Properties

Label 6480.2.a.bw.1.1
Level $6480$
Weight $2$
Character 6480.1
Self dual yes
Analytic conductor $51.743$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [6480,2,Mod(1,6480)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(6480, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("6480.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 6480 = 2^{4} \cdot 3^{4} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6480.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(51.7430605098\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.564.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 5x + 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 3 \)
Twist minimal: no (minimal twist has level 180)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(0.571993\) of defining polynomial
Character \(\chi\) \(=\) 6480.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{5} -4.10083 q^{7} -3.81681 q^{11} +5.81681 q^{13} -3.81681 q^{17} +1.81681 q^{19} +2.10083 q^{23} +1.00000 q^{25} +7.20166 q^{29} +1.81681 q^{31} -4.10083 q^{35} -6.01847 q^{37} -11.0185 q^{41} -5.81681 q^{43} +11.9176 q^{47} +9.81681 q^{49} -4.20166 q^{53} -3.81681 q^{55} -4.20166 q^{59} -3.01847 q^{61} +5.81681 q^{65} -3.71598 q^{67} -2.01847 q^{71} +8.00000 q^{73} +15.6521 q^{77} -2.00000 q^{79} -3.89917 q^{83} -3.81681 q^{85} +3.00000 q^{89} -23.8538 q^{91} +1.81681 q^{95} +12.2017 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 3 q^{5} - 3 q^{7} + 6 q^{13} - 6 q^{19} - 3 q^{23} + 3 q^{25} + 3 q^{29} - 6 q^{31} - 3 q^{35} + 12 q^{37} - 3 q^{41} - 6 q^{43} + 15 q^{47} + 18 q^{49} + 6 q^{53} + 6 q^{59} + 21 q^{61} + 6 q^{65}+ \cdots + 18 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 1.00000 0.447214
\(6\) 0 0
\(7\) −4.10083 −1.54997 −0.774984 0.631981i \(-0.782242\pi\)
−0.774984 + 0.631981i \(0.782242\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −3.81681 −1.15081 −0.575406 0.817868i \(-0.695156\pi\)
−0.575406 + 0.817868i \(0.695156\pi\)
\(12\) 0 0
\(13\) 5.81681 1.61329 0.806646 0.591034i \(-0.201280\pi\)
0.806646 + 0.591034i \(0.201280\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −3.81681 −0.925712 −0.462856 0.886433i \(-0.653175\pi\)
−0.462856 + 0.886433i \(0.653175\pi\)
\(18\) 0 0
\(19\) 1.81681 0.416805 0.208402 0.978043i \(-0.433174\pi\)
0.208402 + 0.978043i \(0.433174\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 2.10083 0.438053 0.219027 0.975719i \(-0.429712\pi\)
0.219027 + 0.975719i \(0.429712\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 7.20166 1.33731 0.668657 0.743571i \(-0.266869\pi\)
0.668657 + 0.743571i \(0.266869\pi\)
\(30\) 0 0
\(31\) 1.81681 0.326309 0.163154 0.986601i \(-0.447833\pi\)
0.163154 + 0.986601i \(0.447833\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −4.10083 −0.693167
\(36\) 0 0
\(37\) −6.01847 −0.989431 −0.494715 0.869055i \(-0.664728\pi\)
−0.494715 + 0.869055i \(0.664728\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −11.0185 −1.72080 −0.860398 0.509623i \(-0.829785\pi\)
−0.860398 + 0.509623i \(0.829785\pi\)
\(42\) 0 0
\(43\) −5.81681 −0.887055 −0.443528 0.896261i \(-0.646273\pi\)
−0.443528 + 0.896261i \(0.646273\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 11.9176 1.73837 0.869183 0.494490i \(-0.164645\pi\)
0.869183 + 0.494490i \(0.164645\pi\)
\(48\) 0 0
\(49\) 9.81681 1.40240
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −4.20166 −0.577143 −0.288571 0.957458i \(-0.593180\pi\)
−0.288571 + 0.957458i \(0.593180\pi\)
\(54\) 0 0
\(55\) −3.81681 −0.514659
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −4.20166 −0.547010 −0.273505 0.961871i \(-0.588183\pi\)
−0.273505 + 0.961871i \(0.588183\pi\)
\(60\) 0 0
\(61\) −3.01847 −0.386476 −0.193238 0.981152i \(-0.561899\pi\)
