Properties

Label 270.3.l.b.73.1
Level $270$
Weight $3$
Character 270.73
Analytic conductor $7.357$
Analytic rank $0$
Dimension $24$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [270,3,Mod(37,270)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(270, base_ring=CyclotomicField(12))
 
chi = DirichletCharacter(H, H._module([4, 3]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("270.37");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 270 = 2 \cdot 3^{3} \cdot 5 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 270.l (of order \(12\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.35696713773\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(6\) over \(\Q(\zeta_{12})\)
Twist minimal: no (minimal twist has level 90)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 73.1
Character \(\chi\) \(=\) 270.73
Dual form 270.3.l.b.37.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.366025 - 1.36603i) q^{2} +(-1.73205 + 1.00000i) q^{4} +(-4.34994 - 2.46536i) q^{5} +(-0.882779 - 3.29458i) q^{7} +(2.00000 + 2.00000i) q^{8} +(-1.77556 + 6.84452i) q^{10} +(0.641369 - 1.11088i) q^{11} +(-1.05805 + 3.94868i) q^{13} +(-4.17735 + 2.41180i) q^{14} +(2.00000 - 3.46410i) q^{16} +(-19.6659 + 19.6659i) q^{17} +17.2032i q^{19} +(9.99968 - 0.0798070i) q^{20} +(-1.75225 - 0.469515i) q^{22} +(-7.98597 + 29.8041i) q^{23} +(12.8440 + 21.4484i) q^{25} +5.78128 q^{26} +(4.82359 + 4.82359i) q^{28} +(-46.0987 - 26.6151i) q^{29} +(-13.3765 - 23.1688i) q^{31} +(-5.46410 - 1.46410i) q^{32} +(34.0624 + 19.6659i) q^{34} +(-4.28229 + 16.5076i) q^{35} +(6.39867 - 6.39867i) q^{37} +(23.5001 - 6.29683i) q^{38} +(-3.76916 - 13.6306i) q^{40} +(24.7520 + 42.8716i) q^{41} +(-44.1156 + 11.8207i) q^{43} +2.56548i q^{44} +43.6362 q^{46} +(-2.93580 - 10.9565i) q^{47} +(32.3603 - 18.6832i) q^{49} +(24.5978 - 25.3958i) q^{50} +(-2.11609 - 7.89737i) q^{52} +(-0.174975 - 0.174975i) q^{53} +(-5.52865 + 3.25107i) q^{55} +(4.82359 - 8.35471i) q^{56} +(-19.4836 + 72.7138i) q^{58} +(88.3973 - 51.0362i) q^{59} +(-26.3420 + 45.6258i) q^{61} +(-26.7530 + 26.7530i) q^{62} +8.00000i q^{64} +(14.3374 - 14.5681i) q^{65} +(-57.3947 - 15.3789i) q^{67} +(14.3965 - 53.7283i) q^{68} +(24.1172 - 0.192478i) q^{70} -5.54275 q^{71} +(-48.9018 - 48.9018i) q^{73} +(-11.0828 - 6.39867i) q^{74} +(-17.2032 - 29.7969i) q^{76} +(-4.22608 - 1.13237i) q^{77} +(-84.7222 - 48.9144i) q^{79} +(-17.2401 + 10.1379i) q^{80} +(49.5039 - 49.5039i) q^{82} +(-69.6231 + 18.6555i) q^{83} +(134.029 - 37.0620i) q^{85} +(32.2949 + 55.9363i) q^{86} +(3.50450 - 0.939029i) q^{88} -46.9573i q^{89} +13.9433 q^{91} +(-15.9719 - 59.6081i) q^{92} +(-13.8923 + 8.02075i) q^{94} +(42.4122 - 74.8331i) q^{95} +(-41.3179 - 154.200i) q^{97} +(-37.3665 - 37.3665i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + 12 q^{2} - 6 q^{7} + 48 q^{8} - 12 q^{10} + 12 q^{11} + 48 q^{16} + 36 q^{17} - 12 q^{20} - 12 q^{22} + 54 q^{23} + 54 q^{25} - 24 q^{28} - 72 q^{31} - 48 q^{32} + 336 q^{35} + 132 q^{37} + 36 q^{38}+ \cdots - 24 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/270\mathbb{Z}\right)^\times\).

\(n\) \(191\) \(217\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.366025 1.36603i −0.183013 0.683013i
\(3\) 0 0
\(4\) −1.73205 + 1.00000i −0.433013 + 0.250000i
\(5\) −4.34994 2.46536i −0.869988 0.493073i
\(6\) 0 0
\(7\) −0.882779 3.29458i −0.126111 0.470654i 0.873766 0.486347i \(-0.161671\pi\)
−0.999877 + 0.0156937i \(0.995004\pi\)
\(8\) 2.00000 + 2.00000i 0.250000 + 0.250000i
\(9\) 0 0
\(10\) −1.77556 + 6.84452i −0.177556 + 0.684452i
\(11\) 0.641369 1.11088i 0.0583063 0.100989i −0.835399 0.549644i \(-0.814763\pi\)
0.893705 + 0.448655i \(0.148097\pi\)
\(12\) 0 0
\(13\) −1.05805 + 3.94868i −0.0813882 + 0.303745i −0.994606 0.103727i \(-0.966923\pi\)
0.913218 + 0.407472i \(0.133590\pi\)
\(14\) −4.17735 + 2.41180i −0.298382 + 0.172271i
\(15\) 0 0
\(16\) 2.00000 3.46410i 0.125000 0.216506i
\(17\) −19.6659 + 19.6659i −1.15682 + 1.15682i −0.171664 + 0.985156i \(0.554914\pi\)
−0.985156 + 0.171664i \(0.945086\pi\)
\(18\) 0 0
\(19\) 17.2032i 0.905434i 0.891654 + 0.452717i \(0.149545\pi\)
−0.891654 + 0.452717i \(0.850455\pi\)
\(20\) 9.99968 0.0798070i 0.499984 0.00399035i
\(21\) 0 0
\(22\) −1.75225 0.469515i −0.0796478 0.0213416i
\(23\) −7.98597 + 29.8041i −0.347216 + 1.29583i 0.542785 + 0.839871i \(0.317370\pi\)
−0.890002 + 0.455957i \(0.849297\pi\)
\(24\) 0 0
\(25\) 12.8440 + 21.4484i 0.513759 + 0.857935i
\(26\) 5.78128 0.222357
\(27\) 0 0
\(28\) 4.82359 + 4.82359i 0.172271 + 0.172271i
\(29\) −46.0987 26.6151i −1.58961 0.917762i −0.993371 0.114956i \(-0.963327\pi\)
−0.596240 0.802806i \(-0.703339\pi\)
\(30\) 0 0
\(31\) −13.3765 23.1688i −0.431501 0.747381i 0.565502 0.824747i \(-0.308682\pi\)
−0.997003 + 0.0773657i \(0.975349\pi\)
\(32\) −5.46410 1.46410i −0.170753 0.0457532i
\(33\) 0 0
\(34\) 34.0624 + 19.6659i 1.00183 + 0.578410i
\(35\) −4.28229 + 16.5076i −0.122351 + 0.471645i
\(36\) 0 0
\(37\) 6.39867 6.39867i 0.172937 0.172937i −0.615332 0.788268i \(-0.710978\pi\)
0.788268 + 0.615332i \(0.210978\pi\)
\(38\) 23.5001 6.29683i 0.618423 0.165706i
\(39\) 0 0
\(40\) −3.76916 13.6306i −0.0942289 0.340765i
\(41\) 24.7520 + 42.8716i 0.603706 + 1.04565i 0.992255 + 0.124222i \(0.0396433\pi\)
−0.388548 + 0.921428i \(0.627023\pi\)
\(42\) 0 0
\(43\) −44.1156 + 11.8207i −1.02594 + 0.274901i −0.732277 0.681007i \(-0.761542\pi\)
−0.293667 + 0.955908i \(0.594876\pi\)
\(44\) 2.56548i 0.0583063i
\(45\) 0 0
\(46\) 43.6362 0.948613
\(47\) −2.93580 10.9565i −0.0624638 0.233118i 0.927636 0.373487i \(-0.121838\pi\)
−0.990099 + 0.140369i \(0.955171\pi\)
\(48\) 0 0
\(49\) 32.3603 18.6832i 0.660415 0.381291i
\(50\) 24.5978 25.3958i 0.491956 0.507917i
\(51\) 0 0
\(52\) −2.11609 7.89737i −0.0406941 0.151872i
\(53\) −0.174975 0.174975i −0.00330142 0.00330142i 0.705454 0.708756i \(-0.250743\pi\)
−0.708756 + 0.705454i \(0.750743\pi\)
\(54\) 0 0
\(55\) −5.52865 + 3.25107i −0.100521 + 0.0591104i
\(56\) 4.82359 8.35471i 0.0861356 0.149191i
\(57\) 0 0
\(58\) −19.4836 + 72.7138i −0.335924 + 1.25369i
\(59\) 88.3973 51.0362i 1.49826 0.865020i 0.498261 0.867027i \(-0.333972\pi\)
0.999998 + 0.00200725i \(0.000638929\pi\)
\(60\) 0 0
\(61\) −26.3420 + 45.6258i −0.431837 + 0.747963i −0.997032 0.0769943i \(-0.975468\pi\)
0.565195 + 0.824958i \(0.308801\pi\)
