Properties

Label 2695.1.ck.c.2144.1
Level $2695$
Weight $1$
Character 2695.2144
Analytic conductor $1.345$
Analytic rank $0$
Dimension $24$
Projective image $D_{42}$
CM discriminant -55
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2695,1,Mod(109,2695)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2695, base_ring=CyclotomicField(42))
 
chi = DirichletCharacter(H, H._module([21, 40, 21]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2695.109");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2695 = 5 \cdot 7^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 2695.ck (of order \(42\), degree \(12\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.34498020905\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(2\) over \(\Q(\zeta_{42})\)
Coefficient field: \(\Q(\zeta_{84})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{24} + x^{22} - x^{18} - x^{16} + x^{12} - x^{8} - x^{6} + x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{42}\)
Projective field: Galois closure of \(\mathbb{Q}[x]/(x^{42} - \cdots)\)

Embedding invariants

Embedding label 2144.1
Root \(-0.294755 + 0.955573i\) of defining polynomial
Character \(\chi\) \(=\) 2695.2144
Dual form 2695.1.ck.c.494.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.53825 + 1.04876i) q^{2} +(0.900969 - 2.29563i) q^{4} +(-0.955573 - 0.294755i) q^{5} +(-0.433884 - 0.900969i) q^{7} +(0.607374 + 2.66108i) q^{8} +(0.0747301 - 0.997204i) q^{9} +O(q^{10})\) \(q+(-1.53825 + 1.04876i) q^{2} +(0.900969 - 2.29563i) q^{4} +(-0.955573 - 0.294755i) q^{5} +(-0.433884 - 0.900969i) q^{7} +(0.607374 + 2.66108i) q^{8} +(0.0747301 - 0.997204i) q^{9} +(1.77904 - 0.548760i) q^{10} +(-0.0747301 - 0.997204i) q^{11} +(-1.79690 - 0.865341i) q^{13} +(1.61232 + 0.930874i) q^{14} +(-1.91734 - 1.77904i) q^{16} +(1.92808 + 0.290611i) q^{17} +(0.930874 + 1.61232i) q^{18} +(-1.53759 + 1.92808i) q^{20} +(1.16078 + 1.45557i) q^{22} +(0.826239 + 0.563320i) q^{25} +(3.67161 - 0.553406i) q^{26} +(-2.45921 + 0.184292i) q^{28} +(-0.500000 - 0.866025i) q^{31} +(2.11610 + 0.318951i) q^{32} +(-3.27064 + 1.57506i) q^{34} +(0.149042 + 0.988831i) q^{35} +(-2.22188 - 1.07000i) q^{36} +(0.203977 - 2.72188i) q^{40} +(0.250701 - 1.09839i) q^{43} +(-2.35654 - 0.726897i) q^{44} +(-0.365341 + 0.930874i) q^{45} +(-0.623490 + 0.781831i) q^{49} -1.86175 q^{50} +(-3.60545 + 3.34537i) q^{52} +(-0.222521 + 0.974928i) q^{55} +(2.13402 - 1.70182i) q^{56} +(0.142820 - 0.0440542i) q^{59} +(1.67738 + 0.807782i) q^{62} +(-0.930874 + 0.365341i) q^{63} +(-1.23305 + 0.593806i) q^{64} +(1.46200 + 1.35654i) q^{65} +(2.40427 - 4.16432i) q^{68} +(-1.26631 - 1.36476i) q^{70} +(0.455573 + 0.571270i) q^{71} +(2.69903 - 0.406813i) q^{72} +(-1.12397 - 0.766310i) q^{73} +(-0.866025 + 0.500000i) q^{77} +(1.30778 + 2.26514i) q^{80} +(-0.988831 - 0.149042i) q^{81} +(-1.56052 + 0.751509i) q^{83} +(-1.75676 - 0.846011i) q^{85} +(0.766310 + 1.95253i) q^{86} +(2.60825 - 0.804539i) q^{88} +(-0.123490 + 1.64786i) q^{89} +(-0.414278 - 1.81507i) q^{90} +1.99441i q^{91} +(0.139129 - 1.85654i) q^{98} -1.00000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + 4 q^{4} - 2 q^{5} + 2 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 24 q + 4 q^{4} - 2 q^{5} + 2 q^{9} - 2 q^{11} - 6 q^{14} - 26 q^{16} + 8 q^{20} + 2 q^{25} + 6 q^{26} - 12 q^{31} - 14 q^{34} - 8 q^{36} - 18 q^{44} - 2 q^{45} + 4 q^{49} - 4 q^{55} + 14 q^{56} - 2 q^{59} - 10 q^{64} - 6 q^{70} - 10 q^{71} + 12 q^{80} + 2 q^{81} - 6 q^{86} + 16 q^{89} - 24 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2695\mathbb{Z}\right)^\times\).

\(n\) \(981\) \(1816\) \(2157\)
\(\chi(n)\) \(-1\) \(e\left(\frac{16}{21}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.53825 + 1.04876i −1.53825 + 1.04876i −0.563320 + 0.826239i \(0.690476\pi\)
−0.974928 + 0.222521i \(0.928571\pi\)
\(3\) 0 0 0.733052 0.680173i \(-0.238095\pi\)
−0.733052 + 0.680173i \(0.761905\pi\)
\(4\) 0.900969 2.29563i 0.900969 2.29563i
\(5\) −0.955573 0.294755i −0.955573 0.294755i
\(6\) 0 0
\(7\) −0.433884 0.900969i −0.433884 0.900969i
\(8\) 0.607374 + 2.66108i 0.607374 + 2.66108i
\(9\) 0.0747301 0.997204i 0.0747301 0.997204i
\(10\) 1.77904 0.548760i 1.77904 0.548760i
\(11\) −0.0747301 0.997204i −0.0747301 0.997204i
\(12\) 0 0
\(13\) −1.79690 0.865341i −1.79690 0.865341i −0.930874 0.365341i \(-0.880952\pi\)
−0.866025 0.500000i \(-0.833333\pi\)
\(14\) 1.61232 + 0.930874i 1.61232 + 0.930874i
\(15\) 0 0
\(16\) −1.91734 1.77904i −1.91734 1.77904i
\(17\) 1.92808 + 0.290611i 1.92808 + 0.290611i 0.997204 0.0747301i \(-0.0238095\pi\)
0.930874 + 0.365341i \(0.119048\pi\)
\(18\) 0.930874 + 1.61232i 0.930874 + 1.61232i
\(19\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(20\) −1.53759 + 1.92808i −1.53759 + 1.92808i
\(21\) 0 0
\(22\) 1.16078 + 1.45557i 1.16078 + 1.45557i
\(23\) 0 0 0.988831 0.149042i \(-0.0476190\pi\)
−0.988831 + 0.149042i \(0.952381\pi\)
\(24\) 0 0
\(25\) 0.826239 + 0.563320i 0.826239 + 0.563320i
\(26\) 3.67161 0.553406i 3.67161 0.553406i
\(27\) 0 0
\(28\) −2.45921 + 0.184292i −2.45921 + 0.184292i
\(29\) 0 0 0.623490 0.781831i \(-0.285714\pi\)
−0.623490 + 0.781831i \(0.714286\pi\)
\(30\) 0 0
\(31\) −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i \(-0.333333\pi\)
−1.00000 \(\pi\)