−0.193238 + 0.981152i \(0.561899\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 5.81681 0.721487
\(66\) 0 0
\(67\) −3.71598 −0.453979 −0.226990 0.973897i \(-0.572888\pi\)
−0.226990 + 0.973897i \(0.572888\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −2.01847 −0.239548 −0.119774 0.992801i \(-0.538217\pi\)
−0.119774 + 0.992801i \(0.538217\pi\)
\(72\) 0 0
\(73\) 8.00000 0.936329 0.468165 0.883641i \(-0.344915\pi\)
0.468165 + 0.883641i \(0.344915\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 15.6521 1.78372
\(78\) 0 0
\(79\) −2.00000 −0.225018 −0.112509 0.993651i \(-0.535889\pi\)
−0.112509 + 0.993651i \(0.535889\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −3.89917 −0.427989 −0.213995 0.976835i \(-0.568648\pi\)
−0.213995 + 0.976835i \(0.568648\pi\)
\(84\) 0 0
\(85\) −3.81681 −0.413991
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 3.00000 0.317999 0.159000 0.987279i \(-0.449173\pi\)
0.159000 + 0.987279i \(0.449173\pi\)
\(90\) 0 0
\(91\) −23.8538 −2.50055
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 1.81681 0.186401
\(96\) 0 0
\(97\) 12.2017 1.23889 0.619445 0.785040i \(-0.287357\pi\)
0.619445 + 0.785040i \(0.287357\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −16.2017 −1.61213 −0.806063 0.591830i \(-0.798406\pi\)
−0.806063 + 0.591830i \(0.798406\pi\)
\(102\) 0 0
\(103\) 9.45043 0.931179 0.465589 0.885001i \(-0.345842\pi\)
0.465589 + 0.885001i \(0.345842\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 4.66887 0.451357 0.225678 0.974202i \(-0.427540\pi\)
0.225678 + 0.974202i \(0.427540\pi\)
\(108\) 0 0
\(109\) 8.81681 0.844497 0.422249 0.906480i \(-0.361241\pi\)
0.422249 + 0.906480i \(0.361241\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 10.2017 0.959692 0.479846 0.877353i \(-0.340693\pi\)
0.479846 + 0.877353i \(0.340693\pi\)
\(114\) 0 0
\(115\) 2.10083 0.195903
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 15.6521 1.43482
\(120\) 0 0
\(121\) 3.56804 0.324367
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 1.00000 0.0894427
\(126\) 0 0
\(127\) −0.284020 −0.0252027 −0.0126014 0.999921i \(-0.504011\pi\)
−0.0126014 + 0.999921i \(0.504011\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 21.2672 1.85813 0.929064 0.369920i \(-0.120615\pi\)
0.929064 + 0.369920i \(0.120615\pi\)
\(132\) 0 0
\(133\) −7.45043 −0.646034
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 2.56804 0.219402 0.109701 0.993965i \(-0.465011\pi\)
0.109701 + 0.993965i \(0.465011\pi\)
\(138\) 0 0
\(139\) 4.00000 0.339276 0.169638 0.985506i \(-0.445740\pi\)
0.169638 + 0.985506i \(0.445740\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −22.2017 −1.85660
\(144\) 0 0
\(145\) 7.20166 0.598065
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 14.4504 1.18383 0.591913 0.806002i \(-0.298373\pi\)
0.591913 + 0.806002i \(0.298373\pi\)
\(150\) 0 0
\(151\) 8.58651 0.698760 0.349380 0.936981i \(-0.386392\pi\)
0.349380 + 0.936981i \(0.386392\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 1.81681 0.145930
\(156\) 0 0
\(157\) 19.8353 1.58303 0.791514 0.611151i \(-0.209293\pi\)
0.791514 + 0.611151i \(0.209293\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −8.61515 −0.678969
\(162\) 0 0
\(163\) 13.8168 1.08222 0.541108 0.840953i \(-0.318005\pi\)
0.541108 + 0.840953i \(0.318005\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 6.08236 0.470667 0.235334 0.971915i \(-0.424382\pi\)
0.235334 + 0.971915i \(0.424382\pi\)
\(168\) 0 0
\(169\) 20.8353 1.60271
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 4.36638 0.331970 0.165985 0.986128i \(-0.446920\pi\)
0.165985 + 0.986128i \(0.446920\pi\)
\(174\) 0 0
\(175\) −4.10083 −0.309994
