Properties

Label 810.3.g.k.163.1
Level $810$
Weight $3$
Character 810.163
Analytic conductor $22.071$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [810,3,Mod(163,810)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(810, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([0, 3]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("810.163");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 810 = 2 \cdot 3^{4} \cdot 5 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 810.g (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(22.0709014132\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 54 x^{9} + 921 x^{8} - 1350 x^{7} + 1458 x^{6} - 18792 x^{5} + 231804 x^{4} - 552420 x^{3} + \cdots + 656100 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 3^{4} \)
Twist minimal: no (minimal twist has level 90)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 163.1
Root \(-3.83690 + 3.83690i\) of defining polynomial
Character \(\chi\) \(=\) 810.163
Dual form 810.3.g.k.487.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.00000 - 1.00000i) q^{2} -2.00000i q^{4} +(-4.31004 + 2.53448i) q^{5} +(-2.41180 + 2.41180i) q^{7} +(-2.00000 - 2.00000i) q^{8} +(-1.77556 + 6.84452i) q^{10} +1.28274 q^{11} +(-2.89064 - 2.89064i) q^{13} +4.82359i q^{14} -4.00000 q^{16} +(19.6659 - 19.6659i) q^{17} +17.2032i q^{19} +(5.06896 + 8.62007i) q^{20} +(1.28274 - 1.28274i) q^{22} +(21.8181 + 21.8181i) q^{23} +(12.1528 - 21.8474i) q^{25} -5.78128 q^{26} +(4.82359 + 4.82359i) q^{28} -53.2302i q^{29} +26.7530 q^{31} +(-4.00000 + 4.00000i) q^{32} -39.3319i q^{34} +(4.28229 - 16.5076i) q^{35} +(6.39867 - 6.39867i) q^{37} +(17.2032 + 17.2032i) q^{38} +(13.6890 + 3.55112i) q^{40} +49.5039 q^{41} +(32.2949 + 32.2949i) q^{43} -2.56548i q^{44} +43.6362 q^{46} +(8.02075 - 8.02075i) q^{47} +37.3665i q^{49} +(-9.69454 - 34.0002i) q^{50} +(-5.78128 + 5.78128i) q^{52} +(0.174975 + 0.174975i) q^{53} +(-5.52865 + 3.25107i) q^{55} +9.64719 q^{56} +(-53.2302 - 53.2302i) q^{58} -102.072i q^{59} +52.6841 q^{61} +(26.7530 - 26.7530i) q^{62} +8.00000i q^{64} +(19.7850 + 5.13250i) q^{65} +(42.0158 - 42.0158i) q^{67} +(-39.3319 - 39.3319i) q^{68} +(-12.2253 - 20.7899i) q^{70} +5.54275 q^{71} +(-48.9018 - 48.9018i) q^{73} -12.7973i q^{74} +34.4065 q^{76} +(-3.09370 + 3.09370i) q^{77} +97.8287i q^{79} +(17.2401 - 10.1379i) q^{80} +(49.5039 - 49.5039i) q^{82} +(-50.9676 - 50.9676i) q^{83} +(-34.9180 + 134.604i) q^{85} +64.5897 q^{86} +(-2.56548 - 2.56548i) q^{88} +46.9573i q^{89} +13.9433 q^{91} +(43.6362 - 43.6362i) q^{92} -16.0415i q^{94} +(-43.6012 - 74.1466i) q^{95} +(-112.883 + 112.883i) q^{97} +(37.3665 + 37.3665i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 12 q^{2} + 6 q^{7} - 24 q^{8} - 6 q^{10} + 12 q^{11} - 48 q^{16} - 18 q^{17} - 12 q^{20} + 12 q^{22} + 54 q^{23} - 54 q^{25} - 12 q^{28} + 72 q^{31} - 48 q^{32} - 168 q^{35} + 66 q^{37} + 36 q^{38}+ \cdots + 12 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/810\mathbb{Z}\right)^\times\).

\(n\) \(487\) \(731\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 1.00000i 0.500000 0.500000i
\(3\) 0 0
\(4\) 2.00000i 0.500000i
\(5\) −4.31004 + 2.53448i −0.862007 + 0.506896i
\(6\) 0 0
\(7\) −2.41180 + 2.41180i −0.344542 + 0.344542i −0.858072 0.513530i \(-0.828338\pi\)
0.513530 + 0.858072i \(0.328338\pi\)
\(8\) −2.00000 2.00000i −0.250000 0.250000i
\(9\) 0 0
\(10\) −1.77556 + 6.84452i −0.177556 + 0.684452i
\(11\) 1.28274 0.116613 0.0583063 0.998299i \(-0.481430\pi\)
0.0583063 + 0.998299i \(0.481430\pi\)
\(12\) 0 0
\(13\) −2.89064 2.89064i −0.222357 0.222357i 0.587133 0.809490i \(-0.300256\pi\)
−0.809490 + 0.587133i \(0.800256\pi\)
\(14\) 4.82359i 0.344542i
\(15\) 0 0
\(16\) −4.00000 −0.250000
\(17\) 19.6659 19.6659i 1.15682 1.15682i 0.171664 0.985156i \(-0.445086\pi\)
0.985156 0.171664i \(-0.0549142\pi\)
\(18\) 0 0
\(19\) 17.2032i 0.905434i 0.891654 + 0.452717i \(0.149545\pi\)
−0.891654 + 0.452717i \(0.850455\pi\)
\(20\) 5.06896 + 8.62007i 0.253448 + 0.431004i
\(21\) 0 0
\(22\) 1.28274 1.28274i 0.0583063 0.0583063i
\(23\) 21.8181 + 21.8181i 0.948613 + 0.948613i 0.998743 0.0501301i \(-0.0159636\pi\)
−0.0501301 + 0.998743i \(0.515964\pi\)
\(24\) 0 0
\(25\) 12.1528 21.8474i 0.486114 0.873896i
\(26\) −5.78128 −0.222357
\(27\) 0 0
\(28\) 4.82359 + 4.82359i 0.172271 + 0.172271i
\(29\) 53.2302i 1.83552i −0.397131 0.917762i \(-0.629994\pi\)
0.397131 0.917762i \(-0.370006\pi\)
\(30\) 0 0
\(31\) 26.7530 0.863001 0.431501 0.902113i \(-0.357984\pi\)
0.431501 + 0.902113i \(0.357984\pi\)
\(32\) −4.00000 + 4.00000i −0.125000 + 0.125000i
\(33\) 0 0
\(34\) 39.3319i 1.15682i
\(35\) 4.28229 16.5076i 0.122351 0.471645i
\(36\) 0 0
\(37\) 6.39867 6.39867i 0.172937 0.172937i −0.615332 0.788268i \(-0.710978\pi\)
0.788268 + 0.615332i \(0.210978\pi\)
\(38\) 17.2032 + 17.2032i 0.452717 + 0.452717i
\(39\) 0 0
\(40\) 13.6890 + 3.55112i 0.342226 + 0.0887780i
\(41\) 49.5039 1.20741 0.603706 0.797207i \(-0.293690\pi\)
0.603706 + 0.797207i \(0.293690\pi\)
\(42\) 0 0
\(43\) 32.2949 + 32.2949i 0.751043 + 0.751043i 0.974674 0.223631i \(-0.0717909\pi\)
−0.223631 + 0.974674i \(0.571791\pi\)
\(44\) 2.56548i 0.0583063i
\(45\) 0 0
\(46\) 43.6362 0.948613
\(47\) 8.02075 8.02075i 0.170654 0.170654i −0.616613 0.787267i \(-0.711495\pi\)
0.787267 + 0.616613i \(0.211495\pi\)
\(48\) 0 0
\(49\) 37.3665i 0.762581i
\(50\) −9.69454 34.0002i −0.193891 0.680005i
\(51\) 0 0
\(52\) −5.78128 + 5.78128i −0.111178 + 0.111178i
\(53\) 0.174975 + 0.174975i 0.00330142 + 0.00330142i 0.708756 0.705454i \(-0.249257\pi\)
−0.705454 + 0.708756i \(0.749257\pi\)
\(54\) 0 0
\(55\) −5.52865 + 3.25107i −0.100521 + 0.0591104i
\(56\) 9.64719 0.172271
\(57\) 0 0
\(58\) −53.2302 53.2302i −0.917762 0.917762i
\(59\) 102.072i 1.73004i −0.501737 0.865020i \(-0.667306\pi\)
0.501737 0.865020i \(-0.332694\pi\)
