Properties

Label 266.2.g.c
Level 266266
Weight 22
Character orbit 266.g
Analytic conductor 2.1242.124
Analytic rank 00
Dimension 1212
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [266,2,Mod(11,266)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(266, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([4, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("266.11");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 266=2719 266 = 2 \cdot 7 \cdot 19
Weight: k k == 2 2
Character orbit: [χ][\chi] == 266.g (of order 33, degree 22, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 2.124020693772.12402069377
Analytic rank: 00
Dimension: 1212
Relative dimension: 66 over Q(ζ3)\Q(\zeta_{3})
Coefficient field: Q[x]/(x12+)\mathbb{Q}[x]/(x^{12} + \cdots)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x12+9x102x9+65x85x7+143x6+88x5+243x4+66x3+32x24x+1 x^{12} + 9x^{10} - 2x^{9} + 65x^{8} - 5x^{7} + 143x^{6} + 88x^{5} + 243x^{4} + 66x^{3} + 32x^{2} - 4x + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a11]\Z[a_1, \ldots, a_{11}]
Coefficient ring index: 3 3
Twist minimal: yes
Sato-Tate group: SU(2)[C3]\mathrm{SU}(2)[C_{3}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,,β111,\beta_1,\ldots,\beta_{11} for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == qq2β1q3+q4+β8q5+β1q6+(β6+β3+β1)q7q8+β11q9β8q10+(β11+β7)q11β1q12++(2β9+β7β6+9)q99+O(q100) q - q^{2} - \beta_1 q^{3} + q^{4} + \beta_{8} q^{5} + \beta_1 q^{6} + ( - \beta_{6} + \beta_{3} + \beta_1) q^{7} - q^{8} + \beta_{11} q^{9} - \beta_{8} q^{10} + (\beta_{11} + \beta_{7}) q^{11} - \beta_1 q^{12}+ \cdots + ( - 2 \beta_{9} + \beta_{7} - \beta_{6} + \cdots - 9) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 12q12q2+12q46q5+q712q8+6q10q115q13q145q15+12q165q196q2025q21+q22+10q23+10q25+5q266q27+46q99+O(q100) 12 q - 12 q^{2} + 12 q^{4} - 6 q^{5} + q^{7} - 12 q^{8} + 6 q^{10} - q^{11} - 5 q^{13} - q^{14} - 5 q^{15} + 12 q^{16} - 5 q^{19} - 6 q^{20} - 25 q^{21} + q^{22} + 10 q^{23} + 10 q^{25} + 5 q^{26} - 6 q^{27}+ \cdots - 46 q^{99}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x12+9x102x9+65x85x7+143x6+88x5+243x4+66x3+32x24x+1 x^{12} + 9x^{10} - 2x^{9} + 65x^{8} - 5x^{7} + 143x^{6} + 88x^{5} + 243x^{4} + 66x^{3} + 32x^{2} - 4x + 1 : Copy content Toggle raw display

β1\beta_{1}== ν \nu Copy content Toggle raw display
β2\beta_{2}== (4255408ν111606511ν1038600176ν91200471ν8274852022ν7++1639841567)/552513861 ( - 4255408 \nu^{11} - 1606511 \nu^{10} - 38600176 \nu^{9} - 1200471 \nu^{8} - 274852022 \nu^{7} + \cdots + 1639841567 ) / 552513861 Copy content Toggle raw display
β3\beta_{3}== (17700016ν11+4255408ν10157693633ν9+74000208ν81149300569ν7++70943051)/552513861 ( - 17700016 \nu^{11} + 4255408 \nu^{10} - 157693633 \nu^{9} + 74000208 \nu^{8} - 1149300569 \nu^{7} + \cdots + 70943051 ) / 552513861 Copy content Toggle raw display