\(62\) −26.7530 + 26.7530i −0.431501 + 0.431501i
\(63\) 0 0
\(64\) 8.00000i 0.125000i
\(65\) 14.3374 14.5681i 0.220575 0.224124i
\(66\) 0 0
\(67\) −57.3947 15.3789i −0.856637 0.229535i −0.196337 0.980537i \(-0.562905\pi\)
−0.660301 + 0.751001i \(0.729571\pi\)
\(68\) 14.3965 53.7283i 0.211713 0.790122i
\(69\) 0 0
\(70\) 24.1172 0.192478i 0.344531 0.00274969i
\(71\) −5.54275 −0.0780669 −0.0390335 0.999238i \(-0.512428\pi\)
−0.0390335 + 0.999238i \(0.512428\pi\)
\(72\) 0 0
\(73\) −48.9018 48.9018i −0.669888 0.669888i 0.287802 0.957690i \(-0.407075\pi\)
−0.957690 + 0.287802i \(0.907075\pi\)
\(74\) −11.0828 6.39867i −0.149768 0.0864685i
\(75\) 0 0
\(76\) −17.2032 29.7969i −0.226359 0.392064i
\(77\) −4.22608 1.13237i −0.0548841 0.0147062i
\(78\) 0 0
\(79\) −84.7222 48.9144i −1.07243 0.619169i −0.143587 0.989638i \(-0.545864\pi\)
−0.928845 + 0.370468i \(0.879197\pi\)
\(80\) −17.2401 + 10.1379i −0.215502 + 0.126724i
\(81\) 0 0
\(82\) 49.5039 49.5039i 0.603706 0.603706i
\(83\) −69.6231 + 18.6555i −0.838833 + 0.224765i −0.652563 0.757734i \(-0.726306\pi\)
−0.186269 + 0.982499i \(0.559640\pi\)
\(84\) 0 0
\(85\) 134.029 37.0620i 1.57681 0.436023i
\(86\) 32.2949 + 55.9363i 0.375522 + 0.650423i
\(87\) 0 0
\(88\) 3.50450 0.939029i 0.0398239 0.0106708i
\(89\) 46.9573i 0.527610i −0.964576 0.263805i \(-0.915022\pi\)
0.964576 0.263805i \(-0.0849776\pi\)
\(90\) 0 0
\(91\) 13.9433 0.153223
\(92\) −15.9719 59.6081i −0.173608 0.647914i
\(93\) 0 0
\(94\) −13.8923 + 8.02075i −0.147791 + 0.0853271i
\(95\) 42.4122 74.8331i 0.446445 0.787717i
\(96\) 0 0
\(97\) −41.3179 154.200i −0.425958 1.58970i −0.761823 0.647786i \(-0.775695\pi\)
0.335865 0.941910i \(-0.390971\pi\)
\(98\) −37.3665 37.3665i −0.381291 0.381291i
\(99\) 0 0
\(100\) −43.6948 24.3057i −0.436948 0.243057i
\(101\) 37.1675 64.3761i 0.367995 0.637387i −0.621257 0.783607i \(-0.713378\pi\)
0.989252 + 0.146220i \(0.0467109\pi\)
\(102\) 0 0
\(103\) −4.10992 + 15.3384i −0.0399022 + 0.148917i −0.983003 0.183590i \(-0.941228\pi\)
0.943101 + 0.332507i \(0.107895\pi\)
\(104\) −10.0135 + 5.78128i −0.0962833 + 0.0555892i
\(105\) 0 0
\(106\) −0.174975 + 0.303066i −0.00165071 + 0.00285911i
\(107\) −114.528 + 114.528i −1.07035 + 1.07035i −0.0730234 + 0.997330i \(0.523265\pi\)
−0.997330 + 0.0730234i \(0.976735\pi\)
\(108\) 0 0
\(109\) 80.1875i 0.735665i −0.929892 0.367833i \(-0.880100\pi\)
0.929892 0.367833i \(-0.119900\pi\)
\(110\) 6.46467 + 6.36230i 0.0587697 + 0.0578391i
\(111\) 0 0
\(112\) −13.1783 3.53112i −0.117663 0.0315278i
\(113\) −38.6740 + 144.333i −0.342247 + 1.27728i 0.553548 + 0.832818i \(0.313274\pi\)
−0.895795 + 0.444467i \(0.853393\pi\)
\(114\) 0 0
\(115\) 108.216 109.958i 0.941012 0.956153i
\(116\) 106.460 0.917762
\(117\) 0 0
\(118\) −102.072 102.072i −0.865020 0.865020i
\(119\) 82.1515 + 47.4302i 0.690349 + 0.398573i
\(120\) 0 0
\(121\) 59.6773 + 103.364i 0.493201 + 0.854249i
\(122\) 71.9678 + 19.2837i 0.589900 + 0.158063i
\(123\) 0 0
\(124\) 46.3376 + 26.7530i 0.373691 + 0.215750i
\(125\) −2.99251 124.964i −0.0239401 0.999713i
\(126\) 0 0
\(127\) −111.415 + 111.415i −0.877284 + 0.877284i −0.993253 0.115969i \(-0.963003\pi\)
0.115969 + 0.993253i \(0.463003\pi\)
\(128\) 10.9282 2.92820i 0.0853766 0.0228766i
\(129\) 0 0
\(130\) −25.1482 14.2529i −0.193448 0.109638i
\(131\) −2.05048 3.55154i −0.0156525 0.0271110i 0.858093 0.513494i \(-0.171649\pi\)
−0.873746 + 0.486383i \(0.838316\pi\)
\(132\) 0 0
\(133\) 56.6774 15.1867i 0.426146 0.114185i
\(134\) 84.0317i 0.627102i
\(135\) 0 0
\(136\) −78.6637 −0.578410
\(137\) −36.0575 134.568i −0.263194 0.982252i −0.963347 0.268259i \(-0.913552\pi\)
0.700153 0.713993i \(-0.253115\pi\)
\(138\) 0 0
\(139\) −20.2625 + 11.6985i −0.145773 + 0.0841621i −0.571113 0.820872i \(-0.693488\pi\)
0.425339 + 0.905034i \(0.360155\pi\)
\(140\) −9.09044 32.8743i −0.0649317 0.234816i
\(141\) 0 0
\(142\) 2.02879 + 7.57154i 0.0142872 + 0.0533207i
\(143\) 3.70793 + 3.70793i 0.0259296 + 0.0259296i
\(144\) 0 0
\(145\) 134.911 + 229.424i 0.930419 + 1.58224i
\(146\) −48.9018 + 84.7004i −0.334944 + 0.580140i
\(147\) 0 0
\(148\) −4.68415 + 17.4815i −0.0316497 + 0.118118i
\(149\) 195.281 112.746i 1.31061 0.756683i 0.328416 0.944533i \(-0.393485\pi\)
0.982198 + 0.187850i \(0.0601519\pi\)
\(150\) 0 0
\(151\) −124.344 + 215.370i −0.823470 + 1.42629i 0.0796138 + 0.996826i \(0.474631\pi\)
−0.903083 + 0.429465i \(0.858702\pi\)
\(152\) −34.4065 + 34.4065i −0.226359 + 0.226359i
\(153\) 0 0
\(154\) 6.18740i 0.0401780i
\(155\) 1.06754 + 133.761i 0.00688735 + 0.862974i
\(156\) 0 0
\(157\) 52.1651 + 13.9776i 0.332261 + 0.0890292i 0.421093 0.907017i \(-0.361647\pi\)
−0.0888315 + 0.996047i \(0.528313\pi\)
\(158\) −35.8078 + 133.637i −0.226632 + 0.845801i
\(159\) 0 0
\(160\) 20.1590 + 19.8397i 0.125994 + 0.123998i
\(161\) 105.242 0.653674
\(162\) 0 0
\(163\) 115.074 + 115.074i 0.705977 + 0.705977i 0.965687 0.259709i \(-0.0836268\pi\)
−0.259709 + 0.965687i \(0.583627\pi\)
\(164\) −85.7433 49.5039i −0.522825 0.301853i
\(165\) 0 0
\(166\) 50.9676 + 88.2786i 0.307034 + 0.531799i
\(167\) −302.380 81.0225i −1.81066 0.485164i −0.815101 0.579319i \(-0.803318\pi\)
−0.995558 + 0.0941548i \(0.969985\pi\)
\(168\) 0 0
\(169\) 131.886 + 76.1442i 0.780388 + 0.450557i
\(170\) −99.6857 169.522i −0.586387 0.997187i
\(171\) 0 0
\(172\) 64.5897 64.5897i 0.375522 0.375522i
\(173\) 209.321 56.0873i 1.20995 0.324204i 0.403205 0.915110i \(-0.367896\pi\)
0.806741 + 0.590906i \(0.201230\pi\)
\(174\) 0 0
\(175\) 59.3249 61.2496i 0.338999 0.349998i
\(176\) −2.56548 4.44353i −0.0145766 0.0252473i
\(177\) 0 0
\(178\) −64.1449 + 17.1876i −0.360364 + 0.0965593i
\(179\) 164.771i 0.920507i 0.887788 + 0.460254i \(0.152241\pi\)
−0.887788 + 0.460254i \(0.847759\pi\)
\(180\) 0 0
\(181\) −5.29281 −0.0292421 −0.0146210 0.999893i \(-0.504654\pi\)
−0.0146210 + 0.999893i \(0.504654\pi\)
\(182\) −5.10359 19.0468i −0.0280417 0.104653i
\(183\) 0 0
\(184\) −75.5801 + 43.6362i −0.410761 + 0.237153i
\(185\) −43.6088 + 12.0588i −0.235724 + 0.0651826i
\(186\) 0 0
\(187\) 9.23344 + 34.4597i 0.0493767 + 0.184276i
\(188\) 16.0415 + 16.0415i 0.0853271 + 0.0853271i
\(189\) 0 0
\(190\) −117.748 30.5454i −0.619726 0.160765i
\(191\) −39.7078 + 68.7759i −0.207894 + 0.360083i −0.951051 0.309034i \(-0.899994\pi\)
0.743157 + 0.669117i \(0.233328\pi\)
