120i 1.26429i −0.774850 0.632145i \(-0.782175\pi\)
0.774850 0.632145i \(-0.217825\pi\)
\(60\) 0 0
\(61\) 2.59256i 0.331943i −0.986131 0.165971i \(-0.946924\pi\)
0.986131 0.165971i \(-0.0530759\pi\)
\(62\) 0 0
\(63\) −0.292433 2.14942i −0.0368431 0.270802i
\(64\) 0 0
\(65\) 4.17926 0.518374
\(66\) 0 0
\(67\) 9.24313 1.12923 0.564614 0.825355i \(-0.309025\pi\)
0.564614 + 0.825355i \(0.309025\pi\)
\(68\) 0 0
\(69\) 1.04289 + 15.4014i 0.125550 + 1.85411i
\(70\) 0 0
\(71\) 3.54197i 0.420355i −0.977663 0.210177i \(-0.932596\pi\)
0.977663 0.210177i \(-0.0674042\pi\)
\(72\) 0 0
\(73\) 4.56154i 0.533888i −0.963712 0.266944i \(-0.913986\pi\)
0.963712 0.266944i \(-0.0860139\pi\)
\(74\) 0 0
\(75\) −1.72809 + 0.117016i −0.199543 + 0.0135119i
\(76\) 0 0
\(77\) 1.71120 1.68018i 0.195009 0.191474i
\(78\) 0 0
\(79\) 11.1774i 1.25756i −0.777584 0.628779i \(-0.783555\pi\)
0.777584 0.628779i \(-0.216445\pi\)
\(80\) 0 0
\(81\) 8.67287 2.40443i 0.963652 0.267159i
\(82\) 0 0
\(83\) −15.3804 −1.68822 −0.844111 0.536168i \(-0.819871\pi\)
−0.844111 + 0.536168i \(0.819871\pi\)
\(84\) 0 0
\(85\) 4.49908i 0.487994i
\(86\) 0 0
\(87\) −8.61994 + 0.583692i −0.924155 + 0.0625783i
\(88\) 0 0
\(89\) 2.10351i 0.222972i −0.993766 0.111486i \(-0.964439\pi\)
0.993766 0.111486i \(-0.0355610\pi\)
\(90\) 0 0
\(91\) 3.02192 0.316783
\(92\) 0 0
\(93\) 10.1257 0.685650i 1.04998 0.0710986i
\(94\) 0 0
\(95\) 7.94523 0.815163
\(96\) 0 0
\(97\) 8.27274 0.839969 0.419985 0.907531i \(-0.362035\pi\)
0.419985 + 0.907531i \(0.362035\pi\)
\(98\) 0 0
\(99\) 7.86446 + 6.09510i 0.790408 + 0.612581i
\(100\) 0 0
\(101\) −1.73495 −0.172634 −0.0863171 0.996268i \(-0.527510\pi\)
−0.0863171 + 0.996268i \(0.527510\pi\)
\(102\) 0 0
\(103\) −8.44431 −0.832042 −0.416021 0.909355i \(-0.636576\pi\)
−0.416021 + 0.909355i \(0.636576\pi\)
\(104\) 0 0
\(105\) −1.24954 + 0.0846115i −0.121943 + 0.00825724i
\(106\) 0 0
\(107\) 14.2928 1.38174 0.690869 0.722980i \(-0.257228\pi\)
0.690869 + 0.722980i \(0.257228\pi\)
\(108\) 0 0
\(109\) 14.4958i 1.38845i −0.719759 0.694224i \(-0.755748\pi\)
0.719759 0.694224i \(-0.244252\pi\)
\(110\) 0 0
\(111\) −9.57705 + 0.648501i −0.909013 + 0.0615530i
\(112\) 0 0
\(113\) 0.179261i 0.0168635i 0.999964 + 0.00843174i \(0.00268394\pi\)
−0.999964 + 0.00843174i \(0.997316\pi\)
\(114\) 0 0
\(115\) 8.91237 0.831083
\(116\) 0 0
\(117\) 1.69022 + 12.4233i 0.156261 + 1.14854i
\(118\) 0 0
\(119\) 3.25317i 0.298218i
\(120\) 0 0
\(121\) −0.201178 + 10.9982i −0.0182889 + 0.999833i
\(122\) 0 0
\(123\) 6.10351 0.413294i 0.550335 0.0372655i
\(124\) 0 0
\(125\) 1.00000i 0.0894427i
\(126\) 0 0
\(127\) 6.84666i 0.607543i 0.952745 + 0.303772i \(0.0982460\pi\)
−0.952745 + 0.303772i \(0.901754\pi\)
\(128\) 0 0
\(129\) 1.22215 + 18.0487i 0.107605 + 1.58910i
\(130\) 0 0
\(131\) 11.4324 0.998856 0.499428 0.866355i \(-0.333544\pi\)
0.499428 + 0.866355i \(0.333544\pi\)
\(132\) 0 0
\(133\) 5.74499 0.498154
\(134\) 0 0
\(135\) −1.04674 5.08963i −0.0900888 0.438046i
\(136\) 0 0
\(137\) 0.137308i 0.0117310i 0.999983 + 0.00586552i \(0.00186706\pi\)
−0.999983 + 0.00586552i \(0.998133\pi\)
\(138\) 0 0
\(139\) 8.17157i 0.693104i 0.938031 + 0.346552i \(0.112648\pi\)
−0.938031 + 0.346552i \(0.887352\pi\)
\(140\) 0 0
\(141\) −0.520057 7.68018i −0.0437967 0.646788i
\(142\) 0 0
\(143\) −9.89046 + 9.71120i −0.827082 + 0.812091i
\(144\) 0 0
\(145\) 4.98812i 0.414241i
\(146\) 0 0
\(147\) 11.1931 0.757934i 0.923195 0.0625133i
\(148\) 0 0
\(149\) −2.58577 −0.211834 −0.105917 0.994375i \(-0.533778\pi\)
−0.105917 + 0.994375i \(0.533778\pi\)
\(150\) 0 0
\(151\) 5.09164i 0.414351i −0.978304 0.207176i \(-0.933573\pi\)
0.978304 0.207176i \(-0.0664272\pi\)
\(152\) 0 0
\(153\) −13.3740 + 1.81956i −1.08123 + 0.147103i
\(154\) 0 0
\(155\) 5.85944i 0.470642i
\(156\) 0 0
\(157\) 1.01188 0.0807567 0.0403783 0.999184i \(-0.487144\pi\)
0.0403783 + 0.999184i \(0.487144\pi\)
\(158\) 0 0
\(159\) −0.282395 4.17040i −0.0223954 0.330734i
\(160\) 0 0
\(161\) 6.44431 0.507883
\(162\) 0 0
\(163\) −0.543813 −0.0425947 −0.0212974 0.999773i \(-0.506780\pi\)
−0.0212974 + 0.999773i \(0.506780\pi\)
\(164\) 0 0
\(165\) 3.81772 4.29243i 0.297209 0.334165i
\(166\) 0 0
\(167\) 1.34942 0.104422 0.0522108 0.998636i \(-0.483373\pi\)
0.0522108 + 0.998636i \(0.483373\pi\)
\(168\) 0 0
\(169\) −4.46623 −0.343556
\(170\) 0 0
\(171\) 3.21329 + 23.6181i 0.245726 + 1.80612i
\(172\) 0 0
