Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [266,2,Mod(39,266)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(266, base_ring=CyclotomicField(6))
chi = DirichletCharacter(H, H._module([4, 0]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("266.39");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | |||
Weight: | |||
Character orbit: | 266.e (of order , degree , minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | |
Analytic rank: | |
Dimension: | |
Relative dimension: | over |
Coefficient field: | 6.0.1783323.2 |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
|
Coefficient ring: | |
Coefficient ring index: | |
Twist minimal: | yes |
Sato-Tate group: |
-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the -expansion are expressed in terms of a basis for the coefficient ring described below. We also show the integral -expansion of the trace form.
Basis of coefficient ring in terms of a root of
:
Character values
We give the values of on generators for .
Embeddings
For each embedding of the coefficient field, the values are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | ||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
39.1 |
|
0.500000 | + | 0.866025i | −1.45611 | + | 2.52206i | −0.500000 | + | 0.866025i | 1.91223 | + | 3.31208i | −2.91223 | 2.58392 | − | 0.568650i | −1.00000 | −2.74054 | − | 4.74675i | −1.91223 | + | 3.31208i | ||||||||||||||||||||||
39.2 | 0.500000 | + | 0.866025i | −0.143231 | + | 0.248083i | −0.500000 | + | 0.866025i | −0.713538 | − | 1.23588i | −0.286462 | 1.53189 | + | 2.15715i | −1.00000 | 1.45897 | + | 2.52701i | 0.713538 | − | 1.23588i | |||||||||||||||||||||||
39.3 | 0.500000 | + | 0.866025i | 0.599346 | − | 1.03810i | −0.500000 | + | 0.866025i | −2.19869 | − | 3.80824i | 1.19869 | −2.11581 | − | 1.58850i | −1.00000 | 0.781570 | + | 1.35372i | 2.19869 | − | 3.80824i | |||||||||||||||||||||||
191.1 | 0.500000 | − | 0.866025i | −1.45611 | − | 2.52206i | −0.500000 | − | 0.866025i | 1.91223 | − | 3.31208i | −2.91223 | 2.58392 | + | 0.568650i | −1.00000 | −2.74054 | + | 4.74675i | −1.91223 | − | 3.31208i | |||||||||||||||||||||||
191.2 | 0.500000 | − | 0.866025i | −0.143231 | − | 0.248083i | −0.500000 | − | 0.866025i | −0.713538 | + | 1.23588i | −0.286462 | 1.53189 | − | 2.15715i | −1.00000 | 1.45897 | − | 2.52701i | 0.713538 | + | 1.23588i | |||||||||||||||||||||||
191.3 | 0.500000 | − | 0.866025i | 0.599346 | + | 1.03810i | −0.500000 | − | 0.866025i | −2.19869 | + | 3.80824i | 1.19869 | −2.11581 | + | 1.58850i | −1.00000 | 0.781570 | − | 1.35372i | 2.19869 | + | 3.80824i | |||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
7.c | even | 3 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 266.2.e.d | ✓ | 6 |
7.c | even | 3 | 1 | inner | 266.2.e.d | ✓ | 6 |
7.c | even | 3 | 1 | 1862.2.a.q | 3 | ||
7.d | odd | 6 | 1 | 1862.2.a.n | 3 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
266.2.e.d | ✓ | 6 | 1.a | even | 1 | 1 | trivial |
266.2.e.d | ✓ | 6 | 7.c | even | 3 | 1 | inner |
1862.2.a.n | 3 | 7.d | odd | 6 | 1 | ||
1862.2.a.q | 3 | 7.c | even | 3 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
acting on .