\(192\) 0 0
\(193\) −43.9766 + 164.123i −0.227858 + 0.850377i 0.753381 + 0.657584i \(0.228421\pi\)
−0.981239 + 0.192794i \(0.938245\pi\)
\(194\) −195.518 + 112.883i −1.00783 + 0.581869i
\(195\) 0 0
\(196\) −37.3665 + 64.7206i −0.190645 + 0.330207i
\(197\) 38.1732 38.1732i 0.193773 0.193773i −0.603551 0.797324i \(-0.706248\pi\)
0.797324 + 0.603551i \(0.206248\pi\)
\(198\) 0 0
\(199\) 90.0401i 0.452463i 0.974074 + 0.226231i \(0.0726405\pi\)
−0.974074 + 0.226231i \(0.927359\pi\)
\(200\) −17.2088 + 68.5847i −0.0860440 + 0.342923i
\(201\) 0 0
\(202\) −101.544 27.2085i −0.502691 0.134696i
\(203\) −46.9905 + 175.371i −0.231480 + 0.863896i
\(204\) 0 0
\(205\) −1.97538 247.512i −0.00963599 1.20737i
\(206\) 22.4570 0.109015
\(207\) 0 0
\(208\) 11.5626 + 11.5626i 0.0555892 + 0.0555892i
\(209\) 19.1108 + 11.0336i 0.0914392 + 0.0527925i
\(210\) 0 0
\(211\) −185.810 321.832i −0.880614 1.52527i −0.850659 0.525718i \(-0.823797\pi\)
−0.0299553 0.999551i \(-0.509536\pi\)
\(212\) 0.478042 + 0.128091i 0.00225491 + 0.000604202i
\(213\) 0 0
\(214\) 198.368 + 114.528i 0.926953 + 0.535177i
\(215\) 221.043 + 57.3415i 1.02811 + 0.266704i
\(216\) 0 0
\(217\) −64.5229 + 64.5229i −0.297341 + 0.297341i
\(218\) −109.538 + 29.3507i −0.502469 + 0.134636i
\(219\) 0 0
\(220\) 6.32483 11.1597i 0.0287492 0.0507258i
\(221\) −56.8471 98.4620i −0.257227 0.445529i
\(222\) 0 0
\(223\) 210.286 56.3460i 0.942988 0.252673i 0.245604 0.969370i \(-0.421014\pi\)
0.697384 + 0.716698i \(0.254347\pi\)
\(224\) 19.2944i 0.0861356i
\(225\) 0 0
\(226\) 211.318 0.935037
\(227\) 9.09000 + 33.9243i 0.0400440 + 0.149446i 0.983053 0.183320i \(-0.0586845\pi\)
−0.943009 + 0.332767i \(0.892018\pi\)
\(228\) 0 0
\(229\) 121.286 70.0246i 0.529634 0.305784i −0.211233 0.977436i \(-0.567748\pi\)
0.740867 + 0.671651i \(0.234415\pi\)
\(230\) −189.815 107.579i −0.825282 0.467735i
\(231\) 0 0
\(232\) −38.9672 145.428i −0.167962 0.626843i
\(233\) 127.973 + 127.973i 0.549239 + 0.549239i 0.926221 0.376982i \(-0.123038\pi\)
−0.376982 + 0.926221i \(0.623038\pi\)
\(234\) 0 0
\(235\) −14.2413 + 54.8981i −0.0606013 + 0.233609i
\(236\) −102.072 + 176.795i −0.432510 + 0.749129i
\(237\) 0 0
\(238\) 34.7213 129.582i 0.145888 0.544461i
\(239\) −62.3945 + 36.0235i −0.261065 + 0.150726i −0.624820 0.780769i \(-0.714828\pi\)
0.363755 + 0.931495i \(0.381494\pi\)
\(240\) 0 0
\(241\) −134.240 + 232.511i −0.557014 + 0.964776i 0.440730 + 0.897640i \(0.354720\pi\)
−0.997744 + 0.0671366i \(0.978614\pi\)
\(242\) 119.355 119.355i 0.493201 0.493201i
\(243\) 0 0
\(244\) 105.368i 0.431837i
\(245\) −186.826 + 1.49105i −0.762557 + 0.00608593i
\(246\) 0 0
\(247\) −67.9302 18.2018i −0.275021 0.0736917i
\(248\) 19.5846 73.0907i 0.0789701 0.294720i
\(249\) 0 0
\(250\) −169.609 + 49.8279i −0.678436 + 0.199312i
\(251\) −251.209 −1.00083 −0.500416 0.865785i \(-0.666820\pi\)
−0.500416 + 0.865785i \(0.666820\pi\)
\(252\) 0 0
\(253\) 27.9869 + 27.9869i 0.110620 + 0.110620i
\(254\) 192.977 + 111.415i 0.759751 + 0.438642i
\(255\) 0 0
\(256\) −8.00000 13.8564i −0.0312500 0.0541266i
\(257\) −78.0244 20.9066i −0.303597 0.0813485i 0.103805 0.994598i \(-0.466898\pi\)
−0.407401 + 0.913249i \(0.633565\pi\)
\(258\) 0 0
\(259\) −26.7295 15.4323i −0.103203 0.0595841i
\(260\) −10.2650 + 39.5700i −0.0394808 + 0.152192i
\(261\) 0 0
\(262\) −4.10096 + 4.10096i −0.0156525 + 0.0156525i
\(263\) 138.594 37.1361i 0.526973 0.141202i 0.0144826 0.999895i \(-0.495390\pi\)
0.512490 + 0.858693i \(0.328723\pi\)
\(264\) 0 0
\(265\) 0.329755 + 1.19251i 0.00124436 + 0.00450004i
\(266\) −41.4907 71.8641i −0.155980 0.270166i
\(267\) 0 0
\(268\) 114.789 30.7577i 0.428319 0.114768i
\(269\) 341.458i 1.26936i −0.772775 0.634680i \(-0.781132\pi\)
0.772775 0.634680i \(-0.218868\pi\)
\(270\) 0 0
\(271\) 157.125 0.579798 0.289899 0.957057i \(-0.406378\pi\)
0.289899 + 0.957057i \(0.406378\pi\)
\(272\) 28.7929 + 107.457i 0.105856 + 0.395061i
\(273\) 0 0
\(274\) −170.626 + 98.5110i −0.622723 + 0.359529i
\(275\) 32.0644 0.511841i 0.116598 0.00186124i
\(276\) 0 0
\(277\) −43.2604 161.450i −0.156175 0.582851i −0.999002 0.0446674i \(-0.985777\pi\)
0.842827 0.538184i \(-0.180889\pi\)
\(278\) 23.3971 + 23.3971i 0.0841621 + 0.0841621i
\(279\) 0 0
\(280\) −41.5797 + 24.4506i −0.148499 + 0.0873235i
\(281\) −100.731 + 174.471i −0.358473 + 0.620893i −0.987706 0.156324i \(-0.950036\pi\)
0.629233 + 0.777217i \(0.283369\pi\)
\(282\) 0 0
\(283\) −15.3918 + 57.4430i −0.0543880 + 0.202979i −0.987773 0.155897i \(-0.950173\pi\)
0.933385 + 0.358876i \(0.116840\pi\)
\(284\) 9.60033 5.54275i 0.0338040 0.0195167i
\(285\) 0 0
\(286\) 3.70793 6.42232i 0.0129648 0.0224557i
\(287\) 119.393 119.393i 0.416005 0.416005i
\(288\) 0 0
\(289\) 484.497i 1.67646i
\(290\) 264.018 268.267i 0.910408 0.925057i
\(291\) 0 0
\(292\) 133.602 + 35.7986i 0.457542 + 0.122598i
\(293\) 83.4199 311.327i 0.284709 1.06255i −0.664342 0.747429i \(-0.731288\pi\)
0.949051 0.315121i \(-0.102045\pi\)
\(294\) 0 0
\(295\) −510.346 + 4.07304i −1.72998 + 0.0138069i
\(296\) 25.5947 0.0864685
\(297\) 0 0
\(298\) −225.492 225.492i −0.756683 0.756683i
\(299\) −109.237 63.0682i −0.365342 0.210930i
\(300\) 0 0
\(301\) 77.8886 + 134.907i 0.258766 + 0.448196i
\(302\) 339.714 + 91.0261i 1.12488 + 0.301411i
\(303\) 0 0
\(304\) 59.5938 + 34.4065i 0.196032 + 0.113179i
\(305\) 227.070 133.527i 0.744493 0.437792i
\(306\) 0 0
\(307\) 65.6054 65.6054i 0.213698 0.213698i −0.592138 0.805837i \(-0.701716\pi\)
0.805837 + 0.592138i \(0.201716\pi\)
\(308\) 8.45215 2.26475i 0.0274421 0.00735308i
\(309\) 0 0
\(310\) 182.330 50.4182i 0.588162 0.162639i
\(311\) −121.899 211.135i −0.391957 0.678890i 0.600751 0.799437i \(-0.294869\pi\)
−0.992708 + 0.120547i \(0.961535\pi\)
\(312\) 0 0
\(313\) −227.421 + 60.9372i −0.726584 + 0.194688i −0.603108 0.797660i \(-0.706071\pi\)
−0.123477 + 0.992347i \(0.539404\pi\)
\(314\) 76.3749i 0.243232i
\(315\) 0 0
\(316\) 195.657 0.619169
\(317\) 122.564 + 457.413i 0.386636 + 1.44294i 0.835572 + 0.549380i \(0.185136\pi\)
−0.448937 + 0.893564i \(0.648197\pi\)
\(318\) 0 0
\(319\) −59.1325 + 34.1402i −0.185368 + 0.107023i
\(320\) 19.7229 34.7995i 0.0616341 0.108749i
\(321\) 0 0
\(322\) −38.5211 143.763i −0.119631 0.446468i
\(323\) −338.318 338.318i −1.04742 1.04742i
\(324\) 0 0
\(325\) −98.2824 + 28.0234i −0.302407 + 0.0862259i