\(173\) 11.8247 0.899019 0.449509 0.893276i \(-0.351599\pi\)
0.449509 + 0.893276i \(0.351599\pi\)
\(174\) 0 0
\(175\) 0.723074i 0.0546593i
\(176\) 0 0
\(177\) −1.13637 16.7819i −0.0854147 1.26140i
\(178\) 0 0
\(179\) 16.2650i 1.21571i 0.794049 + 0.607853i \(0.207969\pi\)
−0.794049 + 0.607853i \(0.792031\pi\)
\(180\) 0 0
\(181\) −16.1212 −1.19828 −0.599141 0.800643i \(-0.704491\pi\)
−0.599141 + 0.800643i \(0.704491\pi\)
\(182\) 0 0
\(183\) −0.303371 4.48018i −0.0224258 0.331184i
\(184\) 0 0
\(185\) 5.54197i 0.407454i
\(186\) 0 0
\(187\) −10.4543 10.6473i −0.764498 0.778610i
\(188\) 0 0
\(189\) −0.756869 3.68018i −0.0550541 0.267694i
\(190\) 0 0
\(191\) 23.4082i 1.69376i −0.531785 0.846879i \(-0.678479\pi\)
0.531785 0.846879i \(-0.321521\pi\)
\(192\) 0 0
\(193\) 9.28094i 0.668056i −0.942563 0.334028i \(-0.891592\pi\)
0.942563 0.334028i \(-0.108408\pi\)
\(194\) 0 0
\(195\) 7.22215 0.489042i 0.517189 0.0350210i
\(196\) 0 0
\(197\) 10.8467 0.772793 0.386396 0.922333i \(-0.373720\pi\)
0.386396 + 0.922333i \(0.373720\pi\)
\(198\) 0 0
\(199\) −10.3275 −0.732098 −0.366049 0.930596i \(-0.619290\pi\)
−0.366049 + 0.930596i \(0.619290\pi\)
\(200\) 0 0
\(201\) 15.9730 1.08160i 1.12665 0.0762900i
\(202\) 0 0
\(203\) 3.60678i 0.253147i
\(204\) 0 0
\(205\) 3.53193i 0.246681i
\(206\) 0 0
\(207\) 3.60443 + 26.4931i 0.250525 + 1.84139i
\(208\) 0 0
\(209\) −18.8028 + 18.4620i −1.30062 + 1.27705i
\(210\) 0 0
\(211\) 10.8156i 0.744580i −0.928116 0.372290i \(-0.878573\pi\)
0.928116 0.372290i \(-0.121427\pi\)
\(212\) 0 0
\(213\) −0.414469 6.12086i −0.0283989 0.419394i
\(214\) 0 0
\(215\) 10.4443 0.712296
\(216\) 0 0
\(217\) 4.23681i 0.287614i
\(218\) 0 0
\(219\) −0.533775 7.88277i −0.0360691 0.532668i
\(220\) 0 0
\(221\) 18.8028i 1.26482i
\(222\) 0 0
\(223\) 11.3366 0.759155 0.379578 0.925160i \(-0.376069\pi\)
0.379578 + 0.925160i \(0.376069\pi\)
\(224\) 0 0
\(225\) −2.97261 + 0.404430i −0.198174 + 0.0269620i
\(226\) 0 0
\(227\) −20.5502 −1.36396 −0.681981 0.731370i \(-0.738882\pi\)
−0.681981 + 0.731370i \(0.738882\pi\)
\(228\) 0 0
\(229\) −2.15150 −0.142175 −0.0710874 0.997470i \(-0.522647\pi\)
−0.0710874 + 0.997470i \(0.522647\pi\)
\(230\) 0 0
\(231\) 2.76050 3.10375i 0.181627 0.204212i
\(232\) 0 0
\(233\) −16.6860 −1.09314 −0.546569 0.837414i \(-0.684066\pi\)
−0.546569 + 0.837414i \(0.684066\pi\)
\(234\) 0 0
\(235\) −4.44431 −0.289915
\(236\) 0 0
\(237\) −1.30794 19.3156i −0.0849599 1.25468i
\(238\) 0 0
\(239\) −21.5436 −1.39354 −0.696771 0.717294i \(-0.745381\pi\)
−0.696771 + 0.717294i \(0.745381\pi\)
\(240\) 0 0
\(241\) 5.44615i 0.350817i 0.984496 + 0.175409i \(0.0561247\pi\)
−0.984496 + 0.175409i \(0.943875\pi\)
\(242\) 0 0
\(243\) 14.7062 5.16995i 0.943402 0.331652i
\(244\) 0 0
\(245\) 6.47716i 0.413811i
\(246\) 0 0
\(247\) −33.2052 −2.11280
\(248\) 0 0
\(249\) −26.5788 + 1.79976i −1.68437 + 0.114055i
\(250\) 0 0
\(251\) 6.19934i 0.391299i 0.980674 + 0.195649i \(0.0626814\pi\)
−0.980674 + 0.195649i \(0.937319\pi\)
\(252\) 0 0
\(253\) −21.0916 + 20.7094i −1.32602 + 1.30199i
\(254\) 0 0
\(255\) 0.526466 + 7.77483i 0.0329686 + 0.486879i
\(256\) 0 0
\(257\) 12.3508i 0.770424i 0.922828 + 0.385212i \(0.125872\pi\)
−0.922828 + 0.385212i \(0.874128\pi\)
\(258\) 0 0
\(259\) 4.00726i 0.248999i
\(260\) 0 0
\(261\) −14.8278 + 2.01735i −0.917815 + 0.124871i
\(262\) 0 0
\(263\) 11.3676 0.700958 0.350479 0.936571i \(-0.386019\pi\)
0.350479 + 0.936571i \(0.386019\pi\)
\(264\) 0 0
\(265\) −2.41329 −0.148247
\(266\) 0 0
\(267\) −0.246145 3.63507i −0.0150639 0.222463i
\(268\) 0 0
\(269\) 11.3567i 0.692429i 0.938155 + 0.346215i \(0.112533\pi\)
−0.938155 + 0.346215i \(0.887467\pi\)
\(270\) 0 0
\(271\) 4.07340i 0.247441i 0.992317 + 0.123721i \(0.0394827\pi\)
−0.992317 + 0.123721i \(0.960517\pi\)
\(272\) 0 0
\(273\) 5.22215 0.353614i 0.316059 0.0214017i
\(274\) 0 0
\(275\) −2.32366 2.36656i −0.140122 0.142709i
\(276\) 0 0
\(277\) 7.71120i 0.463321i −0.972797 0.231660i \(-0.925584\pi\)
0.972797 0.231660i \(-0.0744158\pi\)
\(278\) 0 0
\(279\) 17.4179 2.36974i 1.04278 0.141872i
\(280\) 0 0
\(281\) 24.3786 1.45431 0.727153 0.686476i \(-0.240843\pi\)
0.727153 + 0.686476i \(0.240843\pi\)
\(282\) 0 0
\(283\) 19.5674i 1.16316i −0.813489 0.581580i \(-0.802435\pi\)
0.813489 0.581580i \(-0.197565\pi\)
\(284\) 0 0
\(285\) 13.7301 0.929721i 0.813301 0.0550719i
\(286\) 0 0
\(287\) 2.55385i 0.150749i
\(288\) 0 0
