Properties

Label 900.2.s.a.49.2
Level $900$
Weight $2$
Character 900.49
Analytic conductor $7.187$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [900,2,Mod(49,900)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(900, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 2, 3]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("900.49");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 900 = 2^{2} \cdot 3^{2} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 900.s (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.18653618192\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\zeta_{12})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 180)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 49.2
Root \(-0.866025 + 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 900.49
Dual form 900.2.s.a.349.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.866025 - 1.50000i) q^{3} +(-0.866025 + 0.500000i) q^{7} +(-1.50000 - 2.59808i) q^{9} +(-3.46410 - 2.00000i) q^{13} -6.00000i q^{17} -2.00000 q^{19} +1.73205i q^{21} +(-2.59808 - 1.50000i) q^{23} -5.19615 q^{27} +(1.50000 + 2.59808i) q^{29} +(5.00000 - 8.66025i) q^{31} -10.0000i q^{37} +(-6.00000 + 3.46410i) q^{39} +(-4.50000 + 7.79423i) q^{41} +(3.46410 - 2.00000i) q^{43} +(7.79423 - 4.50000i) q^{47} +(-3.00000 + 5.19615i) q^{49} +(-9.00000 - 5.19615i) q^{51} +6.00000i q^{53} +(-1.73205 + 3.00000i) q^{57} +(-3.00000 + 5.19615i) q^{59} +(0.500000 + 0.866025i) q^{61} +(2.59808 + 1.50000i) q^{63} +(-9.52628 - 5.50000i) q^{67} +(-4.50000 + 2.59808i) q^{69} +12.0000 q^{71} +4.00000i q^{73} +(-5.00000 - 8.66025i) q^{79} +(-4.50000 + 7.79423i) q^{81} +(7.79423 - 4.50000i) q^{83} +5.19615 q^{87} -9.00000 q^{89} +4.00000 q^{91} +(-8.66025 - 15.0000i) q^{93} +(-8.66025 + 5.00000i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 6 q^{9} - 8 q^{19} + 6 q^{29} + 20 q^{31} - 24 q^{39} - 18 q^{41} - 12 q^{49} - 36 q^{51} - 12 q^{59} + 2 q^{61} - 18 q^{69} + 48 q^{71} - 20 q^{79} - 18 q^{81} - 36 q^{89} + 16 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/900\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(451\) \(577\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.866025 1.50000i 0.500000 0.866025i
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) −0.866025 + 0.500000i −0.327327 + 0.188982i −0.654654 0.755929i \(-0.727186\pi\)
0.327327 + 0.944911i \(0.393852\pi\)
\(8\) 0 0
\(9\) −1.50000 2.59808i −0.500000 0.866025i
\(10\) 0 0
\(11\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(12\) 0 0
\(13\) −3.46410 2.00000i −0.960769 0.554700i −0.0643593 0.997927i \(-0.520500\pi\)
−0.896410 + 0.443227i \(0.853834\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 6.00000i 1.45521i −0.685994 0.727607i \(-0.740633\pi\)
0.685994 0.727607i \(-0.259367\pi\)
\(18\) 0 0
\(19\) −2.00000 −0.458831 −0.229416 0.973329i \(-0.573682\pi\)
−0.229416 + 0.973329i \(0.573682\pi\)
\(20\) 0 0
\(21\) 1.73205i 0.377964i
\(22\) 0 0
\(23\) −2.59808 1.50000i −0.541736 0.312772i 0.204046 0.978961i \(-0.434591\pi\)
−0.745782 + 0.666190i \(0.767924\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) −5.19615 −1.00000
\(28\) 0 0
\(29\) 1.50000 + 2.59808i 0.278543 + 0.482451i 0.971023 0.238987i \(-0.0768152\pi\)
−0.692480 + 0.721437i \(0.743482\pi\)
\(30\) 0 0
\(31\) 5.00000 8.66025i 0.898027 1.55543i 0.0680129 0.997684i \(-0.478334\pi\)
0.830014 0.557743i \(-0.188333\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 10.0000i 1.64399i −0.569495 0.821995i \(-0.692861\pi\)
0.569495 0.821995i \(-0.307139\pi\)
\(38\) 0 0
\(39\) −6.00000 + 3.46410i −0.960769 + 0.554700i
\(40\) 0 0
\(41\) −4.50000 + 7.79423i −0.702782 + 1.21725i 0.264704 + 0.964330i \(0.414726\pi\)
−0.967486 + 0.252924i \(0.918608\pi\)
\(42\) 0 0
\(43\) 3.46410 2.00000i 0.528271 0.304997i −0.212041 0.977261i \(-0.568011\pi\)
0.740312 + 0.672264i \(0.234678\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 7.79423 4.50000i 1.13691 0.656392i 0.191243 0.981543i \(-0.438748\pi\)
0.945662 + 0.325150i \(0.105415\pi\)
\(48\) 0 0
\(49\) −3.00000 + 5.19615i −0.428571 + 0.742307i
\(50\) 0 0
\(51\) −9.00000 5.19615i −1.26025 0.727607i
\(52\) 0 0
\(53\) 6.00000i 0.824163i 0.911147 + 0.412082i \(0.135198\pi\)
−0.911147 + 0.412082i \(0.864802\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) −1.73205 + 3.00000i −0.229416 + 0.397360i
\(58\) 0 0
\(59\) −3.00000 + 5.19615i −0.390567 + 0.676481i −0.992524 0.122047i \(-0.961054\pi\)
0.601958 + 0.798528i \(0.294388\pi\)
\(60\) 0 0
\(61\) 0.500000 + 0.866025i 0.0640184 + 0.110883i 0.896258 0.443533i \(-0.146275\pi\)
−0.832240 + 0.554416i \(0.812942\pi\)
\(62\) 0 0
\(63\) 2.59808 + 1.50000i 0.327327 + 0.188982i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) −9.52628 5.50000i −1.16382 0.671932i −0.211604 0.977356i \(-0.567869\pi\)
−0.952217 + 0.305424i \(0.901202\pi\)
\(68\) 0 0
