Properties

Label 2700.2.s.a.2449.2
Level $2700$
Weight $2$
Character 2700.2449
Analytic conductor $21.560$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2700,2,Mod(1549,2700)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2700, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 2, 3]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2700.1549");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2700 = 2^{2} \cdot 3^{3} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2700.s (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(21.5596085457\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\zeta_{12})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 180)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 2449.2
Root \(0.866025 + 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 2700.2449
Dual form 2700.2.s.a.1549.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.866025 + 0.500000i) q^{7} +(3.46410 - 2.00000i) q^{13} +6.00000i q^{17} -2.00000 q^{19} +(-2.59808 + 1.50000i) q^{23} +(-1.50000 + 2.59808i) q^{29} +(5.00000 + 8.66025i) q^{31} -10.0000i q^{37} +(4.50000 + 7.79423i) q^{41} +(-3.46410 - 2.00000i) q^{43} +(7.79423 + 4.50000i) q^{47} +(-3.00000 - 5.19615i) q^{49} -6.00000i q^{53} +(3.00000 + 5.19615i) q^{59} +(0.500000 - 0.866025i) q^{61} +(9.52628 - 5.50000i) q^{67} -12.0000 q^{71} +4.00000i q^{73} +(-5.00000 + 8.66025i) q^{79} +(7.79423 + 4.50000i) q^{83} +9.00000 q^{89} +4.00000 q^{91} +(8.66025 + 5.00000i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 8 q^{19} - 6 q^{29} + 20 q^{31} + 18 q^{41} - 12 q^{49} + 12 q^{59} + 2 q^{61} - 48 q^{71} - 20 q^{79} + 36 q^{89} + 16 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2700\mathbb{Z}\right)^\times\).

\(n\) \(1001\) \(1351\) \(2377\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 0.866025 + 0.500000i 0.327327 + 0.188982i 0.654654 0.755929i \(-0.272814\pi\)
−0.327327 + 0.944911i \(0.606148\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(12\) 0 0
\(13\) 3.46410 2.00000i 0.960769 0.554700i 0.0643593 0.997927i \(-0.479500\pi\)
0.896410 + 0.443227i \(0.146166\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 6.00000i 1.45521i 0.685994 + 0.727607i \(0.259367\pi\)
−0.685994 + 0.727607i \(0.740633\pi\)
\(18\) 0 0
\(19\) −2.00000 −0.458831 −0.229416 0.973329i \(-0.573682\pi\)
−0.229416 + 0.973329i \(0.573682\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −2.59808 + 1.50000i −0.541736 + 0.312772i −0.745782 0.666190i \(-0.767924\pi\)
0.204046 + 0.978961i \(0.434591\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −1.50000 + 2.59808i −0.278543 + 0.482451i −0.971023 0.238987i \(-0.923185\pi\)
0.692480 + 0.721437i \(0.256518\pi\)
\(30\) 0 0
\(31\) 5.00000 + 8.66025i 0.898027 + 1.55543i 0.830014 + 0.557743i \(0.188333\pi\)
0.0680129 + 0.997684i \(0.478334\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 10.0000i 1.64399i −0.569495 0.821995i \(-0.692861\pi\)
0.569495 0.821995i \(-0.307139\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 4.50000 + 7.79423i 0.702782 + 1.21725i 0.967486 + 0.252924i \(0.0813924\pi\)
−0.264704 + 0.964330i \(0.585274\pi\)
\(42\) 0 0
\(43\) −3.46410 2.00000i −0.528271 0.304997i 0.212041 0.977261i \(-0.431989\pi\)
−0.740312 + 0.672264i \(0.765322\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 7.79423 + 4.50000i 1.13691 + 0.656392i 0.945662 0.325150i \(-0.105415\pi\)
0.191243 + 0.981543i \(0.438748\pi\)
\(48\) 0 0
\(49\) −3.00000 5.19615i −0.428571 0.742307i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 6.00000i 0.824163i −0.911147 0.412082i \(-0.864802\pi\)
0.911147 0.412082i \(-0.135198\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 3.00000 + 5.19615i 0.390567 + 0.676481i 0.992524 0.122047i \(-0.0389457\pi\)
−0.601958 + 0.798528i \(0.705612\pi\)
\(60\) 0 0
\(61\) 0.500000 0.866025i 0.0640184 0.110883i −0.832240 0.554416i \(-0.812942\pi\)
0.896258 + 0.443533i \(0.146275\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 9.52628 5.50000i 1.16382 0.671932i 0.211604 0.977356i \(-0.432131\pi\)
0.952217 + 0.305424i \(0.0987981\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −12.0000 −1.42414 −0.712069 0.702109i \(-0.752242\pi\)
