Properties

Label 882.2.e.p.655.2
Level $882$
Weight $2$
Character 882.655
Analytic conductor $7.043$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [882,2,Mod(373,882)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(882, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([2, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("882.373");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 882 = 2 \cdot 3^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 882.e (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.04280545828\)
Analytic rank: \(0\)
Dimension: \(6\)
Relative dimension: \(3\) over \(\Q(\zeta_{3})\)
Coefficient field: 6.0.309123.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 3x^{5} + 10x^{4} - 15x^{3} + 19x^{2} - 12x + 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 126)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 655.2
Root \(0.500000 - 2.05195i\) of defining polynomial
Character \(\chi\) \(=\) 882.655
Dual form 882.2.e.p.373.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{2} +(0.796790 + 1.53790i) q^{3} +1.00000 q^{4} +(-0.230252 + 0.398809i) q^{5} +(0.796790 + 1.53790i) q^{6} +1.00000 q^{8} +(-1.73025 + 2.45076i) q^{9} +(-0.230252 + 0.398809i) q^{10} +(1.82383 + 3.15897i) q^{11} +(0.796790 + 1.53790i) q^{12} +(-0.730252 - 1.26483i) q^{13} +(-0.796790 - 0.0363376i) q^{15} +1.00000 q^{16} +(1.86693 - 3.23361i) q^{17} +(-1.73025 + 2.45076i) q^{18} +(2.02704 + 3.51094i) q^{19} +(-0.230252 + 0.398809i) q^{20} +(1.82383 + 3.15897i) q^{22} +(-0.566537 + 0.981271i) q^{23} +(0.796790 + 1.53790i) q^{24} +(2.39397 + 4.14647i) q^{25} +(-0.730252 - 1.26483i) q^{26} +(-5.14766 - 0.708209i) q^{27} +(-4.48755 + 7.77266i) q^{29} +(-0.796790 - 0.0363376i) q^{30} +0.514589 q^{31} +1.00000 q^{32} +(-3.40496 + 5.32190i) q^{33} +(1.86693 - 3.23361i) q^{34} +(-1.73025 + 2.45076i) q^{36} +(-4.55408 - 7.88791i) q^{37} +(2.02704 + 3.51094i) q^{38} +(1.36333 - 2.13086i) q^{39} +(-0.230252 + 0.398809i) q^{40} +(0.472958 + 0.819187i) q^{41} +(4.66372 - 8.07779i) q^{43} +(1.82383 + 3.15897i) q^{44} +(-0.578990 - 1.25433i) q^{45} +(-0.566537 + 0.981271i) q^{46} -2.32743 q^{47} +(0.796790 + 1.53790i) q^{48} +(2.39397 + 4.14647i) q^{50} +(6.46050 + 0.294632i) q^{51} +(-0.730252 - 1.26483i) q^{52} +(6.21780 - 10.7695i) q^{53} +(-5.14766 - 0.708209i) q^{54} -1.67977 q^{55} +(-3.78434 + 5.91486i) q^{57} +(-4.48755 + 7.77266i) q^{58} +12.8961 q^{59} +(-0.796790 - 0.0363376i) q^{60} -12.0833 q^{61} +0.514589 q^{62} +1.00000 q^{64} +0.672570 q^{65} +(-3.40496 + 5.32190i) q^{66} -2.32023 q^{67} +(1.86693 - 3.23361i) q^{68} +(-1.96050 - 0.0894089i) q^{69} +1.67977 q^{71} +(-1.73025 + 2.45076i) q^{72} +(6.62062 - 11.4673i) q^{73} +(-4.55408 - 7.88791i) q^{74} +(-4.46936 + 6.98554i) q^{75} +(2.02704 + 3.51094i) q^{76} +(1.36333 - 2.13086i) q^{78} -5.00720 q^{79} +(-0.230252 + 0.398809i) q^{80} +(-3.01245 - 8.48087i) q^{81} +(0.472958 + 0.819187i) q^{82} +(-3.32383 + 5.75705i) q^{83} +(0.859728 + 1.48909i) q^{85} +(4.66372 - 8.07779i) q^{86} +(-15.5292 - 0.708209i) q^{87} +(1.82383 + 3.15897i) q^{88} +(1.36333 + 2.36135i) q^{89} +(-0.578990 - 1.25433i) q^{90} +(-0.566537 + 0.981271i) q^{92} +(0.410019 + 0.791385i) q^{93} -2.32743 q^{94} -1.86693 q^{95} +(0.796790 + 1.53790i) q^{96} +(5.59358 - 9.68836i) q^{97} +(-10.8976 - 0.996040i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 6 q^{2} + 2 q^{3} + 6 q^{4} + 5 q^{5} + 2 q^{6} + 6 q^{8} - 4 q^{9} + 5 q^{10} - q^{11} + 2 q^{12} + 2 q^{13} - 2 q^{15} + 6 q^{16} + 4 q^{17} - 4 q^{18} + 3 q^{19} + 5 q^{20} - q^{22} - 7 q^{23}+ \cdots - 41 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/882\mathbb{Z}\right)^\times\).

\(n\) \(199\) \(785\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107
\(3\) 0.796790 + 1.53790i 0.460027 + 0.887905i
\(4\) 1.00000 0.500000
\(5\) −0.230252 + 0.398809i −0.102972 + 0.178353i −0.912908 0.408166i \(-0.866169\pi\)
0.809936 + 0.586519i \(0.199502\pi\)
\(6\) 0.796790 + 1.53790i 0.325288 + 0.627844i
\(7\) 0 0
\(8\) 1.00000 0.353553
\(9\) −1.73025 + 2.45076i −0.576751 + 0.816920i
\(10\) −0.230252 + 0.398809i −0.0728122 + 0.126114i
\(11\) 1.82383 + 3.15897i 0.549906 + 0.952465i 0.998280 + 0.0586193i \(0.0186698\pi\)
−0.448374 + 0.893846i \(0.647997\pi\)
\(12\) 0.796790 + 1.53790i 0.230013 + 0.443953i
\(13\) −0.730252 1.26483i −0.202536 0.350802i 0.746809 0.665038i \(-0.231585\pi\)
−0.949345 + 0.314236i \(0.898252\pi\)
\(14\) 0 0
\(15\) −0.796790 0.0363376i −0.205730 0.00938234i
\(16\) 1.00000 0.250000
\(17\) 1.86693 3.23361i 0.452796 0.784266i −0.545763 0.837940i \(-0.683760\pi\)
0.998558 + 0.0536743i \(0.0170933\pi\)
\(18\) −1.73025 + 2.45076i −0.407824 + 0.577650i
\(19\) 2.02704 + 3.51094i 0.465035 + 0.805465i 0.999203 0.0399136i \(-0.0127083\pi\)
−0.534168 + 0.845378i \(0.679375\pi\)
\(20\) −0.230252 + 0.398809i −0.0514860 + 0.0891764i
\(21\) 0 0
\(22\) 1.82383 + 3.15897i 0.388842 + 0.673495i
\(23\) −0.566537 + 0.981271i −0.118131 + 0.204609i −0.919027 0.394194i \(-0.871024\pi\)
0.800896 + 0.598804i \(0.204357\pi\)
\(24\) 0.796790 + 1.53790i 0.162644 + 0.313922i
\(25\) 2.39397 + 4.14647i 0.478794 + 0.829295i
\(26\) −0.730252 1.26483i −0.143214 0.248054i
\(27\) −5.14766 0.708209i −0.990668 0.136295i
\(28\) 0 0
\(29\) −4.48755 + 7.77266i −0.833317 + 1.44335i 0.0620772 + 0.998071i \(0.480228\pi\)
−0.895394 + 0.445275i \(0.853106\pi\)
\(30\) −0.796790 0.0363376i −0.145473 0.00663431i
\(31\) 0.514589 0.0924229 0.0462115 0.998932i \(-0.485285\pi\)
0.0462115 + 0.998932i \(0.485285\pi\)
\(32\) 1.00000 0.176777
\(33\) −3.40496 + 5.32190i −0.592727 + 0.926424i
\(34\) 1.86693 3.23361i 0.320175 0.554560i
\(35\) 0 0
\(36\) −1.73025 + 2.45076i −0.288375 + 0.408460i
\(37\) −4.55408 7.88791i −0.748687 1.29676i −0.948452 0.316920i \(-0.897351\pi\)
0.199765 0.979844i \(-0.435982\pi\)
\(38\) 2.02704 + 3.51094i 0.328830 + 0.569550i
\(39\) 1.36333 2.13086i 0.218307 0.341211i
\(40\) −0.230252 + 0.398809i −0.0364061 + 0.0630572i
\(41\) 0.472958 + 0.819187i 0.0738636 + 0.127936i 0.900592 0.434666i \(-0.143134\pi\)
−0.826728 + 0.562602i \(0.809800\pi\)
\(42\) 0 0
\(43\) 4.66372 8.07779i 0.711210 1.23185i −0.253193 0.967416i \(-0.581481\pi\)
0.964403 0.264436i \(-0.0851858\pi\)
\(44\) 1.82383 + 3.15897i 0.274953 + 0.476233i
\(45\) −0.578990 1.25433i −0.0863108 0.186985i
\(46\) −0.566537 + 0.981271i −0.0835314 + 0.144681i
\(47\) −2.32743 −0.339491 −0.169745 0.985488i \(-0.554295\pi\)
−0.169745 + 0.985488i \(0.554295\pi\)
\(48\) 0.796790 + 1.53790i 0.115007 + 0.221976i
\(49\) 0 0
\(50\) 2.39397 + 4.14647i 0.338558 + 0.586400i
\(51\) 6.46050 + 0.294632i 0.904652 + 0.0412567i
\(52\) −0.730252 1.26483i −0.101268 0.175401i
\(53\) 6.21780 10.7695i 0.854080 1.47931i −0.0234151 0.999726i \(-0.507454\pi\)
0.877495 0.479585i \(-0.159213\pi\)
\(54\) −5.14766 0.708209i −0.700508 0.0963750i
\(55\) −1.67977 −0.226500
\(56\) 0 0
\(57\) −3.78434 + 5.91486i −0.501248 + 0.783443i
\(58\) −4.48755 + 7.77266i −0.589244 + 1.02060i
\(59\) 12.8961 1.67893 0.839465 0.543414i \(-0.182869\pi\)
0.839465 + 0.543414i \(0.182869\pi\)
\(60\) −0.796790 0.0363376i −0.102865 0.00469117i
\(61\) −12.0833 −1.54710 −0.773552 0.633733i \(-0.781522\pi\)
−0.773552 + 0.633733i \(0.781522\pi\)