\(326\) 115.074 199.315i 0.352989 0.611394i
\(327\) 0 0
\(328\) −36.2394 + 135.247i −0.110486 + 0.412339i
\(329\) −33.5055 + 19.3444i −0.101840 + 0.0587976i
\(330\) 0 0
\(331\) 123.081 213.182i 0.371845 0.644054i −0.618004 0.786175i \(-0.712059\pi\)
0.989849 + 0.142120i \(0.0453920\pi\)
\(332\) 101.935 101.935i 0.307034 0.307034i
\(333\) 0 0
\(334\) 442.715i 1.32549i
\(335\) 211.749 + 208.396i 0.632087 + 0.622077i
\(336\) 0 0
\(337\) 435.441 + 116.676i 1.29211 + 0.346220i 0.838461 0.544962i \(-0.183456\pi\)
0.453648 + 0.891181i \(0.350122\pi\)
\(338\) 55.7414 208.030i 0.164915 0.615473i
\(339\) 0 0
\(340\) −195.084 + 198.222i −0.573775 + 0.583007i
\(341\) −34.3171 −0.100637
\(342\) 0 0
\(343\) −208.298 208.298i −0.607284 0.607284i
\(344\) −111.873 64.5897i −0.325211 0.187761i
\(345\) 0 0
\(346\) −153.233 265.408i −0.442871 0.767075i
\(347\) 257.007 + 68.8649i 0.740655 + 0.198458i 0.609369 0.792887i \(-0.291423\pi\)
0.131286 + 0.991345i \(0.458089\pi\)
\(348\) 0 0
\(349\) 99.2693 + 57.3131i 0.284439 + 0.164221i 0.635431 0.772157i \(-0.280822\pi\)
−0.350992 + 0.936378i \(0.614156\pi\)
\(350\) −105.383 58.6204i −0.301094 0.167487i
\(351\) 0 0
\(352\) −5.13095 + 5.13095i −0.0145766 + 0.0145766i
\(353\) 99.3009 26.6076i 0.281306 0.0753757i −0.115408 0.993318i \(-0.536817\pi\)
0.396713 + 0.917943i \(0.370151\pi\)
\(354\) 0 0
\(355\) 24.1106 + 13.6649i 0.0679173 + 0.0384927i
\(356\) 46.9573 + 81.3324i 0.131903 + 0.228462i
\(357\) 0 0
\(358\) 225.081 60.3103i 0.628718 0.168464i
\(359\) 190.904i 0.531767i −0.964005 0.265883i \(-0.914336\pi\)
0.964005 0.265883i \(-0.0856636\pi\)
\(360\) 0 0
\(361\) 65.0483 0.180189
\(362\) 1.93730 + 7.23012i 0.00535167 + 0.0199727i
\(363\) 0 0
\(364\) −24.1504 + 13.9433i −0.0663474 + 0.0383057i
\(365\) 92.1593 + 333.281i 0.252491 + 0.913098i
\(366\) 0 0
\(367\) 135.622 + 506.147i 0.369542 + 1.37915i 0.861159 + 0.508336i \(0.169739\pi\)
−0.491617 + 0.870812i \(0.663594\pi\)
\(368\) 87.2724 + 87.2724i 0.237153 + 0.237153i
\(369\) 0 0
\(370\) 32.4346 + 55.1570i 0.0876610 + 0.149073i
\(371\) −0.422005 + 0.730934i −0.00113748 + 0.00197017i
\(372\) 0 0
\(373\) 56.8529 212.178i 0.152421 0.568842i −0.846892 0.531765i \(-0.821529\pi\)
0.999312 0.0370764i \(-0.0118045\pi\)
\(374\) 43.6931 25.2262i 0.116826 0.0674498i
\(375\) 0 0
\(376\) 16.0415 27.7847i 0.0426635 0.0738954i
\(377\) 153.869 153.869i 0.408141 0.408141i
\(378\) 0 0
\(379\) 542.378i 1.43108i −0.698574 0.715538i \(-0.746181\pi\)
0.698574 0.715538i \(-0.253819\pi\)
\(380\) 1.37294 + 172.027i 0.00361300 + 0.452703i
\(381\) 0 0
\(382\) 108.484 + 29.0681i 0.283989 + 0.0760946i
\(383\) −87.3480 + 325.987i −0.228063 + 0.851141i 0.753092 + 0.657916i \(0.228562\pi\)
−0.981154 + 0.193226i \(0.938105\pi\)
\(384\) 0 0
\(385\) 15.5915 + 15.3446i 0.0404973 + 0.0398560i
\(386\) 240.292 0.622519
\(387\) 0 0
\(388\) 225.765 + 225.765i 0.581869 + 0.581869i
\(389\) −151.351 87.3827i −0.389078 0.224634i 0.292683 0.956210i \(-0.405452\pi\)
−0.681761 + 0.731575i \(0.738785\pi\)
\(390\) 0 0
\(391\) −429.073 743.176i −1.09737 1.90071i
\(392\) 102.087 + 27.3542i 0.260426 + 0.0697810i
\(393\) 0 0
\(394\) −66.1180 38.1732i −0.167812 0.0968864i
\(395\) 247.945 + 421.645i 0.627708 + 1.06746i
\(396\) 0 0
\(397\) −249.989 + 249.989i −0.629695 + 0.629695i −0.947991 0.318296i \(-0.896889\pi\)
0.318296 + 0.947991i \(0.396889\pi\)
\(398\) 122.997 32.9570i 0.309038 0.0828064i
\(399\) 0 0
\(400\) 99.9873 1.59609i 0.249968 0.00399022i
\(401\) 65.7803 + 113.935i 0.164041 + 0.284127i 0.936314 0.351163i \(-0.114214\pi\)
−0.772274 + 0.635290i \(0.780880\pi\)
\(402\) 0 0
\(403\) 105.639 28.3060i 0.262132 0.0702382i
\(404\) 148.670i 0.367995i
\(405\) 0 0
\(406\) 256.761 0.632416
\(407\) −3.00427 11.2121i −0.00738149 0.0275481i
\(408\) 0 0
\(409\) −396.466 + 228.899i −0.969353 + 0.559656i −0.899039 0.437868i \(-0.855734\pi\)
−0.0703144 + 0.997525i \(0.522400\pi\)
\(410\) −337.384 + 93.2940i −0.822888 + 0.227546i
\(411\) 0 0
\(412\) −8.21984 30.6769i −0.0199511 0.0744584i
\(413\) −246.178 246.178i −0.596072 0.596072i
\(414\) 0 0
\(415\) 348.849 + 90.4961i 0.840600 + 0.218063i
\(416\) 11.5626 20.0269i 0.0277946 0.0481417i
\(417\) 0 0
\(418\) 8.07718 30.1444i 0.0193234 0.0721159i
\(419\) −178.018 + 102.779i −0.424864 + 0.245295i −0.697156 0.716919i \(-0.745552\pi\)
0.272292 + 0.962215i \(0.412218\pi\)
\(420\) 0 0
\(421\) 33.9869 58.8671i 0.0807291 0.139827i −0.822834 0.568281i \(-0.807608\pi\)
0.903563 + 0.428455i \(0.140942\pi\)
\(422\) −371.619 + 371.619i −0.880614 + 0.880614i
\(423\) 0 0
\(424\) 0.699901i 0.00165071i
\(425\) −674.391 169.213i −1.58680 0.398149i
\(426\) 0 0
\(427\) 173.572 + 46.5084i 0.406491 + 0.108919i
\(428\) 83.8402 312.896i 0.195888 0.731065i
\(429\) 0 0
\(430\) −2.57736 322.938i −0.00599385 0.751019i
\(431\) −99.6045 −0.231101 −0.115550 0.993302i \(-0.536863\pi\)
−0.115550 + 0.993302i \(0.536863\pi\)
\(432\) 0 0
\(433\) −459.635 459.635i −1.06151 1.06151i −0.997980 0.0635322i \(-0.979763\pi\)
−0.0635322 0.997980i \(-0.520237\pi\)
\(434\) 111.757 + 64.5229i 0.257504 + 0.148670i
\(435\) 0 0
\(436\) 80.1875 + 138.889i 0.183916 + 0.318552i
\(437\) −512.727 137.385i −1.17329 0.314381i
\(438\) 0 0
\(439\) 50.5174 + 29.1662i 0.115074 + 0.0664379i 0.556432 0.830893i \(-0.312170\pi\)
−0.441358 + 0.897331i \(0.645503\pi\)
\(440\) −17.5594 4.55515i −0.0399078 0.0103526i
\(441\) 0 0
\(442\) −113.694 + 113.694i −0.257227 + 0.257227i
\(443\) −233.923 + 62.6794i −0.528042 + 0.141489i −0.512984 0.858398i \(-0.671460\pi\)
−0.0150582 + 0.999887i \(0.504793\pi\)
\(444\) 0 0
\(445\) −115.767 + 204.261i −0.260150 + 0.459015i
\(446\) −153.940 266.632i −0.345157 0.597830i
\(447\) 0 0
\(448\) 26.3566 7.06223i 0.0588317 0.0157639i
\(449\) 769.773i 1.71442i 0.514970 + 0.857208i \(0.327803\pi\)
−0.514970 + 0.857208i \(0.672197\pi\)
\(450\) 0 0
\(451\) 63.5005 0.140799
\(452\) −77.3479 288.666i −0.171124 0.638642i
\(453\) 0 0
\(454\) 43.0143 24.8343i 0.0947452 0.0547012i
\(455\) −60.6524 34.3752i −0.133302 0.0755499i
\(456\) 0 0
\(457\) −4.67380 17.4429i −0.0102271 0.0381682i 0.960624 0.277853i \(-0.0896227\pi\)
−0.970851 + 0.239684i \(0.922956\pi\)
\(458\) −140.049 140.049i −0.305784 0.305784i
\(459\) 0 0
\(460\) −77.4786 + 298.668i −0.168432 + 0.649279i
\(461\) 294.578 510.225i 0.638999 1.10678i −0.346654 0.937993i \(-0.612682\pi\)
