Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [266,2,Mod(11,266)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(266, base_ring=CyclotomicField(6))
chi = DirichletCharacter(H, H._module([4, 4]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("266.11");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | |||
Weight: | |||
Character orbit: | 266.g (of order , degree , minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | |
Analytic rank: | |
Dimension: | |
Relative dimension: | over |
Coefficient field: | |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
|
Coefficient ring: | |
Coefficient ring index: | |
Twist minimal: | yes |
Sato-Tate group: |
-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the -expansion are expressed in terms of a basis for the coefficient ring described below. We also show the integral -expansion of the trace form.
Basis of coefficient ring in terms of a root of
:
Character values
We give the values of on generators for .
Embeddings
For each embedding of the coefficient field, the values are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
11.1 |
|
−1.00000 | −1.13386 | − | 1.96390i | 1.00000 | 2.46576 | 1.13386 | + | 1.96390i | 2.58723 | + | 0.553408i | −1.00000 | −1.07127 | + | 1.85549i | −2.46576 | ||||||||||||||||||||||||||||||||||||||||||||||
11.2 | −1.00000 | −0.972618 | − | 1.68462i | 1.00000 | −1.58157 | 0.972618 | + | 1.68462i | 0.438874 | − | 2.60910i | −1.00000 | −0.391973 | + | 0.678918i | 1.58157 | |||||||||||||||||||||||||||||||||||||||||||||||
11.3 | −1.00000 | −0.0773345 | − | 0.133947i | 1.00000 | −3.74572 | 0.0773345 | + | 0.133947i | 1.43718 | + | 2.22138i | −1.00000 | 1.48804 | − | 2.57736i | 3.74572 | |||||||||||||||||||||||||||||||||||||||||||||||
11.4 | −1.00000 | 0.225896 | + | 0.391263i | 1.00000 | −0.629145 | −0.225896 | − | 0.391263i | −1.64717 | − | 2.07046i | −1.00000 | 1.39794 | − | 2.42131i | 0.629145 | |||||||||||||||||||||||||||||||||||||||||||||||
11.5 | −1.00000 | 0.595126 | + | 1.03079i | 1.00000 | 2.68173 | −0.595126 | − | 1.03079i | 0.325659 | + | 2.62563i | −1.00000 | 0.791651 | − | 1.37118i | −2.68173 | |||||||||||||||||||||||||||||||||||||||||||||||
11.6 | −1.00000 | 1.36279 | + | 2.36042i | 1.00000 | −2.19106 | −1.36279 | − | 2.36042i | −2.64177 | + | 0.145170i | −1.00000 | −2.21439 | + | 3.83544i | 2.19106 | |||||||||||||||||||||||||||||||||||||||||||||||
121.1 | −1.00000 | −1.13386 | + | 1.96390i | 1.00000 | 2.46576 | 1.13386 | − | 1.96390i | 2.58723 | − | 0.553408i | −1.00000 | −1.07127 | − | 1.85549i | −2.46576 | |||||||||||||||||||||||||||||||||||||||||||||||
121.2 | −1.00000 | −0.972618 | + | 1.68462i | 1.00000 | −1.58157 | 0.972618 | − | 1.68462i | 0.438874 | + | 2.60910i | −1.00000 | −0.391973 | − | 0.678918i | 1.58157 | |||||||||||||||||||||||||||||||||||||||||||||||
121.3 | −1.00000 | −0.0773345 | + | 0.133947i | 1.00000 | −3.74572 | 0.0773345 | − | 0.133947i | 1.43718 | − | 2.22138i | −1.00000 | 1.48804 | + | 2.57736i | 3.74572 | |||||||||||||||||||||||||||||||||||||||||||||||
121.4 | −1.00000 | 0.225896 | − | 0.391263i | 1.00000 | −0.629145 | −0.225896 | + | 0.391263i | −1.64717 | + | 2.07046i | −1.00000 | 1.39794 | + | 2.42131i | 0.629145 | |||||||||||||||||||||||||||||||||||||||||||||||
121.5 | −1.00000 | 0.595126 | − | 1.03079i | 1.00000 | 2.68173 | −0.595126 | + | 1.03079i | 0.325659 | − | 2.62563i | −1.00000 | 0.791651 | + | 1.37118i | −2.68173 | |||||||||||||||||||||||||||||||||||||||||||||||
121.6 | −1.00000 | 1.36279 | − | 2.36042i | 1.00000 | −2.19106 | −1.36279 | + | 2.36042i | −2.64177 | − | 0.145170i | −1.00000 | −2.21439 | − | 3.83544i | 2.19106 | |||||||||||||||||||||||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
133.h | even | 3 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 266.2.g.c | ✓ | 12 |
7.c | even | 3 | 1 | 266.2.h.c | yes | 12 | |
19.c | even | 3 | 1 | 266.2.h.c | yes | 12 | |
133.h | even | 3 | 1 | inner | 266.2.g.c | ✓ | 12 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
266.2.g.c | ✓ | 12 | 1.a | even | 1 | 1 | trivial |
266.2.g.c | ✓ | 12 | 133.h | even | 3 | 1 | inner |
266.2.h.c | yes | 12 | 7.c | even | 3 | 1 | |
266.2.h.c | yes | 12 | 19.c | even | 3 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
acting on .