\(289\) 3.24172 0.190690
\(290\) 0 0
\(291\) 14.2961 0.968045i 0.838050 0.0567478i
\(292\) 0 0
\(293\) 13.8704 0.810316 0.405158 0.914247i \(-0.367216\pi\)
0.405158 + 0.914247i \(0.367216\pi\)
\(294\) 0 0
\(295\) −9.71120 −0.565408
\(296\) 0 0
\(297\) 14.3038 + 9.61263i 0.829988 + 0.557781i
\(298\) 0 0
\(299\) −37.2471 −2.15406
\(300\) 0 0
\(301\) 7.55201 0.435291
\(302\) 0 0
\(303\) −2.99816 + 0.203018i −0.172240 + 0.0116631i
\(304\) 0 0
\(305\) −2.59256 −0.148449
\(306\) 0 0
\(307\) 19.4844i 1.11203i 0.831171 + 0.556017i \(0.187671\pi\)
−0.831171 + 0.556017i \(0.812329\pi\)
\(308\) 0 0
\(309\) −14.5926 + 0.988122i −0.830141 + 0.0562123i
\(310\) 0 0
\(311\) 7.37040i 0.417937i 0.977922 + 0.208969i \(0.0670106\pi\)
−0.977922 + 0.208969i \(0.932989\pi\)
\(312\) 0 0
\(313\) 8.80283 0.497565 0.248783 0.968559i \(-0.419969\pi\)
0.248783 + 0.968559i \(0.419969\pi\)
\(314\) 0 0
\(315\) −2.14942 + 0.292433i −0.121106 + 0.0164767i
\(316\) 0 0
\(317\) 21.7737i 1.22293i 0.791271 + 0.611465i \(0.209420\pi\)
−0.791271 + 0.611465i \(0.790580\pi\)
\(318\) 0 0
\(319\) −11.5907 11.8047i −0.648955 0.660935i
\(320\) 0 0
\(321\) 24.6993 1.67249i 1.37858 0.0933494i
\(322\) 0 0
\(323\) 35.7462i 1.98897i
\(324\) 0 0
\(325\) 4.17926i 0.231824i
\(326\) 0 0
\(327\) −1.69625 25.0502i −0.0938028 1.38528i
\(328\) 0 0
\(329\) −3.21357 −0.177170
\(330\) 0 0
\(331\) −2.44431 −0.134351 −0.0671757 0.997741i \(-0.521399\pi\)
−0.0671757 + 0.997741i \(0.521399\pi\)
\(332\) 0 0
\(333\) −16.4741 + 2.24134i −0.902778 + 0.122825i
\(334\) 0 0
\(335\) 9.24313i 0.505006i
\(336\) 0 0
\(337\) 34.8786i 1.89996i −0.312315 0.949979i \(-0.601104\pi\)
0.312315 0.949979i \(-0.398896\pi\)
\(338\) 0 0
\(339\) 0.0209765 + 0.309780i 0.00113929 + 0.0168250i
\(340\) 0 0
\(341\) 13.6154 + 13.8667i 0.737314 + 0.750924i
\(342\) 0 0
\(343\) 9.74499i 0.526180i
\(344\) 0 0
\(345\) 15.4014 1.04289i 0.829184 0.0561475i
\(346\) 0 0
\(347\) 24.1176 1.29470 0.647349 0.762193i \(-0.275878\pi\)
0.647349 + 0.762193i \(0.275878\pi\)
\(348\) 0 0
\(349\) 1.86269i 0.0997076i −0.998757 0.0498538i \(-0.984124\pi\)
0.998757 0.0498538i \(-0.0158755\pi\)
\(350\) 0 0
\(351\) 4.37459 + 21.2709i 0.233498 + 1.13536i
\(352\) 0 0
\(353\) 1.56338i 0.0832103i 0.999134 + 0.0416052i \(0.0132472\pi\)
−0.999134 + 0.0416052i \(0.986753\pi\)
\(354\) 0 0
\(355\) −3.54197 −0.187988
\(356\) 0 0
\(357\) 0.380674 + 5.62178i 0.0201474 + 0.297536i
\(358\) 0 0
\(359\) 27.8010 1.46728 0.733640 0.679538i \(-0.237820\pi\)
0.733640 + 0.679538i \(0.237820\pi\)
\(360\) 0 0
\(361\) −44.1267 −2.32246
\(362\) 0 0
\(363\) 0.939310 + 19.0294i 0.0493010 + 0.998784i
\(364\) 0 0
\(365\) −4.56154 −0.238762
\(366\) 0 0
\(367\) 12.1212 0.632724 0.316362 0.948639i \(-0.397539\pi\)
0.316362 + 0.948639i \(0.397539\pi\)
\(368\) 0 0
\(369\) 10.4991 1.42842i 0.546560 0.0743606i
\(370\) 0 0
\(371\) −1.74499 −0.0905954
\(372\) 0 0
\(373\) 5.43846i 0.281593i −0.990039 0.140796i \(-0.955034\pi\)
0.990039 0.140796i \(-0.0449663\pi\)
\(374\) 0 0
\(375\) 0.117016 + 1.72809i 0.00604270 + 0.0892384i
\(376\) 0 0
\(377\) 20.8467i 1.07366i
\(378\) 0 0
\(379\) 27.0164 1.38774 0.693869 0.720102i \(-0.255905\pi\)
0.693869 + 0.720102i \(0.255905\pi\)
\(380\) 0 0
\(381\) 0.801171 + 11.8317i 0.0410453 + 0.606155i
\(382\) 0 0
\(383\) 27.8401i 1.42256i 0.702907 + 0.711282i \(0.251885\pi\)
−0.702907 + 0.711282i \(0.748115\pi\)
\(384\) 0 0
\(385\) −1.68018 1.71120i −0.0856300 0.0872106i
\(386\) 0 0
\(387\) 4.22399 + 31.0469i 0.214718 + 1.57820i
\(388\) 0 0
\(389\) 10.6396i 0.539451i −0.962937 0.269726i \(-0.913067\pi\)
0.962937 0.269726i \(-0.0869330\pi\)
\(390\) 0 0
\(391\) 40.0975i 2.02782i
\(392\) 0 0
\(393\) 19.7563 1.33778i 0.996574 0.0674821i
\(394\) 0 0
\(395\) −11.1774 −0.562397
\(396\) 0 0
\(397\) 15.0478 0.755228 0.377614 0.925963i \(-0.376745\pi\)
0.377614 + 0.925963i \(0.376745\pi\)
\(398\) 0 0
\(399\) 9.92788 0.672258i 0.497016 0.0336550i
\(400\) 0 0
\(401\) 35.9082i 1.79317i −0.442873 0.896585i \(-0.646041\pi\)
0.442873 0.896585i \(-0.353959\pi\)
\(402\) 0 0
\(403\) 24.4881i 1.21984i
\(404\) 0 0
\(405\) −2.40443 8.67287i −0.119477 0.430958i
\(406\) 0 0
\(407\) −12.8777 13.1154i −0.638323 0.650106i
\(408\) 0 0
\(409\) 7.53193i 0.372430i 0.982509 + 0.186215i \(0.0596221\pi\)
−0.982509 + 0.186215i \(0.940378\pi\)
\(410\) 0 0
\(411\) 0.0160673 + 0.237282i 0.000792542 + 0.0117042i
\(412\) 0 0