\(32\) 2.11610 + 0.318951i 2.11610 + 0.318951i
\(33\) 0 0
\(34\) −3.27064 + 1.57506i −3.27064 + 1.57506i
\(35\) 0.149042 + 0.988831i 0.149042 + 0.988831i
\(36\) −2.22188 1.07000i −2.22188 1.07000i
\(37\) 0 0 −0.365341 0.930874i \(-0.619048\pi\)
0.365341 + 0.930874i \(0.380952\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0.203977 2.72188i 0.203977 2.72188i
\(41\) 0 0 −0.222521 0.974928i \(-0.571429\pi\)
0.222521 + 0.974928i \(0.428571\pi\)
\(42\) 0 0
\(43\) 0.250701 1.09839i 0.250701 1.09839i −0.680173 0.733052i \(-0.738095\pi\)
0.930874 0.365341i \(-0.119048\pi\)
\(44\) −2.35654 0.726897i −2.35654 0.726897i
\(45\) −0.365341 + 0.930874i −0.365341 + 0.930874i
\(46\) 0 0
\(47\) 0 0 0.826239 0.563320i \(-0.190476\pi\)
−0.826239 + 0.563320i \(0.809524\pi\)
\(48\) 0 0
\(49\) −0.623490 + 0.781831i −0.623490 + 0.781831i
\(50\) −1.86175 −1.86175
\(51\) 0 0
\(52\) −3.60545 + 3.34537i −3.60545 + 3.34537i
\(53\) 0 0 0.365341 0.930874i \(-0.380952\pi\)
−0.365341 + 0.930874i \(0.619048\pi\)
\(54\) 0 0
\(55\) −0.222521 + 0.974928i −0.222521 + 0.974928i
\(56\) 2.13402 1.70182i 2.13402 1.70182i
\(57\) 0 0
\(58\) 0 0
\(59\) 0.142820 0.0440542i 0.142820 0.0440542i −0.222521 0.974928i \(-0.571429\pi\)
0.365341 + 0.930874i \(0.380952\pi\)
\(60\) 0 0
\(61\) 0 0 −0.365341 0.930874i \(-0.619048\pi\)
0.365341 + 0.930874i \(0.380952\pi\)
\(62\) 1.67738 + 0.807782i 1.67738 + 0.807782i
\(63\) −0.930874 + 0.365341i −0.930874 + 0.365341i
\(64\) −1.23305 + 0.593806i −1.23305 + 0.593806i
\(65\) 1.46200 + 1.35654i 1.46200 + 1.35654i
\(66\) 0 0
\(67\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(68\) 2.40427 4.16432i 2.40427 4.16432i
\(69\) 0 0
\(70\) −1.26631 1.36476i −1.26631 1.36476i
\(71\) 0.455573 + 0.571270i 0.455573 + 0.571270i 0.955573 0.294755i \(-0.0952381\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(72\) 2.69903 0.406813i 2.69903 0.406813i
\(73\) −1.12397 0.766310i −1.12397 0.766310i −0.149042 0.988831i \(-0.547619\pi\)
−0.974928 + 0.222521i \(0.928571\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(78\) 0 0
\(79\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(80\) 1.30778 + 2.26514i 1.30778 + 2.26514i
\(81\) −0.988831 0.149042i −0.988831 0.149042i
\(82\) 0 0
\(83\) −1.56052 + 0.751509i −1.56052 + 0.751509i −0.997204 0.0747301i \(-0.976190\pi\)
−0.563320 + 0.826239i \(0.690476\pi\)
\(84\) 0 0
\(85\) −1.75676 0.846011i −1.75676 0.846011i
\(86\) 0.766310 + 1.95253i 0.766310 + 1.95253i
\(87\) 0 0
\(88\) 2.60825 0.804539i 2.60825 0.804539i
\(89\) −0.123490 + 1.64786i −0.123490 + 1.64786i 0.500000 + 0.866025i \(0.333333\pi\)
−0.623490 + 0.781831i \(0.714286\pi\)
\(90\) −0.414278 1.81507i −0.414278 1.81507i
\(91\) 1.99441i 1.99441i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(98\) 0.139129 1.85654i 0.139129 1.85654i
\(99\) −1.00000 −1.00000
\(100\) 2.03759 1.38921i 2.03759 1.38921i
\(101\) 0 0 0.733052 0.680173i \(-0.238095\pi\)
−0.733052 + 0.680173i \(0.761905\pi\)
\(102\) 0 0
\(103\) 0 0 −0.955573 0.294755i \(-0.904762\pi\)
0.955573 + 0.294755i \(0.0952381\pi\)
\(104\) 1.21135 5.30728i 1.21135 5.30728i
\(105\) 0 0
\(106\) 0 0
\(107\) 0.116853 1.55929i 0.116853 1.55929i −0.563320 0.826239i \(-0.690476\pi\)
0.680173 0.733052i \(-0.261905\pi\)
\(108\) 0 0
\(109\) 0 0 −0.0747301 0.997204i \(-0.523810\pi\)
0.0747301 + 0.997204i \(0.476190\pi\)
\(110\) −0.680173 1.73305i −0.680173 1.73305i
\(111\) 0 0
\(112\) −0.770951 + 2.49936i −0.770951 + 2.49936i
\(113\) 0 0 0.900969 0.433884i \(-0.142857\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) −0.997204 + 1.72721i −0.997204 + 1.72721i
\(118\) −0.173490 + 0.217550i −0.173490 + 0.217550i
\(119\) −0.574730 1.86323i −0.574730 1.86323i
\(120\) 0 0
\(121\) −0.988831 + 0.149042i −0.988831 + 0.149042i
\(122\) 0 0
\(123\) 0 0
\(124\) −2.43856 + 0.367554i −2.43856 + 0.367554i
\(125\) −0.623490 0.781831i −0.623490 0.781831i
\(126\) 1.04876 1.53825i 1.04876 1.53825i
\(127\) −0.974928 + 1.22252i −0.974928 + 1.22252i 1.00000i \(0.5\pi\)
−0.974928 + 0.222521i \(0.928571\pi\)
\(128\) 0.203977 0.353298i 0.203977 0.353298i
\(129\) 0 0
\(130\) −3.67161 0.553406i −3.67161 0.553406i
\(131\) 0 0 −0.733052 0.680173i \(-0.761905\pi\)
0.733052 + 0.680173i \(0.238095\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) 0.397726 + 5.30728i 0.397726 + 5.30728i
\(137\) 0 0 0.955573 0.294755i \(-0.0952381\pi\)
−0.955573 + 0.294755i \(0.904762\pi\)
\(138\) 0 0
\(139\) 0 0 −0.222521 0.974928i \(-0.571429\pi\)
0.222521 + 0.974928i \(0.428571\pi\)
\(140\) 2.40427 + 0.548760i 2.40427 + 0.548760i
\(141\) 0 0
\(142\) −1.29991 0.400969i −1.29991 0.400969i
\(143\) −0.728639 + 1.85654i −0.728639 + 1.85654i
\(144\) −1.91734 + 1.77904i −1.91734 + 1.77904i
\(145\) 0 0
\(146\) 2.53262 2.53262
\(147\) 0 0
\(148\) 0 0
\(149\) 0 0 0.826239 0.563320i \(-0.190476\pi\)
−0.826239 + 0.563320i \(0.809524\pi\)
\(150\) 0 0
\(151\) 0 0 0.365341 0.930874i \(-0.380952\pi\)
−0.365341 + 0.930874i \(0.619048\pi\)
\(152\) 0 0
\(153\) 0.433884 1.90097i 0.433884 1.90097i
\(154\) 0.807782 1.67738i 0.807782 1.67738i
\(155\) 0.222521 + 0.974928i 0.222521 + 0.974928i
\(156\) 0 0
\(157\) 0 0 0.955573 0.294755i \(-0.0952381\pi\)
−0.955573 + 0.294755i \(0.904762\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) −1.92808 0.928513i −1.92808 0.928513i