−0.712069 + 0.702109i \(0.752242\pi\)
\(72\) 0 0
\(73\) 4.00000i 0.468165i 0.972217 + 0.234082i \(0.0752085\pi\)
−0.972217 + 0.234082i \(0.924791\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) −5.00000 + 8.66025i −0.562544 + 0.974355i 0.434730 + 0.900561i \(0.356844\pi\)
−0.997274 + 0.0737937i \(0.976489\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 7.79423 + 4.50000i 0.855528 + 0.493939i 0.862512 0.506036i \(-0.168890\pi\)
−0.00698436 + 0.999976i \(0.502223\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 9.00000 0.953998 0.476999 0.878904i \(-0.341725\pi\)
0.476999 + 0.878904i \(0.341725\pi\)
\(90\) 0 0
\(91\) 4.00000 0.419314
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 8.66025 + 5.00000i 0.879316 + 0.507673i 0.870433 0.492287i \(-0.163839\pi\)
0.00888289 + 0.999961i \(0.497172\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −9.00000 + 15.5885i −0.895533 + 1.55111i −0.0623905 + 0.998052i \(0.519872\pi\)
−0.833143 + 0.553058i \(0.813461\pi\)
\(102\) 0 0
\(103\) −6.92820 + 4.00000i −0.682656 + 0.394132i −0.800855 0.598858i \(-0.795621\pi\)
0.118199 + 0.992990i \(0.462288\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 9.00000i 0.870063i −0.900415 0.435031i \(-0.856737\pi\)
0.900415 0.435031i \(-0.143263\pi\)
\(108\) 0 0
\(109\) 19.0000 1.81987 0.909935 0.414751i \(-0.136131\pi\)
0.909935 + 0.414751i \(0.136131\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −10.3923 + 6.00000i −0.977626 + 0.564433i −0.901553 0.432670i \(-0.857572\pi\)
−0.0760733 + 0.997102i \(0.524238\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −3.00000 + 5.19615i −0.275010 + 0.476331i
\(120\) 0 0
\(121\) 5.50000 + 9.52628i 0.500000 + 0.866025i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 7.00000i 0.621150i −0.950549 0.310575i \(-0.899478\pi\)
0.950549 0.310575i \(-0.100522\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 3.00000 + 5.19615i 0.262111 + 0.453990i 0.966803 0.255524i \(-0.0822479\pi\)
−0.704692 + 0.709514i \(0.748915\pi\)
\(132\) 0 0
\(133\) −1.73205 1.00000i −0.150188 0.0867110i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 10.3923 + 6.00000i 0.887875 + 0.512615i 0.873247 0.487278i \(-0.162010\pi\)
0.0146279 + 0.999893i \(0.495344\pi\)
\(138\) 0 0
\(139\) 10.0000 + 17.3205i 0.848189 + 1.46911i 0.882823 + 0.469706i \(0.155640\pi\)
−0.0346338 + 0.999400i \(0.511026\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −4.50000 7.79423i −0.368654 0.638528i 0.620701 0.784047i \(-0.286848\pi\)
−0.989355 + 0.145519i \(0.953515\pi\)
\(150\) 0 0
\(151\) −4.00000 + 6.92820i −0.325515 + 0.563809i −0.981617 0.190864i \(-0.938871\pi\)
0.656101 + 0.754673i \(0.272204\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 1.73205 1.00000i 0.138233 0.0798087i −0.429289 0.903167i \(-0.641236\pi\)
0.567521 + 0.823359i \(0.307902\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −3.00000 −0.236433
\(162\) 0 0
\(163\) 4.00000i 0.313304i 0.987654 + 0.156652i \(0.0500701\pi\)
−0.987654 + 0.156652i \(0.949930\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 12.9904 7.50000i 1.00523 0.580367i 0.0954356 0.995436i \(-0.469576\pi\)
0.909790 + 0.415068i \(0.136242\pi\)
\(168\) 0 0
\(169\) 1.50000 2.59808i 0.115385 0.199852i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −24.0000 −1.79384 −0.896922 0.442189i \(-0.854202\pi\)
−0.896922 + 0.442189i \(0.854202\pi\)
\(180\) 0 0
\(181\) 5.00000 0.371647 0.185824 0.982583i \(-0.440505\pi\)
0.185824 + 0.982583i \(0.440505\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 3.00000 5.19615i 0.217072 0.375980i −0.736839 0.676068i \(-0.763683\pi\)
0.953912 + 0.300088i \(0.0970159\pi\)
\(192\) 0 0
\(193\) 3.46410 2.00000i 0.249351 0.143963i −0.370116 0.928986i \(-0.620682\pi\)
0.619467 + 0.785022i \(0.287349\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 12.0000i 0.854965i −0.904024 0.427482i \(-0.859401\pi\)
0.904024 0.427482i \(-0.140599\pi\)
\(198\) 0 0
\(199\) −2.00000 −0.141776 −0.0708881 0.997484i \(-0.522583\pi\)
