Properties

Label 2700.2.s.c.2449.6
Level $2700$
Weight $2$
Character 2700.2449
Analytic conductor $21.560$
Analytic rank $0$
Dimension $12$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2700,2,Mod(1549,2700)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2700, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 2, 3]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2700.1549");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2700 = 2^{2} \cdot 3^{3} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2700.s (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(21.5596085457\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 16x^{8} - 24x^{7} + 96x^{5} + 304x^{4} + 384x^{3} + 288x^{2} + 144x + 36 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{6}\cdot 3^{6} \)
Twist minimal: no (minimal twist has level 180)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 2449.6
Root \(-1.50511 - 0.403293i\) of defining polynomial
Character \(\chi\) \(=\) 2700.2449
Dual form 2700.2.s.c.1549.6

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(3.55142 + 2.05042i) q^{7} +(-1.90841 + 3.30545i) q^{11} +(5.03751 - 2.90841i) q^{13} +3.81681i q^{17} +1.81681 q^{19} +(-1.81937 + 1.05042i) q^{23} +(3.60083 - 6.23682i) q^{29} +(0.908405 + 1.57340i) q^{31} +6.01847i q^{37} +(5.50924 + 9.54228i) q^{41} +(-5.03751 - 2.90841i) q^{43} +(-10.3210 - 5.95882i) q^{47} +(4.90841 + 8.50161i) q^{49} -4.20166i q^{53} +(2.10083 + 3.63875i) q^{59} +(1.50924 - 2.61407i) q^{61} +(-3.21813 + 1.85799i) q^{67} +2.01847 q^{71} +8.00000i q^{73} +(-13.5551 + 7.82605i) q^{77} +(1.00000 - 1.73205i) q^{79} +(-3.37678 - 1.94958i) q^{83} -3.00000 q^{89} +23.8538 q^{91} +(10.5669 + 6.10083i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 24 q^{19} + 6 q^{29} - 12 q^{31} + 6 q^{41} + 36 q^{49} - 12 q^{59} - 42 q^{61} - 96 q^{71} + 12 q^{79} - 36 q^{89}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2700\mathbb{Z}\right)^\times\).

\(n\) \(1001\) \(1351\) \(2377\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 3.55142 + 2.05042i 1.34231 + 0.774984i 0.987146 0.159819i \(-0.0510912\pi\)
0.355166 + 0.934803i \(0.384424\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −1.90841 + 3.30545i −0.575406 + 0.996632i 0.420592 + 0.907250i \(0.361823\pi\)
−0.995997 + 0.0893820i \(0.971511\pi\)
\(12\) 0 0
\(13\) 5.03751 2.90841i 1.39715 0.806646i 0.403059 0.915174i \(-0.367947\pi\)
0.994093 + 0.108527i \(0.0346135\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 3.81681i 0.925712i 0.886433 + 0.462856i \(0.153175\pi\)
−0.886433 + 0.462856i \(0.846825\pi\)
\(18\) 0 0
\(19\) 1.81681 0.416805 0.208402 0.978043i \(-0.433174\pi\)
0.208402 + 0.978043i \(0.433174\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −1.81937 + 1.05042i −0.379365 + 0.219027i −0.677542 0.735484i \(-0.736955\pi\)
0.298177 + 0.954511i \(0.403622\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 3.60083 6.23682i 0.668657 1.15815i −0.309622 0.950860i \(-0.600203\pi\)
0.978280 0.207289i \(-0.0664640\pi\)
\(30\) 0 0
\(31\) 0.908405 + 1.57340i 0.163154 + 0.282592i 0.935998 0.352004i \(-0.114500\pi\)
−0.772844 + 0.634596i \(0.781166\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 6.01847i 0.989431i 0.869055 + 0.494715i \(0.164728\pi\)
−0.869055 + 0.494715i \(0.835272\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 5.50924 + 9.54228i 0.860398 + 1.49025i 0.871545 + 0.490315i \(0.163118\pi\)
−0.0111471 + 0.999938i \(0.503548\pi\)
\(42\) 0 0
\(43\) −5.03751 2.90841i −0.768212 0.443528i 0.0640242 0.997948i \(-0.479607\pi\)
−0.832237 + 0.554421i \(0.812940\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −10.3210 5.95882i −1.50547 0.869183i −0.999980 0.00635068i \(-0.997979\pi\)
−0.505490 0.862833i \(-0.668688\pi\)
\(48\) 0 0
\(49\) 4.90841 + 8.50161i 0.701201 + 1.21452i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 4.20166i 0.577143i −0.957458 0.288571i \(-0.906820\pi\)
0.957458 0.288571i \(-0.0931802\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 2.10083 + 3.63875i 0.273505 + 0.473724i 0.969757 0.244073i \(-0.0784837\pi\)
−0.696252 + 0.717797i \(0.745150\pi\)
\(60\) 0 0
\(61\) 1.50924 2.61407i 0.193238 0.334698i −0.753084 0.657925i \(-0.771434\pi\)
0.946321 + 0.323227i \(0.104768\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) −3.21813 + 1.85799i −0.393158 + 0.226990i −0.683527 0.729925i \(-0.739555\pi\)