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 6.38485 0.477226 0.238613 0.971115i \(-0.423307\pi\)
0.238613 + 0.971115i \(0.423307\pi\)
\(180\) 0 0
\(181\) 10.0656 0.748169 0.374084 0.927395i \(-0.377957\pi\)
0.374084 + 0.927395i \(0.377957\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −6.01847 −0.442487
\(186\) 0 0
\(187\) 14.5680 1.06532
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −15.6521 −1.13255 −0.566273 0.824218i \(-0.691615\pi\)
−0.566273 + 0.824218i \(0.691615\pi\)
\(192\) 0 0
\(193\) 13.4504 0.968183 0.484092 0.875017i \(-0.339150\pi\)
0.484092 + 0.875017i \(0.339150\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 1.79834 0.128126 0.0640632 0.997946i \(-0.479594\pi\)
0.0640632 + 0.997946i \(0.479594\pi\)
\(198\) 0 0
\(199\) 22.2201 1.57514 0.787572 0.616223i \(-0.211338\pi\)
0.787572 + 0.616223i \(0.211338\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −29.5328 −2.07280
\(204\) 0 0
\(205\) −11.0185 −0.769563
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −6.93442 −0.479664
\(210\) 0 0
\(211\) 28.2201 1.94275 0.971377 0.237543i \(-0.0763421\pi\)
0.971377 + 0.237543i \(0.0763421\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −5.81681 −0.396703
\(216\) 0 0
\(217\) −7.45043 −0.505768
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −22.2017 −1.49345
\(222\) 0 0
\(223\) −1.91764 −0.128415 −0.0642074 0.997937i \(-0.520452\pi\)
−0.0642074 + 0.997937i \(0.520452\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −8.01847 −0.532205 −0.266102 0.963945i \(-0.585736\pi\)
−0.266102 + 0.963945i \(0.585736\pi\)
\(228\) 0 0
\(229\) −18.8353 −1.24467 −0.622335 0.782751i \(-0.713816\pi\)
−0.622335 + 0.782751i \(0.713816\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 14.0185 0.918381 0.459190 0.888338i \(-0.348140\pi\)
0.459190 + 0.888338i \(0.348140\pi\)
\(234\) 0 0
\(235\) 11.9176 0.777421
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 10.2017 0.659891 0.329945 0.944000i \(-0.392970\pi\)
0.329945 + 0.944000i \(0.392970\pi\)
\(240\) 0 0
\(241\) 17.2201 1.10925 0.554623 0.832102i \(-0.312862\pi\)
0.554623 + 0.832102i \(0.312862\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 9.81681 0.627173
\(246\) 0 0
\(247\) 10.5680 0.672428
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −0.384851 −0.0242916 −0.0121458 0.999926i \(-0.503866\pi\)
−0.0121458 + 0.999926i \(0.503866\pi\)
\(252\) 0 0
\(253\) −8.01847 −0.504117
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −9.26724 −0.578075 −0.289037 0.957318i \(-0.593335\pi\)
−0.289037 + 0.957318i \(0.593335\pi\)
\(258\) 0 0
\(259\) 24.6807 1.53359
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −25.8538 −1.59421 −0.797105 0.603840i \(-0.793636\pi\)
−0.797105 + 0.603840i \(0.793636\pi\)
\(264\) 0 0
\(265\) −4.20166 −0.258106
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −28.0841 −1.71231 −0.856157 0.516715i \(-0.827155\pi\)
−0.856157 + 0.516715i \(0.827155\pi\)
\(270\) 0 0
\(271\) 21.4504 1.30302 0.651510 0.758640i \(-0.274136\pi\)
0.651510 + 0.758640i \(0.274136\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −3.81681 −0.230162
\(276\) 0 0
\(277\) −7.81681 −0.469667 −0.234833 0.972036i \(-0.575454\pi\)
−0.234833 + 0.972036i \(0.575454\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −5.18319 −0.309203 −0.154602 0.987977i \(-0.549409\pi\)
−0.154602 + 0.987977i \(0.549409\pi\)
\(282\) 0 0
\(283\) 18.1008 1.07598 0.537991 0.842950i \(-0.319183\pi\)
0.537991 + 0.842950i \(0.319183\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 45.1849 2.66718
\(288\) 0 0
\(289\) −2.43196 −0.143056
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 16.5865 0.968994 0.484497 0.874793i \(-0.339003\pi\)
0.484497 + 0.874793i \(0.339003\pi\)
\(294\) 0 0
\(295\) −4.20166 −0.244630