\(62\) 0.514589 0.0653529
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) 0.672570 0.0834220
\(66\) −3.40496 + 5.32190i −0.419121 + 0.655080i
\(67\) −2.32023 −0.283462 −0.141731 0.989905i \(-0.545267\pi\)
−0.141731 + 0.989905i \(0.545267\pi\)
\(68\) 1.86693 3.23361i 0.226398 0.392133i
\(69\) −1.96050 0.0894089i −0.236017 0.0107636i
\(70\) 0 0
\(71\) 1.67977 0.199352 0.0996758 0.995020i \(-0.468219\pi\)
0.0996758 + 0.995020i \(0.468219\pi\)
\(72\) −1.73025 + 2.45076i −0.203912 + 0.288825i
\(73\) 6.62062 11.4673i 0.774885 1.34214i −0.159974 0.987121i \(-0.551141\pi\)
0.934859 0.355019i \(-0.115526\pi\)
\(74\) −4.55408 7.88791i −0.529402 0.916950i
\(75\) −4.46936 + 6.98554i −0.516077 + 0.806621i
\(76\) 2.02704 + 3.51094i 0.232518 + 0.402732i
\(77\) 0 0
\(78\) 1.36333 2.13086i 0.154366 0.241272i
\(79\) −5.00720 −0.563354 −0.281677 0.959509i \(-0.590891\pi\)
−0.281677 + 0.959509i \(0.590891\pi\)
\(80\) −0.230252 + 0.398809i −0.0257430 + 0.0445882i
\(81\) −3.01245 8.48087i −0.334717 0.942319i
\(82\) 0.472958 + 0.819187i 0.0522295 + 0.0904641i
\(83\) −3.32383 + 5.75705i −0.364838 + 0.631918i −0.988750 0.149577i \(-0.952209\pi\)
0.623912 + 0.781494i \(0.285542\pi\)
\(84\) 0 0
\(85\) 0.859728 + 1.48909i 0.0932506 + 0.161515i
\(86\) 4.66372 8.07779i 0.502901 0.871051i
\(87\) −15.5292 0.708209i −1.66490 0.0759280i
\(88\) 1.82383 + 3.15897i 0.194421 + 0.336747i
\(89\) 1.36333 + 2.36135i 0.144512 + 0.250303i 0.929191 0.369600i \(-0.120505\pi\)
−0.784679 + 0.619903i \(0.787172\pi\)
\(90\) −0.578990 1.25433i −0.0610309 0.132218i
\(91\) 0 0
\(92\) −0.566537 + 0.981271i −0.0590656 + 0.102305i
\(93\) 0.410019 + 0.791385i 0.0425170 + 0.0820628i
\(94\) −2.32743 −0.240056
\(95\) −1.86693 −0.191543
\(96\) 0.796790 + 1.53790i 0.0813220 + 0.156961i
\(97\) 5.59358 9.68836i 0.567942 0.983704i −0.428827 0.903386i \(-0.641073\pi\)
0.996769 0.0803178i \(-0.0255935\pi\)
\(98\) 0 0
\(99\) −10.8976 0.996040i −1.09525 0.100106i
\(100\) 2.39397 + 4.14647i 0.239397 + 0.414647i
\(101\) 6.87792 + 11.9129i 0.684378 + 1.18538i 0.973632 + 0.228125i \(0.0732596\pi\)
−0.289254 + 0.957253i \(0.593407\pi\)
\(102\) 6.46050 + 0.294632i 0.639685 + 0.0291729i
\(103\) 5.58113 9.66679i 0.549925 0.952498i −0.448354 0.893856i \(-0.647990\pi\)
0.998279 0.0586417i \(-0.0186769\pi\)
\(104\) −0.730252 1.26483i −0.0716071 0.124027i
\(105\) 0 0
\(106\) 6.21780 10.7695i 0.603926 1.04603i
\(107\) −3.89037 6.73832i −0.376096 0.651418i 0.614394 0.788999i \(-0.289400\pi\)
−0.990490 + 0.137581i \(0.956067\pi\)
\(108\) −5.14766 0.708209i −0.495334 0.0681474i
\(109\) −3.75729 + 6.50783i −0.359884 + 0.623337i −0.987941 0.154830i \(-0.950517\pi\)
0.628058 + 0.778167i \(0.283850\pi\)
\(110\) −1.67977 −0.160159
\(111\) 8.50214 13.2887i 0.806987 1.26131i
\(112\) 0 0
\(113\) 3.03064 + 5.24922i 0.285099 + 0.493805i 0.972633 0.232346i \(-0.0746403\pi\)
−0.687534 + 0.726152i \(0.741307\pi\)
\(114\) −3.78434 + 5.91486i −0.354436 + 0.553978i
\(115\) −0.260893 0.451880i −0.0243284 0.0421380i
\(116\) −4.48755 + 7.77266i −0.416658 + 0.721673i
\(117\) 4.36333 + 0.398809i 0.403390 + 0.0368699i
\(118\) 12.8961 1.18718
\(119\) 0 0
\(120\) −0.796790 0.0363376i −0.0727366 0.00331716i
\(121\) −1.15272 + 1.99658i −0.104793 + 0.181507i
\(122\) −12.0833 −1.09397
\(123\) −0.882977 + 1.38008i −0.0796154 + 0.124438i
\(124\) 0.514589 0.0462115
\(125\) −4.50739 −0.403153
\(126\) 0 0
\(127\) 8.80992 0.781754 0.390877 0.920443i \(-0.372172\pi\)
0.390877 + 0.920443i \(0.372172\pi\)
\(128\) 1.00000 0.0883883
\(129\) 16.1388 + 0.736011i 1.42094 + 0.0648022i
\(130\) 0.672570 0.0589883
\(131\) 10.5687 18.3055i 0.923389 1.59936i 0.129258 0.991611i \(-0.458740\pi\)
0.794131 0.607746i \(-0.207926\pi\)
\(132\) −3.40496 + 5.32190i −0.296364 + 0.463212i
\(133\) 0 0
\(134\) −2.32023 −0.200438
\(135\) 1.46770 1.88987i 0.126320 0.162654i
\(136\) 1.86693 3.23361i 0.160088 0.277280i
\(137\) 2.20321 + 3.81607i 0.188233 + 0.326029i 0.944661 0.328048i \(-0.106391\pi\)
−0.756428 + 0.654077i \(0.773057\pi\)
\(138\) −1.96050 0.0894089i −0.166889 0.00761099i
\(139\) 1.01245 + 1.75362i 0.0858751 + 0.148740i 0.905764 0.423783i \(-0.139298\pi\)
−0.819889 + 0.572523i \(0.805965\pi\)
\(140\) 0 0
\(141\) −1.85447 3.57935i −0.156175 0.301435i
\(142\) 1.67977 0.140963
\(143\) 2.66372 4.61369i 0.222751 0.385816i
\(144\) −1.73025 + 2.45076i −0.144188 + 0.204230i
\(145\) −2.06654 3.57935i −0.171617 0.297249i
\(146\) 6.62062 11.4673i 0.547927 0.949037i
\(147\) 0 0
\(148\) −4.55408 7.88791i −0.374343 0.648382i
\(149\) 4.58113 7.93474i 0.375300 0.650040i −0.615071 0.788471i \(-0.710873\pi\)
0.990372 + 0.138432i \(0.0442062\pi\)
\(150\) −4.46936 + 6.98554i −0.364922 + 0.570367i
\(151\) 0.0519482 + 0.0899768i 0.00422748 + 0.00732221i 0.868131 0.496334i \(-0.165321\pi\)
−0.863904 + 0.503657i \(0.831988\pi\)
\(152\) 2.02704 + 3.51094i 0.164415 + 0.284775i
\(153\) 4.69455 + 10.1703i 0.379532 + 0.822224i
\(154\) 0 0
\(155\) −0.118485 + 0.205223i −0.00951698 + 0.0164839i
\(156\) 1.36333 2.13086i 0.109154 0.170605i
\(157\) −20.9823 −1.67457 −0.837285 0.546767i \(-0.815858\pi\)
−0.837285 + 0.546767i \(0.815858\pi\)
\(158\) −5.00720 −0.398351
\(159\) 21.5167 + 0.981271i 1.70639 + 0.0778199i
\(160\) −0.230252 + 0.398809i −0.0182031 + 0.0315286i
\(161\) 0 0
\(162\) −3.01245 8.48087i −0.236681 0.666320i
\(163\) −11.5182 19.9501i −0.902174 1.56261i −0.824666 0.565620i \(-0.808637\pi\)
−0.0775078 0.996992i \(-0.524696\pi\)
\(164\) 0.472958 + 0.819187i 0.0369318 + 0.0639678i
\(165\) −1.33842 2.58331i −0.104196 0.201110i
\(166\) −3.32383 + 5.75705i −0.257979 + 0.446833i
\(167\) 5.31498 + 9.20581i 0.411285 + 0.712367i 0.995031 0.0995698i \(-0.0317467\pi\)
−0.583745 + 0.811937i \(0.698413\pi\)
\(168\) 0 0
\(169\) 5.43346 9.41103i 0.417959 0.723926i
\(170\) 0.859728 + 1.48909i 0.0659382 + 0.114208i
\(171\) −12.1118 1.10702i −0.926210 0.0846558i
\(172\) 4.66372 8.07779i 0.355605 0.615926i
\(173\) −2.93872 −0.223427 −0.111713 0.993740i \(-0.535634\pi\)
−0.111713 + 0.993740i \(0.535634\pi\)
\(174\) −15.5292 0.708209i −1.17726 0.0536892i
\(175\) 0 0
\(176\) 1.82383 + 3.15897i 0.137476 + 0.238116i
\(177\) 10.2755 + 19.8329i 0.772353 + 1.49073i
\(178\) 1.36333 + 2.36135i 0.102186 + 0.176991i
\(179\) −4.58113 + 7.93474i −0.342409 + 0.593071i −0.984880 0.173240i \(-0.944576\pi\)
0.642470 + 0.766311i \(0.277910\pi\)
\(180\) −0.578990 1.25433i −0.0431554 0.0934925i
\(181\) −22.4284 −1.66709 −0.833545 0.552452i \(-0.813692\pi\)
−0.833545 + 0.552452i \(0.813692\pi\)
\(182\) 0 0
\(183\) −9.62782 18.5828i −0.711709 1.37368i
\(184\) −0.566537 + 0.981271i −0.0417657 + 0.0723403i
\(185\) 4.19436 0.308375
\(186\) 0.410019 + 0.791385i 0.0300641 + 0.0580272i
\(187\) 13.6198 0.995981
\(188\) −2.32743 −0.169745
\(189\) 0 0
\(190\) −1.86693 −0.135441
\(191\) 2.48968 0.180147 0.0900736 0.995935i \(-0.471290\pi\)
0.0900736 + 0.995935i \(0.471290\pi\)
\(192\) 0.796790 + 1.53790i 0.0575033 + 0.110988i
\(193\) 4.48968 0.323174 0.161587 0.986858i \(-0.448339\pi\)
0.161587 + 0.986858i \(0.448339\pi\)
\(194\) 5.59358 9.68836i 0.401596 0.695584i
\(195\) 0.535897 + 1.03434i 0.0383763 + 0.0740708i
\(196\) 0 0
\(197\) 12.7339 0.907249 0.453625 0.891193i \(-0.350131\pi\)
