Properties

Label 2646.2.h.p.361.1
Level $2646$
Weight $2$
Character 2646.361
Analytic conductor $21.128$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2646,2,Mod(361,2646)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2646, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([2, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2646.361");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2646 = 2 \cdot 3^{3} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2646.h (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(21.1284163748\)
Analytic rank: \(0\)
Dimension: \(6\)
Relative dimension: \(3\) over \(\Q(\zeta_{3})\)
Coefficient field: 6.0.309123.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 3x^{5} + 10x^{4} - 15x^{3} + 19x^{2} - 12x + 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 3 \)
Twist minimal: no (minimal twist has level 126)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 361.1
Root \(0.500000 - 2.05195i\) of defining polynomial
Character \(\chi\) \(=\) 2646.361
Dual form 2646.2.h.p.667.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.500000 - 0.866025i) q^{2} +(-0.500000 - 0.866025i) q^{4} -0.460505 q^{5} -1.00000 q^{8} +(-0.230252 + 0.398809i) q^{10} +3.64766 q^{11} +(-0.730252 + 1.26483i) q^{13} +(-0.500000 + 0.866025i) q^{16} +(-1.86693 + 3.23361i) q^{17} +(2.02704 + 3.51094i) q^{19} +(0.230252 + 0.398809i) q^{20} +(1.82383 - 3.15897i) q^{22} -1.13307 q^{23} -4.78794 q^{25} +(0.730252 + 1.26483i) q^{26} +(4.48755 + 7.77266i) q^{29} +(-0.257295 - 0.445647i) q^{31} +(0.500000 + 0.866025i) q^{32} +(1.86693 + 3.23361i) q^{34} +(-4.55408 - 7.88791i) q^{37} +4.05408 q^{38} +0.460505 q^{40} +(-0.472958 + 0.819187i) q^{41} +(4.66372 + 8.07779i) q^{43} +(-1.82383 - 3.15897i) q^{44} +(-0.566537 + 0.981271i) q^{46} +(-1.16372 + 2.01561i) q^{47} +(-2.39397 + 4.14647i) q^{50} +1.46050 q^{52} +(-6.21780 + 10.7695i) q^{53} -1.67977 q^{55} +8.97509 q^{58} +(6.44805 + 11.1684i) q^{59} +(6.04163 - 10.4644i) q^{61} -0.514589 q^{62} +1.00000 q^{64} +(0.336285 - 0.582462i) q^{65} +(1.16012 + 2.00938i) q^{67} +3.73385 q^{68} -1.67977 q^{71} +(6.62062 - 11.4673i) q^{73} -9.10817 q^{74} +(2.02704 - 3.51094i) q^{76} +(2.50360 - 4.33636i) q^{79} +(0.230252 - 0.398809i) q^{80} +(0.472958 + 0.819187i) q^{82} +(3.32383 + 5.75705i) q^{83} +(0.859728 - 1.48909i) q^{85} +9.32743 q^{86} -3.64766 q^{88} +(-1.36333 - 2.36135i) q^{89} +(0.566537 + 0.981271i) q^{92} +(1.16372 + 2.01561i) q^{94} +(-0.933463 - 1.61680i) q^{95} +(5.59358 + 9.68836i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 3 q^{2} - 3 q^{4} + 10 q^{5} - 6 q^{8} + 5 q^{10} - 2 q^{11} + 2 q^{13} - 3 q^{16} - 4 q^{17} + 3 q^{19} - 5 q^{20} - q^{22} - 14 q^{23} + 4 q^{25} - 2 q^{26} + 5 q^{29} + 14 q^{31} + 3 q^{32} + 4 q^{34}+ \cdots + 28 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2646\mathbb{Z}\right)^\times\).

\(n\) \(785\) \(1081\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.500000 0.866025i 0.353553 0.612372i
\(3\) 0 0
\(4\) −0.500000 0.866025i −0.250000 0.433013i
\(5\) −0.460505 −0.205944 −0.102972 0.994684i \(-0.532835\pi\)
−0.102972 + 0.994684i \(0.532835\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) −1.00000 −0.353553
\(9\) 0 0
\(10\) −0.230252 + 0.398809i −0.0728122 + 0.126114i
\(11\) 3.64766 1.09981 0.549906 0.835227i \(-0.314664\pi\)
0.549906 + 0.835227i \(0.314664\pi\)
\(12\) 0 0
\(13\) −0.730252 + 1.26483i −0.202536 + 0.350802i −0.949345 0.314236i \(-0.898252\pi\)
0.746809 + 0.665038i \(0.231585\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) −0.500000 + 0.866025i −0.125000 + 0.216506i
\(17\) −1.86693 + 3.23361i −0.452796 + 0.784266i −0.998558 0.0536743i \(-0.982907\pi\)
0.545763 + 0.837940i \(0.316240\pi\)
\(18\) 0 0
\(19\) 2.02704 + 3.51094i 0.465035 + 0.805465i 0.999203 0.0399136i \(-0.0127083\pi\)
−0.534168 + 0.845378i \(0.679375\pi\)
\(20\) 0.230252 + 0.398809i 0.0514860 + 0.0891764i
\(21\) 0 0
\(22\) 1.82383 3.15897i 0.388842 0.673495i
\(23\) −1.13307 −0.236262 −0.118131 0.992998i \(-0.537690\pi\)
−0.118131 + 0.992998i \(0.537690\pi\)
\(24\) 0 0
\(25\) −4.78794 −0.957587
\(26\) 0.730252 + 1.26483i 0.143214 + 0.248054i
\(27\) 0 0
\(28\) 0 0
\(29\) 4.48755 + 7.77266i 0.833317 + 1.44335i 0.895394 + 0.445275i \(0.146894\pi\)
−0.0620772 + 0.998071i \(0.519772\pi\)
\(30\) 0 0
\(31\) −0.257295 0.445647i −0.0462115 0.0800406i 0.841994 0.539486i \(-0.181381\pi\)
−0.888206 + 0.459446i \(0.848048\pi\)
\(32\) 0.500000 + 0.866025i 0.0883883 + 0.153093i
\(33\) 0 0
\(34\) 1.86693 + 3.23361i 0.320175 + 0.554560i
\(35\) 0 0
\(36\) 0 0
\(37\) −4.55408 7.88791i −0.748687 1.29676i −0.948452 0.316920i \(-0.897351\pi\)
0.199765 0.979844i \(-0.435982\pi\)
\(38\) 4.05408 0.657659
\(39\) 0 0
\(40\) 0.460505 0.0728122
\(41\) −0.472958 + 0.819187i −0.0738636 + 0.127936i −0.900592 0.434666i \(-0.856866\pi\)
0.826728 + 0.562602i \(0.190200\pi\)
\(42\) 0 0
\(43\) 4.66372 + 8.07779i 0.711210 + 1.23185i 0.964403 + 0.264436i \(0.0851858\pi\)
−0.253193 + 0.967416i \(0.581481\pi\)
\(44\) −1.82383 3.15897i −0.274953 0.476233i
\(45\) 0 0
\(46\) −0.566537 + 0.981271i −0.0835314 + 0.144681i
\(47\) −1.16372 + 2.01561i −0.169745 + 0.294007i −0.938330 0.345740i \(-0.887628\pi\)
0.768585 + 0.639748i \(0.220961\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) −2.39397 + 4.14647i −0.338558 + 0.586400i
\(51\) 0 0
\(52\) 1.46050 0.202536
\(53\) −6.21780 + 10.7695i −0.854080 + 1.47931i 0.0234151 + 0.999726i \(0.492546\pi\)
−0.877495 + 0.479585i \(0.840787\pi\)
\(54\) 0 0
\(55\) −1.67977 −0.226500
\(56\) 0 0
\(57\) 0 0
\(58\) 8.97509 1.17849
\(59\) 6.44805 + 11.1684i 0.839465 + 1.45400i 0.890343 + 0.455291i \(0.150465\pi\)
−0.0508779 + 0.998705i \(0.516202\pi\)
\(60\) 0 0
\(61\) 6.04163 10.4644i 0.773552 1.33983i −0.162053 0.986782i \(-0.551812\pi\)
0.935605 0.353049i \(-0.114855\pi\)
\(62\) −0.514589 −0.0653529