\(69\) −4.50000 + 2.59808i −0.541736 + 0.312772i
\(70\) 0 0
\(71\) 12.0000 1.42414 0.712069 0.702109i \(-0.247758\pi\)
0.712069 + 0.702109i \(0.247758\pi\)
\(72\) 0 0
\(73\) 4.00000i 0.468165i 0.972217 + 0.234082i \(0.0752085\pi\)
−0.972217 + 0.234082i \(0.924791\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) −5.00000 8.66025i −0.562544 0.974355i −0.997274 0.0737937i \(-0.976489\pi\)
0.434730 0.900561i \(-0.356844\pi\)
\(80\) 0 0
\(81\) −4.50000 + 7.79423i −0.500000 + 0.866025i
\(82\) 0 0
\(83\) 7.79423 4.50000i 0.855528 0.493939i −0.00698436 0.999976i \(-0.502223\pi\)
0.862512 + 0.506036i \(0.168890\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 5.19615 0.557086
\(88\) 0 0
\(89\) −9.00000 −0.953998 −0.476999 0.878904i \(-0.658275\pi\)
−0.476999 + 0.878904i \(0.658275\pi\)
\(90\) 0 0
\(91\) 4.00000 0.419314
\(92\) 0 0
\(93\) −8.66025 15.0000i −0.898027 1.55543i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −8.66025 + 5.00000i −0.879316 + 0.507673i −0.870433 0.492287i \(-0.836161\pi\)
−0.00888289 + 0.999961i \(0.502828\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 9.00000 + 15.5885i 0.895533 + 1.55111i 0.833143 + 0.553058i \(0.186539\pi\)
0.0623905 + 0.998052i \(0.480128\pi\)
\(102\) 0 0
\(103\) 6.92820 + 4.00000i 0.682656 + 0.394132i 0.800855 0.598858i \(-0.204379\pi\)
−0.118199 + 0.992990i \(0.537712\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 9.00000i 0.870063i 0.900415 + 0.435031i \(0.143263\pi\)
−0.900415 + 0.435031i \(0.856737\pi\)
\(108\) 0 0
\(109\) 19.0000 1.81987 0.909935 0.414751i \(-0.136131\pi\)
0.909935 + 0.414751i \(0.136131\pi\)
\(110\) 0 0
\(111\) −15.0000 8.66025i −1.42374 0.821995i
\(112\) 0 0
\(113\) −10.3923 6.00000i −0.977626 0.564433i −0.0760733 0.997102i \(-0.524238\pi\)
−0.901553 + 0.432670i \(0.857572\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 12.0000i 1.10940i
\(118\) 0 0
\(119\) 3.00000 + 5.19615i 0.275010 + 0.476331i
\(120\) 0 0
\(121\) 5.50000 9.52628i 0.500000 0.866025i
\(122\) 0 0
\(123\) 7.79423 + 13.5000i 0.702782 + 1.21725i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 7.00000i 0.621150i −0.950549 0.310575i \(-0.899478\pi\)
0.950549 0.310575i \(-0.100522\pi\)
\(128\) 0 0
\(129\) 6.92820i 0.609994i
\(130\) 0 0
\(131\) −3.00000 + 5.19615i −0.262111 + 0.453990i −0.966803 0.255524i \(-0.917752\pi\)
0.704692 + 0.709514i \(0.251085\pi\)
\(132\) 0 0
\(133\) 1.73205 1.00000i 0.150188 0.0867110i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 10.3923 6.00000i 0.887875 0.512615i 0.0146279 0.999893i \(-0.495344\pi\)
0.873247 + 0.487278i \(0.162010\pi\)
\(138\) 0 0
\(139\) 10.0000 17.3205i 0.848189 1.46911i −0.0346338 0.999400i \(-0.511026\pi\)
0.882823 0.469706i \(-0.155640\pi\)
\(140\) 0 0
\(141\) 15.5885i 1.31278i
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 5.19615 + 9.00000i 0.428571 + 0.742307i
\(148\) 0 0
\(149\) 4.50000 7.79423i 0.368654 0.638528i −0.620701 0.784047i \(-0.713152\pi\)
0.989355 + 0.145519i \(0.0464853\pi\)
\(150\) 0 0
\(151\) −4.00000 6.92820i −0.325515 0.563809i 0.656101 0.754673i \(-0.272204\pi\)
−0.981617 + 0.190864i \(0.938871\pi\)
\(152\) 0 0
\(153\) −15.5885 + 9.00000i −1.26025 + 0.727607i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) −1.73205 1.00000i −0.138233 0.0798087i 0.429289 0.903167i \(-0.358764\pi\)
−0.567521 + 0.823359i \(0.692098\pi\)
\(158\) 0 0
\(159\) 9.00000 + 5.19615i 0.713746 + 0.412082i
\(160\) 0 0
\(161\) 3.00000 0.236433
\(162\) 0 0
\(163\) 4.00000i 0.313304i 0.987654 + 0.156652i \(0.0500701\pi\)
−0.987654 + 0.156652i \(0.949930\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 12.9904 + 7.50000i 1.00523 + 0.580367i 0.909790 0.415068i \(-0.136242\pi\)
0.0954356 + 0.995436i \(0.469576\pi\)
\(168\) 0 0
\(169\) 1.50000 + 2.59808i 0.115385 + 0.199852i
\(170\) 0 0
\(171\) 3.00000 + 5.19615i 0.229416 + 0.397360i
\(172\) 0 0
\(173\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 5.19615 + 9.00000i 0.390567 + 0.676481i
\(178\) 0 0
\(179\) 24.0000 1.79384 0.896922 0.442189i \(-0.145798\pi\)
0.896922 + 0.442189i \(0.145798\pi\)
\(180\) 0 0
\(181\) 5.00000 0.371647 0.185824 0.982583i \(-0.440505\pi\)
0.185824 + 0.982583i \(0.440505\pi\)
\(182\) 0 0
\(183\) 1.73205 0.128037
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 4.50000 2.59808i 0.327327 0.188982i
\(190\) 0 0
\(191\) −3.00000 5.19615i −0.217072 0.375980i 0.736839 0.676068i \(-0.236317\pi\)
−0.953912 + 0.300088i \(0.902984\pi\)
\(192\) 0 0
\(193\) −3.46410 2.00000i −0.249351 0.143963i 0.370116 0.928986i \(-0.379318\pi\)
−0.619467 + 0.785022i \(0.712651\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 12.0000i 0.854965i 0.904024 + 0.427482i \(0.140599\pi\)
−0.904024 + 0.427482i \(0.859401\pi\)
\(198\) 0 0
\(199\) −2.00000 −0.141776 −0.0708881 0.997484i \(-0.522583\pi\)
−0.0708881 + 0.997484i \(0.522583\pi\)
\(200\) 0 0