0.985653 0.168785i \(-0.0539844\pi\)
\(462\) 0 0
\(463\) −169.498 + 632.574i −0.366086 + 1.36625i 0.499857 + 0.866108i \(0.333386\pi\)
−0.865943 + 0.500143i \(0.833281\pi\)
\(464\) −184.395 + 106.460i −0.397403 + 0.229441i
\(465\) 0 0
\(466\) 127.973 221.655i 0.274619 0.475655i
\(467\) 61.7235 61.7235i 0.132170 0.132170i −0.637927 0.770097i \(-0.720208\pi\)
0.770097 + 0.637927i \(0.220208\pi\)
\(468\) 0 0
\(469\) 202.667i 0.432126i
\(470\) 80.2049 0.640111i 0.170649 0.00136194i
\(471\) 0 0
\(472\) 278.867 + 74.7222i 0.590820 + 0.158310i
\(473\) −15.1629 + 56.5887i −0.0320569 + 0.119638i
\(474\) 0 0
\(475\) −368.982 + 220.958i −0.776803 + 0.465175i
\(476\) −189.721 −0.398573
\(477\) 0 0
\(478\) 72.0469 + 72.0469i 0.150726 + 0.150726i
\(479\) −141.705 81.8136i −0.295836 0.170801i 0.344735 0.938700i \(-0.387969\pi\)
−0.640571 + 0.767899i \(0.721302\pi\)
\(480\) 0 0
\(481\) 18.4962 + 32.0364i 0.0384537 + 0.0666037i
\(482\) 366.751 + 98.2708i 0.760895 + 0.203881i
\(483\) 0 0
\(484\) −206.728 119.355i −0.427124 0.246600i
\(485\) −200.430 + 772.627i −0.413257 + 1.59304i
\(486\) 0 0
\(487\) −359.366 + 359.366i −0.737918 + 0.737918i −0.972175 0.234257i \(-0.924734\pi\)
0.234257 + 0.972175i \(0.424734\pi\)
\(488\) −143.936 + 38.5674i −0.294950 + 0.0790316i
\(489\) 0 0
\(490\) 70.4200 + 254.664i 0.143714 + 0.519722i
\(491\) 28.5143 + 49.3883i 0.0580740 + 0.100587i 0.893601 0.448863i \(-0.148171\pi\)
−0.835527 + 0.549450i \(0.814837\pi\)
\(492\) 0 0
\(493\) 1429.98 383.163i 2.90058 0.777207i
\(494\) 99.4567i 0.201329i
\(495\) 0 0
\(496\) −107.012 −0.215750
\(497\) 4.89303 + 18.2610i 0.00984512 + 0.0367425i
\(498\) 0 0
\(499\) −767.997 + 443.403i −1.53907 + 0.888584i −0.540179 + 0.841550i \(0.681643\pi\)
−0.998893 + 0.0470334i \(0.985023\pi\)
\(500\) 130.147 + 213.452i 0.260295 + 0.426904i
\(501\) 0 0
\(502\) 91.9488 + 343.158i 0.183165 + 0.683581i
\(503\) 70.9445 + 70.9445i 0.141043 + 0.141043i 0.774103 0.633060i \(-0.218201\pi\)
−0.633060 + 0.774103i \(0.718201\pi\)
\(504\) 0 0
\(505\) −320.387 + 188.401i −0.634429 + 0.373070i
\(506\) 27.9869 48.4747i 0.0553100 0.0957998i
\(507\) 0 0
\(508\) 81.5615 304.392i 0.160554 0.599196i
\(509\) 190.984 110.265i 0.375214 0.216630i −0.300520 0.953776i \(-0.597160\pi\)
0.675734 + 0.737146i \(0.263827\pi\)
\(510\) 0 0
\(511\) −117.941 + 204.280i −0.230805 + 0.399765i
\(512\) −16.0000 + 16.0000i −0.0312500 + 0.0312500i
\(513\) 0 0
\(514\) 114.236i 0.222248i
\(515\) 55.6927 56.5889i 0.108141 0.109881i
\(516\) 0 0
\(517\) −14.0544 3.76586i −0.0271845 0.00728406i
\(518\) −11.2972 + 42.1618i −0.0218093 + 0.0813934i
\(519\) 0 0
\(520\) 57.8109 0.461386i 0.111175 0.000887281i
\(521\) −315.280 −0.605144 −0.302572 0.953127i \(-0.597845\pi\)
−0.302572 + 0.953127i \(0.597845\pi\)
\(522\) 0 0
\(523\) 550.337 + 550.337i 1.05227 + 1.05227i 0.998556 + 0.0537127i \(0.0171055\pi\)
0.0537127 + 0.998556i \(0.482894\pi\)
\(524\) 7.10308 + 4.10096i 0.0135555 + 0.00782627i
\(525\) 0 0
\(526\) −101.458 175.730i −0.192885 0.334087i
\(527\) 718.698 + 192.575i 1.36375 + 0.365417i
\(528\) 0 0
\(529\) −366.379 211.529i −0.692588 0.399866i
\(530\) 1.50830 0.886942i 0.00284585 0.00167348i
\(531\) 0 0
\(532\) −82.9815 + 82.9815i −0.155980 + 0.155980i
\(533\) −195.475 + 52.3775i −0.366745 + 0.0982692i
\(534\) 0 0
\(535\) 780.542 215.837i 1.45896 0.403433i
\(536\) −84.0317 145.547i −0.156776 0.271543i
\(537\) 0 0
\(538\) −466.440 + 124.982i −0.866989 + 0.232309i
\(539\) 47.9314i 0.0889265i
\(540\) 0 0
\(541\) 86.5875 0.160051 0.0800254 0.996793i \(-0.474500\pi\)
0.0800254 + 0.996793i \(0.474500\pi\)
\(542\) −57.5119 214.637i −0.106110 0.396010i
\(543\) 0 0
\(544\) 136.250 78.6637i 0.250459 0.144602i
\(545\) −197.691 + 348.811i −0.362736 + 0.640020i
\(546\) 0 0
\(547\) 131.665 + 491.379i 0.240703 + 0.898317i 0.975495 + 0.220024i \(0.0706135\pi\)
−0.734791 + 0.678293i \(0.762720\pi\)
\(548\) 197.022 + 197.022i 0.359529 + 0.359529i
\(549\) 0 0
\(550\) −12.4356 43.6134i −0.0226101 0.0792971i
\(551\) 457.866 793.047i 0.830973 1.43929i
\(552\) 0 0
\(553\) −86.3611 + 322.304i −0.156168 + 0.582828i
\(554\) −204.710 + 118.189i −0.369513 + 0.213338i
\(555\) 0 0
\(556\) 23.3971 40.5249i 0.0420811 0.0728865i
\(557\) 145.517 145.517i 0.261252 0.261252i −0.564311 0.825563i \(-0.690858\pi\)
0.825563 + 0.564311i \(0.190858\pi\)
\(558\) 0 0
\(559\) 186.706i 0.333999i
\(560\) 48.6194 + 47.8494i 0.0868203 + 0.0854454i
\(561\) 0 0
\(562\) 275.202 + 73.7401i 0.489683 + 0.131210i
\(563\) 132.511 494.539i 0.235366 0.878399i −0.742617 0.669716i \(-0.766416\pi\)
0.977983 0.208683i \(-0.0669177\pi\)
\(564\) 0 0
\(565\) 524.063 532.496i 0.927545 0.942470i
\(566\) 84.1024 0.148591
\(567\) 0 0
\(568\) −11.0855 11.0855i −0.0195167 0.0195167i
\(569\) 334.415 + 193.075i 0.587724 + 0.339323i 0.764197 0.644983i \(-0.223135\pi\)
−0.176473 + 0.984306i \(0.556469\pi\)
\(570\) 0 0
\(571\) −76.7904 133.005i −0.134484 0.232933i 0.790916 0.611924i \(-0.209604\pi\)
−0.925400 + 0.378991i \(0.876271\pi\)
\(572\) −10.1303 2.71439i −0.0177102 0.00474544i
\(573\) 0 0
\(574\) −206.795 119.393i −0.360271 0.208002i
\(575\) −741.820 + 211.516i −1.29012 + 0.367855i
\(576\) 0 0
\(577\) −115.299 + 115.299i −0.199825 + 0.199825i −0.799925 0.600100i \(-0.795127\pi\)
0.600100 + 0.799925i \(0.295127\pi\)
\(578\) −661.836 + 177.338i −1.14504 + 0.306814i
\(579\) 0 0
\(580\) −463.096 262.464i −0.798442 0.452523i
\(581\) 122.924 + 212.910i 0.211572 + 0.366454i
\(582\) 0 0
\(583\) −0.306601 + 0.0821535i −0.000525902 + 0.000140915i
\(584\) 195.607i 0.334944i
\(585\) 0 0
\(586\) −455.815 −0.777841
\(587\) −58.3833 217.890i −0.0994606 0.371192i 0.898197 0.439592i \(-0.144877\pi\)
−0.997658 + 0.0684005i \(0.978210\pi\)
\(588\) 0 0
\(589\) 398.579 230.120i 0.676704 0.390695i
\(590\) 192.363 + 695.654i 0.326040 + 1.17907i
\(591\) 0 0
\(592\) −9.36830 34.9630i −0.0158248 0.0590591i
\(593\) 250.553 + 250.553i 0.422518 + 0.422518i 0.886070 0.463552i \(-0.153425\pi\)
−0.463552 + 0.886070i \(0.653425\pi\)
\(594\) 0 0
\(595\) −240.422 408.852i −0.404070 0.687146i
\(596\) −225.492 + 390.563i −0.378342 + 0.655307i
\(597\) 0 0
\(598\) −46.1691 + 172.306i −0.0772059 + 0.288136i
\(599\) 390.471 225.439i 0.651871 0.376358i −0.137301 0.990529i \(-0.543843\pi\)
0.789173 + 0.614171i \(0.210510\pi\)