−0.0708881 + 0.997484i \(0.522583\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −2.59808 + 1.50000i −0.182349 + 0.105279i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) 2.00000 + 3.46410i 0.137686 + 0.238479i 0.926620 0.375999i \(-0.122700\pi\)
−0.788935 + 0.614477i \(0.789367\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 10.0000i 0.678844i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 12.0000 + 20.7846i 0.807207 + 1.39812i
\(222\) 0 0
\(223\) 9.52628 + 5.50000i 0.637927 + 0.368307i 0.783815 0.620994i \(-0.213271\pi\)
−0.145889 + 0.989301i \(0.546604\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 10.3923 + 6.00000i 0.689761 + 0.398234i 0.803523 0.595274i \(-0.202957\pi\)
−0.113761 + 0.993508i \(0.536290\pi\)
\(228\) 0 0
\(229\) −0.500000 0.866025i −0.0330409 0.0572286i 0.849032 0.528341i \(-0.177186\pi\)
−0.882073 + 0.471113i \(0.843853\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 30.0000i 1.96537i −0.185296 0.982683i \(-0.559325\pi\)
0.185296 0.982683i \(-0.440675\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(240\) 0 0
\(241\) 3.50000 6.06218i 0.225455 0.390499i −0.731001 0.682376i \(-0.760947\pi\)
0.956456 + 0.291877i \(0.0942799\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −6.92820 + 4.00000i −0.440831 + 0.254514i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −18.0000 −1.13615 −0.568075 0.822977i \(-0.692312\pi\)
−0.568075 + 0.822977i \(0.692312\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −5.19615 + 3.00000i −0.324127 + 0.187135i −0.653231 0.757159i \(-0.726587\pi\)
0.329104 + 0.944294i \(0.393253\pi\)
\(258\) 0 0
\(259\) 5.00000 8.66025i 0.310685 0.538122i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 20.7846 + 12.0000i 1.28163 + 0.739952i 0.977147 0.212565i \(-0.0681817\pi\)
0.304487 + 0.952517i \(0.401515\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 9.00000 0.548740 0.274370 0.961624i \(-0.411531\pi\)
0.274370 + 0.961624i \(0.411531\pi\)
\(270\) 0 0
\(271\) 14.0000 0.850439 0.425220 0.905090i \(-0.360197\pi\)
0.425220 + 0.905090i \(0.360197\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) −1.73205 1.00000i −0.104069 0.0600842i 0.447062 0.894503i \(-0.352470\pi\)
−0.551131 + 0.834419i \(0.685804\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 16.5000 28.5788i 0.984307 1.70487i 0.339333 0.940666i \(-0.389799\pi\)
0.644974 0.764204i \(-0.276868\pi\)
\(282\) 0 0
\(283\) 0.866025 0.500000i 0.0514799 0.0297219i −0.474039 0.880504i \(-0.657204\pi\)
0.525519 + 0.850782i \(0.323871\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 9.00000i 0.531253i
\(288\) 0 0
\(289\) −19.0000 −1.11765
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −5.19615 + 3.00000i −0.303562 + 0.175262i −0.644042 0.764990i \(-0.722744\pi\)
0.340480 + 0.940252i \(0.389411\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −6.00000 + 10.3923i −0.346989 + 0.601003i
\(300\) 0 0
\(301\) −2.00000 3.46410i −0.115278 0.199667i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 29.0000i 1.65512i 0.561379 + 0.827559i \(0.310271\pi\)
−0.561379 + 0.827559i \(0.689729\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 9.00000 + 15.5885i 0.510343 + 0.883940i 0.999928 + 0.0119847i \(0.00381495\pi\)
−0.489585 + 0.871956i \(0.662852\pi\)
\(312\) 0 0
\(313\) −13.8564 8.00000i −0.783210 0.452187i 0.0543564 0.998522i \(-0.482689\pi\)
−0.837567 + 0.546335i \(0.816023\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −10.3923 6.00000i −0.583690 0.336994i 0.178908 0.983866i \(-0.442743\pi\)
−0.762598 + 0.646872i \(0.776077\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 12.0000i 0.667698i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 4.50000 + 7.79423i 0.248093 + 0.429710i
\(330\) 0 0
\(331\) −13.0000 + 22.5167i −0.714545 + 1.23763i 0.248590 + 0.968609i \(0.420033\pi\)
−0.963135 + 0.269019i \(0.913301\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 6.92820 4.00000i 0.377403 0.217894i −0.299285 0.954164i \(-0.596748\pi\)
0.676688 + 0.736270i \(0.263415\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 13.0000i 0.701934i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −20.7846 + 12.0000i −1.11578 + 0.644194i −0.940319 0.340293i \(-0.889474\pi\)
−0.175457 + 0.984487i \(0.556140\pi\)