\(413\) −7.02192 −0.345526
\(414\) 0 0
\(415\) 15.3804i 0.754996i
\(416\) 0 0
\(417\) 0.956207 + 14.1212i 0.0468257 + 0.691520i
\(418\) 0 0
\(419\) 20.5816i 1.00548i 0.864438 + 0.502739i \(0.167674\pi\)
−0.864438 + 0.502739i \(0.832326\pi\)
\(420\) 0 0
\(421\) 22.3987 1.09164 0.545822 0.837901i \(-0.316217\pi\)
0.545822 + 0.837901i \(0.316217\pi\)
\(422\) 0 0
\(423\) −1.79741 13.2112i −0.0873932 0.642351i
\(424\) 0 0
\(425\) 4.49908 0.218237
\(426\) 0 0
\(427\) −1.87461 −0.0907187
\(428\) 0 0
\(429\) −15.9553 + 17.9392i −0.770328 + 0.866113i
\(430\) 0 0
\(431\) 27.4224 1.32089 0.660445 0.750874i \(-0.270368\pi\)
0.660445 + 0.750874i \(0.270368\pi\)
\(432\) 0 0
\(433\) −19.2947 −0.927242 −0.463621 0.886034i \(-0.653450\pi\)
−0.463621 + 0.886034i \(0.653450\pi\)
\(434\) 0 0
\(435\) 0.583692 + 8.61994i 0.0279859 + 0.413295i
\(436\) 0 0
\(437\) −70.8109 −3.38734
\(438\) 0 0
\(439\) 30.3033i 1.44630i −0.690692 0.723149i \(-0.742694\pi\)
0.690692 0.723149i \(-0.257306\pi\)
\(440\) 0 0
\(441\) 19.2541 2.61956i 0.916862 0.124741i
\(442\) 0 0
\(443\) 33.6874i 1.60054i 0.599641 + 0.800269i \(0.295310\pi\)
−0.599641 + 0.800269i \(0.704690\pi\)
\(444\) 0 0
\(445\) −2.10351 −0.0997161
\(446\) 0 0
\(447\) −4.46845 + 0.302577i −0.211350 + 0.0143114i
\(448\) 0 0
\(449\) 4.00000i 0.188772i 0.995536 + 0.0943858i \(0.0300887\pi\)
−0.995536 + 0.0943858i \(0.969911\pi\)
\(450\) 0 0
\(451\) 8.20703 + 8.35852i 0.386454 + 0.393587i
\(452\) 0 0
\(453\) −0.595804 8.79882i −0.0279933 0.413405i
\(454\) 0 0
\(455\) 3.02192i 0.141670i
\(456\) 0 0
\(457\) 13.9424i 0.652200i 0.945335 + 0.326100i \(0.105735\pi\)
−0.945335 + 0.326100i \(0.894265\pi\)
\(458\) 0 0
\(459\) −22.8987 + 4.70936i −1.06882 + 0.219814i
\(460\) 0 0
\(461\) 8.62960 0.401921 0.200960 0.979599i \(-0.435594\pi\)
0.200960 + 0.979599i \(0.435594\pi\)
\(462\) 0 0
\(463\) −22.2070 −1.03205 −0.516024 0.856574i \(-0.672588\pi\)
−0.516024 + 0.856574i \(0.672588\pi\)
\(464\) 0 0
\(465\) −0.685650 10.1257i −0.0317963 0.469566i
\(466\) 0 0
\(467\) 5.06062i 0.234178i 0.993121 + 0.117089i \(0.0373562\pi\)
−0.993121 + 0.117089i \(0.962644\pi\)
\(468\) 0 0
\(469\) 6.68347i 0.308614i
\(470\) 0 0
\(471\) 1.74862 0.118406i 0.0805722 0.00545587i
\(472\) 0 0
\(473\) −24.7170 + 24.2691i −1.13649 + 1.11589i
\(474\) 0 0
\(475\) 7.94523i 0.364552i
\(476\) 0 0
\(477\) −0.976009 7.17379i −0.0446884 0.328465i
\(478\) 0 0
\(479\) −9.71521 −0.443899 −0.221950 0.975058i \(-0.571242\pi\)
−0.221950 + 0.975058i \(0.571242\pi\)
\(480\) 0 0
\(481\) 23.1614i 1.05607i
\(482\) 0 0
\(483\) 11.1364 0.754089i 0.506722 0.0343122i
\(484\) 0 0
\(485\) 8.27274i 0.375646i
\(486\) 0 0
\(487\) −14.8685 −0.673758 −0.336879 0.941548i \(-0.609371\pi\)
−0.336879 + 0.941548i \(0.609371\pi\)
\(488\) 0 0
\(489\) −0.939760 + 0.0636350i −0.0424974 + 0.00287767i
\(490\) 0 0
\(491\) 16.1816 0.730266 0.365133 0.930955i \(-0.381024\pi\)
0.365133 + 0.930955i \(0.381024\pi\)
\(492\) 0 0
\(493\) 22.4420 1.01074
\(494\) 0 0
\(495\) 6.09510 7.86446i 0.273954 0.353481i
\(496\) 0 0
\(497\) −2.56111 −0.114881
\(498\) 0 0
\(499\) 4.65502 0.208387 0.104194 0.994557i \(-0.466774\pi\)
0.104194 + 0.994557i \(0.466774\pi\)
\(500\) 0 0
\(501\) 2.33193 0.157905i 0.104183 0.00705466i
\(502\) 0 0
\(503\) −12.7170 −0.567025 −0.283513 0.958969i \(-0.591500\pi\)
−0.283513 + 0.958969i \(0.591500\pi\)
\(504\) 0 0
\(505\) 1.73495i 0.0772044i
\(506\) 0 0
\(507\) −7.71806 + 0.522621i −0.342771 + 0.0232104i
\(508\) 0 0
\(509\) 20.1413i 0.892748i −0.894846 0.446374i \(-0.852715\pi\)
0.894846 0.446374i \(-0.147285\pi\)
\(510\) 0 0
\(511\) −3.29833 −0.145910
\(512\) 0 0
\(513\) 8.31657 + 40.4383i 0.367186 + 1.78539i
\(514\) 0 0
\(515\) 8.44431i 0.372101i
\(516\) 0 0
\(517\) 10.5177 10.3271i 0.462568 0.454184i
\(518\) 0 0
\(519\) 20.4343 1.38369i 0.896965 0.0607372i
\(520\) 0 0
\(521\) 33.7772i 1.47981i −0.672713 0.739904i \(-0.734871\pi\)
0.672713 0.739904i \(-0.265129\pi\)
\(522\) 0 0
\(523\) 22.9525i 1.00364i −0.864971 0.501822i \(-0.832663\pi\)
0.864971 0.501822i \(-0.167337\pi\)
\(524\) 0 0
\(525\) 0.0846115 + 1.24954i 0.00369275 + 0.0545344i
\(526\) 0 0
\(527\) −26.3621 −1.14835
\(528\) 0 0
\(529\) −56.4304 −2.45350
\(530\) 0 0
\(531\) −3.92750 28.8676i −0.170439 1.25275i
\(532\) 0 0
\(533\) 14.7609i 0.639365i
\(534\) 0 0
\(535\) 14.2928i 0.617932i
\(536\) 0 0
\(537\) 1.90328 + 28.1075i 0.0821324 + 1.21293i