\(161\) 0 0
\(162\) 1.67738 0.807782i 1.67738 0.807782i
\(163\) 0 0 −0.733052 0.680173i \(-0.761905\pi\)
0.733052 + 0.680173i \(0.238095\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 1.61232 2.79262i 1.61232 2.79262i
\(167\) 0 0 −0.781831 0.623490i \(-0.785714\pi\)
0.781831 + 0.623490i \(0.214286\pi\)
\(168\) 0 0
\(169\) 1.85654 + 2.32803i 1.85654 + 2.32803i
\(170\) 3.58959 0.541044i 3.58959 0.541044i
\(171\) 0 0
\(172\) −2.29563 1.56513i −2.29563 1.56513i
\(173\) −0.294755 + 0.0444272i −0.294755 + 0.0444272i −0.294755 0.955573i \(-0.595238\pi\)
1.00000i \(0.5\pi\)
\(174\) 0 0
\(175\) 0.149042 0.988831i 0.149042 0.988831i
\(176\) −1.63078 + 2.04493i −1.63078 + 2.04493i
\(177\) 0 0
\(178\) −1.53825 2.66432i −1.53825 2.66432i
\(179\) 0.722521 + 0.108903i 0.722521 + 0.108903i 0.500000 0.866025i \(-0.333333\pi\)
0.222521 + 0.974928i \(0.428571\pi\)
\(180\) 1.80778 + 1.67738i 1.80778 + 1.67738i
\(181\) −1.32091 + 0.636119i −1.32091 + 0.636119i −0.955573 0.294755i \(-0.904762\pi\)
−0.365341 + 0.930874i \(0.619048\pi\)
\(182\) −2.09165 3.06789i −2.09165 3.06789i
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 0.145713 1.94440i 0.145713 1.94440i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 0.955573 + 0.294755i 0.955573 + 0.294755i 0.733052 0.680173i \(-0.238095\pi\)
0.222521 + 0.974928i \(0.428571\pi\)
\(192\) 0 0
\(193\) 1.42935 1.32624i 1.42935 1.32624i 0.563320 0.826239i \(-0.309524\pi\)
0.866025 0.500000i \(-0.166667\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 1.23305 + 2.13571i 1.23305 + 2.13571i
\(197\) 0.298085 0.298085 0.149042 0.988831i \(-0.452381\pi\)
0.149042 + 0.988831i \(0.452381\pi\)
\(198\) 1.53825 1.04876i 1.53825 1.04876i
\(199\) 1.44973 1.34515i 1.44973 1.34515i 0.623490 0.781831i \(-0.285714\pi\)
0.826239 0.563320i \(-0.190476\pi\)
\(200\) −0.997204 + 2.54083i −0.997204 + 2.54083i
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) 1.90580 + 4.85590i 1.90580 + 4.85590i
\(209\) 0 0
\(210\) 0 0
\(211\) 0 0 0.900969 0.433884i \(-0.142857\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 1.45557 + 2.52113i 1.45557 + 2.52113i
\(215\) −0.563320 + 0.975699i −0.563320 + 0.975699i
\(216\) 0 0
\(217\) −0.563320 + 0.826239i −0.563320 + 0.826239i
\(218\) 0 0
\(219\) 0 0
\(220\) 2.03759 + 1.38921i 2.03759 + 1.38921i
\(221\) −3.21308 2.19064i −3.21308 2.19064i
\(222\) 0 0
\(223\) 0 0 −0.623490 0.781831i \(-0.714286\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(224\) −0.630777 2.04493i −0.630777 2.04493i
\(225\) 0.623490 0.781831i 0.623490 0.781831i
\(226\) 0 0
\(227\) 0.294755 + 0.510531i 0.294755 + 0.510531i 0.974928 0.222521i \(-0.0714286\pi\)
−0.680173 + 0.733052i \(0.738095\pi\)
\(228\) 0 0
\(229\) −0.535628 0.496990i −0.535628 0.496990i 0.365341 0.930874i \(-0.380952\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 0 0 0.930874 0.365341i \(-0.119048\pi\)
−0.930874 + 0.365341i \(0.880952\pi\)
\(234\) −0.277479 3.70270i −0.277479 3.70270i
\(235\) 0 0
\(236\) 0.0275443 0.367554i 0.0275443 0.367554i
\(237\) 0 0
\(238\) 2.83816 + 2.26335i 2.83816 + 2.26335i
\(239\) 0 0 0.222521 0.974928i \(-0.428571\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(240\) 0 0
\(241\) 0 0 0.365341 0.930874i \(-0.380952\pi\)
−0.365341 + 0.930874i \(0.619048\pi\)
\(242\) 1.36476 1.26631i 1.36476 1.26631i
\(243\) 0 0
\(244\) 0 0
\(245\) 0.826239 0.563320i 0.826239 0.563320i
\(246\) 0 0
\(247\) 0 0
\(248\) 2.00088 1.85654i 2.00088 1.85654i
\(249\) 0 0
\(250\) 1.77904 + 0.548760i 1.77904 + 0.548760i
\(251\) −0.277479 + 1.21572i −0.277479 + 1.21572i 0.623490 + 0.781831i \(0.285714\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(252\) 2.46610i 2.46610i
\(253\) 0 0
\(254\) 0.217550 2.90301i 0.217550 2.90301i
\(255\) 0 0
\(256\) −0.0455164 0.607374i −0.0455164 0.607374i
\(257\) 0 0 −0.365341 0.930874i \(-0.619048\pi\)
0.365341 + 0.930874i \(0.380952\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 4.43134 2.13402i 4.43134 2.13402i
\(261\) 0 0
\(262\) 0 0
\(263\) −0.866025 1.50000i −0.866025 1.50000i −0.866025 0.500000i \(-0.833333\pi\)
1.00000i \(-0.5\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −0.367711 0.250701i −0.367711 0.250701i 0.365341 0.930874i \(-0.380952\pi\)
−0.733052 + 0.680173i \(0.761905\pi\)
\(270\) 0 0
\(271\) 0 0 0.988831 0.149042i \(-0.0476190\pi\)
−0.988831 + 0.149042i \(0.952381\pi\)
\(272\) −3.17978 3.98732i −3.17978 3.98732i
\(273\) 0 0
\(274\) 0 0
\(275\) 0.500000 0.866025i 0.500000 0.866025i
\(276\) 0 0
\(277\) 1.34515 + 0.202749i 1.34515 + 0.202749i 0.781831 0.623490i \(-0.214286\pi\)
0.563320 + 0.826239i \(0.309524\pi\)
\(278\) 0 0
\(279\) −0.900969 + 0.433884i −0.900969 + 0.433884i
\(280\) −2.54083 + 0.997204i −2.54083 + 0.997204i
\(281\) 0 0 −0.900969 0.433884i \(-0.857143\pi\)
0.900969 + 0.433884i \(0.142857\pi\)
\(282\) 0 0
\(283\) −0.0648483 0.865341i −0.0648483 0.865341i −0.930874 0.365341i \(-0.880952\pi\)
0.866025 0.500000i \(-0.166667\pi\)
\(284\) 1.72188 0.531130i 1.72188 0.531130i
\(285\) 0 0
\(286\) −0.826239 3.61999i −0.826239 3.61999i
\(287\) 0 0
\(288\) 0.476196 2.08635i 0.476196 2.08635i
\(289\) 2.67746 + 0.825886i 2.67746 + 0.825886i
\(290\) 0 0
\(291\) 0 0
\(292\) −2.77183 + 1.88980i −2.77183 + 1.88980i