\(600\) 0 0
\(601\) 184.215 319.070i 0.306514 0.530898i −0.671083 0.741382i \(-0.734171\pi\)
0.977597 + 0.210484i \(0.0675040\pi\)
\(602\) 155.777 155.777i 0.258766 0.258766i
\(603\) 0 0
\(604\) 497.376i 0.823470i
\(605\) −4.76266 596.754i −0.00787217 0.986370i
\(606\) 0 0
\(607\) 606.509 + 162.514i 0.999191 + 0.267733i 0.721107 0.692824i \(-0.243634\pi\)
0.278085 + 0.960557i \(0.410300\pi\)
\(608\) 25.1873 94.0003i 0.0414265 0.154606i
\(609\) 0 0
\(610\) −265.514 261.310i −0.435269 0.428377i
\(611\) 46.3701 0.0758922
\(612\) 0 0
\(613\) −530.799 530.799i −0.865904 0.865904i 0.126112 0.992016i \(-0.459750\pi\)
−0.992016 + 0.126112i \(0.959750\pi\)
\(614\) −113.632 65.6054i −0.185068 0.106849i
\(615\) 0 0
\(616\) −6.18740 10.7169i −0.0100445 0.0173976i
\(617\) 399.394 + 107.017i 0.647316 + 0.173448i 0.567515 0.823363i \(-0.307905\pi\)
0.0798010 + 0.996811i \(0.474572\pi\)
\(618\) 0 0
\(619\) 311.398 + 179.786i 0.503066 + 0.290445i 0.729979 0.683470i \(-0.239530\pi\)
−0.226913 + 0.973915i \(0.572863\pi\)
\(620\) −135.610 230.613i −0.218726 0.371957i
\(621\) 0 0
\(622\) −243.797 + 243.797i −0.391957 + 0.391957i
\(623\) −154.704 + 41.4529i −0.248322 + 0.0665376i
\(624\) 0 0
\(625\) −295.065 + 550.964i −0.472104 + 0.881543i
\(626\) 166.484 + 288.358i 0.265948 + 0.460636i
\(627\) 0 0
\(628\) −104.330 + 27.9552i −0.166131 + 0.0445146i
\(629\) 251.671i 0.400113i
\(630\) 0 0
\(631\) 1215.94 1.92701 0.963505 0.267690i \(-0.0862602\pi\)
0.963505 + 0.267690i \(0.0862602\pi\)
\(632\) −71.6156 267.273i −0.113316 0.422900i
\(633\) 0 0
\(634\) 579.977 334.850i 0.914790 0.528154i
\(635\) 759.328 209.970i 1.19579 0.330662i
\(636\) 0 0
\(637\) 39.5355 + 147.548i 0.0620651 + 0.231630i
\(638\) 68.2804 + 68.2804i 0.107023 + 0.107023i
\(639\) 0 0
\(640\) −54.7561 14.2045i −0.0855564 0.0221945i
\(641\) −273.901 + 474.411i −0.427303 + 0.740111i −0.996632 0.0819986i \(-0.973870\pi\)
0.569329 + 0.822110i \(0.307203\pi\)
\(642\) 0 0
\(643\) 189.239 706.250i 0.294306 1.09837i −0.647460 0.762099i \(-0.724169\pi\)
0.941767 0.336267i \(-0.109165\pi\)
\(644\) −182.284 + 105.242i −0.283049 + 0.163419i
\(645\) 0 0
\(646\) −338.318 + 585.984i −0.523712 + 0.907095i
\(647\) 374.569 374.569i 0.578932 0.578932i −0.355677 0.934609i \(-0.615750\pi\)
0.934609 + 0.355677i \(0.115750\pi\)
\(648\) 0 0
\(649\) 130.932i 0.201744i
\(650\) 74.2545 + 123.999i 0.114238 + 0.190768i
\(651\) 0 0
\(652\) −314.389 84.2403i −0.482192 0.129203i
\(653\) 233.065 869.812i 0.356915 1.33202i −0.521143 0.853470i \(-0.674494\pi\)
0.878058 0.478555i \(-0.158839\pi\)
\(654\) 0 0
\(655\) 0.163643 + 20.5042i 0.000249836 + 0.0313041i
\(656\) 198.016 0.301853
\(657\) 0 0
\(658\) 38.6888 + 38.6888i 0.0587976 + 0.0587976i
\(659\) −131.147 75.7178i −0.199009 0.114898i 0.397184 0.917739i \(-0.369987\pi\)
−0.596193 + 0.802841i \(0.703321\pi\)
\(660\) 0 0
\(661\) −26.7023 46.2498i −0.0403969 0.0699695i 0.845120 0.534577i \(-0.179529\pi\)
−0.885517 + 0.464607i \(0.846196\pi\)
\(662\) −336.263 90.1013i −0.507950 0.136105i
\(663\) 0 0
\(664\) −176.557 101.935i −0.265899 0.153517i
\(665\) −283.984 73.6693i −0.427044 0.110781i
\(666\) 0 0
\(667\) 1161.38 1161.38i 1.74120 1.74120i
\(668\) 604.760 162.045i 0.905329 0.242582i
\(669\) 0 0
\(670\) 207.169 365.533i 0.309207 0.545571i
\(671\) 33.7899 + 58.5259i 0.0503576 + 0.0872219i
\(672\) 0 0
\(673\) −645.366 + 172.925i −0.958939 + 0.256947i −0.704151 0.710050i \(-0.748672\pi\)
−0.254788 + 0.966997i \(0.582006\pi\)
\(674\) 637.529i 0.945889i
\(675\) 0 0
\(676\) −304.577 −0.450557
\(677\) 139.481 + 520.551i 0.206028 + 0.768908i 0.989134 + 0.147019i \(0.0469678\pi\)
−0.783105 + 0.621889i \(0.786365\pi\)
\(678\) 0 0
\(679\) −471.551 + 272.250i −0.694478 + 0.400957i
\(680\) 342.182 + 193.935i 0.503210 + 0.285198i
\(681\) 0 0
\(682\) 12.5609 + 46.8781i 0.0184178 + 0.0687362i
\(683\) −40.8892 40.8892i −0.0598670 0.0598670i 0.676539 0.736406i \(-0.263479\pi\)
−0.736406 + 0.676539i \(0.763479\pi\)
\(684\) 0 0
\(685\) −174.912 + 674.260i −0.255346 + 0.984321i
\(686\) −208.298 + 360.783i −0.303642 + 0.525923i
\(687\) 0 0
\(688\) −47.2830 + 176.462i −0.0687252 + 0.256486i
\(689\) 0.876055 0.505790i 0.00127149 0.000734093i
\(690\) 0 0
\(691\) −402.556 + 697.247i −0.582570 + 1.00904i 0.412604 + 0.910911i \(0.364619\pi\)
−0.995174 + 0.0981299i \(0.968714\pi\)
\(692\) −306.467 + 306.467i −0.442871 + 0.442871i
\(693\) 0 0
\(694\) 376.285i 0.542197i
\(695\) 116.982 0.933625i 0.168319 0.00134335i
\(696\) 0 0
\(697\) −1329.88 356.340i −1.90801 0.511249i
\(698\) 41.9561 156.582i 0.0601091 0.224330i
\(699\) 0 0
\(700\) −41.5041 + 165.412i −0.0592916 + 0.236303i
\(701\) −1140.79 −1.62738 −0.813690 0.581299i \(-0.802545\pi\)
−0.813690 + 0.581299i \(0.802545\pi\)
\(702\) 0 0
\(703\) 110.078 + 110.078i 0.156583 + 0.156583i
\(704\) 8.88707 + 5.13095i 0.0126237 + 0.00728828i
\(705\) 0 0
\(706\) −72.6933 125.909i −0.102965 0.178341i
\(707\) −244.902 65.6214i −0.346397 0.0928167i
\(708\) 0 0
\(709\) 641.044 + 370.107i 0.904152 + 0.522013i 0.878545 0.477659i \(-0.158515\pi\)
0.0256073 + 0.999672i \(0.491848\pi\)
\(710\) 9.84149 37.9375i 0.0138613 0.0534330i
\(711\) 0 0
\(712\) 93.9146 93.9146i 0.131903 0.131903i
\(713\) 797.349 213.649i 1.11830 0.299648i
\(714\) 0 0
\(715\) −6.98788 25.2707i −0.00977326 0.0353436i
\(716\) −164.771 285.391i −0.230127 0.398591i
\(717\) 0 0
\(718\) −260.780 + 69.8758i −0.363203 + 0.0973201i
\(719\) 595.037i 0.827590i −0.910370 0.413795i \(-0.864203\pi\)
0.910370 0.413795i \(-0.135797\pi\)
\(720\) 0 0
\(721\) 54.1618 0.0751204
\(722\) −23.8093 88.8576i −0.0329769 0.123071i
\(723\) 0 0
\(724\) 9.16742 5.29281i 0.0126622 0.00731052i
\(725\) −21.2400 1330.59i −0.0292966 1.83529i
\(726\) 0 0
\(727\) −285.714 1066.30i −0.393004 1.46671i −0.825153 0.564910i \(-0.808911\pi\)
0.432148 0.901803i \(-0.357756\pi\)
\(728\) 27.8865 + 27.8865i 0.0383057 + 0.0383057i
\(729\) 0 0
\(730\) 421.537 247.881i 0.577448 0.339563i
\(731\) 635.108 1100.04i 0.868821 1.50484i
\(732\) 0 0
\(733\) −56.5121 + 210.906i −0.0770970 + 0.287730i −0.993701 0.112067i \(-0.964253\pi\)
0.916604 + 0.399797i \(0.130919\pi\)
\(734\) 641.769 370.526i 0.874345 0.504803i
\(735\) 0 0
\(736\) 87.2724 151.160i 0.118577 0.205381i
\(737\) −53.8953 + 53.8953i −0.0731279 + 0.0731279i
\(738\) 0 0
