Properties

Label 266.2.e.c
Level 266266
Weight 22
Character orbit 266.e
Analytic conductor 2.1242.124
Analytic rank 00
Dimension 44
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [266,2,Mod(39,266)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(266, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([4, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("266.39");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 266=2719 266 = 2 \cdot 7 \cdot 19
Weight: k k == 2 2
Character orbit: [χ][\chi] == 266.e (of order 33, degree 22, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 2.124020693772.12402069377
Analytic rank: 00
Dimension: 44
Relative dimension: 22 over Q(ζ3)\Q(\zeta_{3})
Coefficient field: Q(2,3)\Q(\sqrt{2}, \sqrt{-3})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x4+2x2+4 x^{4} + 2x^{2} + 4 Copy content Toggle raw display
Coefficient ring: Z[a1,a2,a3]\Z[a_1, a_2, a_3]
Coefficient ring index: 1 1
Twist minimal: yes
Sato-Tate group: SU(2)[C3]\mathrm{SU}(2)[C_{3}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,β2,β31,\beta_1,\beta_2,\beta_3 for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == qβ2q2β1q3+(β21)q4β2q5+β3q6+(β3+β2β1)q7q8β2q9+(β21)q10+(β2β1+1)q11++(β3+1)q99+O(q100) q - \beta_{2} q^{2} - \beta_1 q^{3} + ( - \beta_{2} - 1) q^{4} - \beta_{2} q^{5} + \beta_{3} q^{6} + (\beta_{3} + \beta_{2} - \beta_1) q^{7} - q^{8} - \beta_{2} q^{9} + ( - \beta_{2} - 1) q^{10} + (\beta_{2} - \beta_1 + 1) q^{11}+ \cdots + (\beta_{3} + 1) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q+2q22q4+2q52q74q8+2q92q10+2q11+2q142q168q172q18+2q194q20+4q222q23+8q25+4q28+8q29++4q99+O(q100) 4 q + 2 q^{2} - 2 q^{4} + 2 q^{5} - 2 q^{7} - 4 q^{8} + 2 q^{9} - 2 q^{10} + 2 q^{11} + 2 q^{14} - 2 q^{16} - 8 q^{17} - 2 q^{18} + 2 q^{19} - 4 q^{20} + 4 q^{22} - 2 q^{23} + 8 q^{25} + 4 q^{28} + 8 q^{29}+ \cdots + 4 q^{99}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x4+2x2+4 x^{4} + 2x^{2} + 4 : Copy content Toggle raw display

β1\beta_{1}== ν \nu Copy content Toggle raw display
β2\beta_{2}== (ν2)/2 ( \nu^{2} ) / 2 Copy content Toggle raw display
β3\beta_{3}== (ν3)/2 ( \nu^{3} ) / 2 Copy content Toggle raw display
ν\nu== β1 \beta_1 Copy content Toggle raw display
ν2\nu^{2}== 2β2 2\beta_{2} Copy content Toggle raw display
ν3\nu^{3}== 2β3 2\beta_{3} Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/266Z)×\left(\mathbb{Z}/266\mathbb{Z}\right)^\times.

nn 115115 211211
χ(n)\chi(n) β2\beta_{2} 11

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
39.1
0.707107 1.22474i
−0.707107 + 1.22474i
0.707107 + 1.22474i
−0.707107 1.22474i
0.500000 + 0.866025i −0.707107 + 1.22474i −0.500000 + 0.866025i 0.500000 + 0.866025i −1.41421 −2.62132 + 0.358719i −1.00000 0.500000 + 0.866025i −0.500000 + 0.866025i
39.2 0.500000 + 0.866025i 0.707107 1.22474i −0.500000 + 0.866025i 0.500000 + 0.866025i 1.41421 1.62132 2.09077i −1.00000 0.500000 + 0.866025i −0.500000 + 0.866025i
191.1 0.500000 0.866025i −0.707107 1.22474i −0.500000 0.866025i 0.500000 0.866025i −1.41421 −2.62132 0.358719i −1.00000 0.500000 0.866025i −0.500000 0.866025i
191.2 0.500000 0.866025i 0.707107 + 1.22474i −0.500000 0.866025i 0.500000 0.866025i 1.41421 1.62132 + 2.09077i −1.00000 0.500000 0.866025i −0.500000 0.866025i
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 266.2.e.c 4
7.c even 3 1 inner 266.2.e.c 4
7.c even 3 1 1862.2.a.i 2
7.d odd 6 1 1862.2.a.j 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
266.2.e.c 4 1.a even 1 1 trivial
266.2.e.c 4 7.c even 3 1 inner
1862.2.a.i 2 7.c even 3 1
1862.2.a.j 2 7.d odd 6 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T34+2T32+4 T_{3}^{4} + 2T_{3}^{2} + 4 acting on S2new(266,[χ])S_{2}^{\mathrm{new}}(266, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 (T2T+1)2 (T^{2} - T + 1)^{2} Copy content Toggle raw display
33 T4+2T2+4 T^{4} + 2T^{2} + 4 Copy content Toggle raw display
55 (T2T+1)2 (T^{2} - T + 1)^{2} Copy content Toggle raw display
77 T4+2T3++49 T^{4} + 2 T^{3} + \cdots + 49 Copy content Toggle raw display
1111 T42T3++1 T^{4} - 2 T^{3} + \cdots + 1 Copy content Toggle raw display
1313 (T22)2 (T^{2} - 2)^{2} Copy content Toggle raw display
1717 T4+8T3++64 T^{4} + 8 T^{3} + \cdots + 64 Copy content Toggle raw display
1919 (T2T+1)2 (T^{2} - T + 1)^{2} Copy content Toggle raw display
2323 T4+2T3++289 T^{4} + 2 T^{3} + \cdots + 289 Copy content Toggle raw display
2929 (T24T14)2 (T^{2} - 4 T - 14)^{2} Copy content Toggle raw display
3131 T4+8T3++196 T^{4} + 8 T^{3} + \cdots + 196 Copy content Toggle raw display
3737 T412T3++324 T^{4} - 12 T^{3} + \cdots + 324 Copy content Toggle raw display
4141 (T2+8T16)2 (T^{2} + 8 T - 16)^{2} Copy content Toggle raw display
4343 (T2+10T25)2 (T^{2} + 10 T - 25)^{2} Copy content Toggle raw display
4747 T4+2T3++289 T^{4} + 2 T^{3} + \cdots + 289 Copy content Toggle raw display
5353 T44T3++2116 T^{4} - 4 T^{3} + \cdots + 2116 Copy content Toggle raw display
5959 T4+4T3++4624 T^{4} + 4 T^{3} + \cdots + 4624 Copy content Toggle raw display
6161 T410T3++49 T^{4} - 10 T^{3} + \cdots + 49 Copy content Toggle raw display
6767 T420T3++8464 T^{4} - 20 T^{3} + \cdots + 8464 Copy content Toggle raw display
7171 (T212T14)2 (T^{2} - 12 T - 14)^{2} Copy content Toggle raw display
7373 T4+2T3++961 T^{4} + 2 T^{3} + \cdots + 961 Copy content Toggle raw display
7979 T48T3++196 T^{4} - 8 T^{3} + \cdots + 196 Copy content Toggle raw display
8383 (T2+18T+79)2 (T^{2} + 18 T + 79)^{2} Copy content Toggle raw display
8989 T4+16T3++1156 T^{4} + 16 T^{3} + \cdots + 1156 Copy content Toggle raw display
9797 (T+4)4 (T + 4)^{4} Copy content Toggle raw display
show more
show less