0.290370 + 0.956914i \(0.406222\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 2.01847 0.239548 0.119774 0.992801i \(-0.461783\pi\)
0.119774 + 0.992801i \(0.461783\pi\)
\(72\) 0 0
\(73\) 8.00000i 0.936329i 0.883641 + 0.468165i \(0.155085\pi\)
−0.883641 + 0.468165i \(0.844915\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −13.5551 + 7.82605i −1.54475 + 0.891861i
\(78\) 0 0
\(79\) 1.00000 1.73205i 0.112509 0.194871i −0.804272 0.594261i \(-0.797445\pi\)
0.916781 + 0.399390i \(0.130778\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −3.37678 1.94958i −0.370650 0.213995i 0.303093 0.952961i \(-0.401981\pi\)
−0.673742 + 0.738966i \(0.735314\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −3.00000 −0.317999 −0.159000 0.987279i \(-0.550827\pi\)
−0.159000 + 0.987279i \(0.550827\pi\)
\(90\) 0 0
\(91\) 23.8538 2.50055
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 10.5669 + 6.10083i 1.07291 + 0.619445i 0.928975 0.370142i \(-0.120691\pi\)
0.143936 + 0.989587i \(0.454024\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 8.10083 14.0310i 0.806063 1.39614i −0.109508 0.993986i \(-0.534928\pi\)
0.915571 0.402156i \(-0.131739\pi\)
\(102\) 0 0
\(103\) −8.18431 + 4.72522i −0.806424 + 0.465589i −0.845713 0.533639i \(-0.820824\pi\)
0.0392883 + 0.999228i \(0.487491\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 4.66887i 0.451357i 0.974202 + 0.225678i \(0.0724599\pi\)
−0.974202 + 0.225678i \(0.927540\pi\)
\(108\) 0 0
\(109\) −8.81681 −0.844497 −0.422249 0.906480i \(-0.638759\pi\)
−0.422249 + 0.906480i \(0.638759\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 8.83490 5.10083i 0.831117 0.479846i −0.0231178 0.999733i \(-0.507359\pi\)
0.854235 + 0.519887i \(0.174026\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −7.82605 + 13.5551i −0.717412 + 1.24259i
\(120\) 0 0
\(121\) −1.78402 3.09001i −0.162184 0.280910i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 0.284020i 0.0252027i −0.999921 0.0126014i \(-0.995989\pi\)
0.999921 0.0126014i \(-0.00401124\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 10.6336 + 18.4180i 0.929064 + 1.60919i 0.784892 + 0.619633i \(0.212719\pi\)
0.144172 + 0.989553i \(0.453948\pi\)
\(132\) 0 0
\(133\) 6.45226 + 3.72522i 0.559482 + 0.323017i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 2.22399 + 1.28402i 0.190008 + 0.109701i 0.591986 0.805948i \(-0.298344\pi\)
−0.401978 + 0.915649i \(0.631677\pi\)
\(138\) 0 0
\(139\) −2.00000 3.46410i −0.169638 0.293821i 0.768655 0.639664i \(-0.220926\pi\)
−0.938293 + 0.345843i \(0.887593\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 22.2017i 1.85660i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 7.22522 + 12.5144i 0.591913 + 1.02522i 0.993975 + 0.109610i \(0.0349603\pi\)
−0.402062 + 0.915612i \(0.631706\pi\)
\(150\) 0 0
\(151\) 4.29326 7.43614i 0.349380 0.605144i −0.636759 0.771063i \(-0.719726\pi\)
0.986139 + 0.165918i \(0.0530588\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) −17.1779 + 9.91764i −1.37094 + 0.791514i −0.991047 0.133515i \(-0.957373\pi\)
−0.379896 + 0.925029i \(0.624040\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −8.61515 −0.678969
\(162\) 0 0
\(163\) 13.8168i 1.08222i −0.840953 0.541108i \(-0.818005\pi\)
0.840953 0.541108i \(-0.181995\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 5.26748 3.04118i 0.407610 0.235334i −0.282153 0.959370i \(-0.591048\pi\)
0.689762 + 0.724036i \(0.257715\pi\)
\(168\) 0 0
\(169\) 10.4176 18.0439i 0.801357 1.38799i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −3.78140 2.18319i −0.287494 0.165985i 0.349317 0.937005i \(-0.386414\pi\)
−0.636811 + 0.771020i \(0.719747\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 6.38485 0.477226 0.238613 0.971115i \(-0.423307\pi\)
0.238613 + 0.971115i \(0.423307\pi\)
\(180\) 0 0
\(181\) 10.0656 0.748169 0.374084 0.927395i \(-0.377957\pi\)
0.374084 + 0.927395i \(0.377957\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) −12.6163 7.28402i −0.922595 0.532660i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −7.82605 + 13.5551i −0.566273 + 0.980813i 0.430657 + 0.902516i \(0.358282\pi\)
−0.996930 + 0.0782977i \(0.975052\pi\)
\(192\) 0 0
\(193\) 11.6484 6.72522i 0.838471 0.484092i −0.0182730 0.999833i \(-0.505817\pi\)
0.856744 + 0.515741i \(0.172483\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 1.79834i 0.128126i −0.997946 0.0640632i \(-0.979594\pi\)