\(348\) 0 0
\(349\) 11.5000 19.9186i 0.615581 1.06622i −0.374701 0.927146i \(-0.622255\pi\)
0.990282 0.139072i \(-0.0444119\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −10.3923 6.00000i −0.553127 0.319348i 0.197256 0.980352i \(-0.436797\pi\)
−0.750382 + 0.661004i \(0.770130\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −6.00000 −0.316668 −0.158334 0.987386i \(-0.550612\pi\)
−0.158334 + 0.987386i \(0.550612\pi\)
\(360\) 0 0
\(361\) −15.0000 −0.789474
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) −27.7128 16.0000i −1.44660 0.835193i −0.448320 0.893873i \(-0.647978\pi\)
−0.998277 + 0.0586798i \(0.981311\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 3.00000 5.19615i 0.155752 0.269771i
\(372\) 0 0
\(373\) −12.1244 + 7.00000i −0.627775 + 0.362446i −0.779890 0.625917i \(-0.784725\pi\)
0.152115 + 0.988363i \(0.451392\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 12.0000i 0.618031i
\(378\) 0 0
\(379\) −14.0000 −0.719132 −0.359566 0.933120i \(-0.617075\pi\)
−0.359566 + 0.933120i \(0.617075\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −20.7846 + 12.0000i −1.06204 + 0.613171i −0.925997 0.377531i \(-0.876773\pi\)
−0.136047 + 0.990702i \(0.543440\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 7.50000 12.9904i 0.380265 0.658638i −0.610835 0.791758i \(-0.709166\pi\)
0.991100 + 0.133120i \(0.0424994\pi\)
\(390\) 0 0
\(391\) −9.00000 15.5885i −0.455150 0.788342i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 22.0000i 1.10415i −0.833795 0.552074i \(-0.813837\pi\)
0.833795 0.552074i \(-0.186163\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −9.00000 15.5885i −0.449439 0.778450i 0.548911 0.835881i \(-0.315043\pi\)
−0.998350 + 0.0574304i \(0.981709\pi\)
\(402\) 0 0
\(403\) 34.6410 + 20.0000i 1.72559 + 0.996271i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) −5.00000 8.66025i −0.247234 0.428222i 0.715523 0.698589i \(-0.246188\pi\)
−0.962757 + 0.270367i \(0.912855\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 6.00000i 0.295241i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −6.00000 10.3923i −0.293119 0.507697i 0.681426 0.731887i \(-0.261360\pi\)
−0.974546 + 0.224189i \(0.928027\pi\)
\(420\) 0 0
\(421\) 11.0000 19.0526i 0.536107 0.928565i −0.463002 0.886357i \(-0.653228\pi\)
0.999109 0.0422075i \(-0.0134391\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 0.866025 0.500000i 0.0419099 0.0241967i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −6.00000 −0.289010 −0.144505 0.989504i \(-0.546159\pi\)
−0.144505 + 0.989504i \(0.546159\pi\)
\(432\) 0 0
\(433\) 26.0000i 1.24948i −0.780833 0.624740i \(-0.785205\pi\)
0.780833 0.624740i \(-0.214795\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 5.19615 3.00000i 0.248566 0.143509i
\(438\) 0 0
\(439\) −14.0000 + 24.2487i −0.668184 + 1.15733i 0.310228 + 0.950662i \(0.399595\pi\)
−0.978412 + 0.206666i \(0.933739\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 23.3827 + 13.5000i 1.11094 + 0.641404i 0.939074 0.343715i \(-0.111685\pi\)
0.171871 + 0.985119i \(0.445019\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 30.0000 1.41579 0.707894 0.706319i \(-0.249646\pi\)
0.707894 + 0.706319i \(0.249646\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 8.66025 + 5.00000i 0.405110 + 0.233890i 0.688686 0.725059i \(-0.258188\pi\)
−0.283577 + 0.958950i \(0.591521\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 16.5000 28.5788i 0.768482 1.33105i −0.169904 0.985461i \(-0.554346\pi\)
0.938386 0.345589i \(-0.112321\pi\)
\(462\) 0 0
\(463\) 3.46410 2.00000i 0.160990 0.0929479i −0.417340 0.908750i \(-0.637038\pi\)
0.578331 + 0.815802i \(0.303704\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 36.0000i 1.66588i −0.553362 0.832941i \(-0.686655\pi\)
0.553362 0.832941i \(-0.313345\pi\)
\(468\) 0 0
\(469\) 11.0000 0.507933
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 15.0000 25.9808i 0.685367 1.18709i −0.287954 0.957644i \(-0.592975\pi\)
0.973321 0.229447i \(-0.0736918\pi\)
\(480\) 0 0
\(481\) −20.0000 34.6410i −0.911922 1.57949i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 16.0000i 0.725029i −0.931978 0.362515i \(-0.881918\pi\)