0.453625 + 0.891193i \(0.350131\pi\)
\(198\) −10.8976 0.996040i −0.774456 0.0707855i
\(199\) 1.47296 2.55124i 0.104415 0.180852i −0.809084 0.587693i \(-0.800036\pi\)
0.913499 + 0.406841i \(0.133370\pi\)
\(200\) 2.39397 + 4.14647i 0.169279 + 0.293200i
\(201\) −1.84874 3.56828i −0.130400 0.251687i
\(202\) 6.87792 + 11.9129i 0.483928 + 0.838189i
\(203\) 0 0
\(204\) 6.46050 + 0.294632i 0.452326 + 0.0206283i
\(205\) −0.435599 −0.0304235
\(206\) 5.58113 9.66679i 0.388855 0.673517i
\(207\) −1.42461 3.08629i −0.0990171 0.214512i
\(208\) −0.730252 1.26483i −0.0506339 0.0877005i
\(209\) −7.39397 + 12.8067i −0.511451 + 0.885860i
\(210\) 0 0
\(211\) −0.608168 1.05338i −0.0418680 0.0725176i 0.844332 0.535820i \(-0.179998\pi\)
−0.886200 + 0.463303i \(0.846664\pi\)
\(212\) 6.21780 10.7695i 0.427040 0.739655i
\(213\) 1.33842 + 2.58331i 0.0917071 + 0.177005i
\(214\) −3.89037 6.73832i −0.265940 0.460622i
\(215\) 2.14766 + 3.71986i 0.146469 + 0.253693i
\(216\) −5.14766 0.708209i −0.350254 0.0481875i
\(217\) 0 0
\(218\) −3.75729 + 6.50783i −0.254476 + 0.440766i
\(219\) 22.9107 + 1.04484i 1.54816 + 0.0706040i
\(220\) −1.67977 −0.113250
\(221\) −5.45331 −0.366829
\(222\) 8.50214 13.2887i 0.570626 0.891880i
\(223\) 0.445916 0.772349i 0.0298607 0.0517203i −0.850709 0.525637i \(-0.823827\pi\)
0.880570 + 0.473917i \(0.157160\pi\)
\(224\) 0 0
\(225\) −14.3042 1.30740i −0.953612 0.0871603i
\(226\) 3.03064 + 5.24922i 0.201595 + 0.349173i
\(227\) −7.32597 12.6889i −0.486242 0.842195i 0.513633 0.858010i \(-0.328299\pi\)
−0.999875 + 0.0158147i \(0.994966\pi\)
\(228\) −3.78434 + 5.91486i −0.250624 + 0.391721i
\(229\) −4.78794 + 8.29295i −0.316396 + 0.548013i −0.979733 0.200307i \(-0.935806\pi\)
0.663338 + 0.748320i \(0.269139\pi\)
\(230\) −0.260893 0.451880i −0.0172028 0.0297961i
\(231\) 0 0
\(232\) −4.48755 + 7.77266i −0.294622 + 0.510300i
\(233\) 7.21420 + 12.4954i 0.472618 + 0.818598i 0.999509 0.0313345i \(-0.00997571\pi\)
−0.526891 + 0.849933i \(0.676642\pi\)
\(234\) 4.36333 + 0.398809i 0.285240 + 0.0260710i
\(235\) 0.535897 0.928200i 0.0349580 0.0605491i
\(236\) 12.8961 0.839465
\(237\) −3.98968 7.70055i −0.259158 0.500205i
\(238\) 0 0
\(239\) −9.15486 15.8567i −0.592179 1.02568i −0.993938 0.109938i \(-0.964935\pi\)
0.401760 0.915745i \(-0.368399\pi\)
\(240\) −0.796790 0.0363376i −0.0514326 0.00234558i
\(241\) 0.0466924 + 0.0808735i 0.00300772 + 0.00520952i 0.867525 0.497393i \(-0.165709\pi\)
−0.864518 + 0.502602i \(0.832376\pi\)
\(242\) −1.15272 + 1.99658i −0.0741000 + 0.128345i
\(243\) 10.6424 11.3903i 0.682711 0.730689i
\(244\) −12.0833 −0.773552
\(245\) 0 0
\(246\) −0.882977 + 1.38008i −0.0562966 + 0.0879907i
\(247\) 2.96050 5.12774i 0.188372 0.326271i
\(248\) 0.514589 0.0326764
\(249\) −11.5021 0.524555i −0.728918 0.0332424i
\(250\) −4.50739 −0.285072
\(251\) 18.2733 1.15340 0.576702 0.816955i \(-0.304339\pi\)
0.576702 + 0.816955i \(0.304339\pi\)
\(252\) 0 0
\(253\) −4.13307 −0.259844
\(254\) 8.80992 0.552783
\(255\) −1.60505 + 2.50867i −0.100512 + 0.157099i
\(256\) 1.00000 0.0625000
\(257\) −10.5256 + 18.2308i −0.656568 + 1.13721i 0.324931 + 0.945738i \(0.394659\pi\)
−0.981498 + 0.191471i \(0.938674\pi\)
\(258\) 16.1388 + 0.736011i 1.00476 + 0.0458221i
\(259\) 0 0
\(260\) 0.672570 0.0417110
\(261\) −11.2843 24.4466i −0.698483 1.51320i
\(262\) 10.5687 18.3055i 0.652935 1.13092i
\(263\) 2.58259 + 4.47318i 0.159249 + 0.275828i 0.934598 0.355705i \(-0.115759\pi\)
−0.775349 + 0.631533i \(0.782426\pi\)
\(264\) −3.40496 + 5.32190i −0.209561 + 0.327540i
\(265\) 2.86333 + 4.95943i 0.175893 + 0.304655i
\(266\) 0 0
\(267\) −2.54523 + 3.97816i −0.155766 + 0.243459i
\(268\) −2.32023 −0.141731
\(269\) −8.42840 + 14.5984i −0.513889 + 0.890081i 0.485981 + 0.873969i \(0.338462\pi\)
−0.999870 + 0.0161123i \(0.994871\pi\)
\(270\) 1.46770 1.88987i 0.0893215 0.115014i
\(271\) −12.5562 21.7480i −0.762736 1.32110i −0.941435 0.337194i \(-0.890522\pi\)
0.178699 0.983904i \(-0.442811\pi\)
\(272\) 1.86693 3.23361i 0.113199 0.196066i
\(273\) 0 0
\(274\) 2.20321 + 3.81607i 0.133101 + 0.230537i
\(275\) −8.73239 + 15.1249i −0.526583 + 0.912068i
\(276\) −1.96050 0.0894089i −0.118009 0.00538178i
\(277\) −1.69076 2.92848i −0.101588 0.175955i 0.810751 0.585391i \(-0.199059\pi\)
−0.912339 + 0.409436i \(0.865726\pi\)
\(278\) 1.01245 + 1.75362i 0.0607229 + 0.105175i
\(279\) −0.890369 + 1.26113i −0.0533050 + 0.0755022i
\(280\) 0 0
\(281\) −10.1388 + 17.5609i −0.604831 + 1.04760i 0.387248 + 0.921976i \(0.373426\pi\)
−0.992078 + 0.125622i \(0.959907\pi\)
\(282\) −1.85447 3.57935i −0.110432 0.213147i
\(283\) −17.3494 −1.03132 −0.515658 0.856795i \(-0.672452\pi\)
−0.515658 + 0.856795i \(0.672452\pi\)
\(284\) 1.67977 0.0996758
\(285\) −1.48755 2.87114i −0.0881147 0.170072i
\(286\) 2.66372 4.61369i 0.157509 0.272813i
\(287\) 0 0
\(288\) −1.73025 + 2.45076i −0.101956 + 0.144412i
\(289\) 1.52918 + 2.64861i 0.0899517 + 0.155801i
\(290\) −2.06654 3.57935i −0.121351 0.210187i
\(291\) 19.3566 + 0.882759i 1.13470 + 0.0517483i
\(292\) 6.62062 11.4673i 0.387443 0.671070i
\(293\) 4.93560 + 8.54871i 0.288341 + 0.499421i 0.973414 0.229054i \(-0.0735631\pi\)
−0.685073 + 0.728474i \(0.740230\pi\)
\(294\) 0 0
\(295\) −2.96936 + 5.14308i −0.172883 + 0.299442i
\(296\) −4.55408 7.88791i −0.264701 0.458475i
\(297\) −7.15126 17.5530i −0.414958 1.01853i
\(298\) 4.58113 7.93474i 0.265378 0.459647i
\(299\) 1.65486 0.0957031
\(300\) −4.46936 + 6.98554i −0.258039 + 0.403310i
\(301\) 0 0
\(302\) 0.0519482 + 0.0899768i 0.00298928 + 0.00517759i
\(303\) −12.8406 + 20.0696i −0.737671 + 1.15297i
\(304\) 2.02704 + 3.51094i 0.116259 + 0.201366i
\(305\) 2.78220 4.81891i 0.159308 0.275930i
\(306\) 4.69455 + 10.1703i 0.268370 + 0.581400i
\(307\) −7.78794 −0.444481 −0.222240 0.974992i \(-0.571337\pi\)
−0.222240 + 0.974992i \(0.571337\pi\)
\(308\) 0 0
\(309\) 19.3135 + 0.880794i 1.09871 + 0.0501066i
\(310\) −0.118485 + 0.205223i −0.00672952 + 0.0116559i
\(311\) −15.4107 −0.873860 −0.436930 0.899495i \(-0.643934\pi\)
−0.436930 + 0.899495i \(0.643934\pi\)
\(312\) 1.36333 2.13086i 0.0771832 0.120636i
\(313\) −8.49688 −0.480272 −0.240136 0.970739i \(-0.577192\pi\)
−0.240136 + 0.970739i \(0.577192\pi\)
\(314\) −20.9823 −1.18410
\(315\) 0 0
\(316\) −5.00720 −0.281677
\(317\) −14.1052 −0.792229 −0.396115 0.918201i \(-0.629642\pi\)
−0.396115 + 0.918201i \(0.629642\pi\)
\(318\) 21.5167 + 0.981271i 1.20660 + 0.0550270i
\(319\) −32.7381 −1.83298
\(320\) −0.230252 + 0.398809i −0.0128715 + 0.0222941i
\(321\) 7.26303 11.3520i 0.405383 0.633607i
\(322\) 0 0
\(323\) 15.1373 0.842264
\(324\) −3.01245 8.48087i −0.167359 0.471159i
\(325\) 3.49640 6.05594i 0.193945 0.335923i
\(326\) −11.5182 19.9501i −0.637933 1.10493i
\(327\) −13.0021 0.592963i −0.719020 0.0327909i
\(328\) 0.472958 + 0.819187i 0.0261147 + 0.0452320i
\(329\) 0 0
\(330\) −1.33842 2.58331i −0.0736776 0.142206i
\(331\) 27.5438 1.51394 0.756971 0.653448i \(-0.226678\pi\)
0.756971 + 0.653448i \(0.226678\pi\)
\(332\) −3.32383 + 5.75705i −0.182419 + 0.315959i
\(333\) 27.2111 + 2.48710i 1.49116 + 0.136292i
\(334\) 5.31498 + 9.20581i 0.290823 + 0.503720i
\(335\) 0.534239 0.925330i 0.0291886 0.0505562i
\(336\) 0 0
\(337\) 0.748440 + 1.29634i 0.0407701 + 0.0706159i 0.885690 0.464276i \(-0.153686\pi\)