0.997946 0.0640632i \(-0.0204059\pi\)
\(198\) 0 0
\(199\) 22.2201 1.57514 0.787572 0.616223i \(-0.211338\pi\)
0.787572 + 0.616223i \(0.211338\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 25.5761 14.7664i 1.79509 1.03640i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −3.46721 + 6.00538i −0.239832 + 0.415401i
\(210\) 0 0
\(211\) 14.1101 + 24.4394i 0.971377 + 1.68247i 0.691407 + 0.722466i \(0.256991\pi\)
0.279970 + 0.960009i \(0.409675\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 7.45043i 0.505768i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 11.1008 + 19.2272i 0.746723 + 1.29336i
\(222\) 0 0
\(223\) −1.66073 0.958820i −0.111210 0.0642074i 0.443363 0.896342i \(-0.353785\pi\)
−0.554573 + 0.832135i \(0.687119\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 6.94420 + 4.00924i 0.460903 + 0.266102i 0.712424 0.701750i \(-0.247597\pi\)
−0.251521 + 0.967852i \(0.580931\pi\)
\(228\) 0 0
\(229\) −9.41764 16.3118i −0.622335 1.07792i −0.989050 0.147583i \(-0.952851\pi\)
0.366715 0.930334i \(-0.380483\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 14.0185i 0.918381i 0.888338 + 0.459190i \(0.151860\pi\)
−0.888338 + 0.459190i \(0.848140\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −5.10083 8.83490i −0.329945 0.571482i 0.652555 0.757741i \(-0.273697\pi\)
−0.982501 + 0.186259i \(0.940364\pi\)
\(240\) 0 0
\(241\) −8.61007 + 14.9131i −0.554623 + 0.960635i 0.443310 + 0.896369i \(0.353804\pi\)
−0.997933 + 0.0642669i \(0.979529\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 9.15219 5.28402i 0.582340 0.336214i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 0.384851 0.0242916 0.0121458 0.999926i \(-0.496134\pi\)
0.0121458 + 0.999926i \(0.496134\pi\)
\(252\) 0 0
\(253\) 8.01847i 0.504117i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 8.02567 4.63362i 0.500627 0.289037i −0.228345 0.973580i \(-0.573332\pi\)
0.728973 + 0.684543i \(0.239998\pi\)
\(258\) 0 0
\(259\) −12.3404 + 21.3741i −0.766793 + 1.32812i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −22.3900 12.9269i −1.38063 0.797105i −0.388393 0.921494i \(-0.626970\pi\)
−0.992234 + 0.124388i \(0.960303\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 28.0841 1.71231 0.856157 0.516715i \(-0.172845\pi\)
0.856157 + 0.516715i \(0.172845\pi\)
\(270\) 0 0
\(271\) −21.4504 −1.30302 −0.651510 0.758640i \(-0.725864\pi\)
−0.651510 + 0.758640i \(0.725864\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) −6.76956 3.90841i −0.406743 0.234833i 0.282646 0.959224i \(-0.408788\pi\)
−0.689389 + 0.724391i \(0.742121\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 2.59159 4.48877i 0.154602 0.267778i −0.778312 0.627877i \(-0.783924\pi\)
0.932914 + 0.360100i \(0.117257\pi\)
\(282\) 0 0
\(283\) −15.6758 + 9.05042i −0.931828 + 0.537991i −0.887389 0.461021i \(-0.847483\pi\)
−0.0444390 + 0.999012i \(0.514150\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 45.1849i 2.66718i
\(288\) 0 0
\(289\) 2.43196 0.143056
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 14.3643 8.29326i 0.839174 0.484497i −0.0178096 0.999841i \(-0.505669\pi\)
0.856983 + 0.515344i \(0.172336\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −6.11007 + 10.5829i −0.353354 + 0.612027i
\(300\) 0 0
\(301\) −11.9269 20.6580i −0.687454 1.19070i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 22.3025i 1.27287i 0.771330 + 0.636435i \(0.219592\pi\)
−0.771330 + 0.636435i \(0.780408\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −13.8260 23.9474i −0.784003 1.35793i −0.929593 0.368588i \(-0.879841\pi\)
0.145590 0.989345i \(-0.453492\pi\)
\(312\) 0 0
\(313\) −10.0910 5.82605i −0.570377 0.329308i 0.186923 0.982375i \(-0.440149\pi\)
−0.757300 + 0.653067i \(0.773482\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −10.0590 5.80757i −0.564971 0.326186i 0.190168 0.981752i \(-0.439097\pi\)
−0.755138 + 0.655566i \(0.772430\pi\)
\(318\) 0 0
\(319\) 13.7437 + 23.8048i 0.769499 + 1.33281i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 6.93442i 0.385841i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −24.4361 42.3246i −1.34721 2.33343i
\(330\) 0 0
\(331\) 9.71598 16.8286i 0.534039 0.924982i −0.465171 0.885221i \(-0.654007\pi\)
0.999209 0.0397609i \(-0.0126596\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 8.51760 4.91764i 0.463983 0.267881i −0.249734 0.968314i \(-0.580343\pi\)