\(293\) 0.589510 0.589510 0.294755 0.955573i \(-0.404762\pi\)
0.294755 + 0.955573i \(0.404762\pi\)
\(294\) 0 0
\(295\) −0.149460 −0.149460
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) −1.09839 + 0.250701i −1.09839 + 0.250701i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 0 0
\(306\) 1.32624 + 3.37920i 1.32624 + 3.37920i
\(307\) 1.67738 + 0.807782i 1.67738 + 0.807782i 0.997204 + 0.0747301i \(0.0238095\pi\)
0.680173 + 0.733052i \(0.261905\pi\)
\(308\) 0.367554 + 2.43856i 0.367554 + 2.43856i
\(309\) 0 0
\(310\) −1.36476 1.26631i −1.36476 1.26631i
\(311\) −1.88980 0.284841i −1.88980 0.284841i −0.900969 0.433884i \(-0.857143\pi\)
−0.988831 + 0.149042i \(0.952381\pi\)
\(312\) 0 0
\(313\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(314\) 0 0
\(315\) 0.997204 0.0747301i 0.997204 0.0747301i
\(316\) 0 0
\(317\) 0 0 0.988831 0.149042i \(-0.0476190\pi\)
−0.988831 + 0.149042i \(0.952381\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 1.35330 0.203977i 1.35330 0.203977i
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) −1.23305 + 2.13571i −1.23305 + 2.13571i
\(325\) −0.997204 1.72721i −0.997204 1.72721i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) −0.603718 1.53825i −0.603718 1.53825i −0.826239 0.563320i \(-0.809524\pi\)
0.222521 0.974928i \(-0.428571\pi\)
\(332\) 0.319203 + 4.25947i 0.319203 + 4.25947i
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) −0.443797 + 1.94440i −0.443797 + 1.94440i −0.149042 + 0.988831i \(0.547619\pi\)
−0.294755 + 0.955573i \(0.595238\pi\)
\(338\) −5.29737 1.63402i −5.29737 1.63402i
\(339\) 0 0
\(340\) −3.52491 + 3.27064i −3.52491 + 3.27064i
\(341\) −0.826239 + 0.563320i −0.826239 + 0.563320i
\(342\) 0 0
\(343\) 0.974928 + 0.222521i 0.974928 + 0.222521i
\(344\) 3.07518 3.07518
\(345\) 0 0
\(346\) 0.406813 0.377467i 0.406813 0.377467i
\(347\) −0.108903 + 0.277479i −0.108903 + 0.277479i −0.974928 0.222521i \(-0.928571\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(348\) 0 0
\(349\) 0 0 0.222521 0.974928i \(-0.428571\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(350\) 0.807782 + 1.67738i 0.807782 + 1.67738i
\(351\) 0 0
\(352\) 0.159923 2.13402i 0.159923 2.13402i
\(353\) 0 0 0.955573 0.294755i \(-0.0952381\pi\)
−0.955573 + 0.294755i \(0.904762\pi\)
\(354\) 0 0
\(355\) −0.266948 0.680173i −0.266948 0.680173i
\(356\) 3.67161 + 1.76815i 3.67161 + 1.76815i
\(357\) 0 0
\(358\) −1.22563 + 0.590232i −1.22563 + 0.590232i
\(359\) 0 0 −0.733052 0.680173i \(-0.761905\pi\)
0.733052 + 0.680173i \(0.238095\pi\)
\(360\) −2.69903 0.406813i −2.69903 0.406813i
\(361\) −0.500000 0.866025i −0.500000 0.866025i
\(362\) 1.36476 2.36383i 1.36476 2.36383i
\(363\) 0 0
\(364\) 4.57842 + 1.79690i 4.57842 + 1.79690i
\(365\) 0.848162 + 1.06356i 0.848162 + 1.06356i
\(366\) 0 0
\(367\) 0 0 −0.826239 0.563320i \(-0.809524\pi\)
0.826239 + 0.563320i \(0.190476\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 0.294755 0.510531i 0.294755 0.510531i −0.680173 0.733052i \(-0.738095\pi\)
0.974928 + 0.222521i \(0.0714286\pi\)
\(374\) 1.81507 + 3.14379i 1.81507 + 3.14379i
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) −1.72188 0.829215i −1.72188 0.829215i −0.988831 0.149042i \(-0.952381\pi\)
−0.733052 0.680173i \(-0.761905\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) −1.77904 + 0.548760i −1.77904 + 0.548760i
\(383\) 0 0 0.0747301 0.997204i \(-0.476190\pi\)
−0.0747301 + 0.997204i \(0.523810\pi\)
\(384\) 0 0
\(385\) 0.974928 0.222521i 0.974928 0.222521i
\(386\) −0.807782 + 3.53912i −0.807782 + 3.53912i
\(387\) −1.07659 0.332083i −1.07659 0.332083i
\(388\) 0 0
\(389\) −1.40097 + 1.29991i −1.40097 + 1.29991i −0.500000 + 0.866025i \(0.666667\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) −2.45921 1.18429i −2.45921 1.18429i
\(393\) 0 0
\(394\) −0.458528 + 0.312619i −0.458528 + 0.312619i
\(395\) 0 0
\(396\) −0.900969 + 2.29563i −0.900969 + 2.29563i
\(397\) 0 0 −0.955573 0.294755i \(-0.904762\pi\)
0.955573 + 0.294755i \(0.0952381\pi\)
\(398\) −0.819301 + 3.58959i −0.819301 + 3.58959i
\(399\) 0 0
\(400\) −0.582018 2.54999i −0.582018 2.54999i
\(401\) −0.123490 + 1.64786i −0.123490 + 1.64786i 0.500000 + 0.866025i \(0.333333\pi\)
−0.623490 + 0.781831i \(0.714286\pi\)
\(402\) 0 0
\(403\) 0.149042 + 1.98883i 0.149042 + 1.98883i
\(404\) 0 0
\(405\) 0.900969 + 0.433884i 0.900969 + 0.433884i
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 0 0 −0.988831 0.149042i \(-0.952381\pi\)
0.988831 + 0.149042i \(0.0476190\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −0.101659 0.109562i −0.101659 0.109562i
\(414\) 0 0
\(415\) 1.71271 0.258149i 1.71271 0.258149i
\(416\) −3.52642 2.40427i −3.52642 2.40427i
\(417\) 0 0
\(418\) 0 0
\(419\) −0.0931869 0.116853i −0.0931869 0.116853i 0.733052 0.680173i \(-0.238095\pi\)
−0.826239 + 0.563320i \(0.809524\pi\)
\(420\) 0 0
\(421\) 0.277479 0.347948i 0.277479 0.347948i −0.623490 0.781831i \(-0.714286\pi\)
0.900969 + 0.433884i \(0.142857\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 1.42935 + 1.32624i 1.42935 + 1.32624i
\(426\) 0 0
\(427\) 0 0
\(428\) −3.47428 1.67312i −3.47428 1.67312i
\(429\) 0 0
\(430\) −0.156748 2.09165i −0.156748 2.09165i
\(431\) 0 0 0.955573 0.294755i \(-0.0952381\pi\)
−0.955573 + 0.294755i \(0.904762\pi\)