−0.844920 + 0.534892i \(0.820352\pi\)
\(338\) 5.43346 9.41103i 0.295541 0.511893i
\(339\) −5.65798 + 8.84334i −0.307299 + 0.480304i
\(340\) 0.859728 + 1.48909i 0.0466253 + 0.0807574i
\(341\) 0.938524 + 1.62557i 0.0508239 + 0.0880296i
\(342\) −12.1118 1.10702i −0.654929 0.0598607i
\(343\) 0 0
\(344\) 4.66372 8.07779i 0.251451 0.435525i
\(345\) 0.487068 0.761280i 0.0262229 0.0409859i
\(346\) −2.93872 −0.157986
\(347\) −18.2881 −0.981758 −0.490879 0.871228i \(-0.663324\pi\)
−0.490879 + 0.871228i \(0.663324\pi\)
\(348\) −15.5292 0.708209i −0.832451 0.0379640i
\(349\) 3.90136 6.75735i 0.208835 0.361713i −0.742513 0.669832i \(-0.766366\pi\)
0.951348 + 0.308119i \(0.0996995\pi\)
\(350\) 0 0
\(351\) 2.86333 + 7.02811i 0.152833 + 0.375133i
\(352\) 1.82383 + 3.15897i 0.0972106 + 0.168374i
\(353\) 13.4626 + 23.3180i 0.716544 + 1.24109i 0.962361 + 0.271774i \(0.0876105\pi\)
−0.245817 + 0.969316i \(0.579056\pi\)
\(354\) 10.2755 + 19.8329i 0.546136 + 1.05411i
\(355\) −0.386770 + 0.669906i −0.0205276 + 0.0355549i
\(356\) 1.36333 + 2.36135i 0.0722562 + 0.125151i
\(357\) 0 0
\(358\) −4.58113 + 7.93474i −0.242120 + 0.419364i
\(359\) −3.13161 5.42411i −0.165280 0.286274i 0.771475 0.636260i \(-0.219519\pi\)
−0.936755 + 0.349987i \(0.886186\pi\)
\(360\) −0.578990 1.25433i −0.0305155 0.0661092i
\(361\) 1.28220 2.22084i 0.0674842 0.116886i
\(362\) −22.4284 −1.17881
\(363\) −3.98901 0.181919i −0.209369 0.00954827i
\(364\) 0 0
\(365\) 3.04883 + 5.28073i 0.159583 + 0.276406i
\(366\) −9.62782 18.5828i −0.503254 0.971339i
\(367\) 14.6367 + 25.3515i 0.764028 + 1.32334i 0.940759 + 0.339076i \(0.110114\pi\)
−0.176731 + 0.984259i \(0.556552\pi\)
\(368\) −0.566537 + 0.981271i −0.0295328 + 0.0511523i
\(369\) −2.82597 0.258294i −0.147114 0.0134462i
\(370\) 4.19436 0.218054
\(371\) 0 0
\(372\) 0.410019 + 0.791385i 0.0212585 + 0.0410314i
\(373\) −8.92986 + 15.4670i −0.462371 + 0.800850i −0.999079 0.0429184i \(-0.986334\pi\)
0.536708 + 0.843768i \(0.319668\pi\)
\(374\) 13.6198 0.704265
\(375\) −3.59144 6.93190i −0.185461 0.357962i
\(376\) −2.32743 −0.120028
\(377\) 13.1082 0.675105
\(378\) 0 0
\(379\) −22.4255 −1.15192 −0.575960 0.817478i \(-0.695371\pi\)
−0.575960 + 0.817478i \(0.695371\pi\)
\(380\) −1.86693 −0.0957713
\(381\) 7.01965 + 13.5487i 0.359628 + 0.694123i
\(382\) 2.48968 0.127383
\(383\) −7.07014 + 12.2458i −0.361267 + 0.625733i −0.988170 0.153365i \(-0.950989\pi\)
0.626903 + 0.779098i \(0.284322\pi\)
\(384\) 0.796790 + 1.53790i 0.0406610 + 0.0784805i
\(385\) 0 0
\(386\) 4.48968 0.228519
\(387\) 11.7273 + 25.4063i 0.596134 + 1.29147i
\(388\) 5.59358 9.68836i 0.283971 0.491852i
\(389\) 11.5651 + 20.0313i 0.586373 + 1.01563i 0.994703 + 0.102793i \(0.0327779\pi\)
−0.408330 + 0.912834i \(0.633889\pi\)
\(390\) 0.535897 + 1.03434i 0.0271362 + 0.0523760i
\(391\) 2.11537 + 3.66392i 0.106979 + 0.185292i
\(392\) 0 0
\(393\) 36.5729 + 1.66791i 1.84486 + 0.0841350i
\(394\) 12.7339 0.641522
\(395\) 1.15292 1.99691i 0.0580097 0.100476i
\(396\) −10.8976 0.996040i −0.547623 0.0500529i
\(397\) 5.13307 + 8.89075i 0.257622 + 0.446214i 0.965604 0.260016i \(-0.0837279\pi\)
−0.707983 + 0.706230i \(0.750395\pi\)
\(398\) 1.47296 2.55124i 0.0738327 0.127882i
\(399\) 0 0
\(400\) 2.39397 + 4.14647i 0.119698 + 0.207324i
\(401\) −17.0167 + 29.4738i −0.849775 + 1.47185i 0.0316345 + 0.999500i \(0.489929\pi\)
−0.881409 + 0.472353i \(0.843405\pi\)
\(402\) −1.84874 3.56828i −0.0922067 0.177970i
\(403\) −0.375780 0.650870i −0.0187189 0.0324221i
\(404\) 6.87792 + 11.9129i 0.342189 + 0.592689i
\(405\) 4.07587 + 0.751347i 0.202532 + 0.0373348i
\(406\) 0 0
\(407\) 16.6118 28.7724i 0.823415 1.42620i
\(408\) 6.46050 + 0.294632i 0.319843 + 0.0145864i
\(409\) 3.48968 0.172554 0.0862769 0.996271i \(-0.472503\pi\)
0.0862769 + 0.996271i \(0.472503\pi\)
\(410\) −0.435599 −0.0215127
\(411\) −4.11323 + 6.42892i −0.202891 + 0.317115i
\(412\) 5.58113 9.66679i 0.274962 0.476249i
\(413\) 0 0
\(414\) −1.42461 3.08629i −0.0700157 0.151683i
\(415\) −1.53064 2.65115i −0.0751362 0.130140i
\(416\) −0.730252 1.26483i −0.0358036 0.0620136i
\(417\) −1.89017 + 2.95431i −0.0925622 + 0.144673i
\(418\) −7.39397 + 12.8067i −0.361651 + 0.626398i
\(419\) −14.4897 25.0969i −0.707867 1.22606i −0.965647 0.259858i \(-0.916324\pi\)
0.257779 0.966204i \(-0.417009\pi\)
\(420\) 0 0
\(421\) −1.06128 + 1.83819i −0.0517237 + 0.0895881i −0.890728 0.454537i \(-0.849805\pi\)
0.839004 + 0.544125i \(0.183138\pi\)
\(422\) −0.608168 1.05338i −0.0296052 0.0512777i
\(423\) 4.02704 5.70397i 0.195801 0.277337i
\(424\) 6.21780 10.7695i 0.301963 0.523015i
\(425\) 17.8774 0.867183
\(426\) 1.33842 + 2.58331i 0.0648467 + 0.125162i
\(427\) 0 0
\(428\) −3.89037 6.73832i −0.188048 0.325709i
\(429\) 9.21780 + 0.420378i 0.445040 + 0.0202960i
\(430\) 2.14766 + 3.71986i 0.103570 + 0.179388i
\(431\) 10.9356 18.9410i 0.526749 0.912356i −0.472765 0.881189i \(-0.656744\pi\)
0.999514 0.0311679i \(-0.00992265\pi\)
\(432\) −5.14766 0.708209i −0.247667 0.0340737i
\(433\) 13.0512 0.627199 0.313599 0.949555i \(-0.398465\pi\)
0.313599 + 0.949555i \(0.398465\pi\)
\(434\) 0 0
\(435\) 3.85807 6.03011i 0.184980 0.289122i
\(436\) −3.75729 + 6.50783i −0.179942 + 0.311668i
\(437\) −4.59358 −0.219741
\(438\) 22.9107 + 1.04484i 1.09472 + 0.0499245i
\(439\) −4.86400 −0.232146 −0.116073 0.993241i \(-0.537031\pi\)
−0.116073 + 0.993241i \(0.537031\pi\)
\(440\) −1.67977 −0.0800797
\(441\) 0 0
\(442\) −5.45331 −0.259387
\(443\) −11.5395 −0.548258 −0.274129 0.961693i \(-0.588390\pi\)
−0.274129 + 0.961693i \(0.588390\pi\)
\(444\) 8.50214 13.2887i 0.403494 0.630654i
\(445\) −1.25564 −0.0595229
\(446\) 0.445916 0.772349i 0.0211147 0.0365718i
\(447\) 15.8530 + 0.722977i 0.749822 + 0.0341957i
\(448\) 0 0
\(449\) −26.4251 −1.24708 −0.623538 0.781793i \(-0.714306\pi\)
−0.623538 + 0.781793i \(0.714306\pi\)
\(450\) −14.3042 1.30740i −0.674306 0.0616317i
\(451\) −1.72519 + 2.98812i −0.0812361 + 0.140705i
\(452\) 3.03064 + 5.24922i 0.142549 + 0.246903i
\(453\) −0.0969833 + 0.151584i −0.00455667 + 0.00712201i
\(454\) −7.32597 12.6889i −0.343825 0.595522i
\(455\) 0 0
\(456\) −3.78434 + 5.91486i −0.177218 + 0.276989i
\(457\) −3.73812 −0.174862 −0.0874310 0.996171i \(-0.527866\pi\)
−0.0874310 + 0.996171i \(0.527866\pi\)
\(458\) −4.78794 + 8.29295i −0.223726 + 0.387504i
\(459\) −11.9004 + 15.3234i −0.555462 + 0.715233i
\(460\) −0.260893 0.451880i −0.0121642 0.0210690i
\(461\) 7.90496 13.6918i 0.368171 0.637690i −0.621109 0.783724i \(-0.713318\pi\)
0.989280 + 0.146034i \(0.0466509\pi\)
\(462\) 0 0
\(463\) 19.1965 + 33.2493i 0.892137 + 1.54523i 0.837309 + 0.546730i \(0.184128\pi\)
0.0548278 + 0.998496i \(0.482539\pi\)
\(464\) −4.48755 + 7.77266i −0.208329 + 0.360837i
\(465\) −0.410019 0.0186989i −0.0190142 0.000867143i
\(466\) 7.21420 + 12.4954i 0.334191 + 0.578836i
\(467\) −3.15652 5.46725i −0.146066 0.252994i 0.783704 0.621134i \(-0.213328\pi\)
−0.929770 + 0.368140i \(0.879995\pi\)
\(468\) 4.36333 + 0.398809i 0.201695 + 0.0184349i
\(469\) 0 0
\(470\) 0.535897 0.928200i 0.0247191 0.0428147i
\(471\) −16.7185 32.2686i −0.770347 1.48686i
\(472\) 12.8961 0.593591
\(473\) 34.0233 1.56439
\(474\) −3.98968 7.70055i −0.183252 0.353698i
\(475\) −9.70535 + 16.8102i −0.445312 + 0.771303i
\(476\) 0 0