0.713718 + 0.700433i \(0.247010\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −6.93442 −0.375520
\(342\) 0 0
\(343\) 11.5513i 0.623709i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 19.5605 11.2933i 1.05006 0.606254i 0.127395 0.991852i \(-0.459338\pi\)
0.922667 + 0.385598i \(0.126005\pi\)
\(348\) 0 0
\(349\) 2.93196 5.07830i 0.156944 0.271835i −0.776821 0.629721i \(-0.783169\pi\)
0.933765 + 0.357886i \(0.116502\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −20.7846 12.0000i −1.10625 0.638696i −0.168397 0.985719i \(-0.553859\pi\)
−0.937856 + 0.347024i \(0.887192\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −19.2488 −1.01591 −0.507956 0.861383i \(-0.669599\pi\)
−0.507956 + 0.861383i \(0.669599\pi\)
\(360\) 0 0
\(361\) −15.6992 −0.826274
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 16.0964 + 9.29326i 0.840225 + 0.485104i 0.857341 0.514750i \(-0.172115\pi\)
−0.0171158 + 0.999854i \(0.505448\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 8.61515 14.9219i 0.447276 0.774705i
\(372\) 0 0
\(373\) 0.174643 0.100830i 0.00904269 0.00522080i −0.495472 0.868624i \(-0.665005\pi\)
0.504515 + 0.863403i \(0.331671\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 41.8907i 2.15748i
\(378\) 0 0
\(379\) 2.36638 0.121553 0.0607764 0.998151i \(-0.480642\pi\)
0.0607764 + 0.998151i \(0.480642\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −22.3900 + 12.9269i −1.14408 + 0.660533i −0.947437 0.319943i \(-0.896336\pi\)
−0.196639 + 0.980476i \(0.563003\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 8.89409 15.4050i 0.450948 0.781065i −0.547497 0.836808i \(-0.684419\pi\)
0.998445 + 0.0557426i \(0.0177526\pi\)
\(390\) 0 0
\(391\) −4.00924 6.94420i −0.202756 0.351183i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 13.6706i 0.686106i −0.939316 0.343053i \(-0.888539\pi\)
0.939316 0.343053i \(-0.111461\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −3.73445 6.46826i −0.186490 0.323009i 0.757588 0.652733i \(-0.226378\pi\)
−0.944077 + 0.329724i \(0.893044\pi\)
\(402\) 0 0
\(403\) 9.15219 + 5.28402i 0.455903 + 0.263216i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −19.8938 11.4857i −0.986098 0.569324i
\(408\) 0 0
\(409\) −14.6521 25.3782i −0.724499 1.25487i −0.959180 0.282797i \(-0.908738\pi\)
0.234680 0.972073i \(-0.424596\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 17.2303i 0.847848i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 18.1101 + 31.3676i 0.884735 + 1.53241i 0.846018 + 0.533155i \(0.178994\pi\)
0.0387171 + 0.999250i \(0.487673\pi\)
\(420\) 0 0
\(421\) 13.0185 22.5487i 0.634481 1.09895i −0.352143 0.935946i \(-0.614547\pi\)
0.986625 0.163008i \(-0.0521196\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 10.7199 6.18912i 0.518771 0.299512i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −22.0369 −1.06148 −0.530741 0.847534i \(-0.678086\pi\)
−0.530741 + 0.847534i \(0.678086\pi\)
\(432\) 0 0
\(433\) 0.183190i 0.00880354i −0.999990 0.00440177i \(-0.998599\pi\)
0.999990 0.00440177i \(-0.00140113\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −3.30545 + 1.90841i −0.158121 + 0.0912914i
\(438\) 0 0
\(439\) −11.3025 + 19.5765i −0.539438 + 0.934335i 0.459496 + 0.888180i \(0.348030\pi\)
−0.998934 + 0.0461549i \(0.985303\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −25.9094 14.9588i −1.23099 0.710715i −0.263757 0.964589i \(-0.584962\pi\)
−0.967237 + 0.253874i \(0.918295\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 12.1647 0.574089 0.287044 0.957917i \(-0.407327\pi\)
0.287044 + 0.957917i \(0.407327\pi\)
\(450\) 0 0
\(451\) −42.0554 −1.98031
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −29.4929 17.0277i −1.37962 0.796523i −0.387504 0.921868i \(-0.626663\pi\)
−0.992113 + 0.125345i \(0.959996\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 19.2529 33.3470i 0.896698 1.55313i 0.0650090 0.997885i \(-0.479292\pi\)
0.831689 0.555242i \(-0.187374\pi\)
\(462\) 0 0
\(463\) −0.0159964 + 0.00923555i −0.000743418 + 0.000429212i −0.500372 0.865811i \(-0.666803\pi\)
0.499628 + 0.866240i \(0.333470\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 10.5865i 0.489885i −0.969538 0.244943i \(-0.921231\pi\)
0.969538 0.244943i \(-0.0787691\pi\)
\(468\) 0 0
\(469\) −15.2386 −0.703653
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 19.2272 11.1008i 0.884068 0.510417i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 3.38485 5.86273i 0.154658 0.267875i −0.778277 0.627922i \(-0.783906\pi\)