\(432\) 0 0
\(433\) 0 0 −0.222521 0.974928i \(-0.571429\pi\)
0.222521 + 0.974928i \(0.428571\pi\)
\(434\) 1.86175i 1.86175i
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) 0 0 0.826239 0.563320i \(-0.190476\pi\)
−0.826239 + 0.563320i \(0.809524\pi\)
\(440\) −2.72951 −2.72951
\(441\) 0.733052 + 0.680173i 0.733052 + 0.680173i
\(442\) 7.23998 7.23998
\(443\) 0 0 0.826239 0.563320i \(-0.190476\pi\)
−0.826239 + 0.563320i \(0.809524\pi\)
\(444\) 0 0
\(445\) 0.603718 1.53825i 0.603718 1.53825i
\(446\) 0 0
\(447\) 0 0
\(448\) 1.07000 + 0.853298i 1.07000 + 0.853298i
\(449\) 0.0332580 + 0.145713i 0.0332580 + 0.145713i 0.988831 0.149042i \(-0.0476190\pi\)
−0.955573 + 0.294755i \(0.904762\pi\)
\(450\) −0.139129 + 1.85654i −0.139129 + 1.85654i
\(451\) 0 0
\(452\) 0 0
\(453\) 0 0
\(454\) −0.988831 0.476196i −0.988831 0.476196i
\(455\) 0.587862 1.90580i 0.587862 1.90580i
\(456\) 0 0
\(457\) 1.26968 + 1.17809i 1.26968 + 1.17809i 0.974928 + 0.222521i \(0.0714286\pi\)
0.294755 + 0.955573i \(0.404762\pi\)
\(458\) 1.34515 + 0.202749i 1.34515 + 0.202749i
\(459\) 0 0
\(460\) 0 0
\(461\) 0 0 0.623490 0.781831i \(-0.285714\pi\)
−0.623490 + 0.781831i \(0.714286\pi\)
\(462\) 0 0
\(463\) 0 0 −0.623490 0.781831i \(-0.714286\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 0 0 0.988831 0.149042i \(-0.0476190\pi\)
−0.988831 + 0.149042i \(0.952381\pi\)
\(468\) 3.06658 + 3.84537i 3.06658 + 3.84537i
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0.203977 + 0.353298i 0.203977 + 0.353298i
\(473\) −1.11406 0.167917i −1.11406 0.167917i
\(474\) 0 0
\(475\) 0 0
\(476\) −4.79510 0.359343i −4.79510 0.359343i
\(477\) 0 0
\(478\) 0 0
\(479\) 0 0 −0.0747301 0.997204i \(-0.523810\pi\)
0.0747301 + 0.997204i \(0.476190\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 0 0
\(484\) −0.548760 + 2.40427i −0.548760 + 2.40427i
\(485\) 0 0
\(486\) 0 0
\(487\) 0 0 0.733052 0.680173i \(-0.238095\pi\)
−0.733052 + 0.680173i \(0.761905\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) −0.680173 + 1.73305i −0.680173 + 1.73305i
\(491\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0.955573 + 0.294755i 0.955573 + 0.294755i
\(496\) −0.582018 + 2.54999i −0.582018 + 2.54999i
\(497\) 0.317031 0.658322i 0.317031 0.658322i
\(498\) 0 0
\(499\) 0.123490 1.64786i 0.123490 1.64786i −0.500000 0.866025i \(-0.666667\pi\)
0.623490 0.781831i \(-0.285714\pi\)
\(500\) −2.35654 + 0.726897i −2.35654 + 0.726897i
\(501\) 0 0
\(502\) −0.848162 2.16108i −0.848162 2.16108i
\(503\) 1.56052 + 0.751509i 1.56052 + 0.751509i 0.997204 0.0747301i \(-0.0238095\pi\)
0.563320 + 0.826239i \(0.309524\pi\)
\(504\) −1.53759 2.25523i −1.53759 2.25523i
\(505\) 0 0
\(506\) 0 0
\(507\) 0 0
\(508\) 1.92808 + 3.33953i 1.92808 + 3.33953i
\(509\) −0.955573 + 1.65510i −0.955573 + 1.65510i −0.222521 + 0.974928i \(0.571429\pi\)
−0.733052 + 0.680173i \(0.761905\pi\)
\(510\) 0 0
\(511\) −0.202749 + 1.34515i −0.202749 + 1.34515i
\(512\) 0.961360 + 1.20551i 0.961360 + 1.20551i
\(513\) 0 0
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) −2.72188 + 4.71444i −2.72188 + 4.71444i
\(521\) 0.365341 + 0.632789i 0.365341 + 0.632789i 0.988831 0.149042i \(-0.0476190\pi\)
−0.623490 + 0.781831i \(0.714286\pi\)
\(522\) 0 0
\(523\) 0.825886 + 0.766310i 0.825886 + 0.766310i 0.974928 0.222521i \(-0.0714286\pi\)
−0.149042 + 0.988831i \(0.547619\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 2.90530 + 1.39912i 2.90530 + 1.39912i
\(527\) −0.712362 1.81507i −0.712362 1.81507i
\(528\) 0 0
\(529\) 0.955573 0.294755i 0.955573 0.294755i
\(530\) 0 0
\(531\) −0.0332580 0.145713i −0.0332580 0.145713i
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) −0.571270 + 1.45557i −0.571270 + 1.45557i
\(536\) 0 0
\(537\) 0 0
\(538\) 0.828556 0.828556
\(539\) 0.826239 + 0.563320i 0.826239 + 0.563320i
\(540\) 0 0
\(541\) 0 0 0.826239 0.563320i \(-0.190476\pi\)
−0.826239 + 0.563320i \(0.809524\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 3.98732 + 1.22993i 3.98732 + 1.22993i
\(545\) 0 0
\(546\) 0 0
\(547\) −0.302705 1.32624i −0.302705 1.32624i −0.866025 0.500000i \(-0.833333\pi\)
0.563320 0.826239i \(-0.309524\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0.139129 + 1.85654i 0.139129 + 1.85654i
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) −2.28181 + 1.09886i −2.28181 + 1.09886i
\(555\) 0 0
\(556\) 0 0
\(557\) −0.433884 0.751509i −0.433884 0.751509i 0.563320 0.826239i \(-0.309524\pi\)
−0.997204 + 0.0747301i \(0.976190\pi\)
\(558\) 0.930874 1.61232i 0.930874 1.61232i
\(559\) −1.40097 + 1.75676i −1.40097 + 1.75676i
\(560\) 1.47340 2.16108i 1.47340 2.16108i
\(561\) 0 0
\(562\) 0 0
\(563\) −0.246289 0.167917i −0.246289 0.167917i 0.433884 0.900969i \(-0.357143\pi\)
−0.680173 + 0.733052i \(0.738095\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 1.00729 + 1.26310i 1.00729 + 1.26310i
\(567\) 0.294755 + 0.955573i 0.294755 + 0.955573i
\(568\) −1.24349 + 1.55929i −1.24349 + 1.55929i
\(569\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(570\) 0 0
\(571\) 0 0 −0.988831 0.149042i \(-0.952381\pi\)
0.988831 + 0.149042i \(0.0476190\pi\)
\(572\) 3.60545 + 3.34537i 3.60545 + 3.34537i
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 0.500000 + 1.27398i 0.500000 + 1.27398i
\(577\) 0 0 −0.0747301 0.997204i \(-0.523810\pi\)