\(477\) 15.6352 + 33.8724i 0.715887 + 1.55091i
\(478\) −9.15486 15.8567i −0.418734 0.725268i
\(479\) −10.2068 17.6787i −0.466361 0.807761i 0.532901 0.846178i \(-0.321102\pi\)
−0.999262 + 0.0384168i \(0.987769\pi\)
\(480\) −0.796790 0.0363376i −0.0363683 0.00165858i
\(481\) −6.65126 + 11.5203i −0.303271 + 0.525282i
\(482\) 0.0466924 + 0.0808735i 0.00212678 + 0.00368369i
\(483\) 0 0
\(484\) −1.15272 + 1.99658i −0.0523966 + 0.0907535i
\(485\) 2.57587 + 4.46154i 0.116964 + 0.202588i
\(486\) 10.6424 11.3903i 0.482749 0.516675i
\(487\) 6.18190 10.7074i 0.280129 0.485197i −0.691287 0.722580i \(-0.742956\pi\)
0.971416 + 0.237383i \(0.0762895\pi\)
\(488\) −12.0833 −0.546984
\(489\) 21.5036 33.6098i 0.972426 1.51989i
\(490\) 0 0
\(491\) 0.207004 + 0.358541i 0.00934194 + 0.0161807i 0.870659 0.491888i \(-0.163693\pi\)
−0.861317 + 0.508069i \(0.830360\pi\)
\(492\) −0.882977 + 1.38008i −0.0398077 + 0.0622188i
\(493\) 16.7558 + 29.0220i 0.754645 + 1.30708i
\(494\) 2.96050 5.12774i 0.133199 0.230708i
\(495\) 2.90642 4.11671i 0.130634 0.185032i
\(496\) 0.514589 0.0231057
\(497\) 0 0
\(498\) −11.5021 0.524555i −0.515423 0.0235059i
\(499\) 0.461967 0.800151i 0.0206805 0.0358197i −0.855500 0.517803i \(-0.826750\pi\)
0.876180 + 0.481983i \(0.160083\pi\)
\(500\) −4.50739 −0.201577
\(501\) −9.92267 + 15.5090i −0.443312 + 0.692890i
\(502\) 18.2733 0.815579
\(503\) 23.8142 1.06182 0.530911 0.847428i \(-0.321850\pi\)
0.530911 + 0.847428i \(0.321850\pi\)
\(504\) 0 0
\(505\) −6.33463 −0.281887
\(506\) −4.13307 −0.183738
\(507\) 18.8025 + 0.857490i 0.835049 + 0.0380825i
\(508\) 8.80992 0.390877
\(509\) −15.3171 + 26.5300i −0.678919 + 1.17592i 0.296388 + 0.955068i \(0.404218\pi\)
−0.975307 + 0.220855i \(0.929115\pi\)
\(510\) −1.60505 + 2.50867i −0.0710728 + 0.111086i
\(511\) 0 0
\(512\) 1.00000 0.0441942
\(513\) −7.94805 19.5087i −0.350915 0.861330i
\(514\) −10.5256 + 18.2308i −0.464263 + 0.804128i
\(515\) 2.57014 + 4.45161i 0.113254 + 0.196161i
\(516\) 16.1388 + 0.736011i 0.710471 + 0.0324011i
\(517\) −4.24484 7.35228i −0.186688 0.323353i
\(518\) 0 0
\(519\) −2.34154 4.51945i −0.102782 0.198382i
\(520\) 0.672570 0.0294941
\(521\) 13.4518 23.2993i 0.589336 1.02076i −0.404984 0.914324i \(-0.632723\pi\)
0.994320 0.106436i \(-0.0339439\pi\)
\(522\) −11.2843 24.4466i −0.493902 1.07000i
\(523\) 7.85301 + 13.6018i 0.343388 + 0.594766i 0.985060 0.172214i \(-0.0550920\pi\)
−0.641671 + 0.766980i \(0.721759\pi\)
\(524\) 10.5687 18.3055i 0.461695 0.799679i
\(525\) 0 0
\(526\) 2.58259 + 4.47318i 0.112606 + 0.195040i
\(527\) 0.960699 1.66398i 0.0418487 0.0724841i
\(528\) −3.40496 + 5.32190i −0.148182 + 0.231606i
\(529\) 10.8581 + 18.8067i 0.472090 + 0.817684i
\(530\) 2.86333 + 4.95943i 0.124375 + 0.215424i
\(531\) −22.3135 + 31.6053i −0.968324 + 1.37155i
\(532\) 0 0
\(533\) 0.690757 1.19643i 0.0299200 0.0518230i
\(534\) −2.54523 + 3.97816i −0.110143 + 0.172152i
\(535\) 3.58307 0.154910
\(536\) −2.32023 −0.100219
\(537\) −15.8530 0.722977i −0.684108 0.0311988i
\(538\) −8.42840 + 14.5984i −0.363374 + 0.629383i
\(539\) 0 0
\(540\) 1.46770 1.88987i 0.0631598 0.0813269i
\(541\) −2.05934 3.56688i −0.0885379 0.153352i 0.818355 0.574713i \(-0.194886\pi\)
−0.906893 + 0.421360i \(0.861553\pi\)
\(542\) −12.5562 21.7480i −0.539336 0.934157i
\(543\) −17.8707 34.4926i −0.766906 1.48022i
\(544\) 1.86693 3.23361i 0.0800438 0.138640i
\(545\) −1.73025 2.99689i −0.0741159 0.128372i
\(546\) 0 0
\(547\) −11.8602 + 20.5425i −0.507106 + 0.878333i 0.492860 + 0.870108i \(0.335951\pi\)
−0.999966 + 0.00822465i \(0.997382\pi\)
\(548\) 2.20321 + 3.81607i 0.0941165 + 0.163015i
\(549\) 20.9071 29.6132i 0.892293 1.26386i
\(550\) −8.73239 + 15.1249i −0.372350 + 0.644930i
\(551\) −36.3858 −1.55009
\(552\) −1.96050 0.0894089i −0.0834446 0.00380550i
\(553\) 0 0
\(554\) −1.69076 2.92848i −0.0718334 0.124419i
\(555\) 3.34202 + 6.45049i 0.141861 + 0.273808i
\(556\) 1.01245 + 1.75362i 0.0429376 + 0.0743701i
\(557\) −21.0313 + 36.4273i −0.891125 + 1.54347i −0.0525975 + 0.998616i \(0.516750\pi\)
−0.838528 + 0.544859i \(0.816583\pi\)
\(558\) −0.890369 + 1.26113i −0.0376923 + 0.0533881i
\(559\) −13.6228 −0.576181
\(560\) 0 0
\(561\) 10.8521 + 20.9459i 0.458178 + 0.884336i
\(562\) −10.1388 + 17.5609i −0.427680 + 0.740763i
\(563\) −11.8243 −0.498335 −0.249168 0.968460i \(-0.580157\pi\)
−0.249168 + 0.968460i \(0.580157\pi\)
\(564\) −1.85447 3.57935i −0.0780874 0.150718i
\(565\) −2.79125 −0.117429
\(566\) −17.3494 −0.729250
\(567\) 0 0
\(568\) 1.67977 0.0704815
\(569\) 14.2016 0.595360 0.297680 0.954666i \(-0.403787\pi\)
0.297680 + 0.954666i \(0.403787\pi\)
\(570\) −1.48755 2.87114i −0.0623065 0.120259i
\(571\) 11.9574 0.500401 0.250200 0.968194i \(-0.419503\pi\)
0.250200 + 0.968194i \(0.419503\pi\)
\(572\) 2.66372 4.61369i 0.111376 0.192908i
\(573\) 1.98375 + 3.82888i 0.0828725 + 0.159954i
\(574\) 0 0
\(575\) −5.42509 −0.226242
\(576\) −1.73025 + 2.45076i −0.0720939 + 0.102115i
\(577\) −21.3135 + 36.9161i −0.887293 + 1.53684i −0.0442307 + 0.999021i \(0.514084\pi\)
−0.843062 + 0.537816i \(0.819250\pi\)
\(578\) 1.52918 + 2.64861i 0.0636054 + 0.110168i
\(579\) 3.57733 + 6.90467i 0.148669 + 0.286948i
\(580\) −2.06654 3.57935i −0.0858083 0.148624i
\(581\) 0 0
\(582\) 19.3566 + 0.882759i 0.802357 + 0.0365915i
\(583\) 45.3609 1.87866
\(584\) 6.62062 11.4673i 0.273963 0.474518i
\(585\) −1.16372 + 1.64831i −0.0481137 + 0.0681491i
\(586\) 4.93560 + 8.54871i 0.203888 + 0.353144i
\(587\) −20.5328 + 35.5638i −0.847478 + 1.46788i 0.0359730 + 0.999353i \(0.488547\pi\)
−0.883451 + 0.468523i \(0.844786\pi\)
\(588\) 0 0
\(589\) 1.04309 + 1.80669i 0.0429799 + 0.0744434i
\(590\) −2.96936 + 5.14308i −0.122247 + 0.211737i
\(591\) 10.1462 + 19.5833i 0.417359 + 0.805551i
\(592\) −4.55408 7.88791i −0.187172 0.324191i
\(593\) −16.1008 27.8874i −0.661180 1.14520i −0.980306 0.197485i \(-0.936723\pi\)
0.319126 0.947712i \(-0.396611\pi\)
\(594\) −7.15126 17.5530i −0.293420 0.720207i
\(595\) 0 0
\(596\) 4.58113 7.93474i 0.187650 0.325020i
\(597\) 5.09718 + 0.232457i 0.208614 + 0.00951383i
\(598\) 1.65486 0.0676723
\(599\) 19.0718 0.779252 0.389626 0.920973i \(-0.372604\pi\)
0.389626 + 0.920973i \(0.372604\pi\)
\(600\) −4.46936 + 6.98554i −0.182461 + 0.285184i
\(601\) −4.27188 + 7.39912i −0.174254 + 0.301816i −0.939903 0.341442i \(-0.889085\pi\)
0.765649 + 0.643259i \(0.222418\pi\)
\(602\) 0 0
\(603\) 4.01459 5.68634i 0.163487 0.231565i
\(604\) 0.0519482 + 0.0899768i 0.00211374 + 0.00366111i
\(605\) −0.530835 0.919434i −0.0215815 0.0373803i
\(606\) −12.8406 + 20.0696i −0.521612 + 0.815272i
\(607\) 19.0057 32.9189i 0.771419 1.33614i −0.165366 0.986232i \(-0.552881\pi\)
0.936785 0.349905i \(-0.113786\pi\)
\(608\) 2.02704 + 3.51094i 0.0822074 + 0.142387i
\(609\) 0 0
\(610\) 2.78220 4.81891i 0.112648 0.195112i
\(611\) 1.69961 + 2.94381i 0.0687589 + 0.119094i
\(612\) 4.69455 + 10.1703i 0.189766 + 0.411112i
\(613\) 11.3296 19.6234i 0.457597 0.792581i −0.541237 0.840870i \(-0.682044\pi\)
0.998833 + 0.0482894i \(0.0153770\pi\)
\(614\) −7.78794 −0.314295
\(615\) −0.347081 0.669906i −0.0139956 0.0270132i
\(616\) 0 0
\(617\) −10.1388 17.5609i −0.408173 0.706977i 0.586512 0.809941i \(-0.300501\pi\)
−0.994685 + 0.102964i \(0.967167\pi\)