\(201\) −16.5000 + 9.52628i −1.16382 + 0.671932i
\(202\) 0 0
\(203\) −2.59808 1.50000i −0.182349 0.105279i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 9.00000i 0.625543i
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) 2.00000 3.46410i 0.137686 0.238479i −0.788935 0.614477i \(-0.789367\pi\)
0.926620 + 0.375999i \(0.122700\pi\)
\(212\) 0 0
\(213\) 10.3923 18.0000i 0.712069 1.23334i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 10.0000i 0.678844i
\(218\) 0 0
\(219\) 6.00000 + 3.46410i 0.405442 + 0.234082i
\(220\) 0 0
\(221\) −12.0000 + 20.7846i −0.807207 + 1.39812i
\(222\) 0 0
\(223\) −9.52628 + 5.50000i −0.637927 + 0.368307i −0.783815 0.620994i \(-0.786729\pi\)
0.145889 + 0.989301i \(0.453396\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 10.3923 6.00000i 0.689761 0.398234i −0.113761 0.993508i \(-0.536290\pi\)
0.803523 + 0.595274i \(0.202957\pi\)
\(228\) 0 0
\(229\) −0.500000 + 0.866025i −0.0330409 + 0.0572286i −0.882073 0.471113i \(-0.843853\pi\)
0.849032 + 0.528341i \(0.177186\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 30.0000i 1.96537i 0.185296 + 0.982683i \(0.440675\pi\)
−0.185296 + 0.982683i \(0.559325\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) −17.3205 −1.12509
\(238\) 0 0
\(239\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(240\) 0 0
\(241\) 3.50000 + 6.06218i 0.225455 + 0.390499i 0.956456 0.291877i \(-0.0942799\pi\)
−0.731001 + 0.682376i \(0.760947\pi\)
\(242\) 0 0
\(243\) 7.79423 + 13.5000i 0.500000 + 0.866025i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 6.92820 + 4.00000i 0.440831 + 0.254514i
\(248\) 0 0
\(249\) 15.5885i 0.987878i
\(250\) 0 0
\(251\) 18.0000 1.13615 0.568075 0.822977i \(-0.307688\pi\)
0.568075 + 0.822977i \(0.307688\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −5.19615 3.00000i −0.324127 0.187135i 0.329104 0.944294i \(-0.393253\pi\)
−0.653231 + 0.757159i \(0.726587\pi\)
\(258\) 0 0
\(259\) 5.00000 + 8.66025i 0.310685 + 0.538122i
\(260\) 0 0
\(261\) 4.50000 7.79423i 0.278543 0.482451i
\(262\) 0 0
\(263\) 20.7846 12.0000i 1.28163 0.739952i 0.304487 0.952517i \(-0.401515\pi\)
0.977147 + 0.212565i \(0.0681817\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) −7.79423 + 13.5000i −0.476999 + 0.826187i
\(268\) 0 0
\(269\) −9.00000 −0.548740 −0.274370 0.961624i \(-0.588469\pi\)
−0.274370 + 0.961624i \(0.588469\pi\)
\(270\) 0 0
\(271\) 14.0000 0.850439 0.425220 0.905090i \(-0.360197\pi\)
0.425220 + 0.905090i \(0.360197\pi\)
\(272\) 0 0
\(273\) 3.46410 6.00000i 0.209657 0.363137i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 1.73205 1.00000i 0.104069 0.0600842i −0.447062 0.894503i \(-0.647530\pi\)
0.551131 + 0.834419i \(0.314196\pi\)
\(278\) 0 0
\(279\) −30.0000 −1.79605
\(280\) 0 0
\(281\) −16.5000 28.5788i −0.984307 1.70487i −0.644974 0.764204i \(-0.723132\pi\)
−0.339333 0.940666i \(-0.610201\pi\)
\(282\) 0 0
\(283\) −0.866025 0.500000i −0.0514799 0.0297219i 0.474039 0.880504i \(-0.342796\pi\)
−0.525519 + 0.850782i \(0.676129\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 9.00000i 0.531253i
\(288\) 0 0
\(289\) −19.0000 −1.11765
\(290\) 0 0
\(291\) 17.3205i 1.01535i
\(292\) 0 0
\(293\) −5.19615 3.00000i −0.303562 0.175262i 0.340480 0.940252i \(-0.389411\pi\)
−0.644042 + 0.764990i \(0.722744\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 6.00000 + 10.3923i 0.346989 + 0.601003i
\(300\) 0 0
\(301\) −2.00000 + 3.46410i −0.115278 + 0.199667i
\(302\) 0 0
\(303\) 31.1769 1.79107
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 29.0000i 1.65512i 0.561379 + 0.827559i \(0.310271\pi\)
−0.561379 + 0.827559i \(0.689729\pi\)
\(308\) 0 0
\(309\) 12.0000 6.92820i 0.682656 0.394132i
\(310\) 0 0
\(311\) −9.00000 + 15.5885i −0.510343 + 0.883940i 0.489585 + 0.871956i \(0.337148\pi\)
−0.999928 + 0.0119847i \(0.996185\pi\)
\(312\) 0 0
\(313\) 13.8564 8.00000i 0.783210 0.452187i −0.0543564 0.998522i \(-0.517311\pi\)
0.837567 + 0.546335i \(0.183977\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −10.3923 + 6.00000i −0.583690 + 0.336994i −0.762598 0.646872i \(-0.776077\pi\)
0.178908 + 0.983866i \(0.442743\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 13.5000 + 7.79423i 0.753497 + 0.435031i
\(322\) 0 0
\(323\) 12.0000i 0.667698i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 16.4545 28.5000i 0.909935 1.57605i
\(328\) 0 0
\(329\) −4.50000 + 7.79423i −0.248093 + 0.429710i
\(330\) 0 0
\(331\) −13.0000 22.5167i −0.714545 1.23763i −0.963135 0.269019i \(-0.913301\pi\)
0.248590 0.968609i \(-0.420033\pi\)
\(332\) 0 0
\(333\) −25.9808 + 15.0000i −1.42374 + 0.821995i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) −6.92820 4.00000i −0.377403 0.217894i 0.299285 0.954164i \(-0.403252\pi\)
−0.676688 + 0.736270i \(0.736585\pi\)
\(338\) 0 0
\(339\) −18.0000 + 10.3923i −0.977626 + 0.564433i
