Properties

Label 266.2.e.d
Level 266266
Weight 22
Character orbit 266.e
Analytic conductor 2.1242.124
Analytic rank 00
Dimension 66
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [266,2,Mod(39,266)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(266, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([4, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("266.39");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 266=2719 266 = 2 \cdot 7 \cdot 19
Weight: k k == 2 2
Character orbit: [χ][\chi] == 266.e (of order 33, degree 22, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 2.124020693772.12402069377
Analytic rank: 00
Dimension: 66
Relative dimension: 33 over Q(ζ3)\Q(\zeta_{3})
Coefficient field: 6.0.1783323.2
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x6x5+5x42x3+19x212x+9 x^{6} - x^{5} + 5x^{4} - 2x^{3} + 19x^{2} - 12x + 9 Copy content Toggle raw display
Coefficient ring: Z[a1,a2,a3]\Z[a_1, a_2, a_3]
Coefficient ring index: 1 1
Twist minimal: yes
Sato-Tate group: SU(2)[C3]\mathrm{SU}(2)[C_{3}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,,β51,\beta_1,\ldots,\beta_{5} for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(β4+1)q2+(β4β2β1)q3β4q42β1q5+(β21)q6+(β5+β2+1)q7q8+(β5+β4+2β11)q9++(4β32β26)q99+O(q100) q + ( - \beta_{4} + 1) q^{2} + ( - \beta_{4} - \beta_{2} - \beta_1) q^{3} - \beta_{4} q^{4} - 2 \beta_1 q^{5} + ( - \beta_{2} - 1) q^{6} + ( - \beta_{5} + \beta_{2} + 1) q^{7} - q^{8} + ( - \beta_{5} + \beta_{4} + 2 \beta_1 - 1) q^{9}+ \cdots + (4 \beta_{3} - 2 \beta_{2} - 6) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 6q+3q22q33q42q54q6+4q76q8q9+2q102q12+12q13+2q1432q153q16+8q17+q183q19+4q2012q21+32q99+O(q100) 6 q + 3 q^{2} - 2 q^{3} - 3 q^{4} - 2 q^{5} - 4 q^{6} + 4 q^{7} - 6 q^{8} - q^{9} + 2 q^{10} - 2 q^{12} + 12 q^{13} + 2 q^{14} - 32 q^{15} - 3 q^{16} + 8 q^{17} + q^{18} - 3 q^{19} + 4 q^{20} - 12 q^{21}+ \cdots - 32 q^{99}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x6x5+5x42x3+19x212x+9 x^{6} - x^{5} + 5x^{4} - 2x^{3} + 19x^{2} - 12x + 9 : Copy content Toggle raw display

β1\beta_{1}== ν \nu Copy content Toggle raw display
β2\beta_{2}== (ν55ν4+25ν319ν2+12ν60)/83 ( \nu^{5} - 5\nu^{4} + 25\nu^{3} - 19\nu^{2} + 12\nu - 60 ) / 83 Copy content Toggle raw display
β3\beta_{3}== (4ν520ν4+17ν376ν2+48ν240)/83 ( 4\nu^{5} - 20\nu^{4} + 17\nu^{3} - 76\nu^{2} + 48\nu - 240 ) / 83 Copy content Toggle raw display
β4\beta_{4}== (20ν5+17ν485ν335ν2323ν+204)/249 ( -20\nu^{5} + 17\nu^{4} - 85\nu^{3} - 35\nu^{2} - 323\nu + 204 ) / 249 Copy content Toggle raw display
β5\beta_{5}== (16ν53ν468ν328ν2275ν36)/83 ( -16\nu^{5} - 3\nu^{4} - 68\nu^{3} - 28\nu^{2} - 275\nu - 36 ) / 83 Copy content Toggle raw display
ν\nu== β1 \beta_1 Copy content Toggle raw display
ν2\nu^{2}== β53β4β3 \beta_{5} - 3\beta_{4} - \beta_{3} Copy content Toggle raw display
ν3\nu^{3}== β3+4β2 -\beta_{3} + 4\beta_{2} Copy content Toggle raw display
ν4\nu^{4}== 5β5+12β4β112 -5\beta_{5} + 12\beta_{4} - \beta _1 - 12 Copy content Toggle raw display
ν5\nu^{5}== 6β5+3β4+6β317β217β1 -6\beta_{5} + 3\beta_{4} + 6\beta_{3} - 17\beta_{2} - 17\beta_1 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/266Z)×\left(\mathbb{Z}/266\mathbb{Z}\right)^\times.