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 12.2201 0.706708
\(300\) 0 0
\(301\) 23.8538 1.37491
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −3.01847 −0.172837
\(306\) 0 0
\(307\) 22.3025 1.27287 0.636435 0.771330i \(-0.280408\pi\)
0.636435 + 0.771330i \(0.280408\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −27.6521 −1.56801 −0.784003 0.620757i \(-0.786825\pi\)
−0.784003 + 0.620757i \(0.786825\pi\)
\(312\) 0 0
\(313\) 11.6521 0.658615 0.329308 0.944223i \(-0.393185\pi\)
0.329308 + 0.944223i \(0.393185\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −11.6151 −0.652372 −0.326186 0.945306i \(-0.605764\pi\)
−0.326186 + 0.945306i \(0.605764\pi\)
\(318\) 0 0
\(319\) −27.4874 −1.53900
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −6.93442 −0.385841
\(324\) 0 0
\(325\) 5.81681 0.322659
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −48.8722 −2.69441
\(330\) 0 0
\(331\) 19.4320 1.06808 0.534039 0.845460i \(-0.320674\pi\)
0.534039 + 0.845460i \(0.320674\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −3.71598 −0.203026
\(336\) 0 0
\(337\) −9.83528 −0.535762 −0.267881 0.963452i \(-0.586323\pi\)
−0.267881 + 0.963452i \(0.586323\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −6.93442 −0.375520
\(342\) 0 0
\(343\) −11.5513 −0.623709
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 22.5865 1.21251 0.606254 0.795271i \(-0.292672\pi\)
0.606254 + 0.795271i \(0.292672\pi\)
\(348\) 0 0
\(349\) 5.86392 0.313888 0.156944 0.987607i \(-0.449836\pi\)
0.156944 + 0.987607i \(0.449836\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 24.0000 1.27739 0.638696 0.769460i \(-0.279474\pi\)
0.638696 + 0.769460i \(0.279474\pi\)
\(354\) 0 0
\(355\) −2.01847 −0.107129
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −19.2488 −1.01591 −0.507956 0.861383i \(-0.669599\pi\)
−0.507956 + 0.861383i \(0.669599\pi\)
\(360\) 0 0
\(361\) −15.6992 −0.826274
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 8.00000 0.418739
\(366\) 0 0
\(367\) −18.5865 −0.970208 −0.485104 0.874456i \(-0.661218\pi\)
−0.485104 + 0.874456i \(0.661218\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 17.2303 0.894553
\(372\) 0 0
\(373\) 0.201661 0.0104416 0.00522080 0.999986i \(-0.498338\pi\)
0.00522080 + 0.999986i \(0.498338\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 41.8907 2.15748
\(378\) 0 0
\(379\) 2.36638 0.121553 0.0607764 0.998151i \(-0.480642\pi\)
0.0607764 + 0.998151i \(0.480642\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 25.8538 1.32107 0.660533 0.750797i \(-0.270331\pi\)
0.660533 + 0.750797i \(0.270331\pi\)
\(384\) 0 0
\(385\) 15.6521 0.797704
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 17.7882 0.901896 0.450948 0.892550i \(-0.351086\pi\)
0.450948 + 0.892550i \(0.351086\pi\)
\(390\) 0 0
\(391\) −8.01847 −0.405512
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −2.00000 −0.100631
\(396\) 0 0
\(397\) 13.6706 0.686106 0.343053 0.939316i \(-0.388539\pi\)
0.343053 + 0.939316i \(0.388539\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 7.46890 0.372979 0.186490 0.982457i \(-0.440289\pi\)
0.186490 + 0.982457i \(0.440289\pi\)
\(402\) 0 0
\(403\) 10.5680 0.526432
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 22.9714 1.13865
\(408\) 0 0
\(409\) −29.3042 −1.44900 −0.724499 0.689276i \(-0.757929\pi\)
−0.724499 + 0.689276i \(0.757929\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 17.2303 0.847848
\(414\) 0 0
\(415\) −3.89917 −0.191403
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −36.2201 −1.76947 −0.884735 0.466095i \(-0.845660\pi\)
−0.884735 + 0.466095i \(0.845660\pi\)
\(420\) 0 0
\(421\) −26.0369 −1.26896 −0.634481 0.772938i \(-0.718786\pi\)