\(60\) 0 0
\(61\) 52.6841 0.863674 0.431837 0.901952i \(-0.357866\pi\)
0.431837 + 0.901952i \(0.357866\pi\)
\(62\) 26.7530 26.7530i 0.431501 0.431501i
\(63\) 0 0
\(64\) 8.00000i 0.125000i
\(65\) 19.7850 + 5.13250i 0.304385 + 0.0789615i
\(66\) 0 0
\(67\) 42.0158 42.0158i 0.627102 0.627102i −0.320236 0.947338i \(-0.603762\pi\)
0.947338 + 0.320236i \(0.103762\pi\)
\(68\) −39.3319 39.3319i −0.578410 0.578410i
\(69\) 0 0
\(70\) −12.2253 20.7899i −0.174647 0.296998i
\(71\) 5.54275 0.0780669 0.0390335 0.999238i \(-0.487572\pi\)
0.0390335 + 0.999238i \(0.487572\pi\)
\(72\) 0 0
\(73\) −48.9018 48.9018i −0.669888 0.669888i 0.287802 0.957690i \(-0.407075\pi\)
−0.957690 + 0.287802i \(0.907075\pi\)
\(74\) 12.7973i 0.172937i
\(75\) 0 0
\(76\) 34.4065 0.452717
\(77\) −3.09370 + 3.09370i −0.0401780 + 0.0401780i
\(78\) 0 0
\(79\) 97.8287i 1.23834i 0.785258 + 0.619169i \(0.212530\pi\)
−0.785258 + 0.619169i \(0.787470\pi\)
\(80\) 17.2401 10.1379i 0.215502 0.126724i
\(81\) 0 0
\(82\) 49.5039 49.5039i 0.603706 0.603706i
\(83\) −50.9676 50.9676i −0.614068 0.614068i 0.329935 0.944003i \(-0.392973\pi\)
−0.944003 + 0.329935i \(0.892973\pi\)
\(84\) 0 0
\(85\) −34.9180 + 134.604i −0.410800 + 1.58357i
\(86\) 64.5897 0.751043
\(87\) 0 0
\(88\) −2.56548 2.56548i −0.0291531 0.0291531i
\(89\) 46.9573i 0.527610i 0.964576 + 0.263805i \(0.0849776\pi\)
−0.964576 + 0.263805i \(0.915022\pi\)
\(90\) 0 0
\(91\) 13.9433 0.153223
\(92\) 43.6362 43.6362i 0.474306 0.474306i
\(93\) 0 0
\(94\) 16.0415i 0.170654i
\(95\) −43.6012 74.1466i −0.458961 0.780491i
\(96\) 0 0
\(97\) −112.883 + 112.883i −1.16374 + 1.16374i −0.180087 + 0.983651i \(0.557638\pi\)
−0.983651 + 0.180087i \(0.942362\pi\)
\(98\) 37.3665 + 37.3665i 0.381291 + 0.381291i
\(99\) 0 0
\(100\) −43.6948 24.3057i −0.436948 0.243057i
\(101\) 74.3351 0.735991 0.367995 0.929828i \(-0.380044\pi\)
0.367995 + 0.929828i \(0.380044\pi\)
\(102\) 0 0
\(103\) −11.2285 11.2285i −0.109015 0.109015i 0.650495 0.759510i \(-0.274561\pi\)
−0.759510 + 0.650495i \(0.774561\pi\)
\(104\) 11.5626i 0.111178i
\(105\) 0 0
\(106\) 0.349951 0.00330142
\(107\) 114.528 114.528i 1.07035 1.07035i 0.0730234 0.997330i \(-0.476735\pi\)
0.997330 0.0730234i \(-0.0232648\pi\)
\(108\) 0 0
\(109\) 80.1875i 0.735665i −0.929892 0.367833i \(-0.880100\pi\)
0.929892 0.367833i \(-0.119900\pi\)
\(110\) −2.27758 + 8.77972i −0.0207052 + 0.0798156i
\(111\) 0 0
\(112\) 9.64719 9.64719i 0.0861356 0.0861356i
\(113\) 105.659 + 105.659i 0.935037 + 0.935037i 0.998015 0.0629775i \(-0.0200596\pi\)
−0.0629775 + 0.998015i \(0.520060\pi\)
\(114\) 0 0
\(115\) −149.334 38.7393i −1.29856 0.336864i
\(116\) −106.460 −0.917762
\(117\) 0 0
\(118\) −102.072 102.072i −0.865020 0.865020i
\(119\) 94.8604i 0.797146i
\(120\) 0 0
\(121\) −119.355 −0.986402
\(122\) 52.6841 52.6841i 0.431837 0.431837i
\(123\) 0 0
\(124\) 53.5061i 0.431501i
\(125\) 2.99251 + 124.964i 0.0239401 + 0.999713i
\(126\) 0 0
\(127\) −111.415 + 111.415i −0.877284 + 0.877284i −0.993253 0.115969i \(-0.963003\pi\)
0.115969 + 0.993253i \(0.463003\pi\)
\(128\) 8.00000 + 8.00000i 0.0625000 + 0.0625000i
\(129\) 0 0
\(130\) 24.9175 14.6525i 0.191673 0.112712i
\(131\) −4.10096 −0.0313051 −0.0156525 0.999877i \(-0.504983\pi\)
−0.0156525 + 0.999877i \(0.504983\pi\)
\(132\) 0 0
\(133\) −41.4907 41.4907i −0.311960 0.311960i
\(134\) 84.0317i 0.627102i
\(135\) 0 0
\(136\) −78.6637 −0.578410
\(137\) 98.5110 98.5110i 0.719058 0.719058i −0.249354 0.968412i \(-0.580218\pi\)
0.968412 + 0.249354i \(0.0802183\pi\)
\(138\) 0 0
\(139\) 23.3971i 0.168324i −0.996452 0.0841621i \(-0.973179\pi\)
0.996452 0.0841621i \(-0.0268214\pi\)
\(140\) −33.0152 8.56458i −0.235823 0.0611756i
\(141\) 0 0
\(142\) 5.54275 5.54275i 0.0390335 0.0390335i
\(143\) −3.70793 3.70793i −0.0259296 0.0259296i
\(144\) 0 0
\(145\) 134.911 + 229.424i 0.930419 + 1.58224i
\(146\) −97.8036 −0.669888
\(147\) 0 0
\(148\) −12.7973 12.7973i −0.0864685 0.0864685i
\(149\) 225.492i 1.51337i −0.653782 0.756683i \(-0.726819\pi\)
0.653782 0.756683i \(-0.273181\pi\)
\(150\) 0 0
\(151\) 248.688 1.64694 0.823470 0.567360i \(-0.192035\pi\)
0.823470 + 0.567360i \(0.192035\pi\)
\(152\) 34.4065 34.4065i 0.226359 0.226359i
\(153\) 0 0
\(154\) 6.18740i 0.0401780i
\(155\) −115.307 + 67.8050i −0.743914 + 0.437452i
\(156\) 0 0
\(157\) −38.1875 + 38.1875i −0.243232 + 0.243232i −0.818186 0.574954i \(-0.805020\pi\)
0.574954 + 0.818186i \(0.305020\pi\)
\(158\) 97.8287 + 97.8287i 0.619169 + 0.619169i
\(159\) 0 0
\(160\) 7.10224 27.3781i 0.0443890 0.171113i
\(161\) −105.242 −0.653674
\(162\) 0 0
\(163\) 115.074 + 115.074i 0.705977 + 0.705977i 0.965687 0.259709i \(-0.0836268\pi\)
−0.259709 + 0.965687i \(0.583627\pi\)
\(164\) 99.0078i 0.603706i
\(165\) 0 0
\(166\) −101.935 −0.614068
\(167\) −221.357 + 221.357i −1.32549 + 1.32549i −0.416238 + 0.909256i \(0.636652\pi\)
−0.909256 + 0.416238i \(0.863348\pi\)
\(168\) 0 0
\(169\) 152.288i 0.901115i
\(170\) 99.6857 + 169.522i 0.586387 + 0.997187i
\(171\) 0 0
\(172\) 64.5897 64.5897i 0.375522 0.375522i
\(173\) 153.233 + 153.233i 0.885742 + 0.885742i 0.994111 0.108369i \(-0.0345628\pi\)
−0.108369 + 0.994111i \(0.534563\pi\)
\(174\) 0 0
\(175\) 23.3813 + 82.0016i 0.133607 + 0.468581i
\(176\) −5.13095 −0.0291531
\(177\) 0 0
\(178\) 46.9573 + 46.9573i 0.263805 + 0.263805i
\(179\) 164.771i 0.920507i −0.887788 0.460254i \(-0.847759\pi\)
0.887788 0.460254i \(-0.152241\pi\)
\(180\) 0 0
\(181\) −5.29281 −0.0292421 −0.0146210 0.999893i \(-0.504654\pi\)
−0.0146210 + 0.999893i \(0.504654\pi\)
\(182\) 13.9433 13.9433i 0.0766113 0.0766113i
\(183\) 0 0
\(184\) 87.2724i 0.474306i
\(185\) −11.3612 + 43.7958i −0.0614120 + 0.236734i
\(186\) 0 0
\(187\) 25.2262 25.2262i 0.134900 0.134900i
\(188\) −16.0415 16.0415i −0.0853271 0.0853271i
\(189\) 0 0
\(190\) −117.748 30.5454i −0.619726 0.160765i