\(538\) 0 0
\(539\) 15.0507 + 15.3286i 0.648282 + 0.660248i
\(540\) 0 0
\(541\) 2.83352i 0.121822i 0.998143 + 0.0609112i \(0.0194006\pi\)
−0.998143 + 0.0609112i \(0.980599\pi\)
\(542\) 0 0
\(543\) −27.8590 + 1.88645i −1.19554 + 0.0809552i
\(544\) 0 0
\(545\) −14.4958 −0.620933
\(546\) 0 0
\(547\) 37.5017i 1.60346i 0.597689 + 0.801728i \(0.296086\pi\)
−0.597689 + 0.801728i \(0.703914\pi\)
\(548\) 0 0
\(549\) −1.04851 7.70667i −0.0447492 0.328913i
\(550\) 0 0
\(551\) 39.6318i 1.68837i
\(552\) 0 0
\(553\) −8.08211 −0.343686
\(554\) 0 0
\(555\) 0.648501 + 9.57705i 0.0275273 + 0.406523i
\(556\) 0 0
\(557\) 8.74080 0.370360 0.185180 0.982705i \(-0.440713\pi\)
0.185180 + 0.982705i \(0.440713\pi\)
\(558\) 0 0
\(559\) −43.6495 −1.84618
\(560\) 0 0
\(561\) −19.3120 17.1762i −0.815353 0.725182i
\(562\) 0 0
\(563\) 9.96087 0.419800 0.209900 0.977723i \(-0.432686\pi\)
0.209900 + 0.977723i \(0.432686\pi\)
\(564\) 0 0
\(565\) 0.179261 0.00754158
\(566\) 0 0
\(567\) −1.73858 6.27113i −0.0730136 0.263363i
\(568\) 0 0
\(569\) 31.6696 1.32766 0.663829 0.747885i \(-0.268930\pi\)
0.663829 + 0.747885i \(0.268930\pi\)
\(570\) 0 0
\(571\) 3.66411i 0.153338i −0.997057 0.0766692i \(-0.975571\pi\)
0.997057 0.0766692i \(-0.0244285\pi\)
\(572\) 0 0
\(573\) −2.73914 40.4516i −0.114429 1.68989i
\(574\) 0 0
\(575\) 8.91237i 0.371672i
\(576\) 0 0
\(577\) 7.97624 0.332055 0.166028 0.986121i \(-0.446906\pi\)
0.166028 + 0.986121i \(0.446906\pi\)
\(578\) 0 0
\(579\) −1.08602 16.0383i −0.0451335 0.666530i
\(580\) 0 0
\(581\) 11.1212i 0.461385i
\(582\) 0 0
\(583\) 5.71120 5.60768i 0.236534 0.232246i
\(584\) 0 0
\(585\) 12.4233 1.69022i 0.513642 0.0698820i
\(586\) 0 0
\(587\) 11.0569i 0.456369i −0.973618 0.228184i \(-0.926721\pi\)
0.973618 0.228184i \(-0.0732789\pi\)
\(588\) 0 0
\(589\) 46.5546i 1.91825i
\(590\) 0 0
\(591\) 18.7441 1.26924i 0.771027 0.0522094i
\(592\) 0 0
\(593\) −18.2271 −0.748497 −0.374249 0.927328i \(-0.622099\pi\)
−0.374249 + 0.927328i \(0.622099\pi\)
\(594\) 0 0
\(595\) 3.25317 0.133367
\(596\) 0 0
\(597\) −17.8469 + 1.20849i −0.730425 + 0.0494601i
\(598\) 0 0
\(599\) 24.8567i 1.01562i 0.861470 + 0.507809i \(0.169544\pi\)
−0.861470 + 0.507809i \(0.830456\pi\)
\(600\) 0 0
\(601\) 16.4681i 0.671746i −0.941907 0.335873i \(-0.890969\pi\)
0.941907 0.335873i \(-0.109031\pi\)
\(602\) 0 0
\(603\) 27.4763 3.73820i 1.11892 0.152231i
\(604\) 0 0
\(605\) 10.9982 + 0.201178i 0.447139 + 0.00817905i
\(606\) 0 0
\(607\) 28.1455i 1.14239i −0.820815 0.571195i \(-0.806480\pi\)
0.820815 0.571195i \(-0.193520\pi\)
\(608\) 0 0
\(609\) 0.422052 + 6.23286i 0.0171024 + 0.252568i
\(610\) 0 0
\(611\) 18.5739 0.751421
\(612\) 0 0
\(613\) 44.5797i 1.80056i −0.435313 0.900279i \(-0.643362\pi\)
0.435313 0.900279i \(-0.356638\pi\)
\(614\) 0 0
\(615\) −0.413294 6.10351i −0.0166656 0.246117i
\(616\) 0 0
\(617\) 16.5023i 0.664359i 0.943216 + 0.332179i \(0.107784\pi\)
−0.943216 + 0.332179i \(0.892216\pi\)
\(618\) 0 0
\(619\) −9.34130 −0.375459 −0.187729 0.982221i \(-0.560113\pi\)
−0.187729 + 0.982221i \(0.560113\pi\)
\(620\) 0 0
\(621\) 9.32892 + 45.3607i 0.374357 + 1.82026i
\(622\) 0 0
\(623\) −1.52100 −0.0609374
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) −30.3327 + 34.1044i −1.21137 + 1.36200i
\(628\) 0 0
\(629\) 24.9338 0.994175
\(630\) 0 0
\(631\) −47.1686 −1.87775 −0.938876 0.344254i \(-0.888132\pi\)
−0.938876 + 0.344254i \(0.888132\pi\)
\(632\) 0 0
\(633\) −1.26561 18.6905i −0.0503034 0.742879i
\(634\) 0 0
\(635\) 6.84666 0.271702
\(636\) 0 0
\(637\) 27.0698i 1.07254i
\(638\) 0 0
\(639\) −1.43248 10.5289i −0.0566681 0.416518i
\(640\) 0 0
\(641\) 27.7212i 1.09492i −0.836831 0.547461i \(-0.815594\pi\)
0.836831 0.547461i \(-0.184406\pi\)
\(642\) 0 0
\(643\) −14.2371 −0.561458 −0.280729 0.959787i \(-0.590576\pi\)
−0.280729 + 0.959787i \(0.590576\pi\)
\(644\) 0 0
\(645\) 18.0487 1.22215i 0.710669 0.0481223i
\(646\) 0 0
\(647\) 39.2271i 1.54218i 0.636729 + 0.771088i \(0.280287\pi\)
−0.636729 + 0.771088i \(0.719713\pi\)
\(648\) 0 0
\(649\) 22.9821 22.5655i 0.902126 0.885775i
\(650\) 0 0
\(651\) −0.495776 7.32161i −0.0194310 0.286956i
\(652\) 0 0
\(653\) 19.9569i 0.780975i −0.920608 0.390487i \(-0.872306\pi\)
0.920608 0.390487i \(-0.127694\pi\)
\(654\) 0 0
\(655\) 11.4324i 0.446702i
\(656\) 0 0
\(657\) −1.84482 13.5597i −0.0719735 0.529014i
\(658\) 0 0
\(659\) 16.3839 0.638228 0.319114 0.947716i \(-0.396615\pi\)