\(739\) 393.578i 0.532583i 0.963893 + 0.266291i \(0.0857983\pi\)
−0.963893 + 0.266291i \(0.914202\pi\)
\(740\) 63.4740 64.4953i 0.0857756 0.0871558i
\(741\) 0 0
\(742\) 1.15294 + 0.308929i 0.00155383 + 0.000416346i
\(743\) −249.966 + 932.885i −0.336428 + 1.25557i 0.565885 + 0.824484i \(0.308535\pi\)
−0.902313 + 0.431082i \(0.858132\pi\)
\(744\) 0 0
\(745\) −1127.42 + 8.99790i −1.51332 + 0.0120777i
\(746\) −310.650 −0.416421
\(747\) 0 0
\(748\) −50.4524 50.4524i −0.0674498 0.0674498i
\(749\) 478.423 + 276.218i 0.638749 + 0.368782i
\(750\) 0 0
\(751\) −112.720 195.237i −0.150093 0.259969i 0.781168 0.624320i \(-0.214624\pi\)
−0.931262 + 0.364351i \(0.881291\pi\)
\(752\) −43.8262 11.7432i −0.0582795 0.0156159i
\(753\) 0 0
\(754\) −266.509 153.869i −0.353461 0.204071i
\(755\) 1071.85 630.294i 1.41967 0.834826i
\(756\) 0 0
\(757\) 257.146 257.146i 0.339691 0.339691i −0.516560 0.856251i \(-0.672788\pi\)
0.856251 + 0.516560i \(0.172788\pi\)
\(758\) −740.902 + 198.524i −0.977443 + 0.261905i
\(759\) 0 0
\(760\) 234.491 64.8417i 0.308540 0.0853181i
\(761\) 405.656 + 702.618i 0.533057 + 0.923282i 0.999255 + 0.0386014i \(0.0122903\pi\)
−0.466198 + 0.884681i \(0.654376\pi\)
\(762\) 0 0
\(763\) −264.184 + 70.7878i −0.346243 + 0.0927757i
\(764\) 158.831i 0.207894i
\(765\) 0 0
\(766\) 477.278 0.623079
\(767\) 107.997 + 403.052i 0.140805 + 0.525491i
\(768\) 0 0
\(769\) 239.236 138.123i 0.311100 0.179614i −0.336318 0.941748i \(-0.609182\pi\)
0.647419 + 0.762134i \(0.275848\pi\)
\(770\) 15.2542 26.9148i 0.0198106 0.0349543i
\(771\) 0 0
\(772\) −87.9532 328.246i −0.113929 0.425189i
\(773\) 246.810 + 246.810i 0.319288 + 0.319288i 0.848494 0.529205i \(-0.177510\pi\)
−0.529205 + 0.848494i \(0.677510\pi\)
\(774\) 0 0
\(775\) 325.126 584.484i 0.419517 0.754173i
\(776\) 225.765 391.037i 0.290934 0.503913i
\(777\) 0 0
\(778\) −63.9686 + 238.734i −0.0822219 + 0.306856i
\(779\) −737.532 + 425.814i −0.946767 + 0.546616i
\(780\) 0 0
\(781\) −3.55495 + 6.15735i −0.00455179 + 0.00788393i
\(782\) −858.146 + 858.146i −1.09737 + 1.09737i
\(783\) 0 0
\(784\) 149.466i 0.190645i
\(785\) −192.455 189.407i −0.245166 0.241283i
\(786\) 0 0
\(787\) −324.226 86.8762i −0.411978 0.110389i 0.0468765 0.998901i \(-0.485073\pi\)
−0.458854 + 0.888512i \(0.651740\pi\)
\(788\) −27.9447 + 104.291i −0.0354629 + 0.132349i
\(789\) 0 0
\(790\) 485.224 493.032i 0.614208 0.624091i
\(791\) 509.657 0.644320
\(792\) 0 0
\(793\) −152.291 152.291i −0.192044 0.192044i
\(794\) 432.993 + 249.989i 0.545332 + 0.314847i
\(795\) 0 0
\(796\) −90.0401 155.954i −0.113116 0.195922i
\(797\) −737.163 197.522i −0.924922 0.247832i −0.235234 0.971939i \(-0.575586\pi\)
−0.689688 + 0.724107i \(0.742252\pi\)
\(798\) 0 0
\(799\) 273.206 + 157.735i 0.341935 + 0.197416i
\(800\) −38.7782 136.001i −0.0484727 0.170001i
\(801\) 0 0
\(802\) 131.561 131.561i 0.164041 0.164041i
\(803\) −85.6883 + 22.9601i −0.106710 + 0.0285929i
\(804\) 0 0
\(805\) −457.795 259.459i −0.568689 0.322309i
\(806\) −77.3334 133.945i −0.0959471 0.166185i
\(807\) 0 0
\(808\) 203.087 54.4170i 0.251346 0.0673478i
\(809\) 195.169i 0.241248i 0.992698 + 0.120624i \(0.0384895\pi\)
−0.992698 + 0.120624i \(0.961511\pi\)
\(810\) 0 0
\(811\) −1111.22 −1.37018 −0.685090 0.728459i \(-0.740237\pi\)
−0.685090 + 0.728459i \(0.740237\pi\)
\(812\) −93.9810 350.742i −0.115740 0.431948i
\(813\) 0 0
\(814\) −14.2163 + 8.20781i −0.0174648 + 0.0100833i
\(815\) −216.867 784.267i −0.266094 0.962290i
\(816\) 0 0
\(817\) −203.355 758.932i −0.248905 0.928925i
\(818\) 457.799 + 457.799i 0.559656 + 0.559656i
\(819\) 0 0
\(820\) 250.933 + 426.727i 0.306016 + 0.520399i
\(821\) −679.281 + 1176.55i −0.827382 + 1.43307i 0.0727025 + 0.997354i \(0.476838\pi\)
−0.900085 + 0.435715i \(0.856496\pi\)
\(822\) 0 0
\(823\) 289.667 1081.05i 0.351965 1.31355i −0.532295 0.846559i \(-0.678670\pi\)
0.884261 0.466994i \(-0.154663\pi\)
\(824\) −38.8967 + 22.4570i −0.0472048 + 0.0272537i
\(825\) 0 0
\(826\) −246.178 + 426.392i −0.298036 + 0.516214i
\(827\) 346.428 346.428i 0.418897 0.418897i −0.465926 0.884823i \(-0.654279\pi\)
0.884823 + 0.465926i \(0.154279\pi\)
\(828\) 0 0
\(829\) 1353.95i 1.63324i 0.577178 + 0.816618i \(0.304154\pi\)
−0.577178 + 0.816618i \(0.695846\pi\)
\(830\) −4.06757 509.660i −0.00490069 0.614048i
\(831\) 0 0
\(832\) −31.5895 8.46438i −0.0379681 0.0101735i
\(833\) −268.972 + 1003.82i −0.322896 + 1.20506i
\(834\) 0 0
\(835\) 1115.59 + 1097.92i 1.33603 + 1.31487i
\(836\) −44.1345 −0.0527925
\(837\) 0 0
\(838\) 205.557 + 205.557i 0.245295 + 0.245295i
\(839\) −953.073 550.257i −1.13596 0.655849i −0.190535 0.981680i \(-0.561022\pi\)
−0.945428 + 0.325832i \(0.894356\pi\)
\(840\) 0 0
\(841\) 996.227 + 1725.52i 1.18457 + 2.05174i
\(842\) −92.8541 24.8802i −0.110278 0.0295489i
\(843\) 0 0
\(844\) 643.663 + 371.619i 0.762634 + 0.440307i
\(845\) −385.972 656.369i −0.456771 0.776768i
\(846\) 0 0
\(847\) 287.859 287.859i 0.339857 0.339857i
\(848\) −0.956083 + 0.256182i −0.00112746 + 0.000302101i
\(849\) 0 0
\(850\) 15.6943 + 983.171i 0.0184639 + 1.15667i
\(851\) 139.607 + 241.806i 0.164050 + 0.284143i
\(852\) 0 0
\(853\) 37.7424 10.1130i 0.0442467 0.0118559i −0.236628 0.971600i \(-0.576042\pi\)
0.280874 + 0.959745i \(0.409376\pi\)
\(854\) 254.127i 0.297572i
\(855\) 0 0
\(856\) −458.111 −0.535177
\(857\) 235.052 + 877.224i 0.274273 + 1.02360i 0.956327 + 0.292298i \(0.0944199\pi\)
−0.682055 + 0.731301i \(0.738913\pi\)
\(858\) 0 0
\(859\) 1116.53 644.631i 1.29981 0.750443i 0.319436 0.947608i \(-0.396507\pi\)
0.980370 + 0.197165i \(0.0631733\pi\)
\(860\) −440.199 + 121.724i −0.511859 + 0.141540i
\(861\) 0 0
\(862\) 36.4578 + 136.062i 0.0422944 + 0.157845i
\(863\) 230.587 + 230.587i 0.267193 + 0.267193i 0.827968 0.560775i \(-0.189497\pi\)
−0.560775 + 0.827968i \(0.689497\pi\)
\(864\) 0 0
\(865\) −1048.81 272.075i −1.21249 0.314537i
\(866\) −459.635 + 796.111i −0.530756 + 0.919296i
\(867\) 0 0
\(868\) 47.2340 176.280i 0.0544171 0.203087i
\(869\) −108.676 + 62.7443i −0.125059 + 0.0722029i
\(870\) 0 0
\(871\) 121.453 210.362i 0.139440 0.241518i
\(872\) 160.375 160.375i 0.183916 0.183916i
\(873\) 0 0
\(874\) 750.684i 0.858906i
\(875\) −409.062 + 120.175i −0.467500 + 0.137343i
\(876\) 0 0
\(877\) −763.671 204.625i −0.870777 0.233324i −0.204353 0.978897i \(-0.565509\pi\)
−0.666424 + 0.745573i \(0.732176\pi\)