\(191\) −79.4156 −0.415789 −0.207894 0.978151i \(-0.566661\pi\)
−0.207894 + 0.978151i \(0.566661\pi\)
\(192\) 0 0
\(193\) −120.146 120.146i −0.622519 0.622519i 0.323656 0.946175i \(-0.395088\pi\)
−0.946175 + 0.323656i \(0.895088\pi\)
\(194\) 225.765i 1.16374i
\(195\) 0 0
\(196\) 74.7329 0.381291
\(197\) −38.1732 + 38.1732i −0.193773 + 0.193773i −0.797324 0.603551i \(-0.793752\pi\)
0.603551 + 0.797324i \(0.293752\pi\)
\(198\) 0 0
\(199\) 90.0401i 0.452463i 0.974074 + 0.226231i \(0.0726405\pi\)
−0.974074 + 0.226231i \(0.927359\pi\)
\(200\) −68.0005 + 19.3891i −0.340002 + 0.0969454i
\(201\) 0 0
\(202\) 74.3351 74.3351i 0.367995 0.367995i
\(203\) 128.380 + 128.380i 0.632416 + 0.632416i
\(204\) 0 0
\(205\) −213.364 + 125.467i −1.04080 + 0.612032i
\(206\) −22.4570 −0.109015
\(207\) 0 0
\(208\) 11.5626 + 11.5626i 0.0555892 + 0.0555892i
\(209\) 22.0673i 0.105585i
\(210\) 0 0
\(211\) 371.619 1.76123 0.880614 0.473834i \(-0.157130\pi\)
0.880614 + 0.473834i \(0.157130\pi\)
\(212\) 0.349951 0.349951i 0.00165071 0.00165071i
\(213\) 0 0
\(214\) 229.056i 1.07035i
\(215\) −221.043 57.3415i −1.02811 0.266704i
\(216\) 0 0
\(217\) −64.5229 + 64.5229i −0.297341 + 0.297341i
\(218\) −80.1875 80.1875i −0.367833 0.367833i
\(219\) 0 0
\(220\) 6.50214 + 11.0573i 0.0295552 + 0.0502604i
\(221\) −113.694 −0.514453
\(222\) 0 0
\(223\) −153.940 153.940i −0.690315 0.690315i 0.271986 0.962301i \(-0.412319\pi\)
−0.962301 + 0.271986i \(0.912319\pi\)
\(224\) 19.2944i 0.0861356i
\(225\) 0 0
\(226\) 211.318 0.935037
\(227\) −24.8343 + 24.8343i −0.109402 + 0.109402i −0.759689 0.650287i \(-0.774649\pi\)
0.650287 + 0.759689i \(0.274649\pi\)
\(228\) 0 0
\(229\) 140.049i 0.611569i 0.952101 + 0.305784i \(0.0989187\pi\)
−0.952101 + 0.305784i \(0.901081\pi\)
\(230\) −188.074 + 110.595i −0.817711 + 0.480848i
\(231\) 0 0
\(232\) −106.460 + 106.460i −0.458881 + 0.458881i
\(233\) −127.973 127.973i −0.549239 0.549239i 0.376982 0.926221i \(-0.376962\pi\)
−0.926221 + 0.376982i \(0.876962\pi\)
\(234\) 0 0
\(235\) −14.2413 + 54.8981i −0.0606013 + 0.233609i
\(236\) −204.145 −0.865020
\(237\) 0 0
\(238\) 94.8604 + 94.8604i 0.398573 + 0.398573i
\(239\) 72.0469i 0.301452i 0.988576 + 0.150726i \(0.0481611\pi\)
−0.988576 + 0.150726i \(0.951839\pi\)
\(240\) 0 0
\(241\) 268.481 1.11403 0.557014 0.830503i \(-0.311947\pi\)
0.557014 + 0.830503i \(0.311947\pi\)
\(242\) −119.355 + 119.355i −0.493201 + 0.493201i
\(243\) 0 0
\(244\) 105.368i 0.431837i
\(245\) −94.7045 161.051i −0.386549 0.657351i
\(246\) 0 0
\(247\) 49.7284 49.7284i 0.201329 0.201329i
\(248\) −53.5061 53.5061i −0.215750 0.215750i
\(249\) 0 0
\(250\) 127.957 + 121.972i 0.511827 + 0.487887i
\(251\) 251.209 1.00083 0.500416 0.865785i \(-0.333180\pi\)
0.500416 + 0.865785i \(0.333180\pi\)
\(252\) 0 0
\(253\) 27.9869 + 27.9869i 0.110620 + 0.110620i
\(254\) 222.830i 0.877284i
\(255\) 0 0
\(256\) 16.0000 0.0625000
\(257\) −57.1178 + 57.1178i −0.222248 + 0.222248i −0.809445 0.587196i \(-0.800232\pi\)
0.587196 + 0.809445i \(0.300232\pi\)
\(258\) 0 0
\(259\) 30.8646i 0.119168i
\(260\) 10.2650 39.5700i 0.0394808 0.152192i
\(261\) 0 0
\(262\) −4.10096 + 4.10096i −0.0156525 + 0.0156525i
\(263\) 101.458 + 101.458i 0.385771 + 0.385771i 0.873176 0.487405i \(-0.162057\pi\)
−0.487405 + 0.873176i \(0.662057\pi\)
\(264\) 0 0
\(265\) −1.19762 0.310679i −0.00451933 0.00117237i
\(266\) −82.9815 −0.311960
\(267\) 0 0
\(268\) −84.0317 84.0317i −0.313551 0.313551i
\(269\) 341.458i 1.26936i 0.772775 + 0.634680i \(0.218868\pi\)
−0.772775 + 0.634680i \(0.781132\pi\)
\(270\) 0 0
\(271\) 157.125 0.579798 0.289899 0.957057i \(-0.406378\pi\)
0.289899 + 0.957057i \(0.406378\pi\)
\(272\) −78.6637 + 78.6637i −0.289205 + 0.289205i
\(273\) 0 0
\(274\) 197.022i 0.719058i
\(275\) 15.5889 28.0245i 0.0566869 0.101907i
\(276\) 0 0
\(277\) −118.189 + 118.189i −0.426677 + 0.426677i −0.887495 0.460818i \(-0.847556\pi\)
0.460818 + 0.887495i \(0.347556\pi\)
\(278\) −23.3971 23.3971i −0.0841621 0.0841621i
\(279\) 0 0
\(280\) −41.5797 + 24.4506i −0.148499 + 0.0873235i
\(281\) −201.462 −0.716946 −0.358473 0.933540i \(-0.616702\pi\)
−0.358473 + 0.933540i \(0.616702\pi\)
\(282\) 0 0
\(283\) −42.0512 42.0512i −0.148591 0.148591i 0.628897 0.777488i \(-0.283507\pi\)
−0.777488 + 0.628897i \(0.783507\pi\)
\(284\) 11.0855i 0.0390335i
\(285\) 0 0
\(286\) −7.41586 −0.0259296
\(287\) −119.393 + 119.393i −0.416005 + 0.416005i
\(288\) 0 0
\(289\) 484.497i 1.67646i
\(290\) 364.335 + 94.5134i 1.25633 + 0.325908i
\(291\) 0 0
\(292\) −97.8036 + 97.8036i −0.334944 + 0.334944i
\(293\) −227.907 227.907i −0.777841 0.777841i 0.201623 0.979463i \(-0.435379\pi\)
−0.979463 + 0.201623i \(0.935379\pi\)
\(294\) 0 0
\(295\) 258.700 + 439.936i 0.876950 + 1.49131i
\(296\) −25.5947 −0.0864685
\(297\) 0 0
\(298\) −225.492 225.492i −0.756683 0.756683i
\(299\) 126.136i 0.421861i
\(300\) 0 0
\(301\) −155.777 −0.517533
\(302\) 248.688 248.688i 0.823470 0.823470i
\(303\) 0 0
\(304\) 68.8130i 0.226359i
\(305\) −227.070 + 133.527i −0.744493 + 0.437792i
\(306\) 0 0
\(307\) 65.6054 65.6054i 0.213698 0.213698i −0.592138 0.805837i \(-0.701716\pi\)
0.805837 + 0.592138i \(0.201716\pi\)
\(308\) 6.18740 + 6.18740i 0.0200890 + 0.0200890i
\(309\) 0 0
\(310\) −47.5016 + 183.112i −0.153231 + 0.590683i
\(311\) −243.797 −0.783914 −0.391957 0.919983i \(-0.628202\pi\)
−0.391957 + 0.919983i \(0.628202\pi\)
\(312\) 0 0
\(313\) 166.484 + 166.484i 0.531897 + 0.531897i 0.921136 0.389240i \(-0.127262\pi\)
−0.389240 + 0.921136i \(0.627262\pi\)
\(314\) 76.3749i 0.243232i
\(315\) 0 0
\(316\) 195.657 0.619169
\(317\) −334.850 + 334.850i −1.05631 + 1.05631i −0.0579912 + 0.998317i \(0.518470\pi\)
−0.998317 + 0.0579912i \(0.981530\pi\)
\(318\) 0 0
\(319\) 68.2804i 0.214045i
\(320\) −20.2758 34.4803i −0.0633619 0.107751i
\(321\) 0 0
\(322\) −105.242 + 105.242i −0.326837 + 0.326837i