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) 0.336285 0.582462i 0.0417110 0.0722456i
\(66\) 0 0
\(67\) 1.16012 + 2.00938i 0.141731 + 0.245485i 0.928148 0.372210i \(-0.121400\pi\)
−0.786418 + 0.617695i \(0.788067\pi\)
\(68\) 3.73385 0.452796
\(69\) 0 0
\(70\) 0 0
\(71\) −1.67977 −0.199352 −0.0996758 0.995020i \(-0.531781\pi\)
−0.0996758 + 0.995020i \(0.531781\pi\)
\(72\) 0 0
\(73\) 6.62062 11.4673i 0.774885 1.34214i −0.159974 0.987121i \(-0.551141\pi\)
0.934859 0.355019i \(-0.115526\pi\)
\(74\) −9.10817 −1.05880
\(75\) 0 0
\(76\) 2.02704 3.51094i 0.232518 0.402732i
\(77\) 0 0
\(78\) 0 0
\(79\) 2.50360 4.33636i 0.281677 0.487879i −0.690121 0.723694i \(-0.742443\pi\)
0.971798 + 0.235815i \(0.0757761\pi\)
\(80\) 0.230252 0.398809i 0.0257430 0.0445882i
\(81\) 0 0
\(82\) 0.472958 + 0.819187i 0.0522295 + 0.0904641i
\(83\) 3.32383 + 5.75705i 0.364838 + 0.631918i 0.988750 0.149577i \(-0.0477911\pi\)
−0.623912 + 0.781494i \(0.714458\pi\)
\(84\) 0 0
\(85\) 0.859728 1.48909i 0.0932506 0.161515i
\(86\) 9.32743 1.00580
\(87\) 0 0
\(88\) −3.64766 −0.388842
\(89\) −1.36333 2.36135i −0.144512 0.250303i 0.784679 0.619903i \(-0.212828\pi\)
−0.929191 + 0.369600i \(0.879495\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0.566537 + 0.981271i 0.0590656 + 0.102305i
\(93\) 0 0
\(94\) 1.16372 + 2.01561i 0.120028 + 0.207895i
\(95\) −0.933463 1.61680i −0.0957713 0.165881i
\(96\) 0 0
\(97\) 5.59358 + 9.68836i 0.567942 + 0.983704i 0.996769 + 0.0803178i \(0.0255935\pi\)
−0.428827 + 0.903386i \(0.641073\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 2.39397 + 4.14647i 0.239397 + 0.414647i
\(101\) 13.7558 1.36876 0.684378 0.729127i \(-0.260074\pi\)
0.684378 + 0.729127i \(0.260074\pi\)
\(102\) 0 0
\(103\) −11.1623 −1.09985 −0.549925 0.835214i \(-0.685344\pi\)
−0.549925 + 0.835214i \(0.685344\pi\)
\(104\) 0.730252 1.26483i 0.0716071 0.124027i
\(105\) 0 0
\(106\) 6.21780 + 10.7695i 0.603926 + 1.04603i
\(107\) 3.89037 + 6.73832i 0.376096 + 0.651418i 0.990490 0.137581i \(-0.0439329\pi\)
−0.614394 + 0.788999i \(0.710600\pi\)
\(108\) 0 0
\(109\) −3.75729 + 6.50783i −0.359884 + 0.623337i −0.987941 0.154830i \(-0.950517\pi\)
0.628058 + 0.778167i \(0.283850\pi\)
\(110\) −0.839883 + 1.45472i −0.0800797 + 0.138702i
\(111\) 0 0
\(112\) 0 0
\(113\) −3.03064 + 5.24922i −0.285099 + 0.493805i −0.972633 0.232346i \(-0.925360\pi\)
0.687534 + 0.726152i \(0.258693\pi\)
\(114\) 0 0
\(115\) 0.521786 0.0486568
\(116\) 4.48755 7.77266i 0.416658 0.721673i
\(117\) 0 0
\(118\) 12.8961 1.18718
\(119\) 0 0
\(120\) 0 0
\(121\) 2.30545 0.209586
\(122\) −6.04163 10.4644i −0.546984 0.947403i
\(123\) 0 0
\(124\) −0.257295 + 0.445647i −0.0231057 + 0.0400203i
\(125\) 4.50739 0.403153
\(126\) 0 0
\(127\) 8.80992 0.781754 0.390877 0.920443i \(-0.372172\pi\)
0.390877 + 0.920443i \(0.372172\pi\)
\(128\) 0.500000 0.866025i 0.0441942 0.0765466i
\(129\) 0 0
\(130\) −0.336285 0.582462i −0.0294941 0.0510853i
\(131\) 21.1373 1.84678 0.923389 0.383865i \(-0.125407\pi\)
0.923389 + 0.383865i \(0.125407\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 2.32023 0.200438
\(135\) 0 0
\(136\) 1.86693 3.23361i 0.160088 0.277280i
\(137\) 4.40642 0.376466 0.188233 0.982124i \(-0.439724\pi\)
0.188233 + 0.982124i \(0.439724\pi\)
\(138\) 0 0
\(139\) 1.01245 1.75362i 0.0858751 0.148740i −0.819889 0.572523i \(-0.805965\pi\)
0.905764 + 0.423783i \(0.139298\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −0.839883 + 1.45472i −0.0704815 + 0.122077i
\(143\) −2.66372 + 4.61369i −0.222751 + 0.385816i
\(144\) 0 0
\(145\) −2.06654 3.57935i −0.171617 0.297249i
\(146\) −6.62062 11.4673i −0.547927 0.949037i
\(147\) 0 0
\(148\) −4.55408 + 7.88791i −0.374343 + 0.648382i
\(149\) 9.16225 0.750601 0.375300 0.926903i \(-0.377540\pi\)
0.375300 + 0.926903i \(0.377540\pi\)
\(150\) 0 0
\(151\) −0.103896 −0.00845496 −0.00422748 0.999991i \(-0.501346\pi\)
−0.00422748 + 0.999991i \(0.501346\pi\)
\(152\) −2.02704 3.51094i −0.164415 0.284775i
\(153\) 0 0
\(154\) 0 0
\(155\) 0.118485 + 0.205223i 0.00951698 + 0.0164839i
\(156\) 0 0
\(157\) 10.4911 + 18.1712i 0.837285 + 1.45022i 0.892157 + 0.451726i \(0.149192\pi\)
−0.0548721 + 0.998493i \(0.517475\pi\)
\(158\) −2.50360 4.33636i −0.199176 0.344982i
\(159\) 0 0
\(160\) −0.230252 0.398809i −0.0182031 0.0315286i
\(161\) 0 0
\(162\) 0 0
\(163\) −11.5182 19.9501i −0.902174 1.56261i −0.824666 0.565620i \(-0.808637\pi\)
−0.0775078 0.996992i \(-0.524696\pi\)
\(164\) 0.945916 0.0738636
\(165\) 0 0
\(166\) 6.64766 0.515959
\(167\) −5.31498 + 9.20581i −0.411285 + 0.712367i −0.995031 0.0995698i \(-0.968253\pi\)
0.583745 + 0.811937i \(0.301587\pi\)
\(168\) 0 0
\(169\) 5.43346 + 9.41103i 0.417959 + 0.723926i
\(170\) −0.859728 1.48909i −0.0659382 0.114208i
\(171\) 0 0
\(172\) 4.66372 8.07779i 0.355605 0.615926i
\(173\) −1.46936 + 2.54500i −0.111713 + 0.193493i −0.916461 0.400124i \(-0.868967\pi\)
0.804748 + 0.593617i \(0.202301\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) −1.82383 + 3.15897i −0.137476 + 0.238116i
\(177\) 0 0
\(178\) −2.72665 −0.204371
\(179\) 4.58113 7.93474i 0.342409 0.593071i −0.642470 0.766311i \(-0.722090\pi\)
0.984880 + 0.173240i \(0.0554237\pi\)
\(180\) 0 0
\(181\) −22.4284 −1.66709 −0.833545 0.552452i \(-0.813692\pi\)
−0.833545 + 0.552452i \(0.813692\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 1.13307 0.0835314
\(185\) 2.09718 + 3.63242i 0.154188 + 0.267061i
\(186\) 0 0
\(187\) −6.80992 + 11.7951i −0.497990 + 0.862545i
\(188\) 2.32743 0.169745
\(189\) 0 0
\(190\) −1.86693 −0.135441
\(191\) 1.24484 2.15613i 0.0900736 0.156012i −0.817468 0.575974i \(-0.804623\pi\)
0.907542 + 0.419962i \(0.137956\pi\)
\(192\) 0 0
\(193\) −2.24484 3.88818i −0.161587 0.279877i 0.773851 0.633368i \(-0.218328\pi\)
−0.935438 + 0.353491i \(0.884995\pi\)
\(194\) 11.1872 0.803191
\(195\) 0 0
\(196\) 0 0
\(197\) −12.7339 −0.907249 −0.453625 0.891193i \(-0.649869\pi\)