β4\beta_{4}== (27266096ν11+17657978ν10240016319ν9+194180298ν8+787604984)/552513861 ( - 27266096 \nu^{11} + 17657978 \nu^{10} - 240016319 \nu^{9} + 194180298 \nu^{8} + \cdots - 787604984 ) / 552513861 Copy content Toggle raw display
β5\beta_{5}== (70943051ν1117700016ν10634232051ν915807531ν8++278316325)/552513861 ( - 70943051 \nu^{11} - 17700016 \nu^{10} - 634232051 \nu^{9} - 15807531 \nu^{8} + \cdots + 278316325 ) / 552513861 Copy content Toggle raw display
β6\beta_{6}== (71349091ν1119751018ν10668162251ν929627781ν8+343942336)/552513861 ( - 71349091 \nu^{11} - 19751018 \nu^{10} - 668162251 \nu^{9} - 29627781 \nu^{8} + \cdots - 343942336 ) / 552513861 Copy content Toggle raw display
β7\beta_{7}== (90694069ν1143720448ν10806558014ν9216843036ν8++349665416)/552513861 ( - 90694069 \nu^{11} - 43720448 \nu^{10} - 806558014 \nu^{9} - 216843036 \nu^{8} + \cdots + 349665416 ) / 552513861 Copy content Toggle raw display
β8\beta_{8}== (30918496ν116556843ν10+275689447ν9122933523ν8+2007118289ν7+664852274)/184171287 ( 30918496 \nu^{11} - 6556843 \nu^{10} + 275689447 \nu^{9} - 122933523 \nu^{8} + 2007118289 \nu^{7} + \cdots - 664852274 ) / 184171287 Copy content Toggle raw display
β9\beta_{9}== (136024183ν11+33492017ν10+1220152639ν9+32164089ν8++534950464)/552513861 ( 136024183 \nu^{11} + 33492017 \nu^{10} + 1220152639 \nu^{9} + 32164089 \nu^{8} + \cdots + 534950464 ) / 552513861 Copy content Toggle raw display
β10\beta_{10}== (163742032ν11+47017114ν101465315834ν9+739826346ν8++1297645907)/552513861 ( - 163742032 \nu^{11} + 47017114 \nu^{10} - 1465315834 \nu^{9} + 739826346 \nu^{8} + \cdots + 1297645907 ) / 552513861 Copy content Toggle raw display
β11\beta_{11}== (70943051ν1117700016ν10634232051ν915807531ν8++278316325)/184171287 ( - 70943051 \nu^{11} - 17700016 \nu^{10} - 634232051 \nu^{9} - 15807531 \nu^{8} + \cdots + 278316325 ) / 184171287 Copy content Toggle raw display
ν\nu== β1 \beta_1 Copy content Toggle raw display
ν2\nu^{2}== β113β5 \beta_{11} - 3\beta_{5} Copy content Toggle raw display
ν3\nu^{3}== β85β3β25β1 -\beta_{8} - 5\beta_{3} - \beta_{2} - 5\beta_1 Copy content Toggle raw display
ν4\nu^{4}== 7β11β9+β7+17β5+β4+7β2+2β117 -7\beta_{11} - \beta_{9} + \beta_{7} + 17\beta_{5} + \beta_{4} + 7\beta_{2} + 2\beta _1 - 17 Copy content Toggle raw display
ν5\nu^{5}== 10β11+β10+8β9+8β8+β615β5+30β3+8 10\beta_{11} + \beta_{10} + 8\beta_{9} + 8\beta_{8} + \beta_{6} - 15\beta_{5} + 30\beta_{3} + 8 Copy content Toggle raw display
ν6\nu^{6}== 10β89β427β348β227β1+97 -10\beta_{8} - 9\beta_{4} - 27\beta_{3} - 48\beta_{2} - 27\beta _1 + 97 Copy content Toggle raw display
ν7\nu^{7}== 85β1157β9+β79β6+148β5+β4+85β2+193β1148 -85\beta_{11} - 57\beta_{9} + \beta_{7} - 9\beta_{6} + 148\beta_{5} + \beta_{4} + 85\beta_{2} + 193\beta _1 - 148 Copy content Toggle raw display