\(323\) 338.318 + 338.318i 1.04742 + 1.04742i
\(324\) 0 0
\(325\) −98.2824 + 28.0234i −0.302407 + 0.0862259i
\(326\) 230.149 0.705977
\(327\) 0 0
\(328\) −99.0078 99.0078i −0.301853 0.301853i
\(329\) 38.6888i 0.117595i
\(330\) 0 0
\(331\) −246.161 −0.743690 −0.371845 0.928295i \(-0.621275\pi\)
−0.371845 + 0.928295i \(0.621275\pi\)
\(332\) −101.935 + 101.935i −0.307034 + 0.307034i
\(333\) 0 0
\(334\) 442.715i 1.32549i
\(335\) −74.6016 + 287.578i −0.222691 + 0.858442i
\(336\) 0 0
\(337\) −318.765 + 318.765i −0.945889 + 0.945889i −0.998609 0.0527200i \(-0.983211\pi\)
0.0527200 + 0.998609i \(0.483211\pi\)
\(338\) −152.288 152.288i −0.450557 0.450557i
\(339\) 0 0
\(340\) 269.207 + 69.8360i 0.791787 + 0.205400i
\(341\) 34.3171 0.100637
\(342\) 0 0
\(343\) −208.298 208.298i −0.607284 0.607284i
\(344\) 129.179i 0.375522i
\(345\) 0 0
\(346\) 306.467 0.885742
\(347\) 188.142 188.142i 0.542197 0.542197i −0.381975 0.924172i \(-0.624756\pi\)
0.924172 + 0.381975i \(0.124756\pi\)
\(348\) 0 0
\(349\) 114.626i 0.328442i −0.986424 0.164221i \(-0.947489\pi\)
0.986424 0.164221i \(-0.0525110\pi\)
\(350\) 105.383 + 58.6204i 0.301094 + 0.167487i
\(351\) 0 0
\(352\) −5.13095 + 5.13095i −0.0145766 + 0.0145766i
\(353\) 72.6933 + 72.6933i 0.205930 + 0.205930i 0.802535 0.596605i \(-0.203484\pi\)
−0.596605 + 0.802535i \(0.703484\pi\)
\(354\) 0 0
\(355\) −23.8895 + 14.0480i −0.0672943 + 0.0395718i
\(356\) 93.9146 0.263805
\(357\) 0 0
\(358\) −164.771 164.771i −0.460254 0.460254i
\(359\) 190.904i 0.531767i 0.964005 + 0.265883i \(0.0856636\pi\)
−0.964005 + 0.265883i \(0.914336\pi\)
\(360\) 0 0
\(361\) 65.0483 0.180189
\(362\) −5.29281 + 5.29281i −0.0146210 + 0.0146210i
\(363\) 0 0
\(364\) 27.8865i 0.0766113i
\(365\) 334.709 + 86.8281i 0.917011 + 0.237885i
\(366\) 0 0
\(367\) 370.526 370.526i 1.00961 1.00961i 0.00965302 0.999953i \(-0.496927\pi\)
0.999953 0.00965302i \(-0.00307270\pi\)
\(368\) −87.2724 87.2724i −0.237153 0.237153i
\(369\) 0 0
\(370\) 32.4346 + 55.1570i 0.0876610 + 0.149073i
\(371\) −0.844010 −0.00227496
\(372\) 0 0
\(373\) 155.325 + 155.325i 0.416421 + 0.416421i 0.883968 0.467547i \(-0.154862\pi\)
−0.467547 + 0.883968i \(0.654862\pi\)
\(374\) 50.4524i 0.134900i
\(375\) 0 0
\(376\) −32.0830 −0.0853271
\(377\) −153.869 + 153.869i −0.408141 + 0.408141i
\(378\) 0 0
\(379\) 542.378i 1.43108i −0.698574 0.715538i \(-0.746181\pi\)
0.698574 0.715538i \(-0.253819\pi\)
\(380\) −148.293 + 87.2025i −0.390245 + 0.229480i
\(381\) 0 0
\(382\) −79.4156 + 79.4156i −0.207894 + 0.207894i
\(383\) 238.639 + 238.639i 0.623079 + 0.623079i 0.946317 0.323239i \(-0.104772\pi\)
−0.323239 + 0.946317i \(0.604772\pi\)
\(384\) 0 0
\(385\) 5.49305 21.1749i 0.0142677 0.0549997i
\(386\) −240.292 −0.622519
\(387\) 0 0
\(388\) 225.765 + 225.765i 0.581869 + 0.581869i
\(389\) 174.765i 0.449269i −0.974443 0.224634i \(-0.927881\pi\)
0.974443 0.224634i \(-0.0721188\pi\)
\(390\) 0 0
\(391\) 858.146 2.19475
\(392\) 74.7329 74.7329i 0.190645 0.190645i
\(393\) 0 0
\(394\) 76.3465i 0.193773i
\(395\) −247.945 421.645i −0.627708 1.06746i
\(396\) 0 0
\(397\) −249.989 + 249.989i −0.629695 + 0.629695i −0.947991 0.318296i \(-0.896889\pi\)
0.318296 + 0.947991i \(0.396889\pi\)
\(398\) 90.0401 + 90.0401i 0.226231 + 0.226231i
\(399\) 0 0
\(400\) −48.6114 + 87.3896i −0.121528 + 0.218474i
\(401\) 131.561 0.328081 0.164041 0.986454i \(-0.447547\pi\)
0.164041 + 0.986454i \(0.447547\pi\)
\(402\) 0 0
\(403\) −77.3334 77.3334i −0.191894 0.191894i
\(404\) 148.670i 0.367995i
\(405\) 0 0
\(406\) 256.761 0.632416
\(407\) 8.20781 8.20781i 0.0201666 0.0201666i
\(408\) 0 0
\(409\) 457.799i 1.11931i −0.828725 0.559656i \(-0.810933\pi\)
0.828725 0.559656i \(-0.189067\pi\)
\(410\) −87.8971 + 338.830i −0.214383 + 0.826415i
\(411\) 0 0
\(412\) −22.4570 + 22.4570i −0.0545074 + 0.0545074i
\(413\) 246.178 + 246.178i 0.596072 + 0.596072i
\(414\) 0 0
\(415\) 348.849 + 90.4961i 0.840600 + 0.218063i
\(416\) 23.1251 0.0555892
\(417\) 0 0
\(418\) 22.0673 + 22.0673i 0.0527925 + 0.0527925i
\(419\) 205.557i 0.490590i 0.969448 + 0.245295i \(0.0788849\pi\)
−0.969448 + 0.245295i \(0.921115\pi\)
\(420\) 0 0
\(421\) −67.9739 −0.161458 −0.0807291 0.996736i \(-0.525725\pi\)
−0.0807291 + 0.996736i \(0.525725\pi\)
\(422\) 371.619 371.619i 0.880614 0.880614i
\(423\) 0 0
\(424\) 0.699901i 0.00165071i
\(425\) −190.652 668.646i −0.448593 1.57328i
\(426\) 0 0
\(427\) −127.063 + 127.063i −0.297572 + 0.297572i
\(428\) −229.056 229.056i −0.535177 0.535177i
\(429\) 0 0
\(430\) −278.384 + 163.701i −0.647405 + 0.380701i
\(431\) 99.6045 0.231101 0.115550 0.993302i \(-0.463137\pi\)
0.115550 + 0.993302i \(0.463137\pi\)
\(432\) 0 0
\(433\) −459.635 459.635i −1.06151 1.06151i −0.997980 0.0635322i \(-0.979763\pi\)
−0.0635322 0.997980i \(-0.520237\pi\)
\(434\) 129.046i 0.297341i
\(435\) 0 0
\(436\) −160.375 −0.367833
\(437\) −375.342 + 375.342i −0.858906 + 0.858906i
\(438\) 0 0
\(439\) 58.3325i 0.132876i −0.997791 0.0664379i \(-0.978837\pi\)
0.997791 0.0664379i \(-0.0211634\pi\)
\(440\) 17.5594 + 4.55515i 0.0399078 + 0.0103526i
\(441\) 0 0
\(442\) −113.694 + 113.694i −0.257227 + 0.257227i
\(443\) −171.243 171.243i −0.386554 0.386554i 0.486903 0.873456i \(-0.338127\pi\)
−0.873456 + 0.486903i \(0.838127\pi\)
\(444\) 0 0
\(445\) −119.012 202.388i −0.267443 0.454804i
\(446\) −307.880 −0.690315
\(447\) 0 0
\(448\) −19.2944 19.2944i −0.0430678 0.0430678i
\(449\) 769.773i 1.71442i −0.514970 0.857208i \(-0.672197\pi\)
0.514970 0.857208i \(-0.327803\pi\)
\(450\) 0 0
\(451\) 63.5005 0.140799
\(452\) 211.318 211.318i 0.467519 0.467519i
\(453\) 0 0
\(454\) 49.6687i 0.109402i
\(455\) −60.0960 + 35.3389i −0.132079 + 0.0776679i
\(456\) 0 0
\(457\) −12.7691 + 12.7691i −0.0279411 + 0.0279411i −0.720939 0.692998i \(-0.756289\pi\)
0.692998 + 0.720939i \(0.256289\pi\)
