Properties

Label 266.2.e.a
Level 266266
Weight 22
Character orbit 266.e
Analytic conductor 2.1242.124
Analytic rank 00
Dimension 22
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [266,2,Mod(39,266)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(266, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([4, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("266.39");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 266=2719 266 = 2 \cdot 7 \cdot 19
Weight: k k == 2 2
Character orbit: [χ][\chi] == 266.e (of order 33, degree 22, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 2.124020693772.12402069377
Analytic rank: 00
Dimension: 22
Coefficient field: Q(3)\Q(\sqrt{-3})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x2x+1 x^{2} - x + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2]\Z[a_1, a_2]
Coefficient ring index: 1 1
Twist minimal: yes
Sato-Tate group: SU(2)[C3]\mathrm{SU}(2)[C_{3}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a primitive root of unity ζ6\zeta_{6}. We also show the integral qq-expansion of the trace form.

f(q)f(q) == qζ6q2+(ζ61)q4ζ6q5+(ζ6+2)q7+q8+3ζ6q9+(ζ61)q10+(5ζ6+5)q112q13+(3ζ6+1)q14++15q99+O(q100) q - \zeta_{6} q^{2} + (\zeta_{6} - 1) q^{4} - \zeta_{6} q^{5} + (\zeta_{6} + 2) q^{7} + q^{8} + 3 \zeta_{6} q^{9} + (\zeta_{6} - 1) q^{10} + ( - 5 \zeta_{6} + 5) q^{11} - 2 q^{13} + ( - 3 \zeta_{6} + 1) q^{14} + \cdots + 15 q^{99} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 2qq2q4q5+5q7+2q8+3q9q10+5q114q13q14q16+6q17+3q18q19+2q2010q22+5q23+4q25+2q264q28++30q99+O(q100) 2 q - q^{2} - q^{4} - q^{5} + 5 q^{7} + 2 q^{8} + 3 q^{9} - q^{10} + 5 q^{11} - 4 q^{13} - q^{14} - q^{16} + 6 q^{17} + 3 q^{18} - q^{19} + 2 q^{20} - 10 q^{22} + 5 q^{23} + 4 q^{25} + 2 q^{26} - 4 q^{28}+ \cdots + 30 q^{99}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/266Z)×\left(\mathbb{Z}/266\mathbb{Z}\right)^\times.

nn 115115 211211
χ(n)\chi(n) ζ6-\zeta_{6} 11

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
39.1
0.500000 + 0.866025i
0.500000 0.866025i
−0.500000 0.866025i 0 −0.500000 + 0.866025i −0.500000 0.866025i 0 2.50000 + 0.866025i 1.00000 1.50000 + 2.59808i −0.500000 + 0.866025i
191.1 −0.500000 + 0.866025i 0 −0.500000 0.866025i −0.500000 + 0.866025i 0 2.50000 0.866025i 1.00000 1.50000 2.59808i −0.500000 0.866025i
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 266.2.e.a 2
7.c even 3 1 inner 266.2.e.a 2
7.c even 3 1 1862.2.a.e 1
7.d odd 6 1 1862.2.a.d 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
266.2.e.a 2 1.a even 1 1 trivial
266.2.e.a 2 7.c even 3 1 inner
1862.2.a.d 1 7.d odd 6 1
1862.2.a.e 1 7.c even 3 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T3 T_{3} acting on S2new(266,[χ])S_{2}^{\mathrm{new}}(266, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T2+T+1 T^{2} + T + 1 Copy content Toggle raw display
33 T2 T^{2} Copy content Toggle raw display
55 T2+T+1 T^{2} + T + 1 Copy content Toggle raw display
77 T25T+7 T^{2} - 5T + 7 Copy content Toggle raw display
1111 T25T+25 T^{2} - 5T + 25 Copy content Toggle raw display
1313 (T+2)2 (T + 2)^{2} Copy content Toggle raw display
1717 T26T+36 T^{2} - 6T + 36 Copy content Toggle raw display
1919 T2+T+1 T^{2} + T + 1 Copy content Toggle raw display
2323 T25T+25 T^{2} - 5T + 25 Copy content Toggle raw display
2929 T2 T^{2} Copy content Toggle raw display
3131 T2+4T+16 T^{2} + 4T + 16 Copy content Toggle raw display
3737 T24T+16 T^{2} - 4T + 16 Copy content Toggle raw display
4141 (T4)2 (T - 4)^{2} Copy content Toggle raw display
4343 (T+11)2 (T + 11)^{2} Copy content Toggle raw display
4747 T2+3T+9 T^{2} + 3T + 9 Copy content Toggle raw display
5353 T2+4T+16 T^{2} + 4T + 16 Copy content Toggle raw display
5959 T2+14T+196 T^{2} + 14T + 196 Copy content Toggle raw display
6161 T2+5T+25 T^{2} + 5T + 25 Copy content Toggle raw display
6767 T2+6T+36 T^{2} + 6T + 36 Copy content Toggle raw display
7171 (T6)2 (T - 6)^{2} Copy content Toggle raw display
7373 T2+T+1 T^{2} + T + 1 Copy content Toggle raw display
7979 T216T+256 T^{2} - 16T + 256 Copy content Toggle raw display
8383 (T+13)2 (T + 13)^{2} Copy content Toggle raw display
8989 T2+18T+324 T^{2} + 18T + 324 Copy content Toggle raw display
9797 (T+12)2 (T + 12)^{2} Copy content Toggle raw display
show more
show less