−0.453625 + 0.891193i \(0.649869\pi\)
\(198\) 0 0
\(199\) 1.47296 2.55124i 0.104415 0.180852i −0.809084 0.587693i \(-0.800036\pi\)
0.913499 + 0.406841i \(0.133370\pi\)
\(200\) 4.78794 0.338558
\(201\) 0 0
\(202\) 6.87792 11.9129i 0.483928 0.838189i
\(203\) 0 0
\(204\) 0 0
\(205\) 0.217799 0.377240i 0.0152118 0.0263476i
\(206\) −5.58113 + 9.66679i −0.388855 + 0.673517i
\(207\) 0 0
\(208\) −0.730252 1.26483i −0.0506339 0.0877005i
\(209\) 7.39397 + 12.8067i 0.511451 + 0.885860i
\(210\) 0 0
\(211\) −0.608168 + 1.05338i −0.0418680 + 0.0725176i −0.886200 0.463303i \(-0.846664\pi\)
0.844332 + 0.535820i \(0.179998\pi\)
\(212\) 12.4356 0.854080
\(213\) 0 0
\(214\) 7.78074 0.531880
\(215\) −2.14766 3.71986i −0.146469 0.253693i
\(216\) 0 0
\(217\) 0 0
\(218\) 3.75729 + 6.50783i 0.254476 + 0.440766i
\(219\) 0 0
\(220\) 0.839883 + 1.45472i 0.0566249 + 0.0980773i
\(221\) −2.72665 4.72270i −0.183415 0.317683i
\(222\) 0 0
\(223\) 0.445916 + 0.772349i 0.0298607 + 0.0517203i 0.880570 0.473917i \(-0.157160\pi\)
−0.850709 + 0.525637i \(0.823827\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 3.03064 + 5.24922i 0.201595 + 0.349173i
\(227\) −14.6519 −0.972483 −0.486242 0.873824i \(-0.661632\pi\)
−0.486242 + 0.873824i \(0.661632\pi\)
\(228\) 0 0
\(229\) 9.57587 0.632791 0.316396 0.948627i \(-0.397527\pi\)
0.316396 + 0.948627i \(0.397527\pi\)
\(230\) 0.260893 0.451880i 0.0172028 0.0297961i
\(231\) 0 0
\(232\) −4.48755 7.77266i −0.294622 0.510300i
\(233\) −7.21420 12.4954i −0.472618 0.818598i 0.526891 0.849933i \(-0.323358\pi\)
−0.999509 + 0.0313345i \(0.990024\pi\)
\(234\) 0 0
\(235\) 0.535897 0.928200i 0.0349580 0.0605491i
\(236\) 6.44805 11.1684i 0.419732 0.726998i
\(237\) 0 0
\(238\) 0 0
\(239\) 9.15486 15.8567i 0.592179 1.02568i −0.401760 0.915745i \(-0.631601\pi\)
0.993938 0.109938i \(-0.0350654\pi\)
\(240\) 0 0
\(241\) −0.0933847 −0.00601544 −0.00300772 0.999995i \(-0.500957\pi\)
−0.00300772 + 0.999995i \(0.500957\pi\)
\(242\) 1.15272 1.99658i 0.0741000 0.128345i
\(243\) 0 0
\(244\) −12.0833 −0.773552
\(245\) 0 0
\(246\) 0 0
\(247\) −5.92101 −0.376745
\(248\) 0.257295 + 0.445647i 0.0163382 + 0.0282986i
\(249\) 0 0
\(250\) 2.25370 3.90352i 0.142536 0.246880i
\(251\) −18.2733 −1.15340 −0.576702 0.816955i \(-0.695661\pi\)
−0.576702 + 0.816955i \(0.695661\pi\)
\(252\) 0 0
\(253\) −4.13307 −0.259844
\(254\) 4.40496 7.62961i 0.276392 0.478724i
\(255\) 0 0
\(256\) −0.500000 0.866025i −0.0312500 0.0541266i
\(257\) −21.0512 −1.31314 −0.656568 0.754267i \(-0.727992\pi\)
−0.656568 + 0.754267i \(0.727992\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) −0.672570 −0.0417110
\(261\) 0 0
\(262\) 10.5687 18.3055i 0.652935 1.13092i
\(263\) 5.16518 0.318499 0.159249 0.987238i \(-0.449093\pi\)
0.159249 + 0.987238i \(0.449093\pi\)
\(264\) 0 0
\(265\) 2.86333 4.95943i 0.175893 0.304655i
\(266\) 0 0
\(267\) 0 0
\(268\) 1.16012 2.00938i 0.0708654 0.122742i
\(269\) 8.42840 14.5984i 0.513889 0.890081i −0.485981 0.873969i \(-0.661538\pi\)
0.999870 0.0161123i \(-0.00512891\pi\)
\(270\) 0 0
\(271\) −12.5562 21.7480i −0.762736 1.32110i −0.941435 0.337194i \(-0.890522\pi\)
0.178699 0.983904i \(-0.442811\pi\)
\(272\) −1.86693 3.23361i −0.113199 0.196066i
\(273\) 0 0
\(274\) 2.20321 3.81607i 0.133101 0.230537i
\(275\) −17.4648 −1.05317
\(276\) 0 0
\(277\) 3.38151 0.203176 0.101588 0.994827i \(-0.467608\pi\)
0.101588 + 0.994827i \(0.467608\pi\)
\(278\) −1.01245 1.75362i −0.0607229 0.105175i
\(279\) 0 0
\(280\) 0 0
\(281\) 10.1388 + 17.5609i 0.604831 + 1.04760i 0.992078 + 0.125622i \(0.0400925\pi\)
−0.387248 + 0.921976i \(0.626574\pi\)
\(282\) 0 0
\(283\) 8.67471 + 15.0250i 0.515658 + 0.893145i 0.999835 + 0.0181754i \(0.00578571\pi\)
−0.484177 + 0.874970i \(0.660881\pi\)
\(284\) 0.839883 + 1.45472i 0.0498379 + 0.0863218i
\(285\) 0 0
\(286\) 2.66372 + 4.61369i 0.157509 + 0.272813i
\(287\) 0 0
\(288\) 0 0
\(289\) 1.52918 + 2.64861i 0.0899517 + 0.155801i
\(290\) −4.13307 −0.242702
\(291\) 0 0
\(292\) −13.2412 −0.774885
\(293\) −4.93560 + 8.54871i −0.288341 + 0.499421i −0.973414 0.229054i \(-0.926437\pi\)
0.685073 + 0.728474i \(0.259770\pi\)
\(294\) 0 0
\(295\) −2.96936 5.14308i −0.172883 0.299442i
\(296\) 4.55408 + 7.88791i 0.264701 + 0.458475i
\(297\) 0 0
\(298\) 4.58113 7.93474i 0.265378 0.459647i
\(299\) 0.827430 1.43315i 0.0478515 0.0828813i
\(300\) 0 0
\(301\) 0 0
\(302\) −0.0519482 + 0.0899768i −0.00298928 + 0.00517759i
\(303\) 0 0
\(304\) −4.05408 −0.232518
\(305\) −2.78220 + 4.81891i −0.159308 + 0.275930i
\(306\) 0 0
\(307\) −7.78794 −0.444481 −0.222240 0.974992i \(-0.571337\pi\)
−0.222240 + 0.974992i \(0.571337\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0.236971 0.0134590
\(311\) −7.70535 13.3461i −0.436930 0.756785i 0.560521 0.828140i \(-0.310601\pi\)
−0.997451 + 0.0713552i \(0.977268\pi\)
\(312\) 0 0
\(313\) 4.24844 7.35851i 0.240136 0.415928i −0.720617 0.693334i \(-0.756141\pi\)
0.960753 + 0.277406i \(0.0894746\pi\)
\(314\) 20.9823 1.18410
\(315\) 0 0
\(316\) −5.00720 −0.281677
\(317\) −7.05262 + 12.2155i −0.396115 + 0.686091i −0.993243 0.116055i \(-0.962975\pi\)
0.597128 + 0.802146i \(0.296308\pi\)
\(318\) 0 0
\(319\) 16.3691 + 28.3520i 0.916491 + 1.58741i
\(320\) −0.460505 −0.0257430
\(321\) 0 0
\(322\) 0 0
\(323\) −15.1373 −0.842264
\(324\) 0 0
\(325\) 3.49640 6.05594i 0.193945 0.335923i
\(326\) −23.0364 −1.27587
\(327\) 0 0
\(328\) 0.472958 0.819187i 0.0261147 0.0452320i
\(329\) 0 0
\(330\) 0 0
\(331\) −13.7719 + 23.8536i −0.756971 + 1.31111i 0.187417 + 0.982280i \(0.439988\pi\)
−0.944388 + 0.328832i \(0.893345\pi\)
\(332\) 3.32383 5.75705i 0.182419 0.315959i
\(333\) 0 0
\(334\) 5.31498 + 9.20581i 0.290823 + 0.503720i
\(335\) −0.534239 0.925330i −0.0291886 0.0505562i
\(336\) 0 0
\(337\) 0.748440 1.29634i 0.0407701 0.0706159i −0.844920 0.534892i \(-0.820352\pi\)
0.885690 + 0.464276i \(0.153686\pi\)
\(338\) 10.8669 0.591083