0.931978 0.362515i \(-0.118082\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −12.0000 20.7846i −0.541552 0.937996i −0.998815 0.0486647i \(-0.984503\pi\)
0.457263 0.889332i \(-0.348830\pi\)
\(492\) 0 0
\(493\) −15.5885 9.00000i −0.702069 0.405340i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −10.3923 6.00000i −0.466159 0.269137i
\(498\) 0 0
\(499\) −2.00000 3.46410i −0.0895323 0.155074i 0.817781 0.575529i \(-0.195204\pi\)
−0.907314 + 0.420455i \(0.861871\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 3.00000i 0.133763i 0.997761 + 0.0668817i \(0.0213050\pi\)
−0.997761 + 0.0668817i \(0.978695\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 4.50000 + 7.79423i 0.199459 + 0.345473i 0.948353 0.317217i \(-0.102748\pi\)
−0.748894 + 0.662690i \(0.769415\pi\)
\(510\) 0 0
\(511\) −2.00000 + 3.46410i −0.0884748 + 0.153243i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −27.0000 −1.18289 −0.591446 0.806345i \(-0.701443\pi\)
−0.591446 + 0.806345i \(0.701443\pi\)
\(522\) 0 0
\(523\) 7.00000i 0.306089i 0.988219 + 0.153044i \(0.0489077\pi\)
−0.988219 + 0.153044i \(0.951092\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −51.9615 + 30.0000i −2.26348 + 1.30682i
\(528\) 0 0
\(529\) −7.00000 + 12.1244i −0.304348 + 0.527146i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 31.1769 + 18.0000i 1.35042 + 0.779667i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) −7.00000 −0.300954 −0.150477 0.988614i \(-0.548081\pi\)
−0.150477 + 0.988614i \(0.548081\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 6.06218 + 3.50000i 0.259200 + 0.149649i 0.623970 0.781449i \(-0.285519\pi\)
−0.364770 + 0.931098i \(0.618852\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 3.00000 5.19615i 0.127804 0.221364i
\(552\) 0 0
\(553\) −8.66025 + 5.00000i −0.368271 + 0.212622i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 6.00000i 0.254228i 0.991888 + 0.127114i \(0.0405714\pi\)
−0.991888 + 0.127114i \(0.959429\pi\)
\(558\) 0 0
\(559\) −16.0000 −0.676728
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −33.7750 + 19.5000i −1.42345 + 0.821827i −0.996592 0.0824933i \(-0.973712\pi\)
−0.426855 + 0.904320i \(0.640378\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −3.00000 + 5.19615i −0.125767 + 0.217834i −0.922032 0.387113i \(-0.873472\pi\)
0.796266 + 0.604947i \(0.206806\pi\)
\(570\) 0 0
\(571\) −16.0000 27.7128i −0.669579 1.15975i −0.978022 0.208502i \(-0.933141\pi\)
0.308443 0.951243i \(-0.400192\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 38.0000i 1.58196i 0.611842 + 0.790980i \(0.290429\pi\)
−0.611842 + 0.790980i \(0.709571\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 4.50000 + 7.79423i 0.186691 + 0.323359i
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −23.3827 13.5000i −0.965107 0.557205i −0.0673658 0.997728i \(-0.521459\pi\)
−0.897741 + 0.440524i \(0.854793\pi\)
\(588\) 0 0
\(589\) −10.0000 17.3205i −0.412043 0.713679i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 6.00000i 0.246390i −0.992382 0.123195i \(-0.960686\pi\)
0.992382 0.123195i \(-0.0393141\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −3.00000 5.19615i −0.122577 0.212309i 0.798206 0.602384i \(-0.205782\pi\)
−0.920783 + 0.390075i \(0.872449\pi\)
\(600\) 0 0
\(601\) 11.0000 19.0526i 0.448699 0.777170i −0.549602 0.835426i \(-0.685221\pi\)
0.998302 + 0.0582563i \(0.0185541\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) −6.06218 + 3.50000i −0.246056 + 0.142061i −0.617957 0.786212i \(-0.712039\pi\)
0.371901 + 0.928272i \(0.378706\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 36.0000 1.45640
\(612\) 0 0
\(613\) 22.0000i 0.888572i 0.895885 + 0.444286i \(0.146543\pi\)
−0.895885 + 0.444286i \(0.853457\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 10.3923 6.00000i 0.418378 0.241551i −0.276005 0.961156i \(-0.589011\pi\)
0.694383 + 0.719605i \(0.255677\pi\)
\(618\) 0 0
\(619\) 13.0000 22.5167i 0.522514 0.905021i −0.477143 0.878826i \(-0.658328\pi\)
0.999657 0.0261952i \(-0.00833914\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 7.79423 + 4.50000i 0.312269 + 0.180289i
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 60.0000 2.39236