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 13.0000i 0.701934i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −20.7846 12.0000i −1.11578 0.644194i −0.175457 0.984487i \(-0.556140\pi\)
−0.940319 + 0.340293i \(0.889474\pi\)
\(348\) 0 0
\(349\) 11.5000 + 19.9186i 0.615581 + 1.06622i 0.990282 + 0.139072i \(0.0444119\pi\)
−0.374701 + 0.927146i \(0.622255\pi\)
\(350\) 0 0
\(351\) 18.0000 + 10.3923i 0.960769 + 0.554700i
\(352\) 0 0
\(353\) −10.3923 + 6.00000i −0.553127 + 0.319348i −0.750382 0.661004i \(-0.770130\pi\)
0.197256 + 0.980352i \(0.436797\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 10.3923 0.550019
\(358\) 0 0
\(359\) 6.00000 0.316668 0.158334 0.987386i \(-0.449388\pi\)
0.158334 + 0.987386i \(0.449388\pi\)
\(360\) 0 0
\(361\) −15.0000 −0.789474
\(362\) 0 0
\(363\) −9.52628 16.5000i −0.500000 0.866025i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 27.7128 16.0000i 1.44660 0.835193i 0.448320 0.893873i \(-0.352022\pi\)
0.998277 + 0.0586798i \(0.0186891\pi\)
\(368\) 0 0
\(369\) 27.0000 1.40556
\(370\) 0 0
\(371\) −3.00000 5.19615i −0.155752 0.269771i
\(372\) 0 0
\(373\) 12.1244 + 7.00000i 0.627775 + 0.362446i 0.779890 0.625917i \(-0.215275\pi\)
−0.152115 + 0.988363i \(0.548608\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 12.0000i 0.618031i
\(378\) 0 0
\(379\) −14.0000 −0.719132 −0.359566 0.933120i \(-0.617075\pi\)
−0.359566 + 0.933120i \(0.617075\pi\)
\(380\) 0 0
\(381\) −10.5000 6.06218i −0.537931 0.310575i
\(382\) 0 0
\(383\) −20.7846 12.0000i −1.06204 0.613171i −0.136047 0.990702i \(-0.543440\pi\)
−0.925997 + 0.377531i \(0.876773\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −10.3923 6.00000i −0.528271 0.304997i
\(388\) 0 0
\(389\) −7.50000 12.9904i −0.380265 0.658638i 0.610835 0.791758i \(-0.290834\pi\)
−0.991100 + 0.133120i \(0.957501\pi\)
\(390\) 0 0
\(391\) −9.00000 + 15.5885i −0.455150 + 0.788342i
\(392\) 0 0
\(393\) 5.19615 + 9.00000i 0.262111 + 0.453990i
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 22.0000i 1.10415i −0.833795 0.552074i \(-0.813837\pi\)
0.833795 0.552074i \(-0.186163\pi\)
\(398\) 0 0
\(399\) 3.46410i 0.173422i
\(400\) 0 0
\(401\) 9.00000 15.5885i 0.449439 0.778450i −0.548911 0.835881i \(-0.684957\pi\)
0.998350 + 0.0574304i \(0.0182907\pi\)
\(402\) 0 0
\(403\) −34.6410 + 20.0000i −1.72559 + 0.996271i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) −5.00000 + 8.66025i −0.247234 + 0.428222i −0.962757 0.270367i \(-0.912855\pi\)
0.715523 + 0.698589i \(0.246188\pi\)
\(410\) 0 0
\(411\) 20.7846i 1.02523i
\(412\) 0 0
\(413\) 6.00000i 0.295241i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) −17.3205 30.0000i −0.848189 1.46911i
\(418\) 0 0
\(419\) 6.00000 10.3923i 0.293119 0.507697i −0.681426 0.731887i \(-0.738640\pi\)
0.974546 + 0.224189i \(0.0719734\pi\)
\(420\) 0 0
\(421\) 11.0000 + 19.0526i 0.536107 + 0.928565i 0.999109 + 0.0422075i \(0.0134391\pi\)
−0.463002 + 0.886357i \(0.653228\pi\)
\(422\) 0 0
\(423\) −23.3827 13.5000i −1.13691 0.656392i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) −0.866025 0.500000i −0.0419099 0.0241967i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 6.00000 0.289010 0.144505 0.989504i \(-0.453841\pi\)
0.144505 + 0.989504i \(0.453841\pi\)
\(432\) 0 0
\(433\) 26.0000i 1.24948i −0.780833 0.624740i \(-0.785205\pi\)
0.780833 0.624740i \(-0.214795\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 5.19615 + 3.00000i 0.248566 + 0.143509i
\(438\) 0 0
\(439\) −14.0000 24.2487i −0.668184 1.15733i −0.978412 0.206666i \(-0.933739\pi\)
0.310228 0.950662i \(-0.399595\pi\)
\(440\) 0 0
\(441\) 18.0000 0.857143
\(442\) 0 0
\(443\) 23.3827 13.5000i 1.11094 0.641404i 0.171871 0.985119i \(-0.445019\pi\)
0.939074 + 0.343715i \(0.111685\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) −7.79423 13.5000i −0.368654 0.638528i
\(448\) 0 0
\(449\) −30.0000 −1.41579 −0.707894 0.706319i \(-0.750354\pi\)
−0.707894 + 0.706319i \(0.750354\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) −13.8564 −0.651031
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −8.66025 + 5.00000i −0.405110 + 0.233890i −0.688686 0.725059i \(-0.741812\pi\)
0.283577 + 0.958950i \(0.408479\pi\)
\(458\) 0 0
\(459\) 31.1769i 1.45521i
\(460\) 0 0
\(461\) −16.5000 28.5788i −0.768482 1.33105i −0.938386 0.345589i \(-0.887679\pi\)
0.169904 0.985461i \(-0.445654\pi\)
\(462\) 0 0
\(463\) −3.46410 2.00000i −0.160990 0.0929479i 0.417340 0.908750i \(-0.362962\pi\)
−0.578331 + 0.815802i \(0.696296\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 36.0000i 1.66588i 0.553362 + 0.832941i \(0.313345\pi\)
−0.553362 + 0.832941i \(0.686655\pi\)
\(468\) 0 0
\(469\) 11.0000 0.507933
\(470\) 0 0
\(471\) −3.00000 + 1.73205i −0.138233 + 0.0798087i
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 15.5885 9.00000i 0.713746 0.412082i
\(478\) 0 0
\(479\) −15.0000 25.9808i −0.685367 1.18709i −0.973321 0.229447i \(-0.926308\pi\)