\(339\) 0 0
\(340\) −1.71946 −0.0932506
\(341\) −0.938524 1.62557i −0.0508239 0.0880296i
\(342\) 0 0
\(343\) 0 0
\(344\) −4.66372 8.07779i −0.251451 0.435525i
\(345\) 0 0
\(346\) 1.46936 + 2.54500i 0.0789932 + 0.136820i
\(347\) −9.14406 15.8380i −0.490879 0.850228i 0.509066 0.860728i \(-0.329991\pi\)
−0.999945 + 0.0105001i \(0.996658\pi\)
\(348\) 0 0
\(349\) 3.90136 + 6.75735i 0.208835 + 0.361713i 0.951348 0.308119i \(-0.0996995\pi\)
−0.742513 + 0.669832i \(0.766366\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 1.82383 + 3.15897i 0.0972106 + 0.168374i
\(353\) 26.9253 1.43309 0.716544 0.697542i \(-0.245723\pi\)
0.716544 + 0.697542i \(0.245723\pi\)
\(354\) 0 0
\(355\) 0.773541 0.0410553
\(356\) −1.36333 + 2.36135i −0.0722562 + 0.125151i
\(357\) 0 0
\(358\) −4.58113 7.93474i −0.242120 0.419364i
\(359\) 3.13161 + 5.42411i 0.165280 + 0.286274i 0.936755 0.349987i \(-0.113814\pi\)
−0.771475 + 0.636260i \(0.780481\pi\)
\(360\) 0 0
\(361\) 1.28220 2.22084i 0.0674842 0.116886i
\(362\) −11.2142 + 19.4236i −0.589405 + 1.02088i
\(363\) 0 0
\(364\) 0 0
\(365\) −3.04883 + 5.28073i −0.159583 + 0.276406i
\(366\) 0 0
\(367\) −29.2733 −1.52806 −0.764028 0.645183i \(-0.776781\pi\)
−0.764028 + 0.645183i \(0.776781\pi\)
\(368\) 0.566537 0.981271i 0.0295328 0.0511523i
\(369\) 0 0
\(370\) 4.19436 0.218054
\(371\) 0 0
\(372\) 0 0
\(373\) 17.8597 0.924742 0.462371 0.886687i \(-0.346999\pi\)
0.462371 + 0.886687i \(0.346999\pi\)
\(374\) 6.80992 + 11.7951i 0.352132 + 0.609911i
\(375\) 0 0
\(376\) 1.16372 2.01561i 0.0600140 0.103947i
\(377\) −13.1082 −0.675105
\(378\) 0 0
\(379\) −22.4255 −1.15192 −0.575960 0.817478i \(-0.695371\pi\)
−0.575960 + 0.817478i \(0.695371\pi\)
\(380\) −0.933463 + 1.61680i −0.0478856 + 0.0829403i
\(381\) 0 0
\(382\) −1.24484 2.15613i −0.0636916 0.110317i
\(383\) −14.1403 −0.722534 −0.361267 0.932462i \(-0.617656\pi\)
−0.361267 + 0.932462i \(0.617656\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −4.48968 −0.228519
\(387\) 0 0
\(388\) 5.59358 9.68836i 0.283971 0.491852i
\(389\) 23.1301 1.17275 0.586373 0.810041i \(-0.300555\pi\)
0.586373 + 0.810041i \(0.300555\pi\)
\(390\) 0 0
\(391\) 2.11537 3.66392i 0.106979 0.185292i
\(392\) 0 0
\(393\) 0 0
\(394\) −6.36693 + 11.0278i −0.320761 + 0.555574i
\(395\) −1.15292 + 1.99691i −0.0580097 + 0.100476i
\(396\) 0 0
\(397\) 5.13307 + 8.89075i 0.257622 + 0.446214i 0.965604 0.260016i \(-0.0837279\pi\)
−0.707983 + 0.706230i \(0.750395\pi\)
\(398\) −1.47296 2.55124i −0.0738327 0.127882i
\(399\) 0 0
\(400\) 2.39397 4.14647i 0.119698 0.207324i
\(401\) −34.0335 −1.69955 −0.849775 0.527146i \(-0.823262\pi\)
−0.849775 + 0.527146i \(0.823262\pi\)
\(402\) 0 0
\(403\) 0.751560 0.0374379
\(404\) −6.87792 11.9129i −0.342189 0.592689i
\(405\) 0 0
\(406\) 0 0
\(407\) −16.6118 28.7724i −0.823415 1.42620i
\(408\) 0 0
\(409\) −1.74484 3.02215i −0.0862769 0.149436i 0.819658 0.572854i \(-0.194164\pi\)
−0.905935 + 0.423418i \(0.860830\pi\)
\(410\) −0.217799 0.377240i −0.0107563 0.0186305i
\(411\) 0 0
\(412\) 5.58113 + 9.66679i 0.274962 + 0.476249i
\(413\) 0 0
\(414\) 0 0
\(415\) −1.53064 2.65115i −0.0751362 0.130140i
\(416\) −1.46050 −0.0716071
\(417\) 0 0
\(418\) 14.7879 0.723302
\(419\) 14.4897 25.0969i 0.707867 1.22606i −0.257779 0.966204i \(-0.582991\pi\)
0.965647 0.259858i \(-0.0836759\pi\)
\(420\) 0 0
\(421\) −1.06128 1.83819i −0.0517237 0.0895881i 0.839004 0.544125i \(-0.183138\pi\)
−0.890728 + 0.454537i \(0.849805\pi\)
\(422\) 0.608168 + 1.05338i 0.0296052 + 0.0512777i
\(423\) 0 0
\(424\) 6.21780 10.7695i 0.301963 0.523015i
\(425\) 8.93872 15.4823i 0.433592 0.751003i
\(426\) 0 0
\(427\) 0 0
\(428\) 3.89037 6.73832i 0.188048 0.325709i
\(429\) 0 0
\(430\) −4.29533 −0.207139
\(431\) −10.9356 + 18.9410i −0.526749 + 0.912356i 0.472765 + 0.881189i \(0.343256\pi\)
−0.999514 + 0.0311679i \(0.990077\pi\)
\(432\) 0 0
\(433\) 13.0512 0.627199 0.313599 0.949555i \(-0.398465\pi\)
0.313599 + 0.949555i \(0.398465\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 7.51459 0.359884
\(437\) −2.29679 3.97816i −0.109870 0.190301i
\(438\) 0 0
\(439\) 2.43200 4.21235i 0.116073 0.201044i −0.802135 0.597143i \(-0.796303\pi\)
0.918208 + 0.396098i \(0.129636\pi\)
\(440\) 1.67977 0.0800797
\(441\) 0 0
\(442\) −5.45331 −0.259387
\(443\) −5.76975 + 9.99350i −0.274129 + 0.474805i −0.969915 0.243444i \(-0.921723\pi\)
0.695786 + 0.718249i \(0.255056\pi\)
\(444\) 0 0
\(445\) 0.627819 + 1.08741i 0.0297615 + 0.0515484i
\(446\) 0.891832 0.0422294
\(447\) 0 0
\(448\) 0 0
\(449\) 26.4251 1.24708 0.623538 0.781793i \(-0.285694\pi\)
0.623538 + 0.781793i \(0.285694\pi\)
\(450\) 0 0
\(451\) −1.72519 + 2.98812i −0.0812361 + 0.140705i
\(452\) 6.06128 0.285099
\(453\) 0 0
\(454\) −7.32597 + 12.6889i −0.343825 + 0.595522i
\(455\) 0 0
\(456\) 0 0
\(457\) 1.86906 3.23731i 0.0874310 0.151435i −0.818994 0.573803i \(-0.805468\pi\)
0.906425 + 0.422368i \(0.138801\pi\)
\(458\) 4.78794 8.29295i 0.223726 0.387504i
\(459\) 0 0
\(460\) −0.260893 0.451880i −0.0121642 0.0210690i
\(461\) −7.90496 13.6918i −0.368171 0.637690i 0.621109 0.783724i \(-0.286682\pi\)
−0.989280 + 0.146034i \(0.953349\pi\)
\(462\) 0 0
\(463\) 19.1965 33.2493i 0.892137 1.54523i 0.0548278 0.998496i \(-0.482539\pi\)
0.837309 0.546730i \(-0.184128\pi\)
\(464\) −8.97509 −0.416658
\(465\) 0 0
\(466\) −14.4284 −0.668383
\(467\) 3.15652 + 5.46725i 0.146066 + 0.252994i 0.929770 0.368140i \(-0.120005\pi\)
−0.783704 + 0.621134i \(0.786672\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) −0.535897 0.928200i −0.0247191 0.0428147i
\(471\) 0 0
\(472\) −6.44805 11.1684i −0.296796 0.514065i
\(473\) 17.0117 + 29.4651i 0.782197 + 1.35481i
\(474\) 0 0
\(475\) −9.70535 16.8102i −0.445312 0.771303i
\(476\) 0 0
\(477\) 0 0
\(478\) −9.15486 15.8567i −0.418734 0.725268i
\(479\) −20.4136 −0.932722 −0.466361 0.884594i \(-0.654435\pi\)
−0.466361 + 0.884594i \(0.654435\pi\)