\(458\) 140.049 + 140.049i 0.305784 + 0.305784i
\(459\) 0 0
\(460\) −77.4786 + 298.668i −0.168432 + 0.649279i
\(461\) 589.157 1.27800 0.638999 0.769208i \(-0.279349\pi\)
0.638999 + 0.769208i \(0.279349\pi\)
\(462\) 0 0
\(463\) −463.077 463.077i −1.00017 1.00017i −1.00000 0.000165541i \(-0.999947\pi\)
−0.000165541 1.00000i \(-0.500053\pi\)
\(464\) 212.921i 0.458881i
\(465\) 0 0
\(466\) −255.945 −0.549239
\(467\) −61.7235 + 61.7235i −0.132170 + 0.132170i −0.770097 0.637927i \(-0.779792\pi\)
0.637927 + 0.770097i \(0.279792\pi\)
\(468\) 0 0
\(469\) 202.667i 0.432126i
\(470\) 40.6568 + 69.1394i 0.0865038 + 0.147105i
\(471\) 0 0
\(472\) −204.145 + 204.145i −0.432510 + 0.432510i
\(473\) 41.4258 + 41.4258i 0.0875810 + 0.0875810i
\(474\) 0 0
\(475\) 375.846 + 209.068i 0.791255 + 0.440144i
\(476\) 189.721 0.398573
\(477\) 0 0
\(478\) 72.0469 + 72.0469i 0.150726 + 0.150726i
\(479\) 163.627i 0.341602i −0.985306 0.170801i \(-0.945365\pi\)
0.985306 0.170801i \(-0.0546355\pi\)
\(480\) 0 0
\(481\) −36.9925 −0.0769074
\(482\) 268.481 268.481i 0.557014 0.557014i
\(483\) 0 0
\(484\) 238.709i 0.493201i
\(485\) 200.430 772.627i 0.413257 1.59304i
\(486\) 0 0
\(487\) −359.366 + 359.366i −0.737918 + 0.737918i −0.972175 0.234257i \(-0.924734\pi\)
0.234257 + 0.972175i \(0.424734\pi\)
\(488\) −105.368 105.368i −0.215918 0.215918i
\(489\) 0 0
\(490\) −255.755 66.3464i −0.521950 0.135401i
\(491\) 57.0287 0.116148 0.0580740 0.998312i \(-0.481504\pi\)
0.0580740 + 0.998312i \(0.481504\pi\)
\(492\) 0 0
\(493\) −1046.82 1046.82i −2.12337 2.12337i
\(494\) 99.4567i 0.201329i
\(495\) 0 0
\(496\) −107.012 −0.215750
\(497\) −13.3680 + 13.3680i −0.0268974 + 0.0268974i
\(498\) 0 0
\(499\) 886.807i 1.77717i −0.458715 0.888584i \(-0.651690\pi\)
0.458715 0.888584i \(-0.348310\pi\)
\(500\) 249.928 5.98502i 0.499857 0.0119700i
\(501\) 0 0
\(502\) 251.209 251.209i 0.500416 0.500416i
\(503\) −70.9445 70.9445i −0.141043 0.141043i 0.633060 0.774103i \(-0.281799\pi\)
−0.774103 + 0.633060i \(0.781799\pi\)
\(504\) 0 0
\(505\) −320.387 + 188.401i −0.634429 + 0.373070i
\(506\) 55.9738 0.110620
\(507\) 0 0
\(508\) 222.830 + 222.830i 0.438642 + 0.438642i
\(509\) 220.529i 0.433260i −0.976254 0.216630i \(-0.930493\pi\)
0.976254 0.216630i \(-0.0695065\pi\)
\(510\) 0 0
\(511\) 235.882 0.461609
\(512\) 16.0000 16.0000i 0.0312500 0.0312500i
\(513\) 0 0
\(514\) 114.236i 0.222248i
\(515\) 76.8538 + 19.9369i 0.149231 + 0.0387124i
\(516\) 0 0
\(517\) 10.2885 10.2885i 0.0199004 0.0199004i
\(518\) 30.8646 + 30.8646i 0.0595841 + 0.0595841i
\(519\) 0 0
\(520\) −29.3050 49.8350i −0.0563558 0.0958366i
\(521\) 315.280 0.605144 0.302572 0.953127i \(-0.402155\pi\)
0.302572 + 0.953127i \(0.402155\pi\)
\(522\) 0 0
\(523\) 550.337 + 550.337i 1.05227 + 1.05227i 0.998556 + 0.0537127i \(0.0171055\pi\)
0.0537127 + 0.998556i \(0.482894\pi\)
\(524\) 8.20193i 0.0156525i
\(525\) 0 0
\(526\) 202.915 0.385771
\(527\) 526.123 526.123i 0.998337 0.998337i
\(528\) 0 0
\(529\) 423.058i 0.799732i
\(530\) −1.50830 + 0.886942i −0.00284585 + 0.00167348i
\(531\) 0 0
\(532\) −82.9815 + 82.9815i −0.155980 + 0.155980i
\(533\) −143.098 143.098i −0.268476 0.268476i
\(534\) 0 0
\(535\) −203.351 + 783.887i −0.380095 + 1.46521i
\(536\) −168.063 −0.313551
\(537\) 0 0
\(538\) 341.458 + 341.458i 0.634680 + 0.634680i
\(539\) 47.9314i 0.0889265i
\(540\) 0 0
\(541\) 86.5875 0.160051 0.0800254 0.996793i \(-0.474500\pi\)
0.0800254 + 0.996793i \(0.474500\pi\)
\(542\) 157.125 157.125i 0.289899 0.289899i
\(543\) 0 0
\(544\) 157.327i 0.289205i
\(545\) 203.233 + 345.611i 0.372905 + 0.634149i
\(546\) 0 0
\(547\) 359.715 359.715i 0.657614 0.657614i −0.297201 0.954815i \(-0.596053\pi\)
0.954815 + 0.297201i \(0.0960532\pi\)
\(548\) −197.022 197.022i −0.359529 0.359529i
\(549\) 0 0
\(550\) −12.4356 43.6134i −0.0226101 0.0792971i
\(551\) 915.732 1.66195
\(552\) 0 0
\(553\) −235.943 235.943i −0.426660 0.426660i
\(554\) 236.379i 0.426677i
\(555\) 0 0
\(556\) −46.7941 −0.0841621
\(557\) −145.517 + 145.517i −0.261252 + 0.261252i −0.825563 0.564311i \(-0.809142\pi\)
0.564311 + 0.825563i \(0.309142\pi\)
\(558\) 0 0
\(559\) 186.706i 0.333999i
\(560\) −17.1292 + 66.0303i −0.0305878 + 0.117911i
\(561\) 0 0
\(562\) −201.462 + 201.462i −0.358473 + 0.358473i
\(563\) −362.028 362.028i −0.643033 0.643033i 0.308267 0.951300i \(-0.400251\pi\)
−0.951300 + 0.308267i \(0.900251\pi\)
\(564\) 0 0
\(565\) −723.186 187.604i −1.27998 0.332043i
\(566\) −84.1024 −0.148591
\(567\) 0 0
\(568\) −11.0855 11.0855i −0.0195167 0.0195167i
\(569\) 386.149i 0.678646i 0.940670 + 0.339323i \(0.110198\pi\)
−0.940670 + 0.339323i \(0.889802\pi\)
\(570\) 0 0
\(571\) 153.581 0.268968 0.134484 0.990916i \(-0.457062\pi\)
0.134484 + 0.990916i \(0.457062\pi\)
\(572\) −7.41586 + 7.41586i −0.0129648 + 0.0129648i
\(573\) 0 0
\(574\) 238.787i 0.416005i
\(575\) 741.820 211.516i 1.29012 0.367855i
\(576\) 0 0
\(577\) −115.299 + 115.299i −0.199825 + 0.199825i −0.799925 0.600100i \(-0.795127\pi\)
0.600100 + 0.799925i \(0.295127\pi\)
\(578\) −484.497 484.497i −0.838231 0.838231i
\(579\) 0 0
\(580\) 458.848 269.822i 0.791118 0.465209i
\(581\) 245.847 0.423145
\(582\) 0 0
\(583\) 0.224447 + 0.224447i 0.000384987 + 0.000384987i
\(584\) 195.607i 0.334944i
\(585\) 0 0
\(586\) −455.815 −0.777841
\(587\) 159.506 159.506i 0.271731 0.271731i −0.558066 0.829797i \(-0.688456\pi\)
0.829797 + 0.558066i \(0.188456\pi\)
\(588\) 0 0
\(589\) 460.239i 0.781391i
\(590\) 698.636 + 181.236i 1.18413 + 0.307179i
\(591\) 0 0
\(592\) −25.5947 + 25.5947i −0.0432342 + 0.0432342i
\(593\) −250.553 250.553i −0.422518 0.422518i 0.463552 0.886070i \(-0.346575\pi\)
−0.886070 + 0.463552i \(0.846575\pi\)
\(594\) 0 0
\(595\) −240.422 408.852i −0.404070 0.687146i
\(596\) −450.983 −0.756683
\(597\) 0 0
\(598\) −126.136 126.136i −0.210930 0.210930i
\(599\) 450.877i 0.752716i −0.926474 0.376358i \(-0.877176\pi\)