0.287954 0.957644i \(-0.407025\pi\)
\(480\) 0 0
\(481\) −20.0000 + 34.6410i −0.911922 + 1.57949i
\(482\) 0 0
\(483\) 2.59808 4.50000i 0.118217 0.204757i
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 16.0000i 0.725029i −0.931978 0.362515i \(-0.881918\pi\)
0.931978 0.362515i \(-0.118082\pi\)
\(488\) 0 0
\(489\) 6.00000 + 3.46410i 0.271329 + 0.156652i
\(490\) 0 0
\(491\) 12.0000 20.7846i 0.541552 0.937996i −0.457263 0.889332i \(-0.651170\pi\)
0.998815 0.0486647i \(-0.0154966\pi\)
\(492\) 0 0
\(493\) 15.5885 9.00000i 0.702069 0.405340i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −10.3923 + 6.00000i −0.466159 + 0.269137i
\(498\) 0 0
\(499\) −2.00000 + 3.46410i −0.0895323 + 0.155074i −0.907314 0.420455i \(-0.861871\pi\)
0.817781 + 0.575529i \(0.195204\pi\)
\(500\) 0 0
\(501\) 22.5000 12.9904i 1.00523 0.580367i
\(502\) 0 0
\(503\) 3.00000i 0.133763i −0.997761 0.0668817i \(-0.978695\pi\)
0.997761 0.0668817i \(-0.0213050\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 5.19615 0.230769
\(508\) 0 0
\(509\) −4.50000 + 7.79423i −0.199459 + 0.345473i −0.948353 0.317217i \(-0.897252\pi\)
0.748894 + 0.662690i \(0.230585\pi\)
\(510\) 0 0
\(511\) −2.00000 3.46410i −0.0884748 0.153243i
\(512\) 0 0
\(513\) 10.3923 0.458831
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 27.0000 1.18289 0.591446 0.806345i \(-0.298557\pi\)
0.591446 + 0.806345i \(0.298557\pi\)
\(522\) 0 0
\(523\) 7.00000i 0.306089i 0.988219 + 0.153044i \(0.0489077\pi\)
−0.988219 + 0.153044i \(0.951092\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −51.9615 30.0000i −2.26348 1.30682i
\(528\) 0 0
\(529\) −7.00000 12.1244i −0.304348 0.527146i
\(530\) 0 0
\(531\) 18.0000 0.781133
\(532\) 0 0
\(533\) 31.1769 18.0000i 1.35042 0.779667i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 20.7846 36.0000i 0.896922 1.55351i
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) −7.00000 −0.300954 −0.150477 0.988614i \(-0.548081\pi\)
−0.150477 + 0.988614i \(0.548081\pi\)
\(542\) 0 0
\(543\) 4.33013 7.50000i 0.185824 0.321856i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) −6.06218 + 3.50000i −0.259200 + 0.149649i −0.623970 0.781449i \(-0.714481\pi\)
0.364770 + 0.931098i \(0.381148\pi\)
\(548\) 0 0
\(549\) 1.50000 2.59808i 0.0640184 0.110883i
\(550\) 0 0
\(551\) −3.00000 5.19615i −0.127804 0.221364i
\(552\) 0 0
\(553\) 8.66025 + 5.00000i 0.368271 + 0.212622i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 6.00000i 0.254228i −0.991888 0.127114i \(-0.959429\pi\)
0.991888 0.127114i \(-0.0405714\pi\)
\(558\) 0 0
\(559\) −16.0000 −0.676728
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −33.7750 19.5000i −1.42345 0.821827i −0.426855 0.904320i \(-0.640378\pi\)
−0.996592 + 0.0824933i \(0.973712\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 9.00000i 0.377964i
\(568\) 0 0
\(569\) 3.00000 + 5.19615i 0.125767 + 0.217834i 0.922032 0.387113i \(-0.126528\pi\)
−0.796266 + 0.604947i \(0.793194\pi\)
\(570\) 0 0
\(571\) −16.0000 + 27.7128i −0.669579 + 1.15975i 0.308443 + 0.951243i \(0.400192\pi\)
−0.978022 + 0.208502i \(0.933141\pi\)
\(572\) 0 0
\(573\) −10.3923 −0.434145
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 38.0000i 1.58196i 0.611842 + 0.790980i \(0.290429\pi\)
−0.611842 + 0.790980i \(0.709571\pi\)
\(578\) 0 0
\(579\) −6.00000 + 3.46410i −0.249351 + 0.143963i
\(580\) 0 0
\(581\) −4.50000 + 7.79423i −0.186691 + 0.323359i
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −23.3827 + 13.5000i −0.965107 + 0.557205i −0.897741 0.440524i \(-0.854793\pi\)
−0.0673658 + 0.997728i \(0.521459\pi\)
\(588\) 0 0
\(589\) −10.0000 + 17.3205i −0.412043 + 0.713679i
\(590\) 0 0
\(591\) 18.0000 + 10.3923i 0.740421 + 0.427482i
\(592\) 0 0
\(593\) 6.00000i 0.246390i 0.992382 + 0.123195i \(0.0393141\pi\)
−0.992382 + 0.123195i \(0.960686\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −1.73205 + 3.00000i −0.0708881 + 0.122782i
\(598\) 0 0
\(599\) 3.00000 5.19615i 0.122577 0.212309i −0.798206 0.602384i \(-0.794218\pi\)
0.920783 + 0.390075i \(0.127551\pi\)
\(600\) 0 0
\(601\) 11.0000 + 19.0526i 0.448699 + 0.777170i 0.998302 0.0582563i \(-0.0185541\pi\)
−0.549602 + 0.835426i \(0.685221\pi\)
\(602\) 0 0
\(603\) 33.0000i 1.34386i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 6.06218 + 3.50000i 0.246056 + 0.142061i 0.617957 0.786212i \(-0.287961\pi\)
−0.371901 + 0.928272i \(0.621294\pi\)
\(608\) 0 0
\(609\) −4.50000 + 2.59808i −0.182349 + 0.105279i
\(610\) 0 0
\(611\) −36.0000 −1.45640
\(612\) 0 0
\(613\) 22.0000i 0.888572i 0.895885 + 0.444286i \(0.146543\pi\)
−0.895885 + 0.444286i \(0.853457\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 10.3923 + 6.00000i 0.418378 + 0.241551i 0.694383 0.719605i \(-0.255677\pi\)
−0.276005 + 0.961156i \(0.589011\pi\)
\(618\) 0 0
\(619\) 13.0000 + 22.5167i 0.522514 + 0.905021i 0.999657 + 0.0261952i \(0.00833914\pi\)
−0.477143 + 0.878826i \(0.658328\pi\)