\(480\) 0 0
\(481\) 13.3025 0.606543
\(482\) −0.0466924 + 0.0808735i −0.00212678 + 0.00368369i
\(483\) 0 0
\(484\) −1.15272 1.99658i −0.0523966 0.0907535i
\(485\) −2.57587 4.46154i −0.116964 0.202588i
\(486\) 0 0
\(487\) 6.18190 10.7074i 0.280129 0.485197i −0.691287 0.722580i \(-0.742956\pi\)
0.971416 + 0.237383i \(0.0762895\pi\)
\(488\) −6.04163 + 10.4644i −0.273492 + 0.473702i
\(489\) 0 0
\(490\) 0 0
\(491\) −0.207004 + 0.358541i −0.00934194 + 0.0161807i −0.870659 0.491888i \(-0.836307\pi\)
0.861317 + 0.508069i \(0.169640\pi\)
\(492\) 0 0
\(493\) −33.5117 −1.50929
\(494\) −2.96050 + 5.12774i −0.133199 + 0.230708i
\(495\) 0 0
\(496\) 0.514589 0.0231057
\(497\) 0 0
\(498\) 0 0
\(499\) −0.923935 −0.0413610 −0.0206805 0.999786i \(-0.506583\pi\)
−0.0206805 + 0.999786i \(0.506583\pi\)
\(500\) −2.25370 3.90352i −0.100788 0.174571i
\(501\) 0 0
\(502\) −9.13667 + 15.8252i −0.407790 + 0.706312i
\(503\) −23.8142 −1.06182 −0.530911 0.847428i \(-0.678150\pi\)
−0.530911 + 0.847428i \(0.678150\pi\)
\(504\) 0 0
\(505\) −6.33463 −0.281887
\(506\) −2.06654 + 3.57935i −0.0918688 + 0.159121i
\(507\) 0 0
\(508\) −4.40496 7.62961i −0.195438 0.338509i
\(509\) −30.6342 −1.35784 −0.678919 0.734213i \(-0.737551\pi\)
−0.678919 + 0.734213i \(0.737551\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) −1.00000 −0.0441942
\(513\) 0 0
\(514\) −10.5256 + 18.2308i −0.464263 + 0.804128i
\(515\) 5.14027 0.226507
\(516\) 0 0
\(517\) −4.24484 + 7.35228i −0.186688 + 0.323353i
\(518\) 0 0
\(519\) 0 0
\(520\) −0.336285 + 0.582462i −0.0147471 + 0.0255427i
\(521\) −13.4518 + 23.2993i −0.589336 + 1.02076i 0.404984 + 0.914324i \(0.367277\pi\)
−0.994320 + 0.106436i \(0.966056\pi\)
\(522\) 0 0
\(523\) 7.85301 + 13.6018i 0.343388 + 0.594766i 0.985060 0.172214i \(-0.0550920\pi\)
−0.641671 + 0.766980i \(0.721759\pi\)
\(524\) −10.5687 18.3055i −0.461695 0.799679i
\(525\) 0 0
\(526\) 2.58259 4.47318i 0.112606 0.195040i
\(527\) 1.92140 0.0836975
\(528\) 0 0
\(529\) −21.7161 −0.944180
\(530\) −2.86333 4.95943i −0.124375 0.215424i
\(531\) 0 0
\(532\) 0 0
\(533\) −0.690757 1.19643i −0.0299200 0.0518230i
\(534\) 0 0
\(535\) −1.79153 3.10303i −0.0774548 0.134156i
\(536\) −1.16012 2.00938i −0.0501094 0.0867920i
\(537\) 0 0
\(538\) −8.42840 14.5984i −0.363374 0.629383i
\(539\) 0 0
\(540\) 0 0
\(541\) −2.05934 3.56688i −0.0885379 0.153352i 0.818355 0.574713i \(-0.194886\pi\)
−0.906893 + 0.421360i \(0.861553\pi\)
\(542\) −25.1124 −1.07867
\(543\) 0 0
\(544\) −3.73385 −0.160088
\(545\) 1.73025 2.99689i 0.0741159 0.128372i
\(546\) 0 0
\(547\) −11.8602 20.5425i −0.507106 0.878333i −0.999966 0.00822465i \(-0.997382\pi\)
0.492860 0.870108i \(-0.335951\pi\)
\(548\) −2.20321 3.81607i −0.0941165 0.163015i
\(549\) 0 0
\(550\) −8.73239 + 15.1249i −0.372350 + 0.644930i
\(551\) −18.1929 + 31.5110i −0.775043 + 1.34241i
\(552\) 0 0
\(553\) 0 0
\(554\) 1.69076 2.92848i 0.0718334 0.124419i
\(555\) 0 0
\(556\) −2.02491 −0.0858751
\(557\) 21.0313 36.4273i 0.891125 1.54347i 0.0525975 0.998616i \(-0.483250\pi\)
0.838528 0.544859i \(-0.183417\pi\)
\(558\) 0 0
\(559\) −13.6228 −0.576181
\(560\) 0 0
\(561\) 0 0
\(562\) 20.2776 0.855360
\(563\) −5.91216 10.2402i −0.249168 0.431571i 0.714127 0.700016i \(-0.246824\pi\)
−0.963295 + 0.268445i \(0.913490\pi\)
\(564\) 0 0
\(565\) 1.39562 2.41729i 0.0587144 0.101696i
\(566\) 17.3494 0.729250
\(567\) 0 0
\(568\) 1.67977 0.0704815
\(569\) 7.10078 12.2989i 0.297680 0.515597i −0.677925 0.735131i \(-0.737120\pi\)
0.975605 + 0.219534i \(0.0704538\pi\)
\(570\) 0 0
\(571\) −5.97869 10.3554i −0.250200 0.433360i 0.713380 0.700777i \(-0.247163\pi\)
−0.963581 + 0.267417i \(0.913830\pi\)
\(572\) 5.32743 0.222751
\(573\) 0 0
\(574\) 0 0
\(575\) 5.42509 0.226242
\(576\) 0 0
\(577\) −21.3135 + 36.9161i −0.887293 + 1.53684i −0.0442307 + 0.999021i \(0.514084\pi\)
−0.843062 + 0.537816i \(0.819250\pi\)
\(578\) 3.05836 0.127211
\(579\) 0 0
\(580\) −2.06654 + 3.57935i −0.0858083 + 0.148624i
\(581\) 0 0
\(582\) 0 0
\(583\) −22.6804 + 39.2837i −0.939328 + 1.62696i
\(584\) −6.62062 + 11.4673i −0.273963 + 0.474518i
\(585\) 0 0
\(586\) 4.93560 + 8.54871i 0.203888 + 0.353144i
\(587\) 20.5328 + 35.5638i 0.847478 + 1.46788i 0.883451 + 0.468523i \(0.155214\pi\)
−0.0359730 + 0.999353i \(0.511453\pi\)
\(588\) 0 0
\(589\) 1.04309 1.80669i 0.0429799 0.0744434i
\(590\) −5.93872 −0.244493
\(591\) 0 0
\(592\) 9.10817 0.374343
\(593\) 16.1008 + 27.8874i 0.661180 + 1.14520i 0.980306 + 0.197485i \(0.0632772\pi\)
−0.319126 + 0.947712i \(0.603389\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −4.58113 7.93474i −0.187650 0.325020i
\(597\) 0 0
\(598\) −0.827430 1.43315i −0.0338361 0.0586059i
\(599\) 9.53590 + 16.5167i 0.389626 + 0.674852i 0.992399 0.123060i \(-0.0392709\pi\)
−0.602773 + 0.797913i \(0.705938\pi\)
\(600\) 0 0
\(601\) −4.27188 7.39912i −0.174254 0.301816i 0.765649 0.643259i \(-0.222418\pi\)
−0.939903 + 0.341442i \(0.889085\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0.0519482 + 0.0899768i 0.00211374 + 0.00366111i
\(605\) −1.06167 −0.0431631
\(606\) 0 0
\(607\) −38.0115 −1.54284 −0.771419 0.636328i \(-0.780453\pi\)
−0.771419 + 0.636328i \(0.780453\pi\)
\(608\) −2.02704 + 3.51094i −0.0822074 + 0.142387i
\(609\) 0 0
\(610\) 2.78220 + 4.81891i 0.112648 + 0.195112i
\(611\) −1.69961 2.94381i −0.0687589 0.119094i
\(612\) 0 0
\(613\) 11.3296 19.6234i 0.457597 0.792581i −0.541237 0.840870i \(-0.682044\pi\)
0.998833 + 0.0482894i \(0.0153770\pi\)
\(614\) −3.89397 + 6.74455i −0.157148 + 0.272188i
\(615\) 0 0
\(616\) 0 0
\(617\) 10.1388 17.5609i 0.408173 0.706977i −0.586512 0.809941i \(-0.699499\pi\)
0.994685 + 0.102964i \(0.0328327\pi\)
\(618\) 0 0
\(619\) −2.06128 −0.0828499 −0.0414249 0.999142i \(-0.513190\pi\)
−0.0414249 + 0.999142i \(0.513190\pi\)
\(620\) 0.118485 0.205223i 0.00475849 0.00824194i
\(621\) 0 0
\(622\) −15.4107 −0.617912
\(623\) 0 0
\(624\) 0 0