\(618\) 19.3135 + 0.880794i 0.776904 + 0.0354307i
\(619\) 1.03064 + 1.78512i 0.0414249 + 0.0717501i 0.885994 0.463696i \(-0.153477\pi\)
−0.844570 + 0.535446i \(0.820144\pi\)
\(620\) −0.118485 + 0.205223i −0.00475849 + 0.00824194i
\(621\) 3.61129 4.65003i 0.144916 0.186599i
\(622\) −15.4107 −0.617912
\(623\) 0 0
\(624\) 1.36333 2.13086i 0.0545768 0.0853027i
\(625\) −10.9320 + 18.9348i −0.437280 + 0.757391i
\(626\) −8.49688 −0.339604
\(627\) −25.5869 1.16689i −1.02184 0.0466011i
\(628\) −20.9823 −0.837285
\(629\) −34.0085 −1.35601
\(630\) 0 0
\(631\) 1.63715 0.0651740 0.0325870 0.999469i \(-0.489625\pi\)
0.0325870 + 0.999469i \(0.489625\pi\)
\(632\) −5.00720 −0.199176
\(633\) 1.13541 1.77462i 0.0451283 0.0705349i
\(634\) −14.1052 −0.560191
\(635\) −2.02850 + 3.51347i −0.0804988 + 0.139428i
\(636\) 21.5167 + 0.981271i 0.853194 + 0.0389099i
\(637\) 0 0
\(638\) −32.7381 −1.29611
\(639\) −2.90642 + 4.11671i −0.114976 + 0.162854i
\(640\) −0.230252 + 0.398809i −0.00910153 + 0.0157643i
\(641\) −10.9662 18.9941i −0.433140 0.750221i 0.564001 0.825774i \(-0.309261\pi\)
−0.997142 + 0.0755526i \(0.975928\pi\)
\(642\) 7.26303 11.3520i 0.286649 0.448028i
\(643\) 14.1819 + 24.5638i 0.559280 + 0.968701i 0.997557 + 0.0698609i \(0.0222555\pi\)
−0.438277 + 0.898840i \(0.644411\pi\)
\(644\) 0 0
\(645\) −4.00953 + 6.26683i −0.157875 + 0.246756i
\(646\) 15.1373 0.595571
\(647\) −17.3904 + 30.1210i −0.683686 + 1.18418i 0.290162 + 0.956978i \(0.406291\pi\)
−0.973848 + 0.227201i \(0.927042\pi\)
\(648\) −3.01245 8.48087i −0.118340 0.333160i
\(649\) 23.5203 + 40.7384i 0.923253 + 1.59912i
\(650\) 3.49640 6.05594i 0.137140 0.237534i
\(651\) 0 0
\(652\) −11.5182 19.9501i −0.451087 0.781306i
\(653\) 1.59931 2.77009i 0.0625860 0.108402i −0.833035 0.553221i \(-0.813399\pi\)
0.895621 + 0.444819i \(0.146732\pi\)
\(654\) −13.0021 0.592963i −0.508424 0.0231867i
\(655\) 4.86693 + 8.42976i 0.190167 + 0.329378i
\(656\) 0.472958 + 0.819187i 0.0184659 + 0.0319839i
\(657\) 16.6481 + 36.0668i 0.649506 + 1.40710i
\(658\) 0 0
\(659\) 5.30418 9.18711i 0.206622 0.357879i −0.744027 0.668150i \(-0.767086\pi\)
0.950648 + 0.310271i \(0.100420\pi\)
\(660\) −1.33842 2.58331i −0.0520980 0.100555i
\(661\) −10.1301 −0.394017 −0.197009 0.980402i \(-0.563123\pi\)
−0.197009 + 0.980402i \(0.563123\pi\)
\(662\) 27.5438 1.07052
\(663\) −4.34514 8.38662i −0.168751 0.325709i
\(664\) −3.32383 + 5.75705i −0.128990 + 0.223417i
\(665\) 0 0
\(666\) 27.2111 + 2.48710i 1.05441 + 0.0963731i
\(667\) −5.08472 8.80700i −0.196881 0.341008i
\(668\) 5.31498 + 9.20581i 0.205643 + 0.356184i
\(669\) 1.54309 + 0.0703729i 0.0596595 + 0.00272077i
\(670\) 0.534239 0.925330i 0.0206395 0.0357486i
\(671\) −22.0378 38.1707i −0.850761 1.47356i
\(672\) 0 0
\(673\) 1.60817 2.78543i 0.0619903 0.107370i −0.833365 0.552724i \(-0.813589\pi\)
0.895355 + 0.445353i \(0.146922\pi\)
\(674\) 0.748440 + 1.29634i 0.0288288 + 0.0499330i
\(675\) −9.38677 23.0401i −0.361297 0.886813i
\(676\) 5.43346 9.41103i 0.208979 0.361963i
\(677\) 29.3638 1.12854 0.564271 0.825589i \(-0.309157\pi\)
0.564271 + 0.825589i \(0.309157\pi\)
\(678\) −5.65798 + 8.84334i −0.217293 + 0.339626i
\(679\) 0 0
\(680\) 0.859728 + 1.48909i 0.0329691 + 0.0571041i
\(681\) 13.6770 21.3770i 0.524105 0.819169i
\(682\) 0.938524 + 1.62557i 0.0359379 + 0.0622463i
\(683\) 12.6278 21.8720i 0.483190 0.836910i −0.516624 0.856213i \(-0.672811\pi\)
0.999814 + 0.0193029i \(0.00614468\pi\)
\(684\) −12.1118 1.10702i −0.463105 0.0423279i
\(685\) −2.02918 −0.0775309
\(686\) 0 0
\(687\) −16.5687 0.755615i −0.632134 0.0288285i
\(688\) 4.66372 8.07779i 0.177802 0.307963i
\(689\) −18.1623 −0.691927
\(690\) 0.487068 0.761280i 0.0185424 0.0289814i
\(691\) 15.3638 0.584467 0.292233 0.956347i \(-0.405602\pi\)
0.292233 + 0.956347i \(0.405602\pi\)
\(692\) −2.93872 −0.111713
\(693\) 0 0
\(694\) −18.2881 −0.694208
\(695\) −0.932479 −0.0353709
\(696\) −15.5292 0.708209i −0.588632 0.0268446i
\(697\) 3.53191 0.133781
\(698\) 3.90136 6.75735i 0.147669 0.255770i
\(699\) −13.4684 + 21.0509i −0.509421 + 0.796217i
\(700\) 0 0
\(701\) −13.3700 −0.504980 −0.252490 0.967600i \(-0.581249\pi\)
−0.252490 + 0.967600i \(0.581249\pi\)
\(702\) 2.86333 + 7.02811i 0.108069 + 0.265259i
\(703\) 18.4626 31.9782i 0.696332 1.20608i
\(704\) 1.82383 + 3.15897i 0.0687382 + 0.119058i
\(705\) 1.85447 + 0.0845733i 0.0698435 + 0.00318522i
\(706\) 13.4626 + 23.3180i 0.506673 + 0.877584i
\(707\) 0 0
\(708\) 10.2755 + 19.8329i 0.386176 + 0.745365i
\(709\) −1.12588 −0.0422832 −0.0211416 0.999776i \(-0.506730\pi\)
−0.0211416 + 0.999776i \(0.506730\pi\)
\(710\) −0.386770 + 0.669906i −0.0145152 + 0.0251411i
\(711\) 8.66372 12.2714i 0.324915 0.460215i
\(712\) 1.36333 + 2.36135i 0.0510928 + 0.0884954i
\(713\) −0.291534 + 0.504951i −0.0109180 + 0.0189106i
\(714\) 0 0
\(715\) 1.22665 + 2.12463i 0.0458743 + 0.0794565i
\(716\) −4.58113 + 7.93474i −0.171205 + 0.296535i
\(717\) 17.0914 26.7137i 0.638292 0.997640i
\(718\) −3.13161 5.42411i −0.116871 0.202426i
\(719\) −9.13667 15.8252i −0.340740 0.590180i 0.643830 0.765169i \(-0.277344\pi\)
−0.984570 + 0.174989i \(0.944011\pi\)
\(720\) −0.578990 1.25433i −0.0215777 0.0467463i
\(721\) 0 0
\(722\) 1.28220 2.22084i 0.0477186 0.0826510i
\(723\) −0.0871712 + 0.136247i −0.00324193 + 0.00506709i
\(724\) −22.4284 −0.833545
\(725\) −42.9722 −1.59595
\(726\) −3.98901 0.181919i −0.148046 0.00675165i
\(727\) 14.8478 25.7171i 0.550673 0.953793i −0.447553 0.894257i \(-0.647705\pi\)
0.998226 0.0595359i \(-0.0189621\pi\)
\(728\) 0 0
\(729\) 25.9969 + 7.29124i 0.962847 + 0.270046i
\(730\) 3.04883 + 5.28073i 0.112842 + 0.195448i
\(731\) −17.4136 30.1613i −0.644066 1.11555i
\(732\) −9.62782 18.5828i −0.355854 0.686840i
\(733\) 9.61390 16.6518i 0.355098 0.615047i −0.632037 0.774938i \(-0.717781\pi\)
0.987135 + 0.159891i \(0.0511143\pi\)
\(734\) 14.6367 + 25.3515i 0.540249 + 0.935740i
\(735\) 0 0
\(736\) −0.566537 + 0.981271i −0.0208828 + 0.0361701i
\(737\) −4.23171 7.32955i −0.155877 0.269987i
\(738\) −2.82597 0.258294i −0.104025 0.00950793i
\(739\) −15.1336 + 26.2121i −0.556697 + 0.964227i 0.441073 + 0.897471i \(0.354598\pi\)
−0.997769 + 0.0667556i \(0.978735\pi\)
\(740\) 4.19436 0.154188
\(741\) 10.2448 + 0.467216i 0.376354 + 0.0171636i
\(742\) 0 0
\(743\) −11.8815 20.5794i −0.435890 0.754984i 0.561477 0.827492i \(-0.310233\pi\)
−0.997368 + 0.0725076i \(0.976900\pi\)
\(744\) 0.410019 + 0.791385i 0.0150320 + 0.0290136i
\(745\) 2.10963 + 3.65399i 0.0772909 + 0.133872i
\(746\) −8.92986 + 15.4670i −0.326946 + 0.566286i
\(747\) −8.35807 18.1071i −0.305806 0.662503i
\(748\) 13.6198 0.497990
\(749\) 0 0
\(750\) −3.59144 6.93190i −0.131141 0.253117i
\(751\) −6.33415 + 10.9711i −0.231136 + 0.400340i −0.958143 0.286291i \(-0.907578\pi\)
0.727006 + 0.686631i \(0.240911\pi\)
\(752\) −2.32743 −0.0848727
\(753\) 14.5600 + 28.1025i 0.530596 + 1.02411i
\(754\) 13.1082 0.477371
\(755\) −0.0478448 −0.00174125
\(756\) 0 0
\(757\) −29.0799 −1.05693 −0.528464 0.848955i \(-0.677232\pi\)
−0.528464 + 0.848955i \(0.677232\pi\)
\(758\) −22.4255 −0.814530
\(759\) −3.29319 6.35624i −0.119535 0.230717i
\(760\) −1.86693 −0.0677205
\(761\) 14.6015 25.2905i 0.529302 0.916778i −0.470114 0.882606i \(-0.655787\pi\)
0.999416 0.0341724i \(-0.0108795\pi\)