0.319114 + 0.947716i \(0.396615\pi\)
\(660\) 0 0
\(661\) 11.2052 0.435831 0.217916 0.975968i \(-0.430074\pi\)
0.217916 + 0.975968i \(0.430074\pi\)
\(662\) 0 0
\(663\) −2.20024 32.4931i −0.0854502 1.26193i
\(664\) 0 0
\(665\) 5.74499i 0.222781i
\(666\) 0 0
\(667\) 44.4560i 1.72134i
\(668\) 0 0
\(669\) 19.5907 1.32657i 0.757421 0.0512881i
\(670\) 0 0
\(671\) 6.13543 6.02423i 0.236856 0.232563i
\(672\) 0 0
\(673\) 17.2809i 0.666131i −0.942904 0.333066i \(-0.891917\pi\)
0.942904 0.333066i \(-0.108083\pi\)
\(674\) 0 0
\(675\) −5.08963 + 1.04674i −0.195900 + 0.0402889i
\(676\) 0 0
\(677\) −22.5856 −0.868036 −0.434018 0.900904i \(-0.642905\pi\)
−0.434018 + 0.900904i \(0.642905\pi\)
\(678\) 0 0
\(679\) 5.98180i 0.229561i
\(680\) 0 0
\(681\) −35.5126 + 2.40471i −1.36085 + 0.0921485i
\(682\) 0 0
\(683\) 19.5944i 0.749759i −0.927074 0.374879i \(-0.877684\pi\)
0.927074 0.374879i \(-0.122316\pi\)
\(684\) 0 0
\(685\) 0.137308 0.00524628
\(686\) 0 0
\(687\) −3.71799 + 0.251760i −0.141850 + 0.00960525i
\(688\) 0 0
\(689\) 10.0858 0.384238
\(690\) 0 0
\(691\) 14.8970 0.566708 0.283354 0.959015i \(-0.408553\pi\)
0.283354 + 0.959015i \(0.408553\pi\)
\(692\) 0 0
\(693\) 4.40721 5.68659i 0.167416 0.216016i
\(694\) 0 0
\(695\) 8.17157 0.309965
\(696\) 0 0
\(697\) −15.8905 −0.601894
\(698\) 0 0
\(699\) −28.8350 + 1.95254i −1.09064 + 0.0738518i
\(700\) 0 0
\(701\) 49.2152 1.85883 0.929417 0.369032i \(-0.120311\pi\)
0.929417 + 0.369032i \(0.120311\pi\)
\(702\) 0 0
\(703\) 44.0322i 1.66071i
\(704\) 0 0
\(705\) −7.68018 + 0.520057i −0.289252 + 0.0195865i
\(706\) 0 0
\(707\) 1.25450i 0.0471803i
\(708\) 0 0
\(709\) −14.4616 −0.543116 −0.271558 0.962422i \(-0.587539\pi\)
−0.271558 + 0.962422i \(0.587539\pi\)
\(710\) 0 0
\(711\) −4.52049 33.2262i −0.169532 1.24608i
\(712\) 0 0
\(713\) 52.2215i 1.95571i
\(714\) 0 0
\(715\) 9.71120 + 9.89046i 0.363178 + 0.369882i
\(716\) 0 0
\(717\) −37.2294 + 2.52096i −1.39036 + 0.0941468i
\(718\) 0 0
\(719\) 11.3751i 0.424220i −0.977246 0.212110i \(-0.931967\pi\)
0.977246 0.212110i \(-0.0680335\pi\)
\(720\) 0 0
\(721\) 6.10586i 0.227394i
\(722\) 0 0
\(723\) 0.637288 + 9.41145i 0.0237010 + 0.350016i
\(724\) 0 0
\(725\) 4.98812 0.185254
\(726\) 0 0
\(727\) 6.95801 0.258058 0.129029 0.991641i \(-0.458814\pi\)
0.129029 + 0.991641i \(0.458814\pi\)
\(728\) 0 0
\(729\) 24.8087 10.6550i 0.918840 0.394630i
\(730\) 0 0
\(731\) 46.9898i 1.73798i
\(732\) 0 0
\(733\) 3.11171i 0.114934i 0.998347 + 0.0574669i \(0.0183024\pi\)
−0.998347 + 0.0574669i \(0.981698\pi\)
\(734\) 0 0
\(735\) −0.757934 11.1931i −0.0279568 0.412865i
\(736\) 0 0
\(737\) 21.4779 + 21.8744i 0.791149 + 0.805754i
\(738\) 0 0
\(739\) 24.1796i 0.889461i 0.895665 + 0.444730i \(0.146700\pi\)
−0.895665 + 0.444730i \(0.853300\pi\)
\(740\) 0 0
\(741\) −57.3817 + 3.88555i −2.10797 + 0.142739i
\(742\) 0 0
\(743\) −35.4078 −1.29899 −0.649493 0.760368i \(-0.725019\pi\)
−0.649493 + 0.760368i \(0.725019\pi\)
\(744\) 0 0
\(745\) 2.58577i 0.0947351i
\(746\) 0 0
\(747\) −45.7201 + 6.22031i −1.67281 + 0.227589i
\(748\) 0 0
\(749\) 10.3348i 0.377624i
\(750\) 0 0
\(751\) −21.2818 −0.776585 −0.388293 0.921536i \(-0.626935\pi\)
−0.388293 + 0.921536i \(0.626935\pi\)
\(752\) 0 0
\(753\) 0.725424 + 10.7130i 0.0264359 + 0.390405i
\(754\) 0 0
\(755\) −5.09164 −0.185304
\(756\) 0 0
\(757\) −34.8762 −1.26760 −0.633799 0.773498i \(-0.718505\pi\)
−0.633799 + 0.773498i \(0.718505\pi\)
\(758\) 0 0
\(759\) −34.0250 + 38.2558i −1.23503 + 1.38860i
\(760\) 0 0
\(761\) 1.01354 0.0367407 0.0183704 0.999831i \(-0.494152\pi\)
0.0183704 + 0.999831i \(0.494152\pi\)
\(762\) 0 0
\(763\) −10.4816 −0.379458
\(764\) 0 0
\(765\) 1.81956 + 13.3740i 0.0657865 + 0.483539i
\(766\) 0 0
\(767\) 40.5856 1.46546
\(768\) 0 0
\(769\) 34.6112i 1.24811i −0.781380 0.624056i \(-0.785484\pi\)
0.781380 0.624056i \(-0.214516\pi\)
\(770\) 0 0
\(771\) 1.44525 + 21.3434i 0.0520494 + 0.768664i
\(772\) 0 0
\(773\) 14.7718i 0.531305i −0.964069 0.265653i \(-0.914413\pi\)
0.964069 0.265653i \(-0.0855874\pi\)
\(774\) 0 0
\(775\) −5.85944 −0.210477
\(776\) 0 0
\(777\) 0.468915 + 6.92492i 0.0168222 + 0.248430i
\(778\) 0 0
\(779\) 28.0620i 1.00543i
\(780\) 0 0
\(781\) 8.38228 8.23035i 0.299942 0.294505i
\(782\) 0 0
\(783\) −25.3877 + 5.22125i −0.907282 + 0.186592i
\(784\) 0 0
\(785\) 1.01188i 0.0361155i
\(786\) 0 0
\(787\) 43.3530i 1.54537i −0.634791 0.772684i \(-0.718914\pi\)