0.932934 + 0.360046i \(0.117239\pi\)
\(480\) 0 0
\(481\) 17.5042 + 30.3181i 0.798121 + 1.38239i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 31.2857i 1.41769i −0.705364 0.708845i \(-0.749216\pi\)
0.705364 0.708845i \(-0.250784\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 9.08236 + 15.7311i 0.409881 + 0.709935i 0.994876 0.101102i \(-0.0322368\pi\)
−0.584995 + 0.811037i \(0.698904\pi\)
\(492\) 0 0
\(493\) 23.8048 + 13.7437i 1.07211 + 0.618985i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 7.16845 + 4.13870i 0.321549 + 0.185646i
\(498\) 0 0
\(499\) −1.26555 2.19200i −0.0566538 0.0981272i 0.836308 0.548261i \(-0.184710\pi\)
−0.892961 + 0.450133i \(0.851376\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 18.6873i 0.833227i −0.909084 0.416614i \(-0.863217\pi\)
0.909084 0.416614i \(-0.136783\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −4.93196 8.54240i −0.218605 0.378635i 0.735777 0.677224i \(-0.236817\pi\)
−0.954382 + 0.298589i \(0.903484\pi\)
\(510\) 0 0
\(511\) −16.4033 + 28.4114i −0.725640 + 1.25685i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 39.3932 22.7437i 1.73251 1.00027i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −9.60498 −0.420802 −0.210401 0.977615i \(-0.567477\pi\)
−0.210401 + 0.977615i \(0.567477\pi\)
\(522\) 0 0
\(523\) 4.32096i 0.188942i 0.995528 + 0.0944712i \(0.0301160\pi\)
−0.995528 + 0.0944712i \(0.969884\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −6.00538 + 3.46721i −0.261599 + 0.151034i
\(528\) 0 0
\(529\) −9.29326 + 16.0964i −0.404055 + 0.699843i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 55.5056 + 32.0462i 2.40421 + 1.38807i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −37.4689 −1.61390
\(540\) 0 0
\(541\) 4.23030 0.181875 0.0909374 0.995857i \(-0.471014\pi\)
0.0909374 + 0.995857i \(0.471014\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) −8.92222 5.15125i −0.381487 0.220251i 0.296978 0.954884i \(-0.404021\pi\)
−0.678465 + 0.734633i \(0.737354\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 6.54203 11.3311i 0.278700 0.482722i
\(552\) 0 0
\(553\) 7.10285 4.10083i 0.302044 0.174385i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 6.00000i 0.254228i 0.991888 + 0.127114i \(0.0405714\pi\)
−0.991888 + 0.127114i \(0.959429\pi\)
\(558\) 0 0
\(559\) −33.8353 −1.43108
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 8.23964 4.75716i 0.347260 0.200490i −0.316218 0.948687i \(-0.602413\pi\)
0.663478 + 0.748196i \(0.269080\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 10.6336 18.4180i 0.445785 0.772122i −0.552322 0.833631i \(-0.686258\pi\)
0.998107 + 0.0615094i \(0.0195914\pi\)
\(570\) 0 0
\(571\) −8.20166 14.2057i −0.343229 0.594490i 0.641802 0.766871i \(-0.278187\pi\)
−0.985030 + 0.172381i \(0.944854\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 34.3328i 1.42929i −0.699485 0.714647i \(-0.746587\pi\)
0.699485 0.714647i \(-0.253413\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −7.99492 13.8476i −0.331685 0.574495i
\(582\) 0 0
\(583\) 13.8884 + 8.01847i 0.575199 + 0.332091i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −15.3265 8.84875i −0.632592 0.365227i 0.149163 0.988813i \(-0.452342\pi\)
−0.781755 + 0.623585i \(0.785675\pi\)
\(588\) 0 0
\(589\) 1.65040 + 2.85858i 0.0680035 + 0.117786i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 45.3227i 1.86118i 0.366065 + 0.930589i \(0.380705\pi\)
−0.366065 + 0.930589i \(0.619295\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 5.01847 + 8.69225i 0.205049 + 0.355156i 0.950148 0.311798i \(-0.100931\pi\)
−0.745099 + 0.666954i \(0.767598\pi\)
\(600\) 0 0
\(601\) −16.6521 + 28.8423i −0.679253 + 1.17650i 0.295953 + 0.955202i \(0.404363\pi\)
−0.975206 + 0.221298i \(0.928971\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 3.25013 1.87646i 0.131919 0.0761632i −0.432588 0.901592i \(-0.642400\pi\)
0.564507 + 0.825428i \(0.309066\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −69.3227 −2.80449
\(612\) 0 0
\(613\) 3.45043i 0.139362i −0.997569 0.0696808i \(-0.977802\pi\)
0.997569 0.0696808i \(-0.0221981\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 11.6644 6.73445i 0.469592 0.271119i −0.246477 0.969149i \(-0.579273\pi\)
0.716069 + 0.698030i \(0.245940\pi\)
\(618\) 0 0
\(619\) 1.27478 2.20799i 0.0512379 0.0887467i −0.839269 0.543717i \(-0.817017\pi\)