\(630\) 0 0
\(631\) −40.0000 −1.59237 −0.796187 0.605050i \(-0.793153\pi\)
−0.796187 + 0.605050i \(0.793153\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) −20.7846 12.0000i −0.823516 0.475457i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 10.5000 18.1865i 0.414725 0.718325i −0.580674 0.814136i \(-0.697211\pi\)
0.995400 + 0.0958109i \(0.0305444\pi\)
\(642\) 0 0
\(643\) 26.8468 15.5000i 1.05873 0.611260i 0.133652 0.991028i \(-0.457330\pi\)
0.925082 + 0.379768i \(0.123996\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 9.00000i 0.353827i −0.984226 0.176913i \(-0.943389\pi\)
0.984226 0.176913i \(-0.0566112\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 5.19615 3.00000i 0.203341 0.117399i −0.394872 0.918736i \(-0.629211\pi\)
0.598213 + 0.801337i \(0.295878\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −18.0000 + 31.1769i −0.701180 + 1.21448i 0.266872 + 0.963732i \(0.414010\pi\)
−0.968052 + 0.250748i \(0.919323\pi\)
\(660\) 0 0
\(661\) 5.00000 + 8.66025i 0.194477 + 0.336845i 0.946729 0.322031i \(-0.104366\pi\)
−0.752252 + 0.658876i \(0.771032\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 9.00000i 0.348481i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) −24.2487 14.0000i −0.934719 0.539660i −0.0464181 0.998922i \(-0.514781\pi\)
−0.888301 + 0.459262i \(0.848114\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(678\) 0 0
\(679\) 5.00000 + 8.66025i 0.191882 + 0.332350i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 12.0000i 0.459167i −0.973289 0.229584i \(-0.926264\pi\)
0.973289 0.229584i \(-0.0737364\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −12.0000 20.7846i −0.457164 0.791831i
\(690\) 0 0
\(691\) 5.00000 8.66025i 0.190209 0.329452i −0.755110 0.655598i \(-0.772417\pi\)
0.945319 + 0.326146i \(0.105750\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) −46.7654 + 27.0000i −1.77136 + 1.02270i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 21.0000 0.793159 0.396580 0.918000i \(-0.370197\pi\)
0.396580 + 0.918000i \(0.370197\pi\)
\(702\) 0 0
\(703\) 20.0000i 0.754314i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −15.5885 + 9.00000i −0.586264 + 0.338480i
\(708\) 0 0
\(709\) 17.5000 30.3109i 0.657226 1.13835i −0.324104 0.946021i \(-0.605063\pi\)
0.981331 0.192328i \(-0.0616038\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −25.9808 15.0000i −0.972987 0.561754i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −42.0000 −1.56634 −0.783168 0.621810i \(-0.786397\pi\)
−0.783168 + 0.621810i \(0.786397\pi\)
\(720\) 0 0
\(721\) −8.00000 −0.297936
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 16.4545 + 9.50000i 0.610263 + 0.352335i 0.773068 0.634323i \(-0.218721\pi\)
−0.162805 + 0.986658i \(0.552054\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 12.0000 20.7846i 0.443836 0.768747i
\(732\) 0 0
\(733\) −12.1244 + 7.00000i −0.447823 + 0.258551i −0.706910 0.707303i \(-0.749912\pi\)
0.259087 + 0.965854i \(0.416578\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) −2.00000 −0.0735712 −0.0367856 0.999323i \(-0.511712\pi\)
−0.0367856 + 0.999323i \(0.511712\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 28.5788 16.5000i 1.04846 0.605326i 0.126239 0.992000i \(-0.459709\pi\)
0.922217 + 0.386674i \(0.126376\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 4.50000 7.79423i 0.164426 0.284795i
\(750\) 0 0
\(751\) 8.00000 + 13.8564i 0.291924 + 0.505627i 0.974265 0.225407i \(-0.0723712\pi\)
−0.682341 + 0.731034i \(0.739038\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 20.0000i 0.726912i 0.931611 + 0.363456i \(0.118403\pi\)
−0.931611 + 0.363456i \(0.881597\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −22.5000 38.9711i −0.815624 1.41270i −0.908879 0.417061i \(-0.863060\pi\)
0.0932544 0.995642i \(-0.470273\pi\)
\(762\) 0 0
\(763\) 16.4545 + 9.50000i 0.595692 + 0.343923i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 20.7846 + 12.0000i 0.750489 + 0.433295i
\(768\) 0 0
\(769\) −15.5000 26.8468i −0.558944 0.968120i −0.997585 0.0694574i \(-0.977873\pi\)
0.438641 0.898663i \(-0.355460\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 36.0000i 1.29483i −0.762138 0.647415i \(-0.775850\pi\)