\(620\) 0 0
\(621\) 13.5000 + 7.79423i 0.541736 + 0.312772i
\(622\) 0 0
\(623\) 7.79423 4.50000i 0.312269 0.180289i
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −60.0000 −2.39236
\(630\) 0 0
\(631\) −40.0000 −1.59237 −0.796187 0.605050i \(-0.793153\pi\)
−0.796187 + 0.605050i \(0.793153\pi\)
\(632\) 0 0
\(633\) −3.46410 6.00000i −0.137686 0.238479i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 20.7846 12.0000i 0.823516 0.475457i
\(638\) 0 0
\(639\) −18.0000 31.1769i −0.712069 1.23334i
\(640\) 0 0
\(641\) −10.5000 18.1865i −0.414725 0.718325i 0.580674 0.814136i \(-0.302789\pi\)
−0.995400 + 0.0958109i \(0.969456\pi\)
\(642\) 0 0
\(643\) −26.8468 15.5000i −1.05873 0.611260i −0.133652 0.991028i \(-0.542670\pi\)
−0.925082 + 0.379768i \(0.876004\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 9.00000i 0.353827i 0.984226 + 0.176913i \(0.0566112\pi\)
−0.984226 + 0.176913i \(0.943389\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 15.0000 + 8.66025i 0.587896 + 0.339422i
\(652\) 0 0
\(653\) 5.19615 + 3.00000i 0.203341 + 0.117399i 0.598213 0.801337i \(-0.295878\pi\)
−0.394872 + 0.918736i \(0.629211\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 10.3923 6.00000i 0.405442 0.234082i
\(658\) 0 0
\(659\) 18.0000 + 31.1769i 0.701180 + 1.21448i 0.968052 + 0.250748i \(0.0806766\pi\)
−0.266872 + 0.963732i \(0.585990\pi\)
\(660\) 0 0
\(661\) 5.00000 8.66025i 0.194477 0.336845i −0.752252 0.658876i \(-0.771032\pi\)
0.946729 + 0.322031i \(0.104366\pi\)
\(662\) 0 0
\(663\) 20.7846 + 36.0000i 0.807207 + 1.39812i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 9.00000i 0.348481i
\(668\) 0 0
\(669\) 19.0526i 0.736614i
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 24.2487 14.0000i 0.934719 0.539660i 0.0464181 0.998922i \(-0.485219\pi\)
0.888301 + 0.459262i \(0.151886\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(678\) 0 0
\(679\) 5.00000 8.66025i 0.191882 0.332350i
\(680\) 0 0
\(681\) 20.7846i 0.796468i
\(682\) 0 0
\(683\) 12.0000i 0.459167i 0.973289 + 0.229584i \(0.0737364\pi\)
−0.973289 + 0.229584i \(0.926264\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 0.866025 + 1.50000i 0.0330409 + 0.0572286i
\(688\) 0 0
\(689\) 12.0000 20.7846i 0.457164 0.791831i
\(690\) 0 0
\(691\) 5.00000 + 8.66025i 0.190209 + 0.329452i 0.945319 0.326146i \(-0.105750\pi\)
−0.755110 + 0.655598i \(0.772417\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 46.7654 + 27.0000i 1.77136 + 1.02270i
\(698\) 0 0
\(699\) 45.0000 + 25.9808i 1.70206 + 0.982683i
\(700\) 0 0
\(701\) −21.0000 −0.793159 −0.396580 0.918000i \(-0.629803\pi\)
−0.396580 + 0.918000i \(0.629803\pi\)
\(702\) 0 0
\(703\) 20.0000i 0.754314i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −15.5885 9.00000i −0.586264 0.338480i
\(708\) 0 0
\(709\) 17.5000 + 30.3109i 0.657226 + 1.13835i 0.981331 + 0.192328i \(0.0616038\pi\)
−0.324104 + 0.946021i \(0.605063\pi\)
\(710\) 0 0
\(711\) −15.0000 + 25.9808i −0.562544 + 0.974355i
\(712\) 0 0
\(713\) −25.9808 + 15.0000i −0.972987 + 0.561754i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 42.0000 1.56634 0.783168 0.621810i \(-0.213603\pi\)
0.783168 + 0.621810i \(0.213603\pi\)
\(720\) 0 0
\(721\) −8.00000 −0.297936
\(722\) 0 0
\(723\) 12.1244 0.450910
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) −16.4545 + 9.50000i −0.610263 + 0.352335i −0.773068 0.634323i \(-0.781279\pi\)
0.162805 + 0.986658i \(0.447946\pi\)
\(728\) 0 0
\(729\) 27.0000 1.00000
\(730\) 0 0
\(731\) −12.0000 20.7846i −0.443836 0.768747i
\(732\) 0 0
\(733\) 12.1244 + 7.00000i 0.447823 + 0.258551i 0.706910 0.707303i \(-0.250088\pi\)
−0.259087 + 0.965854i \(0.583422\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) −2.00000 −0.0735712 −0.0367856 0.999323i \(-0.511712\pi\)
−0.0367856 + 0.999323i \(0.511712\pi\)
\(740\) 0 0
\(741\) 12.0000 6.92820i 0.440831 0.254514i
\(742\) 0 0
\(743\) 28.5788 + 16.5000i 1.04846 + 0.605326i 0.922217 0.386674i \(-0.126376\pi\)
0.126239 + 0.992000i \(0.459709\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) −23.3827 13.5000i −0.855528 0.493939i
\(748\) 0 0
\(749\) −4.50000 7.79423i −0.164426 0.284795i
\(750\) 0 0
\(751\) 8.00000 13.8564i 0.291924 0.505627i −0.682341 0.731034i \(-0.739038\pi\)
0.974265 + 0.225407i \(0.0723712\pi\)
\(752\) 0 0
\(753\) 15.5885 27.0000i 0.568075 0.983935i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 20.0000i 0.726912i 0.931611 + 0.363456i \(0.118403\pi\)
−0.931611 + 0.363456i \(0.881597\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 22.5000 38.9711i 0.815624 1.41270i −0.0932544 0.995642i \(-0.529727\pi\)
0.908879 0.417061i \(-0.136940\pi\)
\(762\) 0 0
\(763\) −16.4545 + 9.50000i −0.595692 + 0.343923i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 20.7846 12.0000i 0.750489 0.433295i
\(768\) 0 0
\(769\) −15.5000 + 26.8468i −0.558944 + 0.968120i 0.438641 + 0.898663i \(0.355460\pi\)