0.926474 0.376358i \(-0.122824\pi\)
\(600\) 0 0
\(601\) −368.430 −0.613028 −0.306514 0.951866i \(-0.599163\pi\)
−0.306514 + 0.951866i \(0.599163\pi\)
\(602\) −155.777 + 155.777i −0.258766 + 0.258766i
\(603\) 0 0
\(604\) 497.376i 0.823470i
\(605\) 514.423 302.502i 0.850285 0.500003i
\(606\) 0 0
\(607\) −443.996 + 443.996i −0.731459 + 0.731459i −0.970909 0.239450i \(-0.923033\pi\)
0.239450 + 0.970909i \(0.423033\pi\)
\(608\) −68.8130 68.8130i −0.113179 0.113179i
\(609\) 0 0
\(610\) −93.5437 + 360.597i −0.153350 + 0.591143i
\(611\) −46.3701 −0.0758922
\(612\) 0 0
\(613\) −530.799 530.799i −0.865904 0.865904i 0.126112 0.992016i \(-0.459750\pi\)
−0.992016 + 0.126112i \(0.959750\pi\)
\(614\) 131.211i 0.213698i
\(615\) 0 0
\(616\) 12.3748 0.0200890
\(617\) 292.377 292.377i 0.473868 0.473868i −0.429296 0.903164i \(-0.641238\pi\)
0.903164 + 0.429296i \(0.141238\pi\)
\(618\) 0 0
\(619\) 359.571i 0.580890i −0.956892 0.290445i \(-0.906197\pi\)
0.956892 0.290445i \(-0.0938034\pi\)
\(620\) 135.610 + 230.613i 0.218726 + 0.371957i
\(621\) 0 0
\(622\) −243.797 + 243.797i −0.391957 + 0.391957i
\(623\) −113.251 113.251i −0.181784 0.181784i
\(624\) 0 0
\(625\) −329.617 531.016i −0.527387 0.849625i
\(626\) 332.967 0.531897
\(627\) 0 0
\(628\) 76.3749 + 76.3749i 0.121616 + 0.121616i
\(629\) 251.671i 0.400113i
\(630\) 0 0
\(631\) 1215.94 1.92701 0.963505 0.267690i \(-0.0862602\pi\)
0.963505 + 0.267690i \(0.0862602\pi\)
\(632\) 195.657 195.657i 0.309585 0.309585i
\(633\) 0 0
\(634\) 669.699i 1.05631i
\(635\) 197.824 762.582i 0.311534 1.20092i
\(636\) 0 0
\(637\) 108.013 108.013i 0.169565 0.169565i
\(638\) −68.2804 68.2804i −0.107023 0.107023i
\(639\) 0 0
\(640\) −54.7561 14.2045i −0.0855564 0.0221945i
\(641\) −547.803 −0.854607 −0.427303 0.904108i \(-0.640536\pi\)
−0.427303 + 0.904108i \(0.640536\pi\)
\(642\) 0 0
\(643\) 517.011 + 517.011i 0.804060 + 0.804060i 0.983727 0.179667i \(-0.0575021\pi\)
−0.179667 + 0.983727i \(0.557502\pi\)
\(644\) 210.483i 0.326837i
\(645\) 0 0
\(646\) 676.636 1.04742
\(647\) −374.569 + 374.569i −0.578932 + 0.578932i −0.934609 0.355677i \(-0.884250\pi\)
0.355677 + 0.934609i \(0.384250\pi\)
\(648\) 0 0
\(649\) 130.932i 0.201744i
\(650\) −70.2589 + 126.306i −0.108091 + 0.194317i
\(651\) 0 0
\(652\) 230.149 230.149i 0.352989 0.352989i
\(653\) −636.747 636.747i −0.975110 0.975110i 0.0245879 0.999698i \(-0.492173\pi\)
−0.999698 + 0.0245879i \(0.992173\pi\)
\(654\) 0 0
\(655\) 17.6753 10.3938i 0.0269852 0.0158684i
\(656\) −198.016 −0.301853
\(657\) 0 0
\(658\) 38.6888 + 38.6888i 0.0587976 + 0.0587976i
\(659\) 151.436i 0.229796i −0.993377 0.114898i \(-0.963346\pi\)
0.993377 0.114898i \(-0.0366541\pi\)
\(660\) 0 0
\(661\) 53.4047 0.0807938 0.0403969 0.999184i \(-0.487138\pi\)
0.0403969 + 0.999184i \(0.487138\pi\)
\(662\) −246.161 + 246.161i −0.371845 + 0.371845i
\(663\) 0 0
\(664\) 203.871i 0.307034i
\(665\) 283.984 + 73.6693i 0.427044 + 0.110781i
\(666\) 0 0
\(667\) 1161.38 1161.38i 1.74120 1.74120i
\(668\) 442.715 + 442.715i 0.662747 + 0.662747i
\(669\) 0 0
\(670\) 212.976 + 362.180i 0.317875 + 0.540567i
\(671\) 67.5799 0.100715
\(672\) 0 0
\(673\) 472.441 + 472.441i 0.701992 + 0.701992i 0.964838 0.262846i \(-0.0846610\pi\)
−0.262846 + 0.964838i \(0.584661\pi\)
\(674\) 637.529i 0.945889i
\(675\) 0 0
\(676\) −304.577 −0.450557
\(677\) −381.070 + 381.070i −0.562880 + 0.562880i −0.930124 0.367245i \(-0.880301\pi\)
0.367245 + 0.930124i \(0.380301\pi\)
\(678\) 0 0
\(679\) 544.500i 0.801914i
\(680\) 339.044 199.371i 0.498593 0.293193i
\(681\) 0 0
\(682\) 34.3171 34.3171i 0.0503184 0.0503184i
\(683\) 40.8892 + 40.8892i 0.0598670 + 0.0598670i 0.736406 0.676539i \(-0.236521\pi\)
−0.676539 + 0.736406i \(0.736521\pi\)
\(684\) 0 0
\(685\) −174.912 + 674.260i −0.255346 + 0.984321i
\(686\) −416.597 −0.607284
\(687\) 0 0
\(688\) −129.179 129.179i −0.187761 0.187761i
\(689\) 1.01158i 0.00146819i
\(690\) 0 0
\(691\) 805.111 1.16514 0.582570 0.812781i \(-0.302047\pi\)
0.582570 + 0.812781i \(0.302047\pi\)
\(692\) 306.467 306.467i 0.442871 0.442871i
\(693\) 0 0
\(694\) 376.285i 0.542197i
\(695\) 59.2994 + 100.842i 0.0853228 + 0.145097i
\(696\) 0 0
\(697\) 973.540 973.540i 1.39676 1.39676i
\(698\) −114.626 114.626i −0.164221 0.164221i
\(699\) 0 0
\(700\) 164.003 46.7625i 0.234290 0.0668036i
\(701\) 1140.79 1.62738 0.813690 0.581299i \(-0.197455\pi\)
0.813690 + 0.581299i \(0.197455\pi\)
\(702\) 0 0
\(703\) 110.078 + 110.078i 0.156583 + 0.156583i
\(704\) 10.2619i 0.0145766i
\(705\) 0 0
\(706\) 145.387 0.205930
\(707\) −179.281 + 179.281i −0.253580 + 0.253580i
\(708\) 0 0
\(709\) 740.214i 1.04403i −0.852938 0.522013i \(-0.825181\pi\)
0.852938 0.522013i \(-0.174819\pi\)
\(710\) −9.84149 + 37.9375i −0.0138613 + 0.0534330i
\(711\) 0 0
\(712\) 93.9146 93.9146i 0.131903 0.131903i
\(713\) 583.700 + 583.700i 0.818654 + 0.818654i
\(714\) 0 0
\(715\) 25.3790 + 6.58365i 0.0354951 + 0.00920790i
\(716\) −329.542 −0.460254
\(717\) 0 0
\(718\) 190.904 + 190.904i 0.265883 + 0.265883i
\(719\) 595.037i 0.827590i 0.910370 + 0.413795i \(0.135797\pi\)
−0.910370 + 0.413795i \(0.864203\pi\)
\(720\) 0 0
\(721\) 54.1618 0.0751204
\(722\) 65.0483 65.0483i 0.0900946 0.0900946i
\(723\) 0 0
\(724\) 10.5856i 0.0146210i
\(725\) −1162.94 646.898i −1.60406 0.892274i
\(726\) 0 0
\(727\) −780.586 + 780.586i −1.07371 + 1.07371i −0.0766498 + 0.997058i \(0.524422\pi\)
−0.997058 + 0.0766498i \(0.975578\pi\)
\(728\) −27.8865 27.8865i −0.0383057 0.0383057i
\(729\) 0 0
\(730\) 421.537 247.881i 0.577448 0.339563i
\(731\) 1270.22 1.73764
\(732\) 0 0
\(733\) −154.394 154.394i −0.210633 0.210633i 0.593903 0.804536i \(-0.297586\pi\)
−0.804536 + 0.593903i \(0.797586\pi\)
\(734\) 741.051i 1.00961i
\(735\) 0 0
\(736\) −174.545 −0.237153
\(737\) 53.8953 53.8953i 0.0731279 0.0731279i
\(738\) 0 0