ν8\nu^{8}== 335β11+β10+86β9+86β865β7+β6713β5+261β3+86 335\beta_{11} + \beta_{10} + 86\beta_{9} + 86\beta_{8} - 65\beta_{7} + \beta_{6} - 713\beta_{5} + 261\beta_{3} + 86 Copy content Toggle raw display
ν9\nu^{9}== 65β10400β822β41297β3682β21297β1+868 -65\beta_{10} - 400\beta_{8} - 22\beta_{4} - 1297\beta_{3} - 682\beta_{2} - 1297\beta _1 + 868 Copy content Toggle raw display
ν10\nu^{10}== 2379β11704β9+443β722β6+4930β5+443β4+4930 - 2379 \beta_{11} - 704 \beta_{9} + 443 \beta_{7} - 22 \beta_{6} + 4930 \beta_{5} + 443 \beta_{4} + \cdots - 4930 Copy content Toggle raw display
ν11\nu^{11}== 5315β11+443β10+2822β9+2822β8283β7+443β6++2822 5315 \beta_{11} + 443 \beta_{10} + 2822 \beta_{9} + 2822 \beta_{8} - 283 \beta_{7} + 443 \beta_{6} + \cdots + 2822 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/266Z)×\left(\mathbb{Z}/266\mathbb{Z}\right)^\times.

nn 115115 211211
χ(n)\chi(n) 1+β5-1 + \beta_{5} 1+β5-1 + \beta_{5}

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
11.1
1.13386 + 1.96390i
0.972618 + 1.68462i
0.0773345 + 0.133947i
−0.225896 0.391263i
−0.595126 1.03079i
−1.36279 2.36042i
1.13386 1.96390i
0.972618 1.68462i
0.0773345 0.133947i
−0.225896 + 0.391263i
−0.595126 + 1.03079i
−1.36279 + 2.36042i
−1.00000 −1.13386 1.96390i 1.00000 2.46576 1.13386 + 1.96390i 2.58723 + 0.553408i −1.00000 −1.07127 + 1.85549i −2.46576
11.2 −1.00000 −0.972618 1.68462i 1.00000 −1.58157 0.972618 + 1.68462i 0.438874 2.60910i −1.00000 −0.391973 + 0.678918i 1.58157
11.3 −1.00000 −0.0773345 0.133947i 1.00000 −3.74572 0.0773345 + 0.133947i 1.43718 + 2.22138i −1.00000 1.48804 2.57736i 3.74572
11.4 −1.00000 0.225896 + 0.391263i 1.00000 −0.629145 −0.225896 0.391263i −1.64717 2.07046i −1.00000 1.39794 2.42131i 0.629145
11.5 −1.00000 0.595126 + 1.03079i 1.00000 2.68173 −0.595126 1.03079i 0.325659 + 2.62563i −1.00000 0.791651 1.37118i −2.68173
11.6 −1.00000 1.36279 + 2.36042i 1.00000 −2.19106 −1.36279 2.36042i −2.64177 + 0.145170i −1.00000 −2.21439 + 3.83544i 2.19106
121.1 −1.00000 −1.13386 + 1.96390i 1.00000 2.46576 1.13386 1.96390i 2.58723 0.553408i −1.00000 −1.07127 1.85549i −2.46576
121.2 −1.00000 −0.972618 + 1.68462i 1.00000 −1.58157 0.972618 1.68462i 0.438874 + 2.60910i −1.00000 −0.391973 0.678918i 1.58157
121.3 −1.00000 −0.0773345 + 0.133947i 1.00000 −3.74572 0.0773345 0.133947i 1.43718 2.22138i −1.00000 1.48804 + 2.57736i 3.74572
121.4 −1.00000 0.225896 0.391263i 1.00000 −0.629145 −0.225896 + 0.391263i −1.64717 + 2.07046i −1.00000 1.39794 + 2.42131i 0.629145
121.5 −1.00000 0.595126 1.03079i 1.00000 2.68173 −0.595126 + 1.03079i 0.325659 2.62563i −1.00000 0.791651 + 1.37118i −2.68173
121.6 −1.00000 1.36279 2.36042i 1.00000 −2.19106 −1.36279 + 2.36042i −2.64177 0.145170i −1.00000 −2.21439 3.83544i 2.19106
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 11.6
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