−0.997585 + 0.0694574i \(0.977873\pi\)
\(770\) 0 0
\(771\) −9.00000 + 5.19615i −0.324127 + 0.187135i
\(772\) 0 0
\(773\) 36.0000i 1.29483i 0.762138 + 0.647415i \(0.224150\pi\)
−0.762138 + 0.647415i \(0.775850\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 17.3205 0.621370
\(778\) 0 0
\(779\) 9.00000 15.5885i 0.322458 0.558514i
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) −7.79423 13.5000i −0.278543 0.482451i
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 34.6410 + 20.0000i 1.23482 + 0.712923i 0.968031 0.250832i \(-0.0807042\pi\)
0.266788 + 0.963755i \(0.414038\pi\)
\(788\) 0 0
\(789\) 41.5692i 1.47990i
\(790\) 0 0
\(791\) 12.0000 0.426671
\(792\) 0 0
\(793\) 4.00000i 0.142044i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 20.7846 + 12.0000i 0.736229 + 0.425062i 0.820696 0.571364i \(-0.193586\pi\)
−0.0844678 + 0.996426i \(0.526919\pi\)
\(798\) 0 0
\(799\) −27.0000 46.7654i −0.955191 1.65444i
\(800\) 0 0
\(801\) 13.5000 + 23.3827i 0.476999 + 0.826187i
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −7.79423 + 13.5000i −0.274370 + 0.475223i
\(808\) 0 0
\(809\) 54.0000 1.89854 0.949269 0.314464i \(-0.101825\pi\)
0.949269 + 0.314464i \(0.101825\pi\)
\(810\) 0 0
\(811\) −22.0000 −0.772524 −0.386262 0.922389i \(-0.626234\pi\)
−0.386262 + 0.922389i \(0.626234\pi\)
\(812\) 0 0
\(813\) 12.1244 21.0000i 0.425220 0.736502i
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) −6.92820 + 4.00000i −0.242387 + 0.139942i
\(818\) 0 0
\(819\) −6.00000 10.3923i −0.209657 0.363137i
\(820\) 0 0
\(821\) −1.50000 2.59808i −0.0523504 0.0906735i 0.838663 0.544651i \(-0.183338\pi\)
−0.891013 + 0.453978i \(0.850005\pi\)
\(822\) 0 0
\(823\) −42.4352 24.5000i −1.47920 0.854016i −0.479477 0.877555i \(-0.659174\pi\)
−0.999723 + 0.0235383i \(0.992507\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 27.0000i 0.938882i 0.882964 + 0.469441i \(0.155545\pi\)
−0.882964 + 0.469441i \(0.844455\pi\)
\(828\) 0 0
\(829\) 7.00000 0.243120 0.121560 0.992584i \(-0.461210\pi\)
0.121560 + 0.992584i \(0.461210\pi\)
\(830\) 0 0
\(831\) 3.46410i 0.120168i
\(832\) 0 0
\(833\) 31.1769 + 18.0000i 1.08022 + 0.623663i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) −25.9808 + 45.0000i −0.898027 + 1.55543i
\(838\) 0 0
\(839\) −15.0000 25.9808i −0.517858 0.896956i −0.999785 0.0207443i \(-0.993396\pi\)
0.481927 0.876211i \(-0.339937\pi\)
\(840\) 0 0
\(841\) 10.0000 17.3205i 0.344828 0.597259i
\(842\) 0 0
\(843\) −57.1577 −1.96861
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 11.0000i 0.377964i
\(848\) 0 0
\(849\) −1.50000 + 0.866025i −0.0514799 + 0.0297219i
\(850\) 0 0
\(851\) −15.0000 + 25.9808i −0.514193 + 0.890609i
\(852\) 0 0
\(853\) 3.46410 2.00000i 0.118609 0.0684787i −0.439522 0.898232i \(-0.644852\pi\)
0.558131 + 0.829753i \(0.311519\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −41.5692 + 24.0000i −1.41998 + 0.819824i −0.996296 0.0859870i \(-0.972596\pi\)
−0.423681 + 0.905811i \(0.639262\pi\)
\(858\) 0 0
\(859\) 10.0000 17.3205i 0.341196 0.590968i −0.643459 0.765480i \(-0.722501\pi\)
0.984655 + 0.174512i \(0.0558348\pi\)
\(860\) 0 0
\(861\) −13.5000 7.79423i −0.460079 0.265627i
\(862\) 0 0
\(863\) 15.0000i 0.510606i −0.966861 0.255303i \(-0.917825\pi\)
0.966861 0.255303i \(-0.0821752\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) −16.4545 + 28.5000i −0.558824 + 0.967911i
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 22.0000 + 38.1051i 0.745442 + 1.29114i
\(872\) 0 0
\(873\) 25.9808 + 15.0000i 0.879316 + 0.507673i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 3.46410 + 2.00000i 0.116974 + 0.0675352i 0.557346 0.830281i \(-0.311820\pi\)
−0.440371 + 0.897816i \(0.645153\pi\)
\(878\) 0 0
\(879\) −9.00000 + 5.19615i −0.303562 + 0.175262i
\(880\) 0 0
\(881\) −15.0000 −0.505363 −0.252681 0.967550i \(-0.581312\pi\)
−0.252681 + 0.967550i \(0.581312\pi\)
\(882\) 0 0
\(883\) 29.0000i 0.975928i −0.872864 0.487964i \(-0.837740\pi\)
0.872864 0.487964i \(-0.162260\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 41.5692 + 24.0000i 1.39576 + 0.805841i 0.993945 0.109881i \(-0.0350469\pi\)
0.401813 + 0.915722i \(0.368380\pi\)
\(888\) 0 0
\(889\) 3.50000 + 6.06218i 0.117386 + 0.203319i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −15.5885 + 9.00000i −0.521648 + 0.301174i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 20.7846 0.693978
\(898\) 0 0
\(899\) 30.0000 1.00056
\(900\) 0 0
\(901\) 36.0000 1.19933
\(902\) 0 0
\(903\) 3.46410 + 6.00000i 0.115278 + 0.199667i
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) −0.866025 + 0.500000i −0.0287559 + 0.0166022i −0.514309 0.857605i \(-0.671952\pi\)
0.485553 + 0.874207i \(0.338618\pi\)
\(908\) 0 0
\(909\) 27.0000 46.7654i 0.895533 1.55111i
\(910\) 0 0
\(911\) 3.00000 + 5.19615i 0.0993944 + 0.172156i 0.911434 0.411446i \(-0.134976\pi\)