\(762\) 7.01965 + 13.5487i 0.254295 + 0.490819i
\(763\) 0 0
\(764\) 2.48968 0.0900736
\(765\) −5.13696 0.469519i −0.185727 0.0169755i
\(766\) −7.07014 + 12.2458i −0.255454 + 0.442460i
\(767\) −9.41741 16.3114i −0.340043 0.588972i
\(768\) 0.796790 + 1.53790i 0.0287517 + 0.0554941i
\(769\) −12.5869 21.8011i −0.453894 0.786167i 0.544730 0.838611i \(-0.316632\pi\)
−0.998624 + 0.0524443i \(0.983299\pi\)
\(770\) 0 0
\(771\) −36.4238 1.66111i −1.31177 0.0598234i
\(772\) 4.48968 0.161587
\(773\) 0.752039 1.30257i 0.0270490 0.0468502i −0.852184 0.523242i \(-0.824722\pi\)
0.879233 + 0.476392i \(0.158056\pi\)
\(774\) 11.7273 + 25.4063i 0.421530 + 0.913209i
\(775\) 1.23191 + 2.13373i 0.0442515 + 0.0766458i
\(776\) 5.59358 9.68836i 0.200798 0.347792i
\(777\) 0 0
\(778\) 11.5651 + 20.0313i 0.414628 + 0.718157i
\(779\) −1.91741 + 3.32105i −0.0686984 + 0.118989i
\(780\) 0.535897 + 1.03434i 0.0191882 + 0.0370354i
\(781\) 3.06361 + 5.30633i 0.109625 + 0.189875i
\(782\) 2.11537 + 3.66392i 0.0756453 + 0.131022i
\(783\) 28.6050 36.8329i 1.02226 1.31630i
\(784\) 0 0
\(785\) 4.83122 8.36792i 0.172434 0.298664i
\(786\) 36.5729 + 1.66791i 1.30451 + 0.0594924i
\(787\) 14.9531 0.533021 0.266510 0.963832i \(-0.414129\pi\)
0.266510 + 0.963832i \(0.414129\pi\)
\(788\) 12.7339 0.453625
\(789\) −4.82150 + 7.53593i −0.171650 + 0.268286i
\(790\) 1.15292 1.99691i 0.0410190 0.0710470i
\(791\) 0 0
\(792\) −10.8976 0.996040i −0.387228 0.0353927i
\(793\) 8.82383 + 15.2833i 0.313343 + 0.542727i
\(794\) 5.13307 + 8.89075i 0.182166 + 0.315521i
\(795\) −5.34562 + 8.35512i −0.189590 + 0.296326i
\(796\) 1.47296 2.55124i 0.0522076 0.0904262i
\(797\) 4.56294 + 7.90324i 0.161628 + 0.279947i 0.935453 0.353452i \(-0.114992\pi\)
−0.773825 + 0.633400i \(0.781659\pi\)
\(798\) 0 0
\(799\) −4.34514 + 7.52600i −0.153720 + 0.266251i
\(800\) 2.39397 + 4.14647i 0.0846395 + 0.146600i
\(801\) −8.14601 0.744547i −0.287825 0.0263073i
\(802\) −17.0167 + 29.4738i −0.600881 + 1.04076i
\(803\) 48.2996 1.70446
\(804\) −1.84874 3.56828i −0.0652000 0.125843i
\(805\) 0 0
\(806\) −0.375780 0.650870i −0.0132363 0.0229259i
\(807\) −29.1665 1.33014i −1.02671 0.0468232i
\(808\) 6.87792 + 11.9129i 0.241964 + 0.419094i
\(809\) 17.7755 30.7880i 0.624953 1.08245i −0.363597 0.931556i \(-0.618452\pi\)
0.988550 0.150894i \(-0.0482151\pi\)
\(810\) 4.07587 + 0.751347i 0.143211 + 0.0263997i
\(811\) 13.5070 0.474295 0.237148 0.971474i \(-0.423788\pi\)
0.237148 + 0.971474i \(0.423788\pi\)
\(812\) 0 0
\(813\) 23.4415 36.6388i 0.822130 1.28498i
\(814\) 16.6118 28.7724i 0.582242 1.00847i
\(815\) 10.6084 0.371595
\(816\) 6.46050 + 0.294632i 0.226163 + 0.0103142i
\(817\) 37.8142 1.32295
\(818\) 3.48968 0.122014
\(819\) 0 0
\(820\) −0.435599 −0.0152118
\(821\) 21.6228 0.754639 0.377320 0.926083i \(-0.376846\pi\)
0.377320 + 0.926083i \(0.376846\pi\)
\(822\) −4.11323 + 6.42892i −0.143465 + 0.224234i
\(823\) −1.50700 −0.0525308 −0.0262654 0.999655i \(-0.508361\pi\)
−0.0262654 + 0.999655i \(0.508361\pi\)
\(824\) 5.58113 9.66679i 0.194428 0.336759i
\(825\) −30.2185 1.37811i −1.05207 0.0479798i
\(826\) 0 0
\(827\) 23.3786 0.812953 0.406477 0.913661i \(-0.366757\pi\)
0.406477 + 0.913661i \(0.366757\pi\)
\(828\) −1.42461 3.08629i −0.0495086 0.107256i
\(829\) 11.0095 19.0691i 0.382377 0.662296i −0.609025 0.793151i \(-0.708439\pi\)
0.991401 + 0.130855i \(0.0417723\pi\)
\(830\) −1.53064 2.65115i −0.0531293 0.0920227i
\(831\) 3.15652 4.93359i 0.109498 0.171144i
\(832\) −0.730252 1.26483i −0.0253169 0.0438502i
\(833\) 0 0
\(834\) −1.89017 + 2.95431i −0.0654514 + 0.102300i
\(835\) −4.89515 −0.169404
\(836\) −7.39397 + 12.8067i −0.255726 + 0.442930i
\(837\) −2.64893 0.364437i −0.0915605 0.0125968i
\(838\) −14.4897 25.0969i −0.500538 0.866957i
\(839\) 1.06507 1.84476i 0.0367705 0.0636883i −0.847055 0.531506i \(-0.821626\pi\)
0.883825 + 0.467818i \(0.154960\pi\)
\(840\) 0 0
\(841\) −25.7762 44.6456i −0.888833 1.53950i
\(842\) −1.06128 + 1.83819i −0.0365742 + 0.0633483i
\(843\) −35.0854 1.60007i −1.20841 0.0551094i
\(844\) −0.608168 1.05338i −0.0209340 0.0362588i
\(845\) 2.50214 + 4.33383i 0.0860761 + 0.149088i
\(846\) 4.02704 5.70397i 0.138453 0.196107i
\(847\) 0 0
\(848\) 6.21780 10.7695i 0.213520 0.369828i
\(849\) −13.8238 26.6816i −0.474433 0.915710i
\(850\) 17.8774 0.613191
\(851\) 10.3202 0.353773
\(852\) 1.33842 + 2.58331i 0.0458535 + 0.0885027i
\(853\) 3.50146 6.06471i 0.119888 0.207652i −0.799835 0.600220i \(-0.795080\pi\)
0.919723 + 0.392568i \(0.128413\pi\)
\(854\) 0 0
\(855\) 3.23025 4.57539i 0.110472 0.156475i
\(856\) −3.89037 6.73832i −0.132970 0.230311i
\(857\) 5.46410 + 9.46410i 0.186650 + 0.323288i 0.944131 0.329569i \(-0.106904\pi\)
−0.757481 + 0.652857i \(0.773570\pi\)
\(858\) 9.21780 + 0.420378i 0.314690 + 0.0143515i
\(859\) −6.95379 + 12.0443i −0.237260 + 0.410947i −0.959927 0.280250i \(-0.909583\pi\)
0.722667 + 0.691196i \(0.242916\pi\)
\(860\) 2.14766 + 3.71986i 0.0732347 + 0.126846i
\(861\) 0 0
\(862\) 10.9356 18.9410i 0.372468 0.645133i
\(863\) −18.4231 31.9098i −0.627131 1.08622i −0.988125 0.153655i \(-0.950896\pi\)
0.360993 0.932568i \(-0.382438\pi\)
\(864\) −5.14766 0.708209i −0.175127 0.0240938i
\(865\) 0.676647 1.17199i 0.0230067 0.0398488i
\(866\) 13.0512 0.443496
\(867\) −2.85486 + 4.46211i −0.0969562 + 0.151541i
\(868\) 0 0
\(869\) −9.13229 15.8176i −0.309792 0.536575i
\(870\) 3.85807 6.03011i 0.130801 0.204440i
\(871\) 1.69436 + 2.93471i 0.0574111 + 0.0994389i
\(872\) −3.75729 + 6.50783i −0.127238 + 0.220383i
\(873\) 14.0656 + 30.4718i 0.476047 + 1.03132i
\(874\) −4.59358 −0.155380
\(875\) 0 0
\(876\) 22.9107 + 1.04484i 0.774081 + 0.0353020i
\(877\) 5.17977 8.97162i 0.174908 0.302950i −0.765221 0.643767i \(-0.777370\pi\)
0.940130 + 0.340817i \(0.110704\pi\)
\(878\) −4.86400 −0.164152
\(879\) −9.21440 + 14.4020i −0.310794 + 0.485766i
\(880\) −1.67977 −0.0566249
\(881\) −9.34806 −0.314944 −0.157472 0.987523i \(-0.550334\pi\)
−0.157472 + 0.987523i \(0.550334\pi\)
\(882\) 0 0
\(883\) 2.29494 0.0772308 0.0386154 0.999254i \(-0.487705\pi\)
0.0386154 + 0.999254i \(0.487705\pi\)
\(884\) −5.45331 −0.183415
\(885\) −10.2755 0.468614i −0.345407 0.0157523i
\(886\) −11.5395 −0.387677
\(887\) −13.8363 + 23.9651i −0.464577 + 0.804671i −0.999182 0.0404309i \(-0.987127\pi\)
0.534605 + 0.845102i \(0.320460\pi\)
\(888\) 8.50214 13.2887i 0.285313 0.445940i
\(889\) 0 0
\(890\) −1.25564 −0.0420891
\(891\) 21.2966 24.9839i 0.713463 0.836993i
\(892\) 0.445916 0.772349i 0.0149304 0.0258602i
\(893\) −4.71780 8.17147i −0.157875 0.273448i
\(894\) 15.8530 + 0.722977i 0.530204 + 0.0241800i
\(895\) −2.10963 3.65399i −0.0705172 0.122139i
\(896\) 0 0
\(897\) 1.31858 + 2.54500i 0.0440260 + 0.0849752i
\(898\) −26.4251 −0.881817
\(899\) −2.30924 + 3.99973i −0.0770176 + 0.133398i
\(900\) −14.3042 1.30740i −0.476806 0.0435802i
\(901\) −23.2163 40.2119i −0.773448 1.33965i
\(902\) −1.72519 + 2.98812i −0.0574426 + 0.0994935i
\(903\) 0 0
\(904\) 3.03064 + 5.24922i 0.100798 + 0.174587i
\(905\) 5.16419 8.94465i 0.171664 0.297330i
\(906\) −0.0969833 + 0.151584i −0.00322206 + 0.00503602i
\(907\) 1.46576 + 2.53877i 0.0486698 + 0.0842985i 0.889334 0.457258i \(-0.151168\pi\)
−0.840664 + 0.541557i \(0.817835\pi\)
\(908\) −7.32597 12.6889i −0.243121 0.421098i