133.h even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 266.2.g.c 12
7.c even 3 1 266.2.h.c yes 12
19.c even 3 1 266.2.h.c yes 12
133.h even 3 1 inner 266.2.g.c 12
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
266.2.g.c 12 1.a even 1 1 trivial
266.2.g.c 12 133.h even 3 1 inner
266.2.h.c yes 12 7.c even 3 1
266.2.h.c yes 12 19.c even 3 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T312+9T310+2T39+65T38+5T37+143T3688T35++1 T_{3}^{12} + 9 T_{3}^{10} + 2 T_{3}^{9} + 65 T_{3}^{8} + 5 T_{3}^{7} + 143 T_{3}^{6} - 88 T_{3}^{5} + \cdots + 1 acting on S2new(266,[χ])S_{2}^{\mathrm{new}}(266, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 (T+1)12 (T + 1)^{12} Copy content Toggle raw display
33 T12+9T10++1 T^{12} + 9 T^{10} + \cdots + 1 Copy content Toggle raw display
55 (T6+3T513T4++54)2 (T^{6} + 3 T^{5} - 13 T^{4} + \cdots + 54)^{2} Copy content Toggle raw display
77 T12T11++117649 T^{12} - T^{11} + \cdots + 117649 Copy content Toggle raw display
1111 T12+T11++21609 T^{12} + T^{11} + \cdots + 21609 Copy content Toggle raw display
1313 T12+5T11++2211169 T^{12} + 5 T^{11} + \cdots + 2211169 Copy content Toggle raw display
1717 T12+34T10++9 T^{12} + 34 T^{10} + \cdots + 9 Copy content Toggle raw display
1919 T12+5T11++47045881 T^{12} + 5 T^{11} + \cdots + 47045881 Copy content Toggle raw display
2323 T1210T11++59397849 T^{12} - 10 T^{11} + \cdots + 59397849 Copy content Toggle raw display
2929 T123T11++34292736 T^{12} - 3 T^{11} + \cdots + 34292736 Copy content Toggle raw display
3131 T12T11++2401 T^{12} - T^{11} + \cdots + 2401 Copy content Toggle raw display
3737 T125T11++32867289 T^{12} - 5 T^{11} + \cdots + 32867289 Copy content Toggle raw display
4141 T12+T11++998001 T^{12} + T^{11} + \cdots + 998001 Copy content Toggle raw display
4343 T12+102T10++16556761 T^{12} + 102 T^{10} + \cdots + 16556761 Copy content Toggle raw display
4747 T12++2797034769 T^{12} + \cdots + 2797034769 Copy content Toggle raw display
5353 (T6+6T5105T4+18)2 (T^{6} + 6 T^{5} - 105 T^{4} + \cdots - 18)^{2} Copy content Toggle raw display
5959 T12++27107317449 T^{12} + \cdots + 27107317449 Copy content Toggle raw display
6161 T124T11++18983449 T^{12} - 4 T^{11} + \cdots + 18983449 Copy content Toggle raw display
6767 (T67T5++419504)2 (T^{6} - 7 T^{5} + \cdots + 419504)^{2} Copy content Toggle raw display
7171 T12++9814666761 T^{12} + \cdots + 9814666761 Copy content Toggle raw display
7373 T12++78928969249 T^{12} + \cdots + 78928969249 Copy content Toggle raw display
7979 (T6+22T5++208208)2 (T^{6} + 22 T^{5} + \cdots + 208208)^{2} Copy content Toggle raw display
8383 (T6+2T5++160524)2 (T^{6} + 2 T^{5} + \cdots + 160524)^{2} Copy content Toggle raw display
8989 T122T11++35721 T^{12} - 2 T^{11} + \cdots + 35721 Copy content Toggle raw display
9797 T12++572501329 T^{12} + \cdots + 572501329 Copy content Toggle raw display
show more
show less