0.762138 0.647415i \(-0.224150\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −9.00000 15.5885i −0.322458 0.558514i
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) −34.6410 + 20.0000i −1.23482 + 0.712923i −0.968031 0.250832i \(-0.919296\pi\)
−0.266788 + 0.963755i \(0.585962\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −12.0000 −0.426671
\(792\) 0 0
\(793\) 4.00000i 0.142044i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 20.7846 12.0000i 0.736229 0.425062i −0.0844678 0.996426i \(-0.526919\pi\)
0.820696 + 0.571364i \(0.193586\pi\)
\(798\) 0 0
\(799\) −27.0000 + 46.7654i −0.955191 + 1.65444i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −54.0000 −1.89854 −0.949269 0.314464i \(-0.898175\pi\)
−0.949269 + 0.314464i \(0.898175\pi\)
\(810\) 0 0
\(811\) −22.0000 −0.772524 −0.386262 0.922389i \(-0.626234\pi\)
−0.386262 + 0.922389i \(0.626234\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 6.92820 + 4.00000i 0.242387 + 0.139942i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 1.50000 2.59808i 0.0523504 0.0906735i −0.838663 0.544651i \(-0.816662\pi\)
0.891013 + 0.453978i \(0.149995\pi\)
\(822\) 0 0
\(823\) 42.4352 24.5000i 1.47920 0.854016i 0.479477 0.877555i \(-0.340826\pi\)
0.999723 + 0.0235383i \(0.00749316\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 27.0000i 0.938882i −0.882964 0.469441i \(-0.844455\pi\)
0.882964 0.469441i \(-0.155545\pi\)
\(828\) 0 0
\(829\) 7.00000 0.243120 0.121560 0.992584i \(-0.461210\pi\)
0.121560 + 0.992584i \(0.461210\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 31.1769 18.0000i 1.08022 0.623663i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 15.0000 25.9808i 0.517858 0.896956i −0.481927 0.876211i \(-0.660063\pi\)
0.999785 0.0207443i \(-0.00660359\pi\)
\(840\) 0 0
\(841\) 10.0000 + 17.3205i 0.344828 + 0.597259i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 11.0000i 0.377964i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 15.0000 + 25.9808i 0.514193 + 0.890609i
\(852\) 0 0
\(853\) −3.46410 2.00000i −0.118609 0.0684787i 0.439522 0.898232i \(-0.355148\pi\)
−0.558131 + 0.829753i \(0.688481\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −41.5692 24.0000i −1.41998 0.819824i −0.423681 0.905811i \(-0.639262\pi\)
−0.996296 + 0.0859870i \(0.972596\pi\)
\(858\) 0 0
\(859\) 10.0000 + 17.3205i 0.341196 + 0.590968i 0.984655 0.174512i \(-0.0558348\pi\)
−0.643459 + 0.765480i \(0.722501\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 15.0000i 0.510606i 0.966861 + 0.255303i \(0.0821752\pi\)
−0.966861 + 0.255303i \(0.917825\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 22.0000 38.1051i 0.745442 1.29114i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −3.46410 + 2.00000i −0.116974 + 0.0675352i −0.557346 0.830281i \(-0.688180\pi\)
0.440371 + 0.897816i \(0.354847\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 15.0000 0.505363 0.252681 0.967550i \(-0.418688\pi\)
0.252681 + 0.967550i \(0.418688\pi\)
\(882\) 0 0
\(883\) 29.0000i 0.975928i −0.872864 0.487964i \(-0.837740\pi\)
0.872864 0.487964i \(-0.162260\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 41.5692 24.0000i 1.39576 0.805841i 0.401813 0.915722i \(-0.368380\pi\)
0.993945 + 0.109881i \(0.0350469\pi\)
\(888\) 0 0
\(889\) 3.50000 6.06218i 0.117386 0.203319i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −15.5885 9.00000i −0.521648 0.301174i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −30.0000 −1.00056
\(900\) 0 0
\(901\) 36.0000 1.19933
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 0.866025 + 0.500000i 0.0287559 + 0.0166022i 0.514309 0.857605i \(-0.328048\pi\)
−0.485553 + 0.874207i \(0.661382\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −3.00000 + 5.19615i −0.0993944 + 0.172156i −0.911434 0.411446i \(-0.865024\pi\)
0.812040 + 0.583602i \(0.198357\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 6.00000i 0.198137i
\(918\) 0 0
\(919\) 34.0000 1.12156 0.560778 0.827966i \(-0.310502\pi\)