\(625\) 21.8640 0.874560
\(626\) −4.24844 7.35851i −0.169802 0.294105i
\(627\) 0 0
\(628\) 10.4911 18.1712i 0.418642 0.725110i
\(629\) 34.0085 1.35601
\(630\) 0 0
\(631\) 1.63715 0.0651740 0.0325870 0.999469i \(-0.489625\pi\)
0.0325870 + 0.999469i \(0.489625\pi\)
\(632\) −2.50360 + 4.33636i −0.0995878 + 0.172491i
\(633\) 0 0
\(634\) 7.05262 + 12.2155i 0.280095 + 0.485139i
\(635\) −4.05701 −0.160998
\(636\) 0 0
\(637\) 0 0
\(638\) 32.7381 1.29611
\(639\) 0 0
\(640\) −0.230252 + 0.398809i −0.00910153 + 0.0157643i
\(641\) −21.9325 −0.866281 −0.433140 0.901326i \(-0.642595\pi\)
−0.433140 + 0.901326i \(0.642595\pi\)
\(642\) 0 0
\(643\) 14.1819 24.5638i 0.559280 0.968701i −0.438277 0.898840i \(-0.644411\pi\)
0.997557 0.0698609i \(-0.0222555\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) −7.56867 + 13.1093i −0.297785 + 0.515780i
\(647\) 17.3904 30.1210i 0.683686 1.18418i −0.290162 0.956978i \(-0.593709\pi\)
0.973848 0.227201i \(-0.0729575\pi\)
\(648\) 0 0
\(649\) 23.5203 + 40.7384i 0.923253 + 1.59912i
\(650\) −3.49640 6.05594i −0.137140 0.237534i
\(651\) 0 0
\(652\) −11.5182 + 19.9501i −0.451087 + 0.781306i
\(653\) 3.19863 0.125172 0.0625860 0.998040i \(-0.480065\pi\)
0.0625860 + 0.998040i \(0.480065\pi\)
\(654\) 0 0
\(655\) −9.73385 −0.380333
\(656\) −0.472958 0.819187i −0.0184659 0.0319839i
\(657\) 0 0
\(658\) 0 0
\(659\) −5.30418 9.18711i −0.206622 0.357879i 0.744027 0.668150i \(-0.232914\pi\)
−0.950648 + 0.310271i \(0.899580\pi\)
\(660\) 0 0
\(661\) 5.06507 + 8.77297i 0.197009 + 0.341229i 0.947557 0.319586i \(-0.103544\pi\)
−0.750549 + 0.660815i \(0.770211\pi\)
\(662\) 13.7719 + 23.8536i 0.535259 + 0.927097i
\(663\) 0 0
\(664\) −3.32383 5.75705i −0.128990 0.223417i
\(665\) 0 0
\(666\) 0 0
\(667\) −5.08472 8.80700i −0.196881 0.341008i
\(668\) 10.6300 0.411285
\(669\) 0 0
\(670\) −1.06848 −0.0412789
\(671\) 22.0378 38.1707i 0.850761 1.47356i
\(672\) 0 0
\(673\) 1.60817 + 2.78543i 0.0619903 + 0.107370i 0.895355 0.445353i \(-0.146922\pi\)
−0.833365 + 0.552724i \(0.813589\pi\)
\(674\) −0.748440 1.29634i −0.0288288 0.0499330i
\(675\) 0 0
\(676\) 5.43346 9.41103i 0.208979 0.361963i
\(677\) 14.6819 25.4298i 0.564271 0.977347i −0.432846 0.901468i \(-0.642491\pi\)
0.997117 0.0758786i \(-0.0241762\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) −0.859728 + 1.48909i −0.0329691 + 0.0571041i
\(681\) 0 0
\(682\) −1.87705 −0.0718759
\(683\) −12.6278 + 21.8720i −0.483190 + 0.836910i −0.999814 0.0193029i \(-0.993855\pi\)
0.516624 + 0.856213i \(0.327189\pi\)
\(684\) 0 0
\(685\) −2.02918 −0.0775309
\(686\) 0 0
\(687\) 0 0
\(688\) −9.32743 −0.355605
\(689\) −9.08113 15.7290i −0.345963 0.599226i
\(690\) 0 0
\(691\) −7.68190 + 13.3054i −0.292233 + 0.506163i −0.974338 0.225092i \(-0.927732\pi\)
0.682104 + 0.731255i \(0.261065\pi\)
\(692\) 2.93872 0.111713
\(693\) 0 0
\(694\) −18.2881 −0.694208
\(695\) −0.466240 + 0.807551i −0.0176855 + 0.0306321i
\(696\) 0 0
\(697\) −1.76595 3.05872i −0.0668903 0.115857i
\(698\) 7.80272 0.295337
\(699\) 0 0
\(700\) 0 0
\(701\) 13.3700 0.504980 0.252490 0.967600i \(-0.418751\pi\)
0.252490 + 0.967600i \(0.418751\pi\)
\(702\) 0 0
\(703\) 18.4626 31.9782i 0.696332 1.20608i
\(704\) 3.64766 0.137476
\(705\) 0 0
\(706\) 13.4626 23.3180i 0.506673 0.877584i
\(707\) 0 0
\(708\) 0 0
\(709\) 0.562939 0.975038i 0.0211416 0.0366183i −0.855261 0.518197i \(-0.826603\pi\)
0.876403 + 0.481579i \(0.159937\pi\)
\(710\) 0.386770 0.669906i 0.0145152 0.0251411i
\(711\) 0 0
\(712\) 1.36333 + 2.36135i 0.0510928 + 0.0884954i
\(713\) 0.291534 + 0.504951i 0.0109180 + 0.0189106i
\(714\) 0 0
\(715\) 1.22665 2.12463i 0.0458743 0.0794565i
\(716\) −9.16225 −0.342409
\(717\) 0 0
\(718\) 6.26322 0.233741
\(719\) 9.13667 + 15.8252i 0.340740 + 0.590180i 0.984570 0.174989i \(-0.0559889\pi\)
−0.643830 + 0.765169i \(0.722656\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) −1.28220 2.22084i −0.0477186 0.0826510i
\(723\) 0 0
\(724\) 11.2142 + 19.4236i 0.416772 + 0.721871i
\(725\) −21.4861 37.2150i −0.797973 1.38213i
\(726\) 0 0
\(727\) 14.8478 + 25.7171i 0.550673 + 0.953793i 0.998226 + 0.0595359i \(0.0189621\pi\)
−0.447553 + 0.894257i \(0.647705\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 3.04883 + 5.28073i 0.112842 + 0.195448i
\(731\) −34.8272 −1.28813
\(732\) 0 0
\(733\) −19.2278 −0.710195 −0.355098 0.934829i \(-0.615552\pi\)
−0.355098 + 0.934829i \(0.615552\pi\)
\(734\) −14.6367 + 25.3515i −0.540249 + 0.935740i
\(735\) 0 0
\(736\) −0.566537 0.981271i −0.0208828 0.0361701i
\(737\) 4.23171 + 7.32955i 0.155877 + 0.269987i
\(738\) 0 0
\(739\) −15.1336 + 26.2121i −0.556697 + 0.964227i 0.441073 + 0.897471i \(0.354598\pi\)
−0.997769 + 0.0667556i \(0.978735\pi\)
\(740\) 2.09718 3.63242i 0.0770938 0.133530i
\(741\) 0 0
\(742\) 0 0
\(743\) 11.8815 20.5794i 0.435890 0.754984i −0.561477 0.827492i \(-0.689767\pi\)
0.997368 + 0.0725076i \(0.0231002\pi\)
\(744\) 0 0
\(745\) −4.21926 −0.154582
\(746\) 8.92986 15.4670i 0.326946 0.566286i
\(747\) 0 0
\(748\) 13.6198 0.497990
\(749\) 0 0
\(750\) 0 0
\(751\) 12.6683 0.462273 0.231136 0.972921i \(-0.425756\pi\)
0.231136 + 0.972921i \(0.425756\pi\)
\(752\) −1.16372 2.01561i −0.0424363 0.0735019i
\(753\) 0 0
\(754\) −6.55408 + 11.3520i −0.238686 + 0.413416i
\(755\) 0.0478448 0.00174125
\(756\) 0 0
\(757\) −29.0799 −1.05693 −0.528464 0.848955i \(-0.677232\pi\)
−0.528464 + 0.848955i \(0.677232\pi\)
\(758\) −11.2127 + 19.4210i −0.407265 + 0.705404i
\(759\) 0 0
\(760\) 0.933463 + 1.61680i 0.0338603 + 0.0586477i
\(761\) 29.2029 1.05860 0.529302 0.848433i \(-0.322454\pi\)
0.529302 + 0.848433i \(0.322454\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) −2.48968 −0.0900736
\(765\) 0 0
\(766\) −7.07014 + 12.2458i −0.255454 + 0.442460i
\(767\) −18.8348 −0.680086
\(768\) 0 0
\(769\) −12.5869 + 21.8011i −0.453894 + 0.786167i −0.998624 0.0524443i \(-0.983299\pi\)