0.0747301 + 0.997204i \(0.476190\pi\)
\(578\) −4.98475 + 1.53759i −4.98475 + 1.53759i
\(579\) 0 0
\(580\) 0 0
\(581\) 1.35417 + 1.07992i 1.35417 + 1.07992i
\(582\) 0 0
\(583\) 0 0
\(584\) 1.35654 3.45641i 1.35654 3.45641i
\(585\) 1.46200 1.35654i 1.46200 1.35654i
\(586\) −0.906813 + 0.618255i −0.906813 + 0.618255i
\(587\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0.229907 0.156748i 0.229907 0.156748i
\(591\) 0 0
\(592\) 0 0
\(593\) −1.07659 0.332083i −1.07659 0.332083i −0.294755 0.955573i \(-0.595238\pi\)
−0.781831 + 0.623490i \(0.785714\pi\)
\(594\) 0 0
\(595\) 1.94986i 1.94986i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −0.142820 1.90580i −0.142820 1.90580i −0.365341 0.930874i \(-0.619048\pi\)
0.222521 0.974928i \(-0.428571\pi\)
\(600\) 0 0
\(601\) 0 0 −0.900969 0.433884i \(-0.857143\pi\)
0.900969 + 0.433884i \(0.142857\pi\)
\(602\) 1.42668 1.53759i 1.42668 1.53759i
\(603\) 0 0
\(604\) 0 0
\(605\) 0.988831 + 0.149042i 0.988831 + 0.149042i
\(606\) 0 0
\(607\) −0.294755 + 0.510531i −0.294755 + 0.510531i −0.974928 0.222521i \(-0.928571\pi\)
0.680173 + 0.733052i \(0.261905\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) −3.97301 2.70875i −3.97301 2.70875i
\(613\) −0.246289 0.167917i −0.246289 0.167917i 0.433884 0.900969i \(-0.357143\pi\)
−0.680173 + 0.733052i \(0.738095\pi\)
\(614\) −3.42739 + 0.516596i −3.42739 + 0.516596i
\(615\) 0 0
\(616\) −1.85654 2.00088i −1.85654 2.00088i
\(617\) 0 0 0.623490 0.781831i \(-0.285714\pi\)
−0.623490 + 0.781831i \(0.714286\pi\)
\(618\) 0 0
\(619\) −0.900969 1.56052i −0.900969 1.56052i −0.826239 0.563320i \(-0.809524\pi\)
−0.0747301 0.997204i \(-0.523810\pi\)
\(620\) 2.43856 + 0.367554i 2.43856 + 0.367554i
\(621\) 0 0
\(622\) 3.20571 1.54379i 3.20571 1.54379i
\(623\) 1.53825 0.603718i 1.53825 0.603718i
\(624\) 0 0
\(625\) 0.365341 + 0.930874i 0.365341 + 0.930874i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) −1.45557 + 1.16078i −1.45557 + 1.16078i
\(631\) 0.440071 1.92808i 0.440071 1.92808i 0.0747301 0.997204i \(-0.476190\pi\)
0.365341 0.930874i \(-0.380952\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 1.29196 0.880843i 1.29196 0.880843i
\(636\) 0 0
\(637\) 1.79690 0.865341i 1.79690 0.865341i
\(638\) 0 0
\(639\) 0.603718 0.411608i 0.603718 0.411608i
\(640\) −0.299051 + 0.277479i −0.299051 + 0.277479i
\(641\) −0.455573 + 1.16078i −0.455573 + 1.16078i 0.500000 + 0.866025i \(0.333333\pi\)
−0.955573 + 0.294755i \(0.904762\pi\)
\(642\) 0 0
\(643\) 0 0 0.222521 0.974928i \(-0.428571\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 0.955573 0.294755i \(-0.0952381\pi\)
−0.955573 + 0.294755i \(0.904762\pi\)
\(648\) −0.203977 2.72188i −0.203977 2.72188i
\(649\) −0.0546039 0.139129i −0.0546039 0.139129i
\(650\) 3.34537 + 1.61105i 3.34537 + 1.61105i
\(651\) 0 0
\(652\) 0 0
\(653\) 0 0 −0.733052 0.680173i \(-0.761905\pi\)
0.733052 + 0.680173i \(0.238095\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) −0.848162 + 1.06356i −0.848162 + 1.06356i
\(658\) 0 0
\(659\) 0 0 −0.623490 0.781831i \(-0.714286\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(660\) 0 0
\(661\) 1.03030 + 0.702449i 1.03030 + 0.702449i 0.955573 0.294755i \(-0.0952381\pi\)
0.0747301 + 0.997204i \(0.476190\pi\)
\(662\) 2.54192 + 1.73305i 2.54192 + 1.73305i
\(663\) 0 0
\(664\) −2.94765 3.69623i −2.94765 3.69623i
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) −1.56052 0.751509i −1.56052 0.751509i −0.563320 0.826239i \(-0.690476\pi\)
−0.997204 + 0.0747301i \(0.976190\pi\)
\(674\) −1.35654 3.45641i −1.35654 3.45641i
\(675\) 0 0
\(676\) 7.01698 2.16445i 7.01698 2.16445i
\(677\) −0.0648483 + 0.865341i −0.0648483 + 0.865341i 0.866025 + 0.500000i \(0.166667\pi\)
−0.930874 + 0.365341i \(0.880952\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 1.18429 5.18872i 1.18429 5.18872i
\(681\) 0 0
\(682\) 0.680173 1.73305i 0.680173 1.73305i
\(683\) 0 0 0.733052 0.680173i \(-0.238095\pi\)
−0.733052 + 0.680173i \(0.761905\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) −1.73305 + 0.680173i −1.73305 + 0.680173i
\(687\) 0 0
\(688\) −2.43476 + 1.65999i −2.43476 + 1.65999i
\(689\) 0 0
\(690\) 0 0
\(691\) −0.425270 0.131178i −0.425270 0.131178i 0.0747301 0.997204i \(-0.476190\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(692\) −0.163577 + 0.716677i −0.163577 + 0.716677i
\(693\) 0.433884 + 0.900969i 0.433884 + 0.900969i
\(694\) −0.123490 0.541044i −0.123490 0.541044i
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) −2.13571 1.23305i −2.13571 1.23305i
\(701\) 0 0 0.900969 0.433884i \(-0.142857\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0.684292 + 1.18523i 0.684292 + 1.18523i
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) −0.988831 + 0.149042i −0.988831 + 0.149042i −0.623490 0.781831i \(-0.714286\pi\)
−0.365341 + 0.930874i \(0.619048\pi\)
\(710\) 1.12397 + 0.766310i 1.12397 + 0.766310i
\(711\) 0 0
\(712\) −4.46008 + 0.672250i −4.46008 + 0.672250i
\(713\) 0 0
\(714\) 0 0
\(715\) 1.24349 1.55929i 1.24349 1.55929i
\(716\) 0.900969 1.56052i 0.900969 1.56052i
\(717\) 0 0
\(718\) 0 0
\(719\) −0.326239 0.302705i −0.326239 0.302705i 0.500000 0.866025i \(-0.333333\pi\)
−0.826239 + 0.563320i \(0.809524\pi\)
\(720\) 2.35654 1.13485i 2.35654 1.13485i