−0.812040 + 0.583602i \(0.801643\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 6.00000i 0.198137i
\(918\) 0 0
\(919\) 34.0000 1.12156 0.560778 0.827966i \(-0.310502\pi\)
0.560778 + 0.827966i \(0.310502\pi\)
\(920\) 0 0
\(921\) 43.5000 + 25.1147i 1.43337 + 0.827559i
\(922\) 0 0
\(923\) −41.5692 24.0000i −1.36827 0.789970i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 24.0000i 0.788263i
\(928\) 0 0
\(929\) 3.00000 + 5.19615i 0.0984268 + 0.170480i 0.911034 0.412332i \(-0.135286\pi\)
−0.812607 + 0.582812i \(0.801952\pi\)
\(930\) 0 0
\(931\) 6.00000 10.3923i 0.196642 0.340594i
\(932\) 0 0
\(933\) 15.5885 + 27.0000i 0.510343 + 0.883940i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 16.0000i 0.522697i −0.965244 0.261349i \(-0.915833\pi\)
0.965244 0.261349i \(-0.0841672\pi\)
\(938\) 0 0
\(939\) 27.7128i 0.904373i
\(940\) 0 0
\(941\) −22.5000 + 38.9711i −0.733479 + 1.27042i 0.221908 + 0.975068i \(0.428771\pi\)
−0.955387 + 0.295355i \(0.904562\pi\)
\(942\) 0 0
\(943\) 23.3827 13.5000i 0.761445 0.439620i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 12.9904 7.50000i 0.422131 0.243717i −0.273858 0.961770i \(-0.588300\pi\)
0.695988 + 0.718053i \(0.254966\pi\)
\(948\) 0 0
\(949\) 8.00000 13.8564i 0.259691 0.449798i
\(950\) 0 0
\(951\) 20.7846i 0.673987i
\(952\) 0 0
\(953\) 24.0000i 0.777436i −0.921357 0.388718i \(-0.872918\pi\)
0.921357 0.388718i \(-0.127082\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −6.00000 + 10.3923i −0.193750 + 0.335585i
\(960\) 0 0
\(961\) −34.5000 59.7558i −1.11290 1.92760i
\(962\) 0 0
\(963\) 23.3827 13.5000i 0.753497 0.435031i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 0.866025 + 0.500000i 0.0278495 + 0.0160789i 0.513860 0.857874i \(-0.328215\pi\)
−0.486011 + 0.873953i \(0.661548\pi\)
\(968\) 0 0
\(969\) 18.0000 + 10.3923i 0.578243 + 0.333849i
\(970\) 0 0
\(971\) 42.0000 1.34784 0.673922 0.738802i \(-0.264608\pi\)
0.673922 + 0.738802i \(0.264608\pi\)
\(972\) 0 0
\(973\) 20.0000i 0.641171i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −20.7846 12.0000i −0.664959 0.383914i 0.129205 0.991618i \(-0.458757\pi\)
−0.794164 + 0.607704i \(0.792091\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) −28.5000 49.3634i −0.909935 1.57605i
\(982\) 0 0
\(983\) −7.79423 + 4.50000i −0.248597 + 0.143528i −0.619122 0.785295i \(-0.712511\pi\)
0.370525 + 0.928823i \(0.379178\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 7.79423 + 13.5000i 0.248093 + 0.429710i
\(988\) 0 0
\(989\) −12.0000 −0.381578
\(990\) 0 0
\(991\) 2.00000 0.0635321 0.0317660 0.999495i \(-0.489887\pi\)
0.0317660 + 0.999495i \(0.489887\pi\)
\(992\) 0 0
\(993\) −45.0333 −1.42909
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) −8.66025 + 5.00000i −0.274273 + 0.158352i −0.630828 0.775923i \(-0.717285\pi\)
0.356555 + 0.934274i \(0.383951\pi\)
\(998\) 0 0
\(999\) 51.9615i 1.64399i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 900.2.s.a.49.2 4
3.2 odd 2 2700.2.s.a.1549.1 4
5.2 odd 4 900.2.i.a.301.1 2
5.3 odd 4 180.2.i.a.121.1 yes 2
5.4 even 2 inner 900.2.s.a.49.1 4
9.2 odd 6 2700.2.s.a.2449.2 4
9.4 even 3 8100.2.d.e.649.1 2
9.5 odd 6 8100.2.d.f.649.1 2
9.7 even 3 inner 900.2.s.a.349.1 4
15.2 even 4 2700.2.i.a.901.1 2
15.8 even 4 540.2.i.a.361.1 2
15.14 odd 2 2700.2.s.a.1549.2 4
20.3 even 4 720.2.q.a.481.1 2
45.2 even 12 2700.2.i.a.1801.1 2
45.4 even 6 8100.2.d.e.649.2 2
45.7 odd 12 900.2.i.a.601.1 2
45.13 odd 12 1620.2.a.e.1.1 1
45.14 odd 6 8100.2.d.f.649.2 2
45.22 odd 12 8100.2.a.i.1.1 1
45.23 even 12 1620.2.a.b.1.1 1
45.29 odd 6 2700.2.s.a.2449.1 4
45.32 even 12 8100.2.a.h.1.1 1
45.34 even 6 inner 900.2.s.a.349.2 4
45.38 even 12 540.2.i.a.181.1 2
45.43 odd 12 180.2.i.a.61.1 2
60.23 odd 4 2160.2.q.e.1441.1 2
180.23 odd 12 6480.2.a.h.1.1 1
180.43 even 12 720.2.q.a.241.1 2
180.83 odd 12 2160.2.q.e.721.1 2
180.103 even 12 6480.2.a.t.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
180.2.i.a.61.1 2 45.43 odd 12
180.2.i.a.121.1 yes 2 5.3 odd 4
540.2.i.a.181.1 2 45.38 even 12
540.2.i.a.361.1 2 15.8 even 4
720.2.q.a.241.1 2 180.43 even 12
720.2.q.a.481.1 2 20.3 even 4
900.2.i.a.301.1 2 5.2 odd 4
900.2.i.a.601.1 2 45.7 odd 12
900.2.s.a.49.1 4 5.4 even 2 inner
900.2.s.a.49.2 4 1.1 even 1 trivial
900.2.s.a.349.1 4 9.7 even 3 inner
900.2.s.a.349.2 4 45.34 even 6 inner
1620.2.a.b.1.1 1 45.23 even 12
1620.2.a.e.1.1 1 45.13 odd 12
2160.2.q.e.721.1 2 180.83 odd 12
2160.2.q.e.1441.1 2 60.23 odd 4
2700.2.i.a.901.1 2 15.2 even 4
2700.2.i.a.1801.1 2 45.2 even 12
2700.2.s.a.1549.1 4 3.2 odd 2
2700.2.s.a.1549.2 4 15.14 odd 2
2700.2.s.a.2449.1 4 45.29 odd 6
2700.2.s.a.2449.2 4 9.2 odd 6
6480.2.a.h.1.1 1 180.23 odd 12
6480.2.a.t.1.1 1 180.103 even 12
8100.2.a.h.1.1 1 45.32 even 12
8100.2.a.i.1.1 1 45.22 odd 12
8100.2.d.e.649.1 2 9.4 even 3
8100.2.d.e.649.2 2 45.4 even 6
8100.2.d.f.649.1 2 9.5 odd 6
8100.2.d.f.649.2 2 45.14 odd 6