\(739\) 393.578i 0.532583i 0.963893 + 0.266291i \(0.0857983\pi\)
−0.963893 + 0.266291i \(0.914202\pi\)
\(740\) 87.5915 + 22.7224i 0.118367 + 0.0307060i
\(741\) 0 0
\(742\) −0.844010 + 0.844010i −0.00113748 + 0.00113748i
\(743\) 682.919 + 682.919i 0.919138 + 0.919138i 0.996967 0.0778289i \(-0.0247988\pi\)
−0.0778289 + 0.996967i \(0.524799\pi\)
\(744\) 0 0
\(745\) 571.503 + 971.877i 0.767119 + 1.30453i
\(746\) 310.650 0.416421
\(747\) 0 0
\(748\) −50.4524 50.4524i −0.0674498 0.0674498i
\(749\) 552.436i 0.737564i
\(750\) 0 0
\(751\) 225.440 0.300186 0.150093 0.988672i \(-0.452043\pi\)
0.150093 + 0.988672i \(0.452043\pi\)
\(752\) −32.0830 + 32.0830i −0.0426635 + 0.0426635i
\(753\) 0 0
\(754\) 307.738i 0.408141i
\(755\) −1071.85 + 630.294i −1.41967 + 0.834826i
\(756\) 0 0
\(757\) 257.146 257.146i 0.339691 0.339691i −0.516560 0.856251i \(-0.672788\pi\)
0.856251 + 0.516560i \(0.172788\pi\)
\(758\) −542.378 542.378i −0.715538 0.715538i
\(759\) 0 0
\(760\) −61.0908 + 235.496i −0.0803826 + 0.309863i
\(761\) 811.313 1.06611 0.533057 0.846079i \(-0.321043\pi\)
0.533057 + 0.846079i \(0.321043\pi\)
\(762\) 0 0
\(763\) 193.396 + 193.396i 0.253468 + 0.253468i
\(764\) 158.831i 0.207894i
\(765\) 0 0
\(766\) 477.278 0.623079
\(767\) −295.054 + 295.054i −0.384686 + 0.384686i
\(768\) 0 0
\(769\) 276.246i 0.359228i 0.983737 + 0.179614i \(0.0574848\pi\)
−0.983737 + 0.179614i \(0.942515\pi\)
\(770\) −15.6818 26.6679i −0.0203660 0.0346337i
\(771\) 0 0
\(772\) −240.292 + 240.292i −0.311260 + 0.311260i
\(773\) −246.810 246.810i −0.319288 0.319288i 0.529205 0.848494i \(-0.322490\pi\)
−0.848494 + 0.529205i \(0.822490\pi\)
\(774\) 0 0
\(775\) 325.126 584.484i 0.419517 0.754173i
\(776\) 451.530 0.581869
\(777\) 0 0
\(778\) −174.765 174.765i −0.224634 0.224634i
\(779\) 851.628i 1.09323i
\(780\) 0 0
\(781\) 7.10990 0.00910358
\(782\) 858.146 858.146i 1.09737 1.09737i
\(783\) 0 0
\(784\) 149.466i 0.190645i
\(785\) 67.8041 261.375i 0.0863747 0.332961i
\(786\) 0 0
\(787\) 237.350 237.350i 0.301588 0.301588i −0.540047 0.841635i \(-0.681593\pi\)
0.841635 + 0.540047i \(0.181593\pi\)
\(788\) 76.3465 + 76.3465i 0.0968864 + 0.0968864i
\(789\) 0 0
\(790\) −669.590 173.701i −0.847583 0.219874i
\(791\) −509.657 −0.644320
\(792\) 0 0
\(793\) −152.291 152.291i −0.192044 0.192044i
\(794\) 499.978i 0.629695i
\(795\) 0 0
\(796\) 180.080 0.226231
\(797\) −539.640 + 539.640i −0.677090 + 0.677090i −0.959341 0.282251i \(-0.908919\pi\)
0.282251 + 0.959341i \(0.408919\pi\)
\(798\) 0 0
\(799\) 315.471i 0.394832i
\(800\) 38.7782 + 136.001i 0.0484727 + 0.170001i
\(801\) 0 0
\(802\) 131.561 131.561i 0.164041 0.164041i
\(803\) −62.7282 62.7282i −0.0781173 0.0781173i
\(804\) 0 0
\(805\) 453.595 266.732i 0.563472 0.331345i
\(806\) −154.667 −0.191894
\(807\) 0 0
\(808\) −148.670 148.670i −0.183998 0.183998i
\(809\) 195.169i 0.241248i −0.992698 0.120624i \(-0.961511\pi\)
0.992698 0.120624i \(-0.0384895\pi\)
\(810\) 0 0
\(811\) −1111.22 −1.37018 −0.685090 0.728459i \(-0.740237\pi\)
−0.685090 + 0.728459i \(0.740237\pi\)
\(812\) 256.761 256.761i 0.316208 0.316208i
\(813\) 0 0
\(814\) 16.4156i 0.0201666i
\(815\) −787.628 204.321i −0.966415 0.250701i
\(816\) 0 0
\(817\) −555.577 + 555.577i −0.680020 + 0.680020i
\(818\) −457.799 457.799i −0.559656 0.559656i
\(819\) 0 0
\(820\) 250.933 + 426.727i 0.306016 + 0.520399i
\(821\) −1358.56 −1.65476 −0.827382 0.561639i \(-0.810171\pi\)
−0.827382 + 0.561639i \(0.810171\pi\)
\(822\) 0 0
\(823\) 791.386 + 791.386i 0.961587 + 0.961587i 0.999289 0.0377018i \(-0.0120037\pi\)
−0.0377018 + 0.999289i \(0.512004\pi\)
\(824\) 44.9141i 0.0545074i
\(825\) 0 0
\(826\) 492.356 0.596072
\(827\) −346.428 + 346.428i −0.418897 + 0.418897i −0.884823 0.465926i \(-0.845721\pi\)
0.465926 + 0.884823i \(0.345721\pi\)
\(828\) 0 0
\(829\) 1353.95i 1.63324i 0.577178 + 0.816618i \(0.304154\pi\)
−0.577178 + 0.816618i \(0.695846\pi\)
\(830\) 439.345 258.353i 0.529331 0.311268i
\(831\) 0 0
\(832\) 23.1251 23.1251i 0.0277946 0.0277946i
\(833\) 734.846 + 734.846i 0.882168 + 0.882168i
\(834\) 0 0
\(835\) 393.033 1515.08i 0.470699 1.81447i
\(836\) 44.1345 0.0527925
\(837\) 0 0
\(838\) 205.557 + 205.557i 0.245295 + 0.245295i
\(839\) 1100.51i 1.31170i −0.754892 0.655849i \(-0.772311\pi\)
0.754892 0.655849i \(-0.227689\pi\)
\(840\) 0 0
\(841\) −1992.45 −2.36915
\(842\) −67.9739 + 67.9739i −0.0807291 + 0.0807291i
\(843\) 0 0
\(844\) 743.239i 0.880614i
\(845\) 385.972 + 656.369i 0.456771 + 0.776768i
\(846\) 0 0
\(847\) 287.859 287.859i 0.339857 0.339857i
\(848\) −0.699901 0.699901i −0.000825355 0.000825355i
\(849\) 0 0
\(850\) −859.298 477.994i −1.01094 0.562346i
\(851\) 279.213 0.328100
\(852\) 0 0
\(853\) −27.6294 27.6294i −0.0323908 0.0323908i 0.690726 0.723117i \(-0.257291\pi\)
−0.723117 + 0.690726i \(0.757291\pi\)
\(854\) 254.127i 0.297572i
\(855\) 0 0
\(856\) −458.111 −0.535177
\(857\) −642.173 + 642.173i −0.749327 + 0.749327i −0.974353 0.225026i \(-0.927753\pi\)
0.225026 + 0.974353i \(0.427753\pi\)
\(858\) 0 0
\(859\) 1289.26i 1.50089i 0.660935 + 0.750443i \(0.270160\pi\)
−0.660935 + 0.750443i \(0.729840\pi\)
\(860\) −114.683 + 442.085i −0.133352 + 0.514053i
\(861\) 0 0
\(862\) 99.6045 99.6045i 0.115550 0.115550i
\(863\) −230.587 230.587i −0.267193 0.267193i 0.560775 0.827968i \(-0.310503\pi\)
−0.827968 + 0.560775i \(0.810503\pi\)
\(864\) 0 0
\(865\) −1048.81 272.075i −1.21249 0.314537i
\(866\) −919.269 −1.06151
\(867\) 0 0
\(868\) 129.046 + 129.046i 0.148670 + 0.148670i
\(869\) 125.489i 0.144406i
\(870\) 0 0
\(871\) −242.905 −0.278881
\(872\) −160.375 + 160.375i −0.183916 + 0.183916i
\(873\) 0 0
\(874\) 750.684i 0.858906i
\(875\) −308.605 294.171i −0.352692 0.336195i
\(876\) 0 0
\(877\) 559.046 559.046i 0.637453 0.637453i −0.312473 0.949926i \(-0.601158\pi\)
0.949926 + 0.312473i \(0.101158\pi\)