−0.634481 + 0.772938i \(0.718786\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −3.81681 −0.185142
\(426\) 0 0
\(427\) 12.3782 0.599025
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 22.0369 1.06148 0.530741 0.847534i \(-0.321914\pi\)
0.530741 + 0.847534i \(0.321914\pi\)
\(432\) 0 0
\(433\) −0.183190 −0.00880354 −0.00440177 0.999990i \(-0.501401\pi\)
−0.00440177 + 0.999990i \(0.501401\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 3.81681 0.182583
\(438\) 0 0
\(439\) 22.6050 1.07888 0.539438 0.842025i \(-0.318637\pi\)
0.539438 + 0.842025i \(0.318637\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −29.9176 −1.42143 −0.710715 0.703480i \(-0.751628\pi\)
−0.710715 + 0.703480i \(0.751628\pi\)
\(444\) 0 0
\(445\) 3.00000 0.142214
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −12.1647 −0.574089 −0.287044 0.957917i \(-0.592673\pi\)
−0.287044 + 0.957917i \(0.592673\pi\)
\(450\) 0 0
\(451\) 42.0554 1.98031
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −23.8538 −1.11828
\(456\) 0 0
\(457\) −34.0554 −1.59305 −0.796523 0.604609i \(-0.793329\pi\)
−0.796523 + 0.604609i \(0.793329\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −38.5058 −1.79340 −0.896698 0.442643i \(-0.854041\pi\)
−0.896698 + 0.442643i \(0.854041\pi\)
\(462\) 0 0
\(463\) 0.0184711 0.000858425 0 0.000429212 1.00000i \(-0.499863\pi\)
0.000429212 1.00000i \(0.499863\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −10.5865 −0.489885 −0.244943 0.969538i \(-0.578769\pi\)
−0.244943 + 0.969538i \(0.578769\pi\)
\(468\) 0 0
\(469\) 15.2386 0.703653
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 22.2017 1.02083
\(474\) 0 0
\(475\) 1.81681 0.0833610
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −6.76970 −0.309316 −0.154658 0.987968i \(-0.549427\pi\)
−0.154658 + 0.987968i \(0.549427\pi\)
\(480\) 0 0
\(481\) −35.0083 −1.59624
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 12.2017 0.554049
\(486\) 0 0
\(487\) −31.2857 −1.41769 −0.708845 0.705364i \(-0.750784\pi\)
−0.708845 + 0.705364i \(0.750784\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 18.1647 0.819762 0.409881 0.912139i \(-0.365570\pi\)
0.409881 + 0.912139i \(0.365570\pi\)
\(492\) 0 0
\(493\) −27.4874 −1.23797
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 8.27741 0.371292
\(498\) 0 0
\(499\) 2.53110 0.113308 0.0566538 0.998394i \(-0.481957\pi\)
0.0566538 + 0.998394i \(0.481957\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 18.6873 0.833227 0.416614 0.909084i \(-0.363217\pi\)
0.416614 + 0.909084i \(0.363217\pi\)
\(504\) 0 0
\(505\) −16.2017 −0.720964
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −9.86392 −0.437211 −0.218605 0.975813i \(-0.570151\pi\)
−0.218605 + 0.975813i \(0.570151\pi\)
\(510\) 0 0
\(511\) −32.8066 −1.45128
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 9.45043 0.416436
\(516\) 0 0
\(517\) −45.4874 −2.00053
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −9.60498 −0.420802 −0.210401 0.977615i \(-0.567477\pi\)
−0.210401 + 0.977615i \(0.567477\pi\)
\(522\) 0 0
\(523\) −4.32096 −0.188942 −0.0944712 0.995528i \(-0.530116\pi\)
−0.0944712 + 0.995528i \(0.530116\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −6.93442 −0.302068
\(528\) 0 0
\(529\) −18.5865 −0.808109
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −64.0924 −2.77615
\(534\) 0 0
\(535\) 4.66887 0.201853
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −37.4689 −1.61390
\(540\) 0 0
\(541\) 4.23030 0.181875 0.0909374 0.995857i \(-0.471014\pi\)
0.0909374 + 0.995857i \(0.471014\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 8.81681 0.377671
\(546\) 0 0
\(547\) 10.3025 0.440503 0.220251 0.975443i \(-0.429312\pi\)
0.220251 + 0.975443i \(0.429312\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 13.0841 0.557399