0.890507 + 0.454970i \(0.150350\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −10.6543 6.15125i −0.426854 0.246444i
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −22.9714 −0.915928
\(630\) 0 0
\(631\) 30.2017 1.20231 0.601155 0.799133i \(-0.294708\pi\)
0.601155 + 0.799133i \(0.294708\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 49.4522 + 28.5513i 1.95937 + 1.13124i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 8.20674 14.2145i 0.324147 0.561439i −0.657192 0.753723i \(-0.728256\pi\)
0.981339 + 0.192284i \(0.0615895\pi\)
\(642\) 0 0
\(643\) −1.97802 + 1.14201i −0.0780055 + 0.0450365i −0.538495 0.842628i \(-0.681007\pi\)
0.460490 + 0.887665i \(0.347674\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 6.08236i 0.239122i 0.992827 + 0.119561i \(0.0381487\pi\)
−0.992827 + 0.119561i \(0.961851\pi\)
\(648\) 0 0
\(649\) −16.0369 −0.629505
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −9.97742 + 5.76047i −0.390447 + 0.225424i −0.682354 0.731022i \(-0.739044\pi\)
0.291907 + 0.956447i \(0.405710\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 14.5328 25.1715i 0.566117 0.980544i −0.430828 0.902434i \(-0.641778\pi\)
0.996945 0.0781094i \(-0.0248883\pi\)
\(660\) 0 0
\(661\) −20.4689 35.4532i −0.796148 1.37897i −0.922108 0.386933i \(-0.873534\pi\)
0.125960 0.992035i \(-0.459799\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 15.1295i 0.585815i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 5.76047 + 9.97742i 0.222380 + 0.385174i
\(672\) 0 0
\(673\) −24.2647 14.0092i −0.935336 0.540016i −0.0468406 0.998902i \(-0.514915\pi\)
−0.888495 + 0.458886i \(0.848249\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 44.7320 + 25.8260i 1.71919 + 0.992576i 0.920410 + 0.390954i \(0.127855\pi\)
0.798781 + 0.601622i \(0.205479\pi\)
\(678\) 0 0
\(679\) 25.0185 + 43.3333i 0.960121 + 1.66298i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 13.8538i 0.530099i −0.964235 0.265050i \(-0.914612\pi\)
0.964235 0.265050i \(-0.0853883\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −12.2201 21.1659i −0.465550 0.806356i
\(690\) 0 0
\(691\) −6.45043 + 11.1725i −0.245386 + 0.425021i −0.962240 0.272202i \(-0.912248\pi\)
0.716854 + 0.697223i \(0.245581\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) −36.4211 + 21.0277i −1.37955 + 0.796481i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −1.75123 −0.0661430 −0.0330715 0.999453i \(-0.510529\pi\)
−0.0330715 + 0.999453i \(0.510529\pi\)
\(702\) 0 0
\(703\) 10.9344i 0.412399i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 57.5390 33.2201i 2.16398 1.24937i
\(708\) 0 0
\(709\) 7.16887 12.4168i 0.269233 0.466325i −0.699431 0.714700i \(-0.746563\pi\)
0.968664 + 0.248375i \(0.0798966\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −3.30545 1.90841i −0.123790 0.0714703i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −12.6050 −0.470087 −0.235043 0.971985i \(-0.575523\pi\)
−0.235043 + 0.971985i \(0.575523\pi\)
\(720\) 0 0
\(721\) −38.7546 −1.44330
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) −37.9231 21.8949i −1.40649 0.812038i −0.411443 0.911435i \(-0.634975\pi\)
−0.995048 + 0.0993972i \(0.968309\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 11.1008 19.2272i 0.410579 0.711144i
\(732\) 0 0
\(733\) 6.18003 3.56804i 0.228265 0.131789i −0.381507 0.924366i \(-0.624595\pi\)
0.609771 + 0.792578i \(0.291261\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 14.1832i 0.522445i
\(738\) 0 0
\(739\) 44.6419 1.64218 0.821090 0.570799i \(-0.193366\pi\)
0.821090 + 0.570799i \(0.193366\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 4.18601 2.41679i 0.153570 0.0886636i −0.421246 0.906946i \(-0.638407\pi\)
0.574816 + 0.818283i \(0.305074\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −9.57312 + 16.5811i −0.349794 + 0.605862i
\(750\) 0 0
\(751\) −14.4412 25.0129i −0.526967 0.912733i −0.999506 0.0314236i \(-0.989996\pi\)
0.472539 0.881310i \(-0.343337\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 30.5865i 1.11169i −0.831287 0.555843i \(-0.812396\pi\)
0.831287 0.555843i \(-0.187604\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −17.6193 30.5175i −0.638699 1.10626i −0.985718 0.168401i \(-0.946140\pi\)
0.347019 0.937858i \(-0.387194\pi\)
\(762\) 0 0
\(763\) −31.3122 18.0781i −1.13358 0.654472i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 21.1659 + 12.2201i 0.764256 + 0.441243i
\(768\) 0 0