\(878\) −58.3325 58.3325i −0.0664379 0.0664379i
\(879\) 0 0
\(880\) 22.1146 13.0043i 0.0251302 0.0147776i
\(881\) −569.305 −0.646204 −0.323102 0.946364i \(-0.604726\pi\)
−0.323102 + 0.946364i \(0.604726\pi\)
\(882\) 0 0
\(883\) 34.5889 + 34.5889i 0.0391720 + 0.0391720i 0.726421 0.687249i \(-0.241182\pi\)
−0.687249 + 0.726421i \(0.741182\pi\)
\(884\) 227.388i 0.257227i
\(885\) 0 0
\(886\) −342.487 −0.386554
\(887\) −913.625 + 913.625i −1.03002 + 1.03002i −0.0304811 + 0.999535i \(0.509704\pi\)
−0.999535 + 0.0304811i \(0.990296\pi\)
\(888\) 0 0
\(889\) 537.421i 0.604523i
\(890\) −321.400 83.3755i −0.361124 0.0936803i
\(891\) 0 0
\(892\) −307.880 + 307.880i −0.345157 + 0.345157i
\(893\) 137.983 + 137.983i 0.154516 + 0.154516i
\(894\) 0 0
\(895\) 417.608 + 710.168i 0.466601 + 0.793484i
\(896\) −38.5887 −0.0430678
\(897\) 0 0
\(898\) −769.773 769.773i −0.857208 0.857208i
\(899\) 1424.07i 1.58406i
\(900\) 0 0
\(901\) 6.88210 0.00763830
\(902\) 63.5005 63.5005i 0.0703997 0.0703997i
\(903\) 0 0
\(904\) 422.637i 0.467519i
\(905\) 22.8122 13.4145i 0.0252069 0.0148227i
\(906\) 0 0
\(907\) 90.9091 90.9091i 0.100230 0.100230i −0.655213 0.755444i \(-0.727421\pi\)
0.755444 + 0.655213i \(0.227421\pi\)
\(908\) 49.6687 + 49.6687i 0.0547012 + 0.0547012i
\(909\) 0 0
\(910\) −24.7571 + 95.4349i −0.0272056 + 0.104873i
\(911\) −1512.04 −1.65976 −0.829878 0.557945i \(-0.811590\pi\)
−0.829878 + 0.557945i \(0.811590\pi\)
\(912\) 0 0
\(913\) −65.3781 65.3781i −0.0716080 0.0716080i
\(914\) 25.5381i 0.0279411i
\(915\) 0 0
\(916\) 280.099 0.305784
\(917\) 9.89069 9.89069i 0.0107859 0.0107859i
\(918\) 0 0
\(919\) 1310.73i 1.42626i 0.701031 + 0.713131i \(0.252724\pi\)
−0.701031 + 0.713131i \(0.747276\pi\)
\(920\) 221.190 + 376.147i 0.240424 + 0.408856i
\(921\) 0 0
\(922\) 589.157 589.157i 0.638999 0.638999i
\(923\) −16.0221 16.0221i −0.0173587 0.0173587i
\(924\) 0 0
\(925\) −62.0321 217.556i −0.0670618 0.235196i
\(926\) −926.153 −1.00017
\(927\) 0 0
\(928\) 212.921 + 212.921i 0.229441 + 0.229441i
\(929\) 520.108i 0.559858i 0.960021 + 0.279929i \(0.0903109\pi\)
−0.960021 + 0.279929i \(0.909689\pi\)
\(930\) 0 0
\(931\) −642.825 −0.690467
\(932\) −255.945 + 255.945i −0.274619 + 0.274619i
\(933\) 0 0
\(934\) 123.447i 0.132170i
\(935\) −44.7907 + 172.661i −0.0479045 + 0.184664i
\(936\) 0 0
\(937\) −845.208 + 845.208i −0.902037 + 0.902037i −0.995612 0.0935755i \(-0.970170\pi\)
0.0935755 + 0.995612i \(0.470170\pi\)
\(938\) 202.667 + 202.667i 0.216063 + 0.216063i
\(939\) 0 0
\(940\) 109.796 + 28.4826i 0.116804 + 0.0303007i
\(941\) 1260.99 1.34005 0.670025 0.742339i \(-0.266283\pi\)
0.670025 + 0.742339i \(0.266283\pi\)
\(942\) 0 0
\(943\) 1080.08 + 1080.08i 1.14537 + 1.14537i
\(944\) 408.289i 0.432510i
\(945\) 0 0
\(946\) 82.8517 0.0875810
\(947\) −425.531 + 425.531i −0.449347 + 0.449347i −0.895137 0.445790i \(-0.852923\pi\)
0.445790 + 0.895137i \(0.352923\pi\)
\(948\) 0 0
\(949\) 282.715i 0.297908i
\(950\) 584.914 166.778i 0.615699 0.175555i
\(951\) 0 0
\(952\) 189.721 189.721i 0.199287 0.199287i
\(953\) 211.288 + 211.288i 0.221708 + 0.221708i 0.809217 0.587509i \(-0.199891\pi\)
−0.587509 + 0.809217i \(0.699891\pi\)
\(954\) 0 0
\(955\) 342.284 201.277i 0.358413 0.210761i
\(956\) 144.094 0.150726
\(957\) 0 0
\(958\) −163.627 163.627i −0.170801 0.170801i
\(959\) 475.177i 0.495492i
\(960\) 0 0
\(961\) −245.275 −0.255229
\(962\) −36.9925 + 36.9925i −0.0384537 + 0.0384537i
\(963\) 0 0
\(964\) 536.961i 0.557014i
\(965\) 822.343 + 213.327i 0.852169 + 0.221064i
\(966\) 0 0
\(967\) −491.943 + 491.943i −0.508731 + 0.508731i −0.914137 0.405406i \(-0.867130\pi\)
0.405406 + 0.914137i \(0.367130\pi\)
\(968\) 238.709 + 238.709i 0.246600 + 0.246600i
\(969\) 0 0
\(970\) −572.197 973.056i −0.589894 1.00315i
\(971\) −1004.59 −1.03459 −0.517297 0.855806i \(-0.673062\pi\)
−0.517297 + 0.855806i \(0.673062\pi\)
\(972\) 0 0
\(973\) 56.4290 + 56.4290i 0.0579948 + 0.0579948i
\(974\) 718.732i 0.737918i
\(975\) 0 0
\(976\) −210.736 −0.215918
\(977\) −1119.23 + 1119.23i −1.14558 + 1.14558i −0.158167 + 0.987412i \(0.550558\pi\)
−0.987412 + 0.158167i \(0.949442\pi\)
\(978\) 0 0
\(979\) 60.2339i 0.0615259i
\(980\) −322.102 + 189.409i −0.328675 + 0.193274i
\(981\) 0 0
\(982\) 57.0287 57.0287i 0.0580740 0.0580740i
\(983\) −579.607 579.607i −0.589631 0.589631i 0.347900 0.937532i \(-0.386895\pi\)
−0.937532 + 0.347900i \(0.886895\pi\)
\(984\) 0 0
\(985\) 67.7788 261.277i 0.0688110 0.265256i
\(986\) −2093.64 −2.12337
\(987\) 0 0
\(988\) −99.4567 99.4567i −0.100665 0.100665i
\(989\) 1409.22i 1.42490i
\(990\) 0 0
\(991\) −570.979 −0.576164 −0.288082 0.957606i \(-0.593018\pi\)
−0.288082 + 0.957606i \(0.593018\pi\)
\(992\) −107.012 + 107.012i −0.107875 + 0.107875i
\(993\) 0 0
\(994\) 26.7360i 0.0268974i
\(995\) −228.205 388.076i −0.229351 0.390026i
\(996\) 0 0
\(997\) −835.111 + 835.111i −0.837624 + 0.837624i −0.988546 0.150922i \(-0.951776\pi\)
0.150922 + 0.988546i \(0.451776\pi\)
\(998\) −886.807 886.807i −0.888584 0.888584i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 810.3.g.k.163.1 12
3.2 odd 2 810.3.g.i.163.6 12
5.2 odd 4 inner 810.3.g.k.487.1 12
9.2 odd 6 270.3.l.b.253.4 24
9.4 even 3 90.3.k.a.43.4 yes 24
9.5 odd 6 270.3.l.b.73.1 24
9.7 even 3 90.3.k.a.13.6 yes 24
15.2 even 4 810.3.g.i.487.6 12
45.2 even 12 270.3.l.b.37.1 24
45.7 odd 12 90.3.k.a.67.4 yes 24
45.22 odd 12 90.3.k.a.7.6 24
45.32 even 12 270.3.l.b.127.4 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
90.3.k.a.7.6 24 45.22 odd 12
90.3.k.a.13.6 yes 24 9.7 even 3
90.3.k.a.43.4 yes 24 9.4 even 3
90.3.k.a.67.4 yes 24 45.7 odd 12
270.3.l.b.37.1 24 45.2 even 12
270.3.l.b.73.1 24 9.5 odd 6
270.3.l.b.127.4 24 45.32 even 12
270.3.l.b.253.4 24 9.2 odd 6
810.3.g.i.163.6 12 3.2 odd 2
810.3.g.i.487.6 12 15.2 even 4
810.3.g.k.163.1 12 1.1 even 1 trivial
810.3.g.k.487.1 12 5.2 odd 4 inner