\(909\) −41.0962 3.75620i −1.36307 0.124585i
\(910\) 0 0
\(911\) 15.3171 26.5300i 0.507479 0.878979i −0.492484 0.870322i \(-0.663911\pi\)
0.999963 0.00865719i \(-0.00275570\pi\)
\(912\) −3.78434 + 5.91486i −0.125312 + 0.195861i
\(913\) −24.2484 −0.802506
\(914\) −3.73812 −0.123646
\(915\) 9.62782 + 0.439077i 0.318286 + 0.0145154i
\(916\) −4.78794 + 8.29295i −0.158198 + 0.274007i
\(917\) 0 0
\(918\) −11.9004 + 15.3234i −0.392771 + 0.505746i
\(919\) 13.1857 + 22.8383i 0.434956 + 0.753366i 0.997292 0.0735429i \(-0.0234306\pi\)
−0.562336 + 0.826909i \(0.690097\pi\)
\(920\) −0.260893 0.451880i −0.00860139 0.0148980i
\(921\) −6.20535 11.9770i −0.204473 0.394657i
\(922\) 7.90496 13.6918i 0.260336 0.450915i
\(923\) −1.22665 2.12463i −0.0403758 0.0699329i
\(924\) 0 0
\(925\) 21.8047 37.7668i 0.716933 1.24176i
\(926\) 19.1965 + 33.2493i 0.630836 + 1.09264i
\(927\) 14.0342 + 30.4040i 0.460945 + 0.998598i
\(928\) −4.48755 + 7.77266i −0.147311 + 0.255150i
\(929\) −17.8741 −0.586431 −0.293215 0.956046i \(-0.594725\pi\)
−0.293215 + 0.956046i \(0.594725\pi\)
\(930\) −0.410019 0.0186989i −0.0134451 0.000613163i
\(931\) 0 0
\(932\) 7.21420 + 12.4954i 0.236309 + 0.409299i
\(933\) −12.2791 23.7001i −0.401999 0.775905i
\(934\) −3.15652 5.46725i −0.103284 0.178894i
\(935\) −3.13600 + 5.43171i −0.102558 + 0.177636i
\(936\) 4.36333 + 0.398809i 0.142620 + 0.0130355i
\(937\) −15.9134 −0.519869 −0.259934 0.965626i \(-0.583701\pi\)
−0.259934 + 0.965626i \(0.583701\pi\)
\(938\) 0 0
\(939\) −6.77023 13.0673i −0.220938 0.426436i
\(940\) 0.535897 0.928200i 0.0174790 0.0302745i
\(941\) 16.2805 0.530731 0.265365 0.964148i \(-0.414507\pi\)
0.265365 + 0.964148i \(0.414507\pi\)
\(942\) −16.7185 32.2686i −0.544717 1.05137i
\(943\) −1.07179 −0.0349024
\(944\) 12.8961 0.419732
\(945\) 0 0
\(946\) 34.0233 1.10619
\(947\) −28.5903 −0.929059 −0.464529 0.885558i \(-0.653776\pi\)
−0.464529 + 0.885558i \(0.653776\pi\)
\(948\) −3.98968 7.70055i −0.129579 0.250102i
\(949\) −19.3389 −0.627767
\(950\) −9.70535 + 16.8102i −0.314883 + 0.545393i
\(951\) −11.2389 21.6924i −0.364447 0.703424i
\(952\) 0 0
\(953\) −29.3537 −0.950859 −0.475430 0.879754i \(-0.657707\pi\)
−0.475430 + 0.879754i \(0.657707\pi\)
\(954\) 15.6352 + 33.8724i 0.506209 + 1.09666i
\(955\) −0.573256 + 0.992908i −0.0185501 + 0.0321297i
\(956\) −9.15486 15.8567i −0.296089 0.512842i
\(957\) −26.0854 50.3479i −0.843221 1.62751i
\(958\) −10.2068 17.6787i −0.329767 0.571173i
\(959\) 0 0
\(960\) −0.796790 0.0363376i −0.0257163 0.00117279i
\(961\) −30.7352 −0.991458
\(962\) −6.65126 + 11.5203i −0.214445 + 0.371430i
\(963\) 23.2453 + 2.12463i 0.749070 + 0.0684651i
\(964\) 0.0466924 + 0.0808735i 0.00150386 + 0.00260476i
\(965\) −1.03376 + 1.79053i −0.0332779 + 0.0576391i
\(966\) 0 0
\(967\) −4.69815 8.13743i −0.151082 0.261682i 0.780543 0.625102i \(-0.214943\pi\)
−0.931626 + 0.363419i \(0.881609\pi\)
\(968\) −1.15272 + 1.99658i −0.0370500 + 0.0641724i
\(969\) 12.0613 + 23.2797i 0.387464 + 0.747851i
\(970\) 2.57587 + 4.46154i 0.0827062 + 0.143251i
\(971\) −7.77335 13.4638i −0.249459 0.432075i 0.713917 0.700230i \(-0.246919\pi\)
−0.963376 + 0.268155i \(0.913586\pi\)
\(972\) 10.6424 11.3903i 0.341355 0.365344i
\(973\) 0 0
\(974\) 6.18190 10.7074i 0.198081 0.343086i
\(975\) 12.0993 + 0.551790i 0.387488 + 0.0176714i
\(976\) −12.0833 −0.386776
\(977\) −9.59785 −0.307062 −0.153531 0.988144i \(-0.549065\pi\)
−0.153531 + 0.988144i \(0.549065\pi\)
\(978\) 21.5036 33.6098i 0.687609 1.07472i
\(979\) −4.97296 + 8.61342i −0.158936 + 0.275286i
\(980\) 0 0
\(981\) −9.44805 20.4684i −0.301653 0.653506i
\(982\) 0.207004 + 0.358541i 0.00660575 + 0.0114415i
\(983\) −23.4267 40.5763i −0.747197 1.29418i −0.949161 0.314790i \(-0.898066\pi\)
0.201964 0.979393i \(-0.435268\pi\)
\(984\) −0.882977 + 1.38008i −0.0281483 + 0.0439953i
\(985\) −2.93200 + 5.07837i −0.0934213 + 0.161810i
\(986\) 16.7558 + 29.0220i 0.533614 + 0.924247i
\(987\) 0 0
\(988\) 2.96050 5.12774i 0.0941862 0.163135i
\(989\) 5.28434 + 9.15274i 0.168032 + 0.291040i
\(990\) 2.90642 4.11671i 0.0923721 0.130838i
\(991\) 10.8260 18.7511i 0.343898 0.595649i −0.641255 0.767328i \(-0.721586\pi\)
0.985153 + 0.171679i \(0.0549192\pi\)
\(992\) 0.514589 0.0163382
\(993\) 21.9466 + 42.3595i 0.696454 + 1.34424i
\(994\) 0 0
\(995\) 0.678304 + 1.17486i 0.0215037 + 0.0372455i
\(996\) −11.5021 0.524555i −0.364459 0.0166212i
\(997\) −28.6190 49.5695i −0.906372 1.56988i −0.819065 0.573700i \(-0.805507\pi\)
−0.0873064 0.996182i \(-0.527826\pi\)
\(998\) 0.461967 0.800151i 0.0146233 0.0253283i
\(999\) 17.8566 + 43.8295i 0.564958 + 1.38670i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 882.2.e.p.655.2 6
3.2 odd 2 2646.2.e.o.2125.3 6
7.2 even 3 882.2.h.o.79.1 6
7.3 odd 6 882.2.f.l.295.2 6
7.4 even 3 882.2.f.m.295.2 6
7.5 odd 6 126.2.h.c.79.3 yes 6
7.6 odd 2 126.2.e.d.25.2 6
9.4 even 3 882.2.h.o.67.1 6
9.5 odd 6 2646.2.h.p.361.1 6
21.2 odd 6 2646.2.h.p.667.1 6
21.5 even 6 378.2.h.d.289.3 6
21.11 odd 6 2646.2.f.n.883.3 6
21.17 even 6 2646.2.f.o.883.1 6
21.20 even 2 378.2.e.c.235.1 6
28.19 even 6 1008.2.t.g.961.1 6
28.27 even 2 1008.2.q.h.529.2 6
63.4 even 3 882.2.f.m.589.2 6
63.5 even 6 378.2.e.c.37.1 6
63.11 odd 6 7938.2.a.bx.1.1 3
63.13 odd 6 126.2.h.c.67.3 yes 6
63.20 even 6 1134.2.g.n.487.1 6
63.23 odd 6 2646.2.e.o.1549.3 6
63.25 even 3 7938.2.a.by.1.3 3
63.31 odd 6 882.2.f.l.589.2 6
63.32 odd 6 2646.2.f.n.1765.3 6
63.34 odd 6 1134.2.g.k.487.3 6
63.38 even 6 7938.2.a.bu.1.3 3
63.40 odd 6 126.2.e.d.121.2 yes 6
63.41 even 6 378.2.h.d.361.3 6
63.47 even 6 1134.2.g.n.163.1 6
63.52 odd 6 7938.2.a.cb.1.1 3
63.58 even 3 inner 882.2.e.p.373.2 6
63.59 even 6 2646.2.f.o.1765.1 6
63.61 odd 6 1134.2.g.k.163.3 6
84.47 odd 6 3024.2.t.g.289.3 6
84.83 odd 2 3024.2.q.h.2881.1 6
252.103 even 6 1008.2.q.h.625.2 6
252.131 odd 6 3024.2.q.h.2305.1 6
252.139 even 6 1008.2.t.g.193.1 6
252.167 odd 6 3024.2.t.g.1873.3 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
126.2.e.d.25.2 6 7.6 odd 2
126.2.e.d.121.2 yes 6 63.40 odd 6
126.2.h.c.67.3 yes 6 63.13 odd 6
126.2.h.c.79.3 yes 6 7.5 odd 6
378.2.e.c.37.1 6 63.5 even 6
378.2.e.c.235.1 6 21.20 even 2
378.2.h.d.289.3 6 21.5 even 6
378.2.h.d.361.3 6 63.41 even 6
882.2.e.p.373.2 6 63.58 even 3 inner
882.2.e.p.655.2 6 1.1 even 1 trivial
882.2.f.l.295.2 6 7.3 odd 6
882.2.f.l.589.2 6 63.31 odd 6
882.2.f.m.295.2 6 7.4 even 3
882.2.f.m.589.2 6 63.4 even 3
882.2.h.o.67.1 6 9.4 even 3
882.2.h.o.79.1 6 7.2 even 3
1008.2.q.h.529.2 6 28.27 even 2
1008.2.q.h.625.2 6 252.103 even 6
1008.2.t.g.193.1 6 252.139 even 6
1008.2.t.g.961.1 6 28.19 even 6
1134.2.g.k.163.3 6 63.61 odd 6
1134.2.g.k.487.3 6 63.34 odd 6
1134.2.g.n.163.1 6 63.47 even 6
1134.2.g.n.487.1 6 63.20 even 6
2646.2.e.o.1549.3 6 63.23 odd 6
2646.2.e.o.2125.3 6 3.2 odd 2
2646.2.f.n.883.3 6 21.11 odd 6
2646.2.f.n.1765.3 6 63.32 odd 6
2646.2.f.o.883.1 6 21.17 even 6
2646.2.f.o.1765.1 6 63.59 even 6
2646.2.h.p.361.1 6 9.5 odd 6
2646.2.h.p.667.1 6 21.2 odd 6
3024.2.q.h.2305.1 6 252.131 odd 6
3024.2.q.h.2881.1 6 84.83 odd 2
3024.2.t.g.289.3 6 84.47 odd 6
3024.2.t.g.1873.3 6 252.167 odd 6
7938.2.a.bu.1.3 3 63.38 even 6
7938.2.a.bx.1.1 3 63.11 odd 6
7938.2.a.by.1.3 3 63.25 even 3
7938.2.a.cb.1.1 3 63.52 odd 6