0.634791 0.772684i \(-0.281086\pi\)
\(788\) 0 0
\(789\) 19.6443 1.33020i 0.699356 0.0473563i
\(790\) 0 0
\(791\) 0.129619 0.00460873
\(792\) 0 0
\(793\) 10.8350 0.384761
\(794\) 0 0
\(795\) −4.17040 + 0.282395i −0.147909 + 0.0100155i
\(796\) 0 0
\(797\) 44.9405i 1.59187i 0.605380 + 0.795937i \(0.293021\pi\)
−0.605380 + 0.795937i \(0.706979\pi\)
\(798\) 0 0
\(799\) 19.9953i 0.707383i
\(800\) 0 0
\(801\) −0.850724 6.25293i −0.0300589 0.220937i
\(802\) 0 0
\(803\) 10.7951 10.5995i 0.380952 0.374048i
\(804\) 0 0
\(805\) 6.44431i 0.227132i
\(806\) 0 0
\(807\) 1.32892 + 19.6254i 0.0467801 + 0.690847i
\(808\) 0 0
\(809\) 35.2435 1.23909 0.619547 0.784960i \(-0.287316\pi\)
0.619547 + 0.784960i \(0.287316\pi\)
\(810\) 0 0
\(811\) 5.13034i 0.180151i −0.995935 0.0900753i \(-0.971289\pi\)
0.995935 0.0900753i \(-0.0287108\pi\)
\(812\) 0 0
\(813\) 0.476654 + 7.03921i 0.0167170 + 0.246876i
\(814\) 0 0
\(815\) 0.543813i 0.0190489i
\(816\) 0 0
\(817\) −82.9824 −2.90319
\(818\) 0 0
\(819\) 8.98299 1.22215i 0.313891 0.0427055i
\(820\) 0 0
\(821\) −34.9821 −1.22088 −0.610442 0.792061i \(-0.709008\pi\)
−0.610442 + 0.792061i \(0.709008\pi\)
\(822\) 0 0
\(823\) −25.2354 −0.879652 −0.439826 0.898083i \(-0.644960\pi\)
−0.439826 + 0.898083i \(0.644960\pi\)
\(824\) 0 0
\(825\) −4.29243 3.81772i −0.149443 0.132916i
\(826\) 0 0
\(827\) −22.1953 −0.771807 −0.385904 0.922539i \(-0.626110\pi\)
−0.385904 + 0.922539i \(0.626110\pi\)
\(828\) 0 0
\(829\) 28.6988 0.996752 0.498376 0.866961i \(-0.333930\pi\)
0.498376 + 0.866961i \(0.333930\pi\)
\(830\) 0 0
\(831\) −0.902336 13.3257i −0.0313017 0.462262i
\(832\) 0 0
\(833\) −29.1413 −1.00969
\(834\) 0 0
\(835\) 1.34942i 0.0466988i
\(836\) 0 0
\(837\) 29.8224 6.13330i 1.03081 0.211998i
\(838\) 0 0
\(839\) 41.5915i 1.43590i −0.696096 0.717949i \(-0.745081\pi\)
0.696096 0.717949i \(-0.254919\pi\)
\(840\) 0 0
\(841\) −4.11864 −0.142022
\(842\) 0 0
\(843\) 42.1285 2.85269i 1.45098 0.0982520i
\(844\) 0 0
\(845\) 4.46623i 0.153643i
\(846\) 0 0
\(847\) 7.95249 + 0.145467i 0.273251 + 0.00499829i
\(848\) 0 0
\(849\) −2.28970 33.8143i −0.0785824 1.16050i
\(850\) 0 0
\(851\) 49.3921i 1.69314i
\(852\) 0 0
\(853\) 30.0194i 1.02784i 0.857837 + 0.513922i \(0.171808\pi\)
−0.857837 + 0.513922i \(0.828192\pi\)
\(854\) 0 0
\(855\) 23.6181 3.21329i 0.807722 0.109892i
\(856\) 0 0
\(857\) 19.5089 0.666413 0.333206 0.942854i \(-0.391869\pi\)
0.333206 + 0.942854i \(0.391869\pi\)
\(858\) 0 0
\(859\) −27.7655 −0.947348 −0.473674 0.880700i \(-0.657072\pi\)
−0.473674 + 0.880700i \(0.657072\pi\)
\(860\) 0 0
\(861\) −0.298842 4.41329i −0.0101845 0.150405i
\(862\) 0 0
\(863\) 20.0383i 0.682111i 0.940043 + 0.341055i \(0.110784\pi\)
−0.940043 + 0.341055i \(0.889216\pi\)
\(864\) 0 0
\(865\) 11.8247i 0.402053i
\(866\) 0 0
\(867\) 5.60200 0.379334i 0.190254 0.0128829i
\(868\) 0 0
\(869\) 26.4520 25.9726i 0.897323 0.881059i
\(870\) 0 0
\(871\) 38.6295i 1.30891i
\(872\) 0 0
\(873\) 24.5917 3.34574i 0.832301 0.113236i
\(874\) 0 0
\(875\) 0.723074 0.0244444
\(876\) 0 0
\(877\) 37.0898i 1.25243i 0.779650 + 0.626216i \(0.215397\pi\)
−0.779650 + 0.626216i \(0.784603\pi\)
\(878\) 0 0
\(879\) 23.9693 1.62306i 0.808465 0.0547445i
\(880\) 0 0
\(881\) 20.1796i 0.679868i −0.940449 0.339934i \(-0.889595\pi\)
0.940449 0.339934i \(-0.110405\pi\)
\(882\) 0 0
\(883\) 54.6110 1.83781 0.918904 0.394481i \(-0.129076\pi\)
0.918904 + 0.394481i \(0.129076\pi\)
\(884\) 0 0
\(885\) −16.7819 + 1.13637i −0.564116 + 0.0381986i
\(886\) 0 0
\(887\) −37.7371 −1.26709 −0.633544 0.773707i \(-0.718400\pi\)
−0.633544 + 0.773707i \(0.718400\pi\)
\(888\) 0 0
\(889\) 4.95065 0.166039
\(890\) 0 0
\(891\) 25.8431 + 14.9378i 0.865775 + 0.500434i
\(892\) 0 0
\(893\) 35.3111 1.18164
\(894\) 0 0
\(895\) 16.2650 0.543681
\(896\) 0 0
\(897\) −64.3665 + 4.35852i −2.14914 + 0.145527i
\(898\) 0 0
\(899\) −29.2276 −0.974795
\(900\) 0 0
\(901\) 10.8576i 0.361719i
\(902\) 0 0
\(903\) 13.0506 0.883708i 0.434296 0.0294080i
\(904\) 0 0
\(905\) 16.1212i 0.535888i
\(906\) 0 0
\(907\) −0.352164 −0.0116934 −0.00584671 0.999983i \(-0.501861\pi\)
−0.00584671 + 0.999983i \(0.501861\pi\)
\(908\) 0 0
\(909\) −5.15734 + 0.701667i −0.171058 + 0.0232728i
\(910\) 0 0
\(911\) 42.7252i 1.41555i 0.706438 + 0.707775i \(0.250301\pi\)
−0.706438 + 0.707775i \(0.749699\pi\)
\(912\) 0 0
\(913\) −35.7390 36.3987i −1.18279 1.20462i