0.544730 + 0.838611i \(0.316632\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −2.24484 + 3.88818i −0.0807936 + 0.139939i
\(773\) −0.752039 + 1.30257i −0.0270490 + 0.0468502i −0.879233 0.476392i \(-0.841944\pi\)
0.852184 + 0.523242i \(0.175278\pi\)
\(774\) 0 0
\(775\) 1.23191 + 2.13373i 0.0442515 + 0.0766458i
\(776\) −5.59358 9.68836i −0.200798 0.347792i
\(777\) 0 0
\(778\) 11.5651 20.0313i 0.414628 0.718157i
\(779\) −3.83482 −0.137397
\(780\) 0 0
\(781\) −6.12722 −0.219249
\(782\) −2.11537 3.66392i −0.0756453 0.131022i
\(783\) 0 0
\(784\) 0 0
\(785\) −4.83122 8.36792i −0.172434 0.298664i
\(786\) 0 0
\(787\) −7.47656 12.9498i −0.266510 0.461610i 0.701448 0.712721i \(-0.252537\pi\)
−0.967958 + 0.251111i \(0.919204\pi\)
\(788\) 6.36693 + 11.0278i 0.226812 + 0.392850i
\(789\) 0 0
\(790\) 1.15292 + 1.99691i 0.0410190 + 0.0710470i
\(791\) 0 0
\(792\) 0 0
\(793\) 8.82383 + 15.2833i 0.313343 + 0.542727i
\(794\) 10.2661 0.364332
\(795\) 0 0
\(796\) −2.94592 −0.104415
\(797\) −4.56294 + 7.90324i −0.161628 + 0.279947i −0.935453 0.353452i \(-0.885008\pi\)
0.773825 + 0.633400i \(0.218341\pi\)
\(798\) 0 0
\(799\) −4.34514 7.52600i −0.153720 0.266251i
\(800\) −2.39397 4.14647i −0.0846395 0.146600i
\(801\) 0 0
\(802\) −17.0167 + 29.4738i −0.600881 + 1.04076i
\(803\) 24.1498 41.8287i 0.852228 1.47610i
\(804\) 0 0
\(805\) 0 0
\(806\) 0.375780 0.650870i 0.0132363 0.0229259i
\(807\) 0 0
\(808\) −13.7558 −0.483928
\(809\) −17.7755 + 30.7880i −0.624953 + 1.08245i 0.363597 + 0.931556i \(0.381548\pi\)
−0.988550 + 0.150894i \(0.951785\pi\)
\(810\) 0 0
\(811\) 13.5070 0.474295 0.237148 0.971474i \(-0.423788\pi\)
0.237148 + 0.971474i \(0.423788\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) −33.2235 −1.16448
\(815\) 5.30418 + 9.18711i 0.185797 + 0.321810i
\(816\) 0 0
\(817\) −18.9071 + 32.7480i −0.661475 + 1.14571i
\(818\) −3.48968 −0.122014
\(819\) 0 0
\(820\) −0.435599 −0.0152118
\(821\) 10.8114 18.7259i 0.377320 0.653537i −0.613352 0.789810i \(-0.710179\pi\)
0.990671 + 0.136273i \(0.0435125\pi\)
\(822\) 0 0
\(823\) 0.753501 + 1.30510i 0.0262654 + 0.0454930i 0.878859 0.477081i \(-0.158305\pi\)
−0.852594 + 0.522574i \(0.824972\pi\)
\(824\) 11.1623 0.388855
\(825\) 0 0
\(826\) 0 0
\(827\) −23.3786 −0.812953 −0.406477 0.913661i \(-0.633243\pi\)
−0.406477 + 0.913661i \(0.633243\pi\)
\(828\) 0 0
\(829\) 11.0095 19.0691i 0.382377 0.662296i −0.609025 0.793151i \(-0.708439\pi\)
0.991401 + 0.130855i \(0.0417723\pi\)
\(830\) −3.06128 −0.106259
\(831\) 0 0
\(832\) −0.730252 + 1.26483i −0.0253169 + 0.0438502i
\(833\) 0 0
\(834\) 0 0
\(835\) 2.44757 4.23932i 0.0847018 0.146708i
\(836\) 7.39397 12.8067i 0.255726 0.442930i
\(837\) 0 0
\(838\) −14.4897 25.0969i −0.500538 0.866957i
\(839\) −1.06507 1.84476i −0.0367705 0.0636883i 0.847055 0.531506i \(-0.178374\pi\)
−0.883825 + 0.467818i \(0.845040\pi\)
\(840\) 0 0
\(841\) −25.7762 + 44.6456i −0.888833 + 1.53950i
\(842\) −2.12256 −0.0731483
\(843\) 0 0
\(844\) 1.21634 0.0418680
\(845\) −2.50214 4.33383i −0.0860761 0.149088i
\(846\) 0 0
\(847\) 0 0
\(848\) −6.21780 10.7695i −0.213520 0.369828i
\(849\) 0 0
\(850\) −8.93872 15.4823i −0.306596 0.531039i
\(851\) 5.16012 + 8.93758i 0.176887 + 0.306376i
\(852\) 0 0
\(853\) 3.50146 + 6.06471i 0.119888 + 0.207652i 0.919723 0.392568i \(-0.128413\pi\)
−0.799835 + 0.600220i \(0.795080\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) −3.89037 6.73832i −0.132970 0.230311i
\(857\) 10.9282 0.373300 0.186650 0.982426i \(-0.440237\pi\)
0.186650 + 0.982426i \(0.440237\pi\)
\(858\) 0 0
\(859\) 13.9076 0.474520 0.237260 0.971446i \(-0.423751\pi\)
0.237260 + 0.971446i \(0.423751\pi\)
\(860\) −2.14766 + 3.71986i −0.0732347 + 0.126846i
\(861\) 0 0
\(862\) 10.9356 + 18.9410i 0.372468 + 0.645133i
\(863\) 18.4231 + 31.9098i 0.627131 + 1.08622i 0.988125 + 0.153655i \(0.0491043\pi\)
−0.360993 + 0.932568i \(0.617562\pi\)
\(864\) 0 0
\(865\) 0.676647 1.17199i 0.0230067 0.0398488i
\(866\) 6.52558 11.3026i 0.221748 0.384079i
\(867\) 0 0
\(868\) 0 0
\(869\) 9.13229 15.8176i 0.309792 0.536575i
\(870\) 0 0
\(871\) −3.38871 −0.114822
\(872\) 3.75729 6.50783i 0.127238 0.220383i
\(873\) 0 0
\(874\) −4.59358 −0.155380
\(875\) 0 0
\(876\) 0 0
\(877\) −10.3595 −0.349817 −0.174908 0.984585i \(-0.555963\pi\)
−0.174908 + 0.984585i \(0.555963\pi\)
\(878\) −2.43200 4.21235i −0.0820760 0.142160i
\(879\) 0 0
\(880\) 0.839883 1.45472i 0.0283125 0.0490386i
\(881\) 9.34806 0.314944 0.157472 0.987523i \(-0.449666\pi\)
0.157472 + 0.987523i \(0.449666\pi\)
\(882\) 0 0
\(883\) 2.29494 0.0772308 0.0386154 0.999254i \(-0.487705\pi\)
0.0386154 + 0.999254i \(0.487705\pi\)
\(884\) −2.72665 + 4.72270i −0.0917073 + 0.158842i
\(885\) 0 0
\(886\) 5.76975 + 9.99350i 0.193838 + 0.335738i
\(887\) −27.6726 −0.929154 −0.464577 0.885533i \(-0.653794\pi\)
−0.464577 + 0.885533i \(0.653794\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 1.25564 0.0420891
\(891\) 0 0
\(892\) 0.445916 0.772349i 0.0149304 0.0258602i
\(893\) −9.43560 −0.315750
\(894\) 0 0
\(895\) −2.10963 + 3.65399i −0.0705172 + 0.122139i
\(896\) 0 0
\(897\) 0 0
\(898\) 13.2125 22.8848i 0.440908 0.763676i
\(899\) 2.30924 3.99973i 0.0770176 0.133398i
\(900\) 0 0
\(901\) −23.2163 40.2119i −0.773448 1.33965i
\(902\) 1.72519 + 2.98812i 0.0574426 + 0.0994935i
\(903\) 0 0
\(904\) 3.03064 5.24922i 0.100798 0.174587i
\(905\) 10.3284 0.343327
\(906\) 0 0
\(907\) −2.93152 −0.0973396 −0.0486698 0.998815i \(-0.515498\pi\)
−0.0486698 + 0.998815i \(0.515498\pi\)
\(908\) 7.32597 + 12.6889i 0.243121 + 0.421098i
\(909\) 0 0
\(910\) 0 0
\(911\) −15.3171 26.5300i −0.507479 0.878979i −0.999963 0.00865719i \(-0.997244\pi\)
0.492484 0.870322i \(-0.336089\pi\)
\(912\) 0 0
\(913\) 12.1242 + 20.9998i 0.401253 + 0.694991i
\(914\) −1.86906 3.23731i −0.0618231 0.107081i
\(915\) 0 0
\(916\) −4.78794 8.29295i −0.158198 0.274007i
\(917\) 0 0
\(918\) 0 0
\(919\) 13.1857 + 22.8383i 0.434956 + 0.753366i 0.997292 0.0735429i \(-0.0234306\pi\)