nn 115115 211211
χ(n)\chi(n) 1+β4-1 + \beta_{4} 11

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
39.1
−0.956115 1.65604i
0.356769 + 0.617942i
1.09935 + 1.90412i
−0.956115 + 1.65604i
0.356769 0.617942i
1.09935 1.90412i
0.500000 + 0.866025i −1.45611 + 2.52206i −0.500000 + 0.866025i 1.91223 + 3.31208i −2.91223 2.58392 0.568650i −1.00000 −2.74054 4.74675i −1.91223 + 3.31208i
39.2 0.500000 + 0.866025i −0.143231 + 0.248083i −0.500000 + 0.866025i −0.713538 1.23588i −0.286462 1.53189 + 2.15715i −1.00000 1.45897 + 2.52701i 0.713538 1.23588i
39.3 0.500000 + 0.866025i 0.599346 1.03810i −0.500000 + 0.866025i −2.19869 3.80824i 1.19869 −2.11581 1.58850i −1.00000 0.781570 + 1.35372i 2.19869 3.80824i
191.1 0.500000 0.866025i −1.45611 2.52206i −0.500000 0.866025i 1.91223 3.31208i −2.91223 2.58392 + 0.568650i −1.00000 −2.74054 + 4.74675i −1.91223 3.31208i
191.2 0.500000 0.866025i −0.143231 0.248083i −0.500000 0.866025i −0.713538 + 1.23588i −0.286462 1.53189 2.15715i −1.00000 1.45897 2.52701i 0.713538 + 1.23588i
191.3 0.500000 0.866025i 0.599346 + 1.03810i −0.500000 0.866025i −2.19869 + 3.80824i 1.19869 −2.11581 + 1.58850i −1.00000 0.781570 1.35372i 2.19869 + 3.80824i
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 39.3
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 266.2.e.d 6
7.c even 3 1 inner 266.2.e.d 6
7.c even 3 1 1862.2.a.q 3
7.d odd 6 1 1862.2.a.n 3
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
266.2.e.d 6 1.a even 1 1 trivial
266.2.e.d 6 7.c even 3 1 inner
1862.2.a.n 3 7.d odd 6 1
1862.2.a.q 3 7.c even 3 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T36+2T35+7T344T33+11T32+3T3+1 T_{3}^{6} + 2T_{3}^{5} + 7T_{3}^{4} - 4T_{3}^{3} + 11T_{3}^{2} + 3T_{3} + 1 acting on S2new(266,[χ])S_{2}^{\mathrm{new}}(266, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 (T2T+1)3 (T^{2} - T + 1)^{3} Copy content Toggle raw display
33 T6+2T5++1 T^{6} + 2 T^{5} + \cdots + 1 Copy content Toggle raw display
55 T6+2T5++576 T^{6} + 2 T^{5} + \cdots + 576 Copy content Toggle raw display
77 T64T5++343 T^{6} - 4 T^{5} + \cdots + 343 Copy content Toggle raw display
1111 T6+20T4++576 T^{6} + 20 T^{4} + \cdots + 576 Copy content Toggle raw display
1313 (T36T2+7T1)2 (T^{3} - 6 T^{2} + 7 T - 1)^{2} Copy content Toggle raw display
1717 T68T5++9 T^{6} - 8 T^{5} + \cdots + 9 Copy content Toggle raw display
1919 (T2+T+1)3 (T^{2} + T + 1)^{3} Copy content Toggle raw display
2323 T6+6T5++21609 T^{6} + 6 T^{5} + \cdots + 21609 Copy content Toggle raw display
2929 (T38T2T+75)2 (T^{3} - 8 T^{2} - T + 75)^{2} Copy content Toggle raw display
3131 T6+4T5++1600 T^{6} + 4 T^{5} + \cdots + 1600 Copy content Toggle raw display
3737 T6+17T5++5041 T^{6} + 17 T^{5} + \cdots + 5041 Copy content Toggle raw display
4141 (T6)6 (T - 6)^{6} Copy content Toggle raw display
4343 (T38T2+4T+40)2 (T^{3} - 8 T^{2} + 4 T + 40)^{2} Copy content Toggle raw display
4747 T6+9T5++3249 T^{6} + 9 T^{5} + \cdots + 3249 Copy content Toggle raw display
5353 T6+10T5++15129 T^{6} + 10 T^{5} + \cdots + 15129 Copy content Toggle raw display
5959 T68T5++9 T^{6} - 8 T^{5} + \cdots + 9 Copy content Toggle raw display
6161 T6+4T5++23104 T^{6} + 4 T^{5} + \cdots + 23104 Copy content Toggle raw display
6767 T6+10T5++3286969 T^{6} + 10 T^{5} + \cdots + 3286969 Copy content Toggle raw display
7171 (T36T2++1128)2 (T^{3} - 6 T^{2} + \cdots + 1128)^{2} Copy content Toggle raw display
7373 T6+4T5++3367225 T^{6} + 4 T^{5} + \cdots + 3367225 Copy content Toggle raw display
7979 T6+26T5++153664 T^{6} + 26 T^{5} + \cdots + 153664 Copy content Toggle raw display
8383 (T3+20T2++72)2 (T^{3} + 20 T^{2} + \cdots + 72)^{2} Copy content Toggle raw display
8989 T6+180T4++419904 T^{6} + 180 T^{4} + \cdots + 419904 Copy content Toggle raw display
9797 (T3+8T2+1336)2 (T^{3} + 8 T^{2} + \cdots - 1336)^{2} Copy content Toggle raw display
show more
show less