\(721\) 0 0
\(722\) 1.67738 + 0.807782i 1.67738 + 0.807782i
\(723\) 0 0
\(724\) 0.270191 + 3.60545i 0.270191 + 3.60545i
\(725\) 0 0
\(726\) 0 0
\(727\) 0 0 −0.222521 0.974928i \(-0.571429\pi\)
0.222521 + 0.974928i \(0.428571\pi\)
\(728\) −5.30728 + 1.21135i −5.30728 + 1.21135i
\(729\) −0.222521 + 0.974928i −0.222521 + 0.974928i
\(730\) −2.42010 0.746503i −2.42010 0.746503i
\(731\) 0.802576 2.04493i 0.802576 2.04493i
\(732\) 0 0
\(733\) −1.29196 + 0.880843i −1.29196 + 0.880843i −0.997204 0.0747301i \(-0.976190\pi\)
−0.294755 + 0.955573i \(0.595238\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) 0 0 0.365341 0.930874i \(-0.380952\pi\)
−0.365341 + 0.930874i \(0.619048\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −0.443797 1.94440i −0.443797 1.94440i −0.294755 0.955573i \(-0.595238\pi\)
−0.149042 0.988831i \(-0.547619\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0.0820177 + 1.09445i 0.0820177 + 1.09445i
\(747\) 0.632789 + 1.61232i 0.632789 + 1.61232i
\(748\) −4.33235 2.08635i −4.33235 2.08635i
\(749\) −1.45557 + 0.571270i −1.45557 + 0.571270i
\(750\) 0 0
\(751\) 1.07473 + 0.997204i 1.07473 + 0.997204i 1.00000 \(0\)
0.0747301 + 0.997204i \(0.476190\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 0 0 −0.623490 0.781831i \(-0.714286\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(758\) 3.51833 0.530303i 3.51833 0.530303i
\(759\) 0 0
\(760\) 0 0
\(761\) 0 0 0.988831 0.149042i \(-0.0476190\pi\)
−0.988831 + 0.149042i \(0.952381\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 1.53759 1.92808i 1.53759 1.92808i
\(765\) −0.974928 + 1.68862i −0.974928 + 1.68862i
\(766\) 0 0
\(767\) −0.294755 0.0444272i −0.294755 0.0444272i
\(768\) 0 0
\(769\) 0 0 0.900969 0.433884i \(-0.142857\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(770\) −1.26631 + 1.36476i −1.26631 + 1.36476i
\(771\) 0 0
\(772\) −1.75676 4.47615i −1.75676 4.47615i
\(773\) 0 0 −0.0747301 0.997204i \(-0.523810\pi\)
0.0747301 + 0.997204i \(0.476190\pi\)
\(774\) 2.00433 0.618255i 2.00433 0.618255i
\(775\) 0.0747301 0.997204i 0.0747301 0.997204i
\(776\) 0 0
\(777\) 0 0
\(778\) 0.791745 3.46886i 0.791745 3.46886i
\(779\) 0 0
\(780\) 0 0
\(781\) 0.535628 0.496990i 0.535628 0.496990i
\(782\) 0 0
\(783\) 0 0
\(784\) 2.58635 0.389830i 2.58635 0.389830i
\(785\) 0 0
\(786\) 0 0
\(787\) −0.218511 + 0.202749i −0.218511 + 0.202749i −0.781831 0.623490i \(-0.785714\pi\)
0.563320 + 0.826239i \(0.309524\pi\)
\(788\) 0.268565 0.684292i 0.268565 0.684292i
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) −0.607374 2.66108i −0.607374 2.66108i
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) −1.78181 4.53998i −1.78181 4.53998i
\(797\) 0 0 −0.900969 0.433884i \(-0.857143\pi\)
0.900969 + 0.433884i \(0.142857\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 1.56873 + 1.45557i 1.56873 + 1.45557i
\(801\) 1.63402 + 0.246289i 1.63402 + 0.246289i
\(802\) −1.53825 2.66432i −1.53825 2.66432i
\(803\) −0.680173 + 1.17809i −0.680173 + 1.17809i
\(804\) 0 0
\(805\) 0 0
\(806\) −2.31507 2.90301i −2.31507 2.90301i
\(807\) 0 0
\(808\) 0 0
\(809\) 0 0 −0.826239 0.563320i \(-0.809524\pi\)
0.826239 + 0.563320i \(0.190476\pi\)
\(810\) −1.84095 + 0.277479i −1.84095 + 0.277479i
\(811\) 0 0 −0.623490 0.781831i \(-0.714286\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) 1.98883 + 0.149042i 1.98883 + 0.149042i
\(820\) 0 0
\(821\) 0 0 −0.365341 0.930874i \(-0.619048\pi\)
0.365341 + 0.930874i \(0.380952\pi\)
\(822\) 0 0
\(823\) 0 0 0.955573 0.294755i \(-0.0952381\pi\)
−0.955573 + 0.294755i \(0.904762\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0.271281 + 0.0619180i 0.271281 + 0.0619180i
\(827\) 0.433884 1.90097i 0.433884 1.90097i 1.00000i \(-0.5\pi\)
0.433884 0.900969i \(-0.357143\pi\)
\(828\) 0 0
\(829\) −0.0546039 + 0.139129i −0.0546039 + 0.139129i −0.955573 0.294755i \(-0.904762\pi\)
0.900969 + 0.433884i \(0.142857\pi\)
\(830\) −2.36383 + 2.19331i −2.36383 + 2.19331i
\(831\) 0 0
\(832\) 2.72951 2.72951
\(833\) −1.42935 + 1.32624i −1.42935 + 1.32624i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0.265895 + 0.0820177i 0.265895 + 0.0820177i
\(839\) 0.0990311 0.433884i 0.0990311 0.433884i −0.900969 0.433884i \(-0.857143\pi\)
1.00000 \(0\)
\(840\) 0 0
\(841\) −0.222521 0.974928i −0.222521 0.974928i
\(842\) −0.0619180 + 0.826239i −0.0619180 + 0.826239i
\(843\) 0 0
\(844\) 0 0
\(845\) −1.08786 2.77183i −1.08786 2.77183i
\(846\) 0 0
\(847\) 0.563320 + 0.826239i 0.563320 + 0.826239i
\(848\) 0 0
\(849\) 0 0
\(850\) −3.58959 0.541044i −3.58959 0.541044i
\(851\) 0 0
\(852\) 0 0
\(853\) 0.974928 1.22252i 0.974928 1.22252i 1.00000i \(-0.5\pi\)
0.974928 0.222521i \(-0.0714286\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 4.22037 0.636119i 4.22037 0.636119i
\(857\) −1.53825 1.04876i −1.53825 1.04876i −0.974928 0.222521i \(-0.928571\pi\)
−0.563320 0.826239i \(-0.690476\pi\)
\(858\) 0 0
\(859\) −0.440071 + 0.0663300i −0.440071 + 0.0663300i −0.365341 0.930874i \(-0.619048\pi\)
−0.0747301 + 0.997204i \(0.523810\pi\)
\(860\) 1.73231 + 2.17225i 1.73231 + 2.17225i
\(861\) 0 0
\(862\) 0 0
\(863\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(864\) 0 0
\(865\) 0.294755 + 0.0444272i 0.294755 + 0.0444272i
\(866\) 0 0
\(867\) 0 0
\(868\) 1.38921 + 2.03759i 1.38921 + 2.03759i