\(552\) 0 0
\(553\) 8.20166 0.348770
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −6.00000 −0.254228 −0.127114 0.991888i \(-0.540571\pi\)
−0.127114 + 0.991888i \(0.540571\pi\)
\(558\) 0 0
\(559\) −33.8353 −1.43108
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −9.51432 −0.400981 −0.200490 0.979696i \(-0.564254\pi\)
−0.200490 + 0.979696i \(0.564254\pi\)
\(564\) 0 0
\(565\) 10.2017 0.429187
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 21.2672 0.891569 0.445785 0.895140i \(-0.352925\pi\)
0.445785 + 0.895140i \(0.352925\pi\)
\(570\) 0 0
\(571\) −16.4033 −0.686458 −0.343229 0.939252i \(-0.611521\pi\)
−0.343229 + 0.939252i \(0.611521\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 2.10083 0.0876107
\(576\) 0 0
\(577\) 34.3328 1.42929 0.714647 0.699485i \(-0.246587\pi\)
0.714647 + 0.699485i \(0.246587\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 15.9898 0.663370
\(582\) 0 0
\(583\) 16.0369 0.664182
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 17.6975 0.730454 0.365227 0.930918i \(-0.380991\pi\)
0.365227 + 0.930918i \(0.380991\pi\)
\(588\) 0 0
\(589\) 3.30080 0.136007
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 45.3227 1.86118 0.930589 0.366065i \(-0.119295\pi\)
0.930589 + 0.366065i \(0.119295\pi\)
\(594\) 0 0
\(595\) 15.6521 0.641673
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −10.0369 −0.410098 −0.205049 0.978752i \(-0.565735\pi\)
−0.205049 + 0.978752i \(0.565735\pi\)
\(600\) 0 0
\(601\) 33.3042 1.35851 0.679253 0.733904i \(-0.262304\pi\)
0.679253 + 0.733904i \(0.262304\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 3.56804 0.145061
\(606\) 0 0
\(607\) 3.75292 0.152326 0.0761632 0.997095i \(-0.475733\pi\)
0.0761632 + 0.997095i \(0.475733\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 69.3227 2.80449
\(612\) 0 0
\(613\) −3.45043 −0.139362 −0.0696808 0.997569i \(-0.522198\pi\)
−0.0696808 + 0.997569i \(0.522198\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −13.4689 −0.542238 −0.271119 0.962546i \(-0.587394\pi\)
−0.271119 + 0.962546i \(0.587394\pi\)
\(618\) 0 0
\(619\) −2.54957 −0.102476 −0.0512379 0.998686i \(-0.516317\pi\)
−0.0512379 + 0.998686i \(0.516317\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −12.3025 −0.492889
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 22.9714 0.915928
\(630\) 0 0
\(631\) −30.2017 −1.20231 −0.601155 0.799133i \(-0.705292\pi\)
−0.601155 + 0.799133i \(0.705292\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −0.284020 −0.0112710
\(636\) 0 0
\(637\) 57.1025 2.26248
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −16.4135 −0.648294 −0.324147 0.946007i \(-0.605077\pi\)
−0.324147 + 0.946007i \(0.605077\pi\)
\(642\) 0 0
\(643\) 2.28402 0.0900730 0.0450365 0.998985i \(-0.485660\pi\)
0.0450365 + 0.998985i \(0.485660\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 6.08236 0.239122 0.119561 0.992827i \(-0.461851\pi\)
0.119561 + 0.992827i \(0.461851\pi\)
\(648\) 0 0
\(649\) 16.0369 0.629505
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −11.5209 −0.450849 −0.225424 0.974261i \(-0.572377\pi\)
−0.225424 + 0.974261i \(0.572377\pi\)
\(654\) 0 0
\(655\) 21.2672 0.830980
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −29.0656 −1.13223 −0.566117 0.824325i \(-0.691555\pi\)
−0.566117 + 0.824325i \(0.691555\pi\)
\(660\) 0 0
\(661\) 40.9378 1.59230 0.796148 0.605102i \(-0.206868\pi\)
0.796148 + 0.605102i \(0.206868\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −7.45043 −0.288915
\(666\) 0 0
\(667\) 15.1295 0.585815
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 11.5209 0.444761
\(672\) 0 0
\(673\) 28.0185 1.08003 0.540016 0.841655i \(-0.318418\pi\)