\(769\) −22.6193 39.1778i −0.815673 1.41279i −0.908844 0.417137i \(-0.863034\pi\)
0.0931709 0.995650i \(-0.470300\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 27.2672i 0.980734i −0.871516 0.490367i \(-0.836863\pi\)
0.871516 0.490367i \(-0.163137\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 10.0092 + 17.3365i 0.358618 + 0.621145i
\(780\) 0 0
\(781\) −3.85206 + 6.67196i −0.137838 + 0.238742i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) −11.6484 + 6.72522i −0.415221 + 0.239728i −0.693031 0.720908i \(-0.743725\pi\)
0.277809 + 0.960636i \(0.410392\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 41.8353 1.48749
\(792\) 0 0
\(793\) 17.5579i 0.623498i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −2.78152 + 1.60591i −0.0985266 + 0.0568844i −0.548454 0.836181i \(-0.684783\pi\)
0.449927 + 0.893065i \(0.351450\pi\)
\(798\) 0 0
\(799\) 22.7437 39.3932i 0.804614 1.39363i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −26.4436 15.2672i −0.933176 0.538769i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 43.4689 1.52829 0.764143 0.645047i \(-0.223162\pi\)
0.764143 + 0.645047i \(0.223162\pi\)
\(810\) 0 0
\(811\) −18.4033 −0.646228 −0.323114 0.946360i \(-0.604730\pi\)
−0.323114 + 0.946360i \(0.604730\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) −9.15219 5.28402i −0.320195 0.184864i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −7.69243 + 13.3237i −0.268467 + 0.464999i −0.968466 0.249145i \(-0.919851\pi\)
0.699999 + 0.714144i \(0.253184\pi\)
\(822\) 0 0
\(823\) −17.2812 + 9.97729i −0.602384 + 0.347787i −0.769979 0.638069i \(-0.779733\pi\)
0.167595 + 0.985856i \(0.446400\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 37.0571i 1.28860i −0.764772 0.644301i \(-0.777148\pi\)
0.764772 0.644301i \(-0.222852\pi\)
\(828\) 0 0
\(829\) −14.9815 −0.520330 −0.260165 0.965564i \(-0.583777\pi\)
−0.260165 + 0.965564i \(0.583777\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −32.4490 + 18.7345i −1.12429 + 0.649110i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 3.27478 5.67209i 0.113058 0.195822i −0.803944 0.594705i \(-0.797269\pi\)
0.917002 + 0.398883i \(0.130602\pi\)
\(840\) 0 0
\(841\) −11.4320 19.8007i −0.394206 0.682784i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 14.6319i 0.502759i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −6.32189 10.9498i −0.216712 0.375356i
\(852\) 0 0
\(853\) 2.46423 + 1.42272i 0.0843736 + 0.0487131i 0.541593 0.840641i \(-0.317821\pi\)
−0.457220 + 0.889354i \(0.651155\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −15.7791 9.11007i −0.539004 0.311194i 0.205671 0.978621i \(-0.434062\pi\)
−0.744675 + 0.667427i \(0.767396\pi\)
\(858\) 0 0
\(859\) −23.0277 39.8852i −0.785695 1.36086i −0.928583 0.371125i \(-0.878972\pi\)
0.142888 0.989739i \(-0.454361\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 36.4521i 1.24084i −0.784268 0.620422i \(-0.786961\pi\)
0.784268 0.620422i \(-0.213039\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 3.81681 + 6.61091i 0.129476 + 0.224260i
\(870\) 0 0
\(871\) −10.8076 + 18.7193i −0.366201 + 0.634278i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −45.6548 + 26.3588i −1.54165 + 0.890075i −0.542920 + 0.839785i \(0.682681\pi\)
−0.998735 + 0.0502901i \(0.983985\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −17.8824 −0.602473 −0.301237 0.953549i \(-0.597399\pi\)
−0.301237 + 0.953549i \(0.597399\pi\)
\(882\) 0 0
\(883\) 29.3496i 0.987693i 0.869549 + 0.493846i \(0.164409\pi\)
−0.869549 + 0.493846i \(0.835591\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 14.4459 8.34036i 0.485047 0.280042i −0.237470 0.971395i \(-0.576318\pi\)
0.722517 + 0.691353i \(0.242985\pi\)
\(888\) 0 0
\(889\) 0.582359 1.00868i 0.0195317 0.0338299i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −18.7513 10.8260i −0.627487 0.362280i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 13.0841 0.436378
\(900\) 0 0
\(901\) 16.0369 0.534268
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 1.94603 + 1.12354i 0.0646168 + 0.0373065i 0.531960 0.846769i \(-0.321456\pi\)
−0.467344 + 0.884076i \(0.654789\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −5.14794 + 8.91649i −0.170559 + 0.295417i −0.938615 0.344965i \(-0.887891\pi\)
0.768057 + 0.640382i \(0.221224\pi\)
\(912\) 0 0
\(913\) 12.8885 7.44120i 0.426548 0.246268i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 87.2133i 2.88004i