\(914\) 0 0
\(915\) −4.48018 + 0.303371i −0.148110 + 0.0100291i
\(916\) 0 0
\(917\) 8.26650i 0.272984i
\(918\) 0 0
\(919\) 7.92660i 0.261474i 0.991417 + 0.130737i \(0.0417344\pi\)
−0.991417 + 0.130737i \(0.958266\pi\)
\(920\) 0 0
\(921\) 2.28000 + 33.6709i 0.0751284 + 1.10949i
\(922\) 0 0
\(923\) 14.8028 0.487241
\(924\) 0 0
\(925\) 5.54197 0.182219
\(926\) 0 0
\(927\) −25.1017 + 3.41513i −0.824447 + 0.112168i
\(928\) 0 0
\(929\) 12.1273i 0.397883i −0.980011 0.198941i \(-0.936250\pi\)
0.980011 0.198941i \(-0.0637503\pi\)
\(930\) 0 0
\(931\) 51.4625i 1.68662i
\(932\) 0 0
\(933\) 0.862457 + 12.7367i 0.0282356 + 0.416982i
\(934\) 0 0
\(935\) −10.6473 + 10.4543i −0.348205 + 0.341894i
\(936\) 0 0
\(937\) 24.1709i 0.789628i −0.918761 0.394814i \(-0.870809\pi\)
0.918761 0.394814i \(-0.129191\pi\)
\(938\) 0 0
\(939\) 15.2121 1.03007i 0.496429 0.0336152i
\(940\) 0 0
\(941\) −7.35032 −0.239614 −0.119807 0.992797i \(-0.538228\pi\)
−0.119807 + 0.992797i \(0.538228\pi\)
\(942\) 0 0
\(943\) 31.4779i 1.02506i
\(944\) 0 0
\(945\) −3.68018 + 0.756869i −0.119716 + 0.0246210i
\(946\) 0 0
\(947\) 40.7166i 1.32311i 0.749896 + 0.661556i \(0.230104\pi\)
−0.749896 + 0.661556i \(0.769896\pi\)
\(948\) 0 0
\(949\) 19.0639 0.618839
\(950\) 0 0
\(951\) 2.54787 + 37.6269i 0.0826204 + 1.22014i
\(952\) 0 0
\(953\) −44.4669 −1.44043 −0.720213 0.693753i \(-0.755956\pi\)
−0.720213 + 0.693753i \(0.755956\pi\)
\(954\) 0 0
\(955\) −23.4082 −0.757472
\(956\) 0 0
\(957\) −21.4112 19.0433i −0.692125 0.615582i
\(958\) 0 0
\(959\) 0.0992841 0.00320605
\(960\) 0 0
\(961\) 3.33307 0.107518
\(962\) 0 0
\(963\) 42.4870 5.78045i 1.36913 0.186272i
\(964\) 0 0
\(965\) −9.28094 −0.298764
\(966\) 0 0
\(967\) 21.7348i 0.698944i −0.936947 0.349472i \(-0.886361\pi\)
0.936947 0.349472i \(-0.113639\pi\)
\(968\) 0 0
\(969\) −4.18289 61.7728i −0.134374 1.98443i
\(970\) 0 0
\(971\) 45.2511i 1.45218i −0.687600 0.726089i \(-0.741336\pi\)
0.687600 0.726089i \(-0.258664\pi\)
\(972\) 0 0
\(973\) 5.90865 0.189423
\(974\) 0 0
\(975\) −0.489042 7.22215i −0.0156619 0.231294i
\(976\) 0 0
\(977\) 7.03610i 0.225105i −0.993646 0.112552i \(-0.964097\pi\)
0.993646 0.112552i \(-0.0359026\pi\)
\(978\) 0 0
\(979\) 4.97808 4.88786i 0.159100 0.156217i
\(980\) 0 0
\(981\) −5.86255 43.0905i −0.187177 1.37577i
\(982\) 0 0
\(983\) 28.6360i 0.913345i 0.889635 + 0.456673i \(0.150959\pi\)
−0.889635 + 0.456673i \(0.849041\pi\)
\(984\) 0 0
\(985\) 10.8467i 0.345603i
\(986\) 0 0
\(987\) −5.55334 + 0.376040i −0.176765 + 0.0119695i
\(988\) 0 0
\(989\) −93.0836 −2.95989
\(990\) 0 0
\(991\) 57.4187 1.82397 0.911983 0.410229i \(-0.134551\pi\)
0.911983 + 0.410229i \(0.134551\pi\)
\(992\) 0 0
\(993\) −4.22399 + 0.286024i −0.134044 + 0.00907670i
\(994\) 0 0
\(995\) 10.3275i 0.327404i
\(996\) 0 0
\(997\) 7.41470i 0.234826i −0.993083 0.117413i \(-0.962540\pi\)
0.993083 0.117413i \(-0.0374601\pi\)
\(998\) 0 0
\(999\) −28.2066 + 5.80099i −0.892417 + 0.183535i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2640.2.f.b.1121.7 8
3.2 odd 2 2640.2.f.a.1121.8 8
4.3 odd 2 330.2.d.a.131.2 yes 8
11.10 odd 2 2640.2.f.a.1121.7 8
12.11 even 2 330.2.d.b.131.1 yes 8
20.3 even 4 1650.2.f.c.1649.7 8
20.7 even 4 1650.2.f.e.1649.2 8
20.19 odd 2 1650.2.d.f.1451.7 8
33.32 even 2 inner 2640.2.f.b.1121.8 8
44.43 even 2 330.2.d.b.131.2 yes 8
60.23 odd 4 1650.2.f.f.1649.2 8
60.47 odd 4 1650.2.f.d.1649.7 8
60.59 even 2 1650.2.d.c.1451.8 8
132.131 odd 2 330.2.d.a.131.1 8
220.43 odd 4 1650.2.f.d.1649.3 8
220.87 odd 4 1650.2.f.f.1649.6 8
220.219 even 2 1650.2.d.c.1451.7 8
660.263 even 4 1650.2.f.e.1649.6 8
660.527 even 4 1650.2.f.c.1649.3 8
660.659 odd 2 1650.2.d.f.1451.8 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
330.2.d.a.131.1 8 132.131 odd 2
330.2.d.a.131.2 yes 8 4.3 odd 2
330.2.d.b.131.1 yes 8 12.11 even 2
330.2.d.b.131.2 yes 8 44.43 even 2
1650.2.d.c.1451.7 8 220.219 even 2
1650.2.d.c.1451.8 8 60.59 even 2
1650.2.d.f.1451.7 8 20.19 odd 2
1650.2.d.f.1451.8 8 660.659 odd 2
1650.2.f.c.1649.3 8 660.527 even 4
1650.2.f.c.1649.7 8 20.3 even 4
1650.2.f.d.1649.3 8 220.43 odd 4
1650.2.f.d.1649.7 8 60.47 odd 4
1650.2.f.e.1649.2 8 20.7 even 4
1650.2.f.e.1649.6 8 660.263 even 4
1650.2.f.f.1649.2 8 60.23 odd 4
1650.2.f.f.1649.6 8 220.87 odd 4
2640.2.f.a.1121.7 8 11.10 odd 2
2640.2.f.a.1121.8 8 3.2 odd 2
2640.2.f.b.1121.7 8 1.1 even 1 trivial
2640.2.f.b.1121.8 8 33.32 even 2 inner