0.540016 + 0.841655i \(0.318418\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 51.6521 1.98515 0.992576 0.121630i \(-0.0388120\pi\)
0.992576 + 0.121630i \(0.0388120\pi\)
\(678\) 0 0
\(679\) −50.0369 −1.92024
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 13.8538 0.530099 0.265050 0.964235i \(-0.414612\pi\)
0.265050 + 0.964235i \(0.414612\pi\)
\(684\) 0 0
\(685\) 2.56804 0.0981198
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −24.4403 −0.931100
\(690\) 0 0
\(691\) −12.9009 −0.490772 −0.245386 0.969425i \(-0.578915\pi\)
−0.245386 + 0.969425i \(0.578915\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 4.00000 0.151729
\(696\) 0 0
\(697\) 42.0554 1.59296
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −1.75123 −0.0661430 −0.0330715 0.999453i \(-0.510529\pi\)
−0.0330715 + 0.999453i \(0.510529\pi\)
\(702\) 0 0
\(703\) −10.9344 −0.412399
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 66.4403 2.49874
\(708\) 0 0
\(709\) 14.3377 0.538465 0.269233 0.963075i \(-0.413230\pi\)
0.269233 + 0.963075i \(0.413230\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 3.81681 0.142941
\(714\) 0 0
\(715\) −22.2017 −0.830295
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −12.6050 −0.470087 −0.235043 0.971985i \(-0.575523\pi\)
−0.235043 + 0.971985i \(0.575523\pi\)
\(720\) 0 0
\(721\) −38.7546 −1.44330
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 7.20166 0.267463
\(726\) 0 0
\(727\) 43.7899 1.62408 0.812038 0.583604i \(-0.198358\pi\)
0.812038 + 0.583604i \(0.198358\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 22.2017 0.821158
\(732\) 0 0
\(733\) 7.13608 0.263577 0.131789 0.991278i \(-0.457928\pi\)
0.131789 + 0.991278i \(0.457928\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 14.1832 0.522445
\(738\) 0 0
\(739\) 44.6419 1.64218 0.821090 0.570799i \(-0.193366\pi\)
0.821090 + 0.570799i \(0.193366\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −4.83359 −0.177327 −0.0886636 0.996062i \(-0.528260\pi\)
−0.0886636 + 0.996062i \(0.528260\pi\)
\(744\) 0 0
\(745\) 14.4504 0.529423
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −19.1462 −0.699589
\(750\) 0 0
\(751\) −28.8824 −1.05393 −0.526967 0.849886i \(-0.676671\pi\)
−0.526967 + 0.849886i \(0.676671\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 8.58651 0.312495
\(756\) 0 0
\(757\) 30.5865 1.11169 0.555843 0.831287i \(-0.312396\pi\)
0.555843 + 0.831287i \(0.312396\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 35.2386 1.27740 0.638699 0.769457i \(-0.279473\pi\)
0.638699 + 0.769457i \(0.279473\pi\)
\(762\) 0 0
\(763\) −36.1562 −1.30894
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −24.4403 −0.882487
\(768\) 0 0
\(769\) −45.2386 −1.63135 −0.815673 0.578513i \(-0.803633\pi\)
−0.815673 + 0.578513i \(0.803633\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −27.2672 −0.980734 −0.490367 0.871516i \(-0.663137\pi\)
−0.490367 + 0.871516i \(0.663137\pi\)
\(774\) 0 0
\(775\) 1.81681 0.0652618
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −20.0185 −0.717236
\(780\) 0 0
\(781\) 7.70412 0.275675
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 19.8353 0.707952
\(786\) 0 0
\(787\) −13.4504 −0.479456 −0.239728 0.970840i \(-0.577058\pi\)
−0.239728 + 0.970840i \(0.577058\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −41.8353 −1.48749
\(792\) 0 0
\(793\) −17.5579 −0.623498
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 3.21183 0.113769 0.0568844 0.998381i \(-0.481883\pi\)
0.0568844 + 0.998381i \(0.481883\pi\)
\(798\) 0 0
\(799\) −45.4874 −1.60923
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −30.5345 −1.07754
\(804\) 0 0
\(805\) −8.61515 −0.303644
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −43.4689 −1.52829 −0.764143 0.645047i \(-0.776838\pi\)