\(918\) 0 0
\(919\) 14.0369 0.463036 0.231518 0.972831i \(-0.425631\pi\)
0.231518 + 0.972831i \(0.425631\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 10.1681 5.87053i 0.334686 0.193231i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −27.2201 + 47.1467i −0.893064 + 1.54683i −0.0568805 + 0.998381i \(0.518115\pi\)
−0.836183 + 0.548450i \(0.815218\pi\)
\(930\) 0 0
\(931\) 8.91764 + 15.4458i 0.292264 + 0.506216i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 33.0656i 1.08021i 0.841599 + 0.540103i \(0.181615\pi\)
−0.841599 + 0.540103i \(0.818385\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −6.60083 11.4330i −0.215181 0.372704i 0.738148 0.674639i \(-0.235701\pi\)
−0.953329 + 0.301935i \(0.902367\pi\)
\(942\) 0 0
\(943\) −20.0467 11.5740i −0.652810 0.376900i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 0.595256 + 0.343671i 0.0193432 + 0.0111678i 0.509640 0.860387i \(-0.329778\pi\)
−0.490297 + 0.871555i \(0.663112\pi\)
\(948\) 0 0
\(949\) 23.2672 + 40.3000i 0.755287 + 1.30819i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 32.7882i 1.06211i 0.847336 + 0.531057i \(0.178205\pi\)
−0.847336 + 0.531057i \(0.821795\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 5.26555 + 9.12020i 0.170033 + 0.294507i
\(960\) 0 0
\(961\) 13.8496 23.9882i 0.446761 0.773813i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 4.99817 2.88570i 0.160730 0.0927977i −0.417477 0.908687i \(-0.637086\pi\)
0.578208 + 0.815890i \(0.303752\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 41.1210 1.31964 0.659818 0.751426i \(-0.270633\pi\)
0.659818 + 0.751426i \(0.270633\pi\)
\(972\) 0 0
\(973\) 16.4033i 0.525866i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −11.3922 + 6.57728i −0.364468 + 0.210426i −0.671039 0.741422i \(-0.734152\pi\)
0.306571 + 0.951848i \(0.400818\pi\)
\(978\) 0 0
\(979\) 5.72522 9.91636i 0.182979 0.316928i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 15.7078 + 9.06889i 0.501000 + 0.289253i 0.729126 0.684379i \(-0.239927\pi\)
−0.228126 + 0.973632i \(0.573260\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 12.2201 0.388578
\(990\) 0 0
\(991\) 11.4320 0.363148 0.181574 0.983377i \(-0.441881\pi\)
0.181574 + 0.983377i \(0.441881\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) −7.38815 4.26555i −0.233985 0.135091i 0.378424 0.925632i \(-0.376466\pi\)
−0.612409 + 0.790541i \(0.709799\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2700.2.s.c.2449.6 12
3.2 odd 2 900.2.s.c.349.2 12
5.2 odd 4 540.2.i.b.181.1 6
5.3 odd 4 2700.2.i.c.1801.3 6
5.4 even 2 inner 2700.2.s.c.2449.1 12
9.2 odd 6 8100.2.d.p.649.1 6
9.4 even 3 inner 2700.2.s.c.1549.1 12
9.5 odd 6 900.2.s.c.49.5 12
9.7 even 3 8100.2.d.o.649.1 6
15.2 even 4 180.2.i.b.61.3 6
15.8 even 4 900.2.i.c.601.1 6
15.14 odd 2 900.2.s.c.349.5 12
20.7 even 4 2160.2.q.i.721.3 6
45.2 even 12 1620.2.a.i.1.3 3
45.4 even 6 inner 2700.2.s.c.1549.6 12
45.7 odd 12 1620.2.a.j.1.3 3
45.13 odd 12 2700.2.i.c.901.3 6
45.14 odd 6 900.2.s.c.49.2 12
45.22 odd 12 540.2.i.b.361.1 6
45.23 even 12 900.2.i.c.301.1 6
45.29 odd 6 8100.2.d.p.649.6 6
45.32 even 12 180.2.i.b.121.3 yes 6
45.34 even 6 8100.2.d.o.649.6 6
45.38 even 12 8100.2.a.v.1.1 3
45.43 odd 12 8100.2.a.u.1.1 3
60.47 odd 4 720.2.q.k.241.1 6
180.7 even 12 6480.2.a.bw.1.1 3
180.47 odd 12 6480.2.a.bt.1.1 3
180.67 even 12 2160.2.q.i.1441.3 6
180.167 odd 12 720.2.q.k.481.1 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
180.2.i.b.61.3 6 15.2 even 4
180.2.i.b.121.3 yes 6 45.32 even 12
540.2.i.b.181.1 6 5.2 odd 4
540.2.i.b.361.1 6 45.22 odd 12
720.2.q.k.241.1 6 60.47 odd 4
720.2.q.k.481.1 6 180.167 odd 12
900.2.i.c.301.1 6 45.23 even 12
900.2.i.c.601.1 6 15.8 even 4
900.2.s.c.49.2 12 45.14 odd 6
900.2.s.c.49.5 12 9.5 odd 6
900.2.s.c.349.2 12 3.2 odd 2
900.2.s.c.349.5 12 15.14 odd 2
1620.2.a.i.1.3 3 45.2 even 12
1620.2.a.j.1.3 3 45.7 odd 12
2160.2.q.i.721.3 6 20.7 even 4
2160.2.q.i.1441.3 6 180.67 even 12
2700.2.i.c.901.3 6 45.13 odd 12
2700.2.i.c.1801.3 6 5.3 odd 4
2700.2.s.c.1549.1 12 9.4 even 3 inner
2700.2.s.c.1549.6 12 45.4 even 6 inner
2700.2.s.c.2449.1 12 5.4 even 2 inner
2700.2.s.c.2449.6 12 1.1 even 1 trivial
6480.2.a.bt.1.1 3 180.47 odd 12
6480.2.a.bw.1.1 3 180.7 even 12
8100.2.a.u.1.1 3 45.43 odd 12
8100.2.a.v.1.1 3 45.38 even 12
8100.2.d.o.649.1 6 9.7 even 3
8100.2.d.o.649.6 6 45.34 even 6
8100.2.d.p.649.1 6 9.2 odd 6
8100.2.d.p.649.6 6 45.29 odd 6