\(878\) 21.3512 79.6837i 0.0243180 0.0907559i
\(879\) 0 0
\(880\) 0.204743 + 25.6539i 0.000232662 + 0.0291522i
\(881\) 569.305 0.646204 0.323102 0.946364i \(-0.395274\pi\)
0.323102 + 0.946364i \(0.395274\pi\)
\(882\) 0 0
\(883\) 34.5889 + 34.5889i 0.0391720 + 0.0391720i 0.726421 0.687249i \(-0.241182\pi\)
−0.687249 + 0.726421i \(0.741182\pi\)
\(884\) 196.924 + 113.694i 0.222765 + 0.128613i
\(885\) 0 0
\(886\) 171.243 + 296.602i 0.193277 + 0.334765i
\(887\) −1248.03 334.410i −1.40703 0.377012i −0.526165 0.850382i \(-0.676371\pi\)
−0.880864 + 0.473370i \(0.843037\pi\)
\(888\) 0 0
\(889\) 465.420 + 268.711i 0.523532 + 0.302262i
\(890\) 321.400 + 83.3755i 0.361124 + 0.0936803i
\(891\) 0 0
\(892\) −307.880 + 307.880i −0.345157 + 0.345157i
\(893\) 188.488 50.5052i 0.211073 0.0565568i
\(894\) 0 0
\(895\) 406.220 716.743i 0.453877 0.800830i
\(896\) −19.2944 33.4188i −0.0215339 0.0372978i
\(897\) 0 0
\(898\) 1051.53 281.756i 1.17097 0.313760i
\(899\) 1424.07i 1.58406i
\(900\) 0 0
\(901\) 6.88210 0.00763830
\(902\) −23.2428 86.7433i −0.0257681 0.0961678i
\(903\) 0 0
\(904\) −366.014 + 211.318i −0.404883 + 0.233759i
\(905\) 23.0234 + 13.0487i 0.0254402 + 0.0144185i
\(906\) 0 0
\(907\) 33.2750 + 124.184i 0.0366869 + 0.136917i 0.981840 0.189709i \(-0.0607546\pi\)
−0.945153 + 0.326627i \(0.894088\pi\)
\(908\) −49.6687 49.6687i −0.0547012 0.0547012i
\(909\) 0 0
\(910\) −24.7571 + 95.4349i −0.0272056 + 0.104873i
\(911\) −756.019 + 1309.46i −0.829878 + 1.43739i 0.0682558 + 0.997668i \(0.478257\pi\)
−0.898134 + 0.439723i \(0.855077\pi\)
\(912\) 0 0
\(913\) −23.9301 + 89.3082i −0.0262104 + 0.0978184i
\(914\) −22.1167 + 12.7691i −0.0241977 + 0.0139705i
\(915\) 0 0
\(916\) −140.049 + 242.572i −0.152892 + 0.264817i
\(917\) −9.89069 + 9.89069i −0.0107859 + 0.0107859i
\(918\) 0 0
\(919\) 1310.73i 1.42626i 0.701031 + 0.713131i \(0.252724\pi\)
−0.701031 + 0.713131i \(0.747276\pi\)
\(920\) 436.348 3.48247i 0.474291 0.00378530i
\(921\) 0 0
\(922\) −804.803 215.646i −0.872888 0.233890i
\(923\) 5.86449 21.8866i 0.00635373 0.0237124i
\(924\) 0 0
\(925\) 219.425 + 55.0566i 0.237216 + 0.0595207i
\(926\) 926.153 1.00017
\(927\) 0 0
\(928\) 212.921 + 212.921i 0.229441 + 0.229441i
\(929\) 450.427 + 260.054i 0.484851 + 0.279929i 0.722436 0.691438i \(-0.243022\pi\)
−0.237585 + 0.971367i \(0.576356\pi\)
\(930\) 0 0
\(931\) 321.412 + 556.703i 0.345233 + 0.597962i
\(932\) −349.628 93.6824i −0.375137 0.100518i
\(933\) 0 0
\(934\) −106.908 61.7235i −0.114463 0.0660851i
\(935\) 44.7907 172.661i 0.0479045 0.184664i
\(936\) 0 0
\(937\) −845.208 + 845.208i −0.902037 + 0.902037i −0.995612 0.0935755i \(-0.970170\pi\)
0.0935755 + 0.995612i \(0.470170\pi\)
\(938\) 276.849 74.1814i 0.295148 0.0790846i
\(939\) 0 0
\(940\) −30.2314 109.328i −0.0321611 0.116306i
\(941\) 630.493 + 1092.05i 0.670025 + 1.16052i 0.977897 + 0.209089i \(0.0670498\pi\)
−0.307872 + 0.951428i \(0.599617\pi\)
\(942\) 0 0
\(943\) −1475.42 + 395.337i −1.56460 + 0.419233i
\(944\) 408.289i 0.432510i
\(945\) 0 0
\(946\) 82.8517 0.0875810
\(947\) 155.755 + 581.287i 0.164472 + 0.613819i 0.998107 + 0.0615028i \(0.0195893\pi\)
−0.833635 + 0.552316i \(0.813744\pi\)
\(948\) 0 0
\(949\) 244.838 141.357i 0.257996 0.148954i
\(950\) 436.891 + 423.162i 0.459885 + 0.445434i
\(951\) 0 0
\(952\) 69.4427 + 259.164i 0.0729440 + 0.272231i
\(953\) −211.288 211.288i −0.221708 0.221708i 0.587509 0.809217i \(-0.300109\pi\)
−0.809217 + 0.587509i \(0.800109\pi\)
\(954\) 0 0
\(955\) 342.284 201.277i 0.358413 0.210761i
\(956\) 72.0469 124.789i 0.0753629 0.130532i
\(957\) 0 0
\(958\) −59.8917 + 223.519i −0.0625174 + 0.233318i
\(959\) −411.515 + 237.588i −0.429109 + 0.247746i
\(960\) 0 0
\(961\) 122.637 212.414i 0.127614 0.221034i
\(962\) 36.9925 36.9925i 0.0384537 0.0384537i
\(963\) 0 0
\(964\) 536.961i 0.557014i
\(965\) 595.918 605.506i 0.617531 0.627468i
\(966\) 0 0
\(967\) 672.007 + 180.064i 0.694940 + 0.186209i 0.588963 0.808160i \(-0.299536\pi\)
0.105977 + 0.994369i \(0.466203\pi\)
\(968\) −87.3736 + 326.083i −0.0902620 + 0.336862i
\(969\) 0 0
\(970\) 1128.79 9.00882i 1.16370 0.00928744i
\(971\) 1004.59 1.03459 0.517297 0.855806i \(-0.326938\pi\)
0.517297 + 0.855806i \(0.326938\pi\)
\(972\) 0 0
\(973\) 56.4290 + 56.4290i 0.0579948 + 0.0579948i
\(974\) 622.440 + 359.366i 0.639056 + 0.368959i
\(975\) 0 0
\(976\) 105.368 + 182.503i 0.107959 + 0.186991i
\(977\) −1528.90 409.667i −1.56489 0.419311i −0.630682 0.776041i \(-0.717225\pi\)
−0.934208 + 0.356730i \(0.883892\pi\)
\(978\) 0 0
\(979\) −52.1641 30.1169i −0.0532830 0.0307630i
\(980\) 322.102 189.409i 0.328675 0.193274i
\(981\) 0 0
\(982\) 57.0287 57.0287i 0.0580740 0.0580740i
\(983\) −791.759 + 212.151i −0.805451 + 0.215820i −0.637976 0.770056i \(-0.720228\pi\)
−0.167475 + 0.985876i \(0.553561\pi\)
\(984\) 0 0
\(985\) −260.162 + 71.9404i −0.264124 + 0.0730360i
\(986\) −1046.82 1813.15i −1.06168 1.83889i
\(987\) 0 0
\(988\) 135.860 36.4037i 0.137511 0.0368458i
\(989\) 1409.22i 1.42490i
\(990\) 0 0
\(991\) −570.979 −0.576164 −0.288082 0.957606i \(-0.593018\pi\)
−0.288082 + 0.957606i \(0.593018\pi\)
\(992\) 39.1692 + 146.181i 0.0394851 + 0.147360i
\(993\) 0 0
\(994\) 23.1540 13.3680i 0.0232938 0.0134487i
\(995\) 221.981 391.669i 0.223097 0.393637i
\(996\) 0 0
\(997\) −305.672 1140.78i −0.306592 1.14422i −0.931567 0.363571i \(-0.881557\pi\)
0.624975 0.780645i \(-0.285109\pi\)
\(998\) 886.807 + 886.807i 0.888584 + 0.888584i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 270.3.l.b.73.1 24
3.2 odd 2 90.3.k.a.43.4 yes 24
5.2 odd 4 inner 270.3.l.b.127.4 24
9.2 odd 6 810.3.g.k.163.1 12
9.4 even 3 inner 270.3.l.b.253.4 24
9.5 odd 6 90.3.k.a.13.6 yes 24
9.7 even 3 810.3.g.i.163.6 12
15.2 even 4 90.3.k.a.7.6 24
45.2 even 12 810.3.g.k.487.1 12
45.7 odd 12 810.3.g.i.487.6 12
45.22 odd 12 inner 270.3.l.b.37.1 24
45.32 even 12 90.3.k.a.67.4 yes 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
90.3.k.a.7.6 24 15.2 even 4
90.3.k.a.13.6 yes 24 9.5 odd 6
90.3.k.a.43.4 yes 24 3.2 odd 2
90.3.k.a.67.4 yes 24 45.32 even 12
270.3.l.b.37.1 24 45.22 odd 12 inner
270.3.l.b.73.1 24 1.1 even 1 trivial
270.3.l.b.127.4 24 5.2 odd 4 inner
270.3.l.b.253.4 24 9.4 even 3 inner
810.3.g.i.163.6 12 9.7 even 3
810.3.g.i.487.6 12 45.7 odd 12
810.3.g.k.163.1 12 9.2 odd 6
810.3.g.k.487.1 12 45.2 even 12