−0.562336 + 0.826909i \(0.690097\pi\)
\(920\) −0.521786 −0.0172028
\(921\) 0 0
\(922\) −15.8099 −0.520672
\(923\) 1.22665 2.12463i 0.0403758 0.0699329i
\(924\) 0 0
\(925\) 21.8047 + 37.7668i 0.716933 + 1.24176i
\(926\) −19.1965 33.2493i −0.630836 1.09264i
\(927\) 0 0
\(928\) −4.48755 + 7.77266i −0.147311 + 0.255150i
\(929\) −8.93706 + 15.4794i −0.293215 + 0.507864i −0.974568 0.224091i \(-0.928059\pi\)
0.681353 + 0.731955i \(0.261392\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) −7.21420 + 12.4954i −0.236309 + 0.409299i
\(933\) 0 0
\(934\) 6.31304 0.206569
\(935\) 3.13600 5.43171i 0.102558 0.177636i
\(936\) 0 0
\(937\) −15.9134 −0.519869 −0.259934 0.965626i \(-0.583701\pi\)
−0.259934 + 0.965626i \(0.583701\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) −1.07179 −0.0349580
\(941\) 8.14027 + 14.0994i 0.265365 + 0.459626i 0.967659 0.252261i \(-0.0811741\pi\)
−0.702294 + 0.711887i \(0.747841\pi\)
\(942\) 0 0
\(943\) 0.535897 0.928200i 0.0174512 0.0302264i
\(944\) −12.8961 −0.419732
\(945\) 0 0
\(946\) 34.0233 1.10619
\(947\) −14.2951 + 24.7599i −0.464529 + 0.804589i −0.999180 0.0404846i \(-0.987110\pi\)
0.534651 + 0.845073i \(0.320443\pi\)
\(948\) 0 0
\(949\) 9.66945 + 16.7480i 0.313884 + 0.543662i
\(950\) −19.4107 −0.629766
\(951\) 0 0
\(952\) 0 0
\(953\) 29.3537 0.950859 0.475430 0.879754i \(-0.342293\pi\)
0.475430 + 0.879754i \(0.342293\pi\)
\(954\) 0 0
\(955\) −0.573256 + 0.992908i −0.0185501 + 0.0321297i
\(956\) −18.3097 −0.592179
\(957\) 0 0
\(958\) −10.2068 + 17.6787i −0.329767 + 0.571173i
\(959\) 0 0
\(960\) 0 0
\(961\) 15.3676 26.6175i 0.495729 0.858628i
\(962\) 6.65126 11.5203i 0.214445 0.371430i
\(963\) 0 0
\(964\) 0.0466924 + 0.0808735i 0.00150386 + 0.00260476i
\(965\) 1.03376 + 1.79053i 0.0332779 + 0.0576391i
\(966\) 0 0
\(967\) −4.69815 + 8.13743i −0.151082 + 0.261682i −0.931626 0.363419i \(-0.881609\pi\)
0.780543 + 0.625102i \(0.214943\pi\)
\(968\) −2.30545 −0.0741000
\(969\) 0 0
\(970\) −5.15174 −0.165412
\(971\) 7.77335 + 13.4638i 0.249459 + 0.432075i 0.963376 0.268155i \(-0.0864140\pi\)
−0.713917 + 0.700230i \(0.753081\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) −6.18190 10.7074i −0.198081 0.343086i
\(975\) 0 0
\(976\) 6.04163 + 10.4644i 0.193388 + 0.334958i
\(977\) −4.79893 8.31198i −0.153531 0.265924i 0.778992 0.627034i \(-0.215731\pi\)
−0.932523 + 0.361110i \(0.882398\pi\)
\(978\) 0 0
\(979\) −4.97296 8.61342i −0.158936 0.275286i
\(980\) 0 0
\(981\) 0 0
\(982\) 0.207004 + 0.358541i 0.00660575 + 0.0114415i
\(983\) −46.8535 −1.49439 −0.747197 0.664603i \(-0.768601\pi\)
−0.747197 + 0.664603i \(0.768601\pi\)
\(984\) 0 0
\(985\) 5.86400 0.186843
\(986\) −16.7558 + 29.0220i −0.533614 + 0.924247i
\(987\) 0 0
\(988\) 2.96050 + 5.12774i 0.0941862 + 0.163135i
\(989\) −5.28434 9.15274i −0.168032 0.291040i
\(990\) 0 0
\(991\) 10.8260 18.7511i 0.343898 0.595649i −0.641255 0.767328i \(-0.721586\pi\)
0.985153 + 0.171679i \(0.0549192\pi\)
\(992\) 0.257295 0.445647i 0.00816911 0.0141493i
\(993\) 0 0
\(994\) 0 0
\(995\) −0.678304 + 1.17486i −0.0215037 + 0.0372455i
\(996\) 0 0
\(997\) 57.2379 1.81274 0.906372 0.422481i \(-0.138841\pi\)
0.906372 + 0.422481i \(0.138841\pi\)
\(998\) −0.461967 + 0.800151i −0.0146233 + 0.0253283i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2646.2.h.p.361.1 6
3.2 odd 2 882.2.h.o.67.1 6
7.2 even 3 2646.2.e.o.1549.3 6
7.3 odd 6 2646.2.f.o.1765.1 6
7.4 even 3 2646.2.f.n.1765.3 6
7.5 odd 6 378.2.e.c.37.1 6
7.6 odd 2 378.2.h.d.361.3 6
9.2 odd 6 882.2.e.p.655.2 6
9.7 even 3 2646.2.e.o.2125.3 6
21.2 odd 6 882.2.e.p.373.2 6
21.5 even 6 126.2.e.d.121.2 yes 6
21.11 odd 6 882.2.f.m.589.2 6
21.17 even 6 882.2.f.l.589.2 6
21.20 even 2 126.2.h.c.67.3 yes 6
28.19 even 6 3024.2.q.h.2305.1 6
28.27 even 2 3024.2.t.g.1873.3 6
63.2 odd 6 882.2.h.o.79.1 6
63.4 even 3 7938.2.a.bx.1.1 3
63.5 even 6 1134.2.g.k.163.3 6
63.11 odd 6 882.2.f.m.295.2 6
63.13 odd 6 1134.2.g.n.487.1 6
63.16 even 3 inner 2646.2.h.p.667.1 6
63.20 even 6 126.2.e.d.25.2 6
63.25 even 3 2646.2.f.n.883.3 6
63.31 odd 6 7938.2.a.bu.1.3 3
63.32 odd 6 7938.2.a.by.1.3 3
63.34 odd 6 378.2.e.c.235.1 6
63.38 even 6 882.2.f.l.295.2 6
63.40 odd 6 1134.2.g.n.163.1 6
63.41 even 6 1134.2.g.k.487.3 6
63.47 even 6 126.2.h.c.79.3 yes 6
63.52 odd 6 2646.2.f.o.883.1 6
63.59 even 6 7938.2.a.cb.1.1 3
63.61 odd 6 378.2.h.d.289.3 6
84.47 odd 6 1008.2.q.h.625.2 6
84.83 odd 2 1008.2.t.g.193.1 6
252.47 odd 6 1008.2.t.g.961.1 6
252.83 odd 6 1008.2.q.h.529.2 6
252.187 even 6 3024.2.t.g.289.3 6
252.223 even 6 3024.2.q.h.2881.1 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
126.2.e.d.25.2 6 63.20 even 6
126.2.e.d.121.2 yes 6 21.5 even 6
126.2.h.c.67.3 yes 6 21.20 even 2
126.2.h.c.79.3 yes 6 63.47 even 6
378.2.e.c.37.1 6 7.5 odd 6
378.2.e.c.235.1 6 63.34 odd 6
378.2.h.d.289.3 6 63.61 odd 6
378.2.h.d.361.3 6 7.6 odd 2
882.2.e.p.373.2 6 21.2 odd 6
882.2.e.p.655.2 6 9.2 odd 6
882.2.f.l.295.2 6 63.38 even 6
882.2.f.l.589.2 6 21.17 even 6
882.2.f.m.295.2 6 63.11 odd 6
882.2.f.m.589.2 6 21.11 odd 6
882.2.h.o.67.1 6 3.2 odd 2
882.2.h.o.79.1 6 63.2 odd 6
1008.2.q.h.529.2 6 252.83 odd 6
1008.2.q.h.625.2 6 84.47 odd 6
1008.2.t.g.193.1 6 84.83 odd 2
1008.2.t.g.961.1 6 252.47 odd 6
1134.2.g.k.163.3 6 63.5 even 6
1134.2.g.k.487.3 6 63.41 even 6
1134.2.g.n.163.1 6 63.40 odd 6
1134.2.g.n.487.1 6 63.13 odd 6
2646.2.e.o.1549.3 6 7.2 even 3
2646.2.e.o.2125.3 6 9.7 even 3
2646.2.f.n.883.3 6 63.25 even 3
2646.2.f.n.1765.3 6 7.4 even 3
2646.2.f.o.883.1 6 63.52 odd 6
2646.2.f.o.1765.1 6 7.3 odd 6
2646.2.h.p.361.1 6 1.1 even 1 trivial
2646.2.h.p.667.1 6 63.16 even 3 inner
3024.2.q.h.2305.1 6 28.19 even 6
3024.2.q.h.2881.1 6 252.223 even 6
3024.2.t.g.289.3 6 252.187 even 6
3024.2.t.g.1873.3 6 28.27 even 2
7938.2.a.bu.1.3 3 63.31 odd 6
7938.2.a.bx.1.1 3 63.4 even 3
7938.2.a.by.1.3 3 63.32 odd 6
7938.2.a.cb.1.1 3 63.59 even 6