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −0.433884 + 0.900969i −0.433884 + 0.900969i
\(876\) 0 0
\(877\) 1.65510 + 0.510531i 1.65510 + 0.510531i 0.974928 0.222521i \(-0.0714286\pi\)
0.680173 + 0.733052i \(0.261905\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 2.16108 1.47340i 2.16108 1.47340i
\(881\) −1.97766 −1.97766 −0.988831 0.149042i \(-0.952381\pi\)
−0.988831 + 0.149042i \(0.952381\pi\)
\(882\) −1.84095 0.277479i −1.84095 0.277479i
\(883\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(884\) −7.92380 + 5.40235i −7.92380 + 5.40235i
\(885\) 0 0
\(886\) 0 0
\(887\) 1.29991 + 0.400969i 1.29991 + 0.400969i 0.866025 0.500000i \(-0.166667\pi\)
0.433884 + 0.900969i \(0.357143\pi\)
\(888\) 0 0
\(889\) 1.52446 + 0.347948i 1.52446 + 0.347948i
\(890\) 0.684585 + 2.99936i 0.684585 + 2.99936i
\(891\) −0.0747301 + 0.997204i −0.0747301 + 0.997204i
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) −0.658322 0.317031i −0.658322 0.317031i
\(896\) −0.406813 0.0304864i −0.406813 0.0304864i
\(897\) 0 0
\(898\) −0.203977 0.189263i −0.203977 0.189263i
\(899\) 0 0
\(900\) −1.23305 2.13571i −1.23305 2.13571i
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 1.44973 0.218511i 1.44973 0.218511i
\(906\) 0 0
\(907\) 0 0 −0.826239 0.563320i \(-0.809524\pi\)
0.826239 + 0.563320i \(0.190476\pi\)
\(908\) 1.43756 0.216677i 1.43756 0.216677i
\(909\) 0 0
\(910\) 1.09445 + 3.54812i 1.09445 + 3.54812i
\(911\) 1.23305 1.54620i 1.23305 1.54620i 0.500000 0.866025i \(-0.333333\pi\)
0.733052 0.680173i \(-0.238095\pi\)
\(912\) 0 0
\(913\) 0.866025 + 1.50000i 0.866025 + 1.50000i
\(914\) −3.18862 0.480608i −3.18862 0.480608i
\(915\) 0 0
\(916\) −1.62349 + 0.781831i −1.62349 + 0.781831i
\(917\) 0 0
\(918\) 0 0
\(919\) 0 0 −0.365341 0.930874i \(-0.619048\pi\)
0.365341 + 0.930874i \(0.380952\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −0.324275 1.42074i −0.324275 1.42074i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 1.03030 0.702449i 1.03030 0.702449i 0.0747301 0.997204i \(-0.476190\pi\)
0.955573 + 0.294755i \(0.0952381\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −0.712362 + 1.81507i −0.712362 + 1.81507i
\(936\) −5.20191 1.60458i −5.20191 1.60458i
\(937\) 0.443797 1.94440i 0.443797 1.94440i 0.149042 0.988831i \(-0.452381\pi\)
0.294755 0.955573i \(-0.404762\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 0 0 0.955573 0.294755i \(-0.0952381\pi\)
−0.955573 + 0.294755i \(0.904762\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) −0.352209 0.169615i −0.352209 0.169615i
\(945\) 0 0
\(946\) 1.88980 0.910080i 1.88980 0.910080i
\(947\) 0 0 −0.733052 0.680173i \(-0.761905\pi\)
0.733052 + 0.680173i \(0.238095\pi\)
\(948\) 0 0
\(949\) 1.35654 + 2.34960i 1.35654 + 2.34960i
\(950\) 0 0
\(951\) 0 0
\(952\) 4.60913 2.66108i 4.60913 2.66108i
\(953\) 0.541044 + 0.678448i 0.541044 + 0.678448i 0.974928 0.222521i \(-0.0714286\pi\)
−0.433884 + 0.900969i \(0.642857\pi\)
\(954\) 0 0
\(955\) −0.826239 0.563320i −0.826239 0.563320i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 0 0
\(962\) 0 0
\(963\) −1.54620 0.233052i −1.54620 0.233052i
\(964\) 0 0
\(965\) −1.75676 + 0.846011i −1.75676 + 0.846011i
\(966\) 0 0
\(967\) −1.22563 0.590232i −1.22563 0.590232i −0.294755 0.955573i \(-0.595238\pi\)
−0.930874 + 0.365341i \(0.880952\pi\)
\(968\) −0.997204 2.54083i −0.997204 2.54083i
\(969\) 0 0
\(970\) 0 0
\(971\) 0.147791 1.97213i 0.147791 1.97213i −0.0747301 0.997204i \(-0.523810\pi\)
0.222521 0.974928i \(-0.428571\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 0 0 0.733052 0.680173i \(-0.238095\pi\)
−0.733052 + 0.680173i \(0.761905\pi\)
\(978\) 0 0
\(979\) 1.65248 1.65248
\(980\) −0.548760 2.40427i −0.548760 2.40427i
\(981\) 0 0
\(982\) 0 0
\(983\) 0 0 0.733052 0.680173i \(-0.238095\pi\)
−0.733052 + 0.680173i \(0.761905\pi\)
\(984\) 0 0
\(985\) −0.284841 0.0878620i −0.284841 0.0878620i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) −1.77904 + 0.548760i −1.77904 + 0.548760i
\(991\) 0.0332580 + 0.443797i 0.0332580 + 0.443797i 0.988831 + 0.149042i \(0.0476190\pi\)
−0.955573 + 0.294755i \(0.904762\pi\)
\(992\) −0.781831 1.99207i −0.781831 1.99207i
\(993\) 0 0
\(994\) 0.202749 + 1.34515i 0.202749 + 1.34515i
\(995\) −1.78181 + 0.858075i −1.78181 + 0.858075i
\(996\) 0 0
\(997\) 1.11406 + 0.167917i 1.11406 + 0.167917i 0.680173 0.733052i \(-0.261905\pi\)
0.433884 + 0.900969i \(0.357143\pi\)
\(998\) 1.53825 + 2.66432i 1.53825 + 2.66432i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2695.1.ck.c.2144.1 yes 24
5.4 even 2 inner 2695.1.ck.c.2144.2 yes 24
11.10 odd 2 inner 2695.1.ck.c.2144.2 yes 24
49.4 even 21 inner 2695.1.ck.c.494.1 24
55.54 odd 2 CM 2695.1.ck.c.2144.1 yes 24
245.4 even 42 inner 2695.1.ck.c.494.2 yes 24
539.494 odd 42 inner 2695.1.ck.c.494.2 yes 24
2695.494 odd 42 inner 2695.1.ck.c.494.1 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2695.1.ck.c.494.1 24 49.4 even 21 inner
2695.1.ck.c.494.1 24 2695.494 odd 42 inner
2695.1.ck.c.494.2 yes 24 245.4 even 42 inner
2695.1.ck.c.494.2 yes 24 539.494 odd 42 inner
2695.1.ck.c.2144.1 yes 24 1.1 even 1 trivial
2695.1.ck.c.2144.1 yes 24 55.54 odd 2 CM
2695.1.ck.c.2144.2 yes 24 5.4 even 2 inner
2695.1.ck.c.2144.2 yes 24 11.10 odd 2 inner