0.560778 + 0.827966i \(0.310502\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −41.5692 + 24.0000i −1.36827 + 0.789970i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −3.00000 + 5.19615i −0.0984268 + 0.170480i −0.911034 0.412332i \(-0.864714\pi\)
0.812607 + 0.582812i \(0.198048\pi\)
\(930\) 0 0
\(931\) 6.00000 + 10.3923i 0.196642 + 0.340594i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 16.0000i 0.522697i −0.965244 0.261349i \(-0.915833\pi\)
0.965244 0.261349i \(-0.0841672\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 22.5000 + 38.9711i 0.733479 + 1.27042i 0.955387 + 0.295355i \(0.0954381\pi\)
−0.221908 + 0.975068i \(0.571229\pi\)
\(942\) 0 0
\(943\) −23.3827 13.5000i −0.761445 0.439620i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 12.9904 + 7.50000i 0.422131 + 0.243717i 0.695988 0.718053i \(-0.254966\pi\)
−0.273858 + 0.961770i \(0.588300\pi\)
\(948\) 0 0
\(949\) 8.00000 + 13.8564i 0.259691 + 0.449798i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 24.0000i 0.777436i 0.921357 + 0.388718i \(0.127082\pi\)
−0.921357 + 0.388718i \(0.872918\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 6.00000 + 10.3923i 0.193750 + 0.335585i
\(960\) 0 0
\(961\) −34.5000 + 59.7558i −1.11290 + 1.92760i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) −0.866025 + 0.500000i −0.0278495 + 0.0160789i −0.513860 0.857874i \(-0.671785\pi\)
0.486011 + 0.873953i \(0.338452\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −42.0000 −1.34784 −0.673922 0.738802i \(-0.735392\pi\)
−0.673922 + 0.738802i \(0.735392\pi\)
\(972\) 0 0
\(973\) 20.0000i 0.641171i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −20.7846 + 12.0000i −0.664959 + 0.383914i −0.794164 0.607704i \(-0.792091\pi\)
0.129205 + 0.991618i \(0.458757\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −7.79423 4.50000i −0.248597 0.143528i 0.370525 0.928823i \(-0.379178\pi\)
−0.619122 + 0.785295i \(0.712511\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 12.0000 0.381578
\(990\) 0 0
\(991\) 2.00000 0.0635321 0.0317660 0.999495i \(-0.489887\pi\)
0.0317660 + 0.999495i \(0.489887\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 8.66025 + 5.00000i 0.274273 + 0.158352i 0.630828 0.775923i \(-0.282715\pi\)
−0.356555 + 0.934274i \(0.616049\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2700.2.s.a.2449.2 4
3.2 odd 2 900.2.s.a.349.1 4
5.2 odd 4 2700.2.i.a.1801.1 2
5.3 odd 4 540.2.i.a.181.1 2
5.4 even 2 inner 2700.2.s.a.2449.1 4
9.2 odd 6 8100.2.d.e.649.1 2
9.4 even 3 inner 2700.2.s.a.1549.1 4
9.5 odd 6 900.2.s.a.49.2 4
9.7 even 3 8100.2.d.f.649.1 2
15.2 even 4 900.2.i.a.601.1 2
15.8 even 4 180.2.i.a.61.1 2
15.14 odd 2 900.2.s.a.349.2 4
20.3 even 4 2160.2.q.e.721.1 2
45.2 even 12 8100.2.a.i.1.1 1
45.4 even 6 inner 2700.2.s.a.1549.2 4
45.7 odd 12 8100.2.a.h.1.1 1
45.13 odd 12 540.2.i.a.361.1 2
45.14 odd 6 900.2.s.a.49.1 4
45.22 odd 12 2700.2.i.a.901.1 2
45.23 even 12 180.2.i.a.121.1 yes 2
45.29 odd 6 8100.2.d.e.649.2 2
45.32 even 12 900.2.i.a.301.1 2
45.34 even 6 8100.2.d.f.649.2 2
45.38 even 12 1620.2.a.e.1.1 1
45.43 odd 12 1620.2.a.b.1.1 1
60.23 odd 4 720.2.q.a.241.1 2
180.23 odd 12 720.2.q.a.481.1 2
180.43 even 12 6480.2.a.h.1.1 1
180.83 odd 12 6480.2.a.t.1.1 1
180.103 even 12 2160.2.q.e.1441.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
180.2.i.a.61.1 2 15.8 even 4
180.2.i.a.121.1 yes 2 45.23 even 12
540.2.i.a.181.1 2 5.3 odd 4
540.2.i.a.361.1 2 45.13 odd 12
720.2.q.a.241.1 2 60.23 odd 4
720.2.q.a.481.1 2 180.23 odd 12
900.2.i.a.301.1 2 45.32 even 12
900.2.i.a.601.1 2 15.2 even 4
900.2.s.a.49.1 4 45.14 odd 6
900.2.s.a.49.2 4 9.5 odd 6
900.2.s.a.349.1 4 3.2 odd 2
900.2.s.a.349.2 4 15.14 odd 2
1620.2.a.b.1.1 1 45.43 odd 12
1620.2.a.e.1.1 1 45.38 even 12
2160.2.q.e.721.1 2 20.3 even 4
2160.2.q.e.1441.1 2 180.103 even 12
2700.2.i.a.901.1 2 45.22 odd 12
2700.2.i.a.1801.1 2 5.2 odd 4
2700.2.s.a.1549.1 4 9.4 even 3 inner
2700.2.s.a.1549.2 4 45.4 even 6 inner
2700.2.s.a.2449.1 4 5.4 even 2 inner
2700.2.s.a.2449.2 4 1.1 even 1 trivial
6480.2.a.h.1.1 1 180.43 even 12
6480.2.a.t.1.1 1 180.83 odd 12
8100.2.a.h.1.1 1 45.7 odd 12
8100.2.a.i.1.1 1 45.2 even 12
8100.2.d.e.649.1 2 9.2 odd 6
8100.2.d.e.649.2 2 45.29 odd 6
8100.2.d.f.649.1 2 9.7 even 3
8100.2.d.f.649.2 2 45.34 even 6