−0.764143 + 0.645047i \(0.776838\pi\)
\(810\) 0 0
\(811\) 18.4033 0.646228 0.323114 0.946360i \(-0.395270\pi\)
0.323114 + 0.946360i \(0.395270\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 13.8168 0.483982
\(816\) 0 0
\(817\) −10.5680 −0.369729
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 15.3849 0.536935 0.268467 0.963289i \(-0.413483\pi\)
0.268467 + 0.963289i \(0.413483\pi\)
\(822\) 0 0
\(823\) 19.9546 0.695573 0.347787 0.937574i \(-0.386933\pi\)
0.347787 + 0.937574i \(0.386933\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −37.0571 −1.28860 −0.644301 0.764772i \(-0.722852\pi\)
−0.644301 + 0.764772i \(0.722852\pi\)
\(828\) 0 0
\(829\) 14.9815 0.520330 0.260165 0.965564i \(-0.416223\pi\)
0.260165 + 0.965564i \(0.416223\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −37.4689 −1.29822
\(834\) 0 0
\(835\) 6.08236 0.210489
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −6.54957 −0.226116 −0.113058 0.993588i \(-0.536065\pi\)
−0.113058 + 0.993588i \(0.536065\pi\)
\(840\) 0 0
\(841\) 22.8639 0.788411
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 20.8353 0.716755
\(846\) 0 0
\(847\) −14.6319 −0.502759
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −12.6438 −0.433423
\(852\) 0 0
\(853\) −2.84545 −0.0974263 −0.0487131 0.998813i \(-0.515512\pi\)
−0.0487131 + 0.998813i \(0.515512\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −18.2201 −0.622388 −0.311194 0.950346i \(-0.600729\pi\)
−0.311194 + 0.950346i \(0.600729\pi\)
\(858\) 0 0
\(859\) 46.0554 1.57139 0.785695 0.618614i \(-0.212305\pi\)
0.785695 + 0.618614i \(0.212305\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 36.4521 1.24084 0.620422 0.784268i \(-0.286961\pi\)
0.620422 + 0.784268i \(0.286961\pi\)
\(864\) 0 0
\(865\) 4.36638 0.148461
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 7.63362 0.258953
\(870\) 0 0
\(871\) −21.6151 −0.732401
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −4.10083 −0.138633
\(876\) 0 0
\(877\) 52.7177 1.78015 0.890075 0.455815i \(-0.150652\pi\)
0.890075 + 0.455815i \(0.150652\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −17.8824 −0.602473 −0.301237 0.953549i \(-0.597399\pi\)
−0.301237 + 0.953549i \(0.597399\pi\)
\(882\) 0 0
\(883\) −29.3496 −0.987693 −0.493846 0.869549i \(-0.664409\pi\)
−0.493846 + 0.869549i \(0.664409\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 16.6807 0.560084 0.280042 0.959988i \(-0.409652\pi\)
0.280042 + 0.959988i \(0.409652\pi\)
\(888\) 0 0
\(889\) 1.16472 0.0390634
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 21.6521 0.724560
\(894\) 0 0
\(895\) 6.38485 0.213422
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 13.0841 0.436378
\(900\) 0 0
\(901\) 16.0369 0.534268
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 10.0656 0.334591
\(906\) 0 0
\(907\) −2.24708 −0.0746130 −0.0373065 0.999304i \(-0.511878\pi\)
−0.0373065 + 0.999304i \(0.511878\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −10.2959 −0.341118 −0.170559 0.985347i \(-0.554557\pi\)
−0.170559 + 0.985347i \(0.554557\pi\)
\(912\) 0 0
\(913\) 14.8824 0.492535
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −87.2133 −2.88004
\(918\) 0 0
\(919\) 14.0369 0.463036 0.231518 0.972831i \(-0.425631\pi\)
0.231518 + 0.972831i \(0.425631\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −11.7411 −0.386462
\(924\) 0 0
\(925\) −6.01847 −0.197886
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −54.4403 −1.78613 −0.893064 0.449931i \(-0.851449\pi\)
−0.893064 + 0.449931i \(0.851449\pi\)
\(930\) 0 0
\(931\) 17.8353 0.584528
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 14.5680 0.476426
\(936\) 0 0
\(937\) −33.0656 −1.08021 −0.540103 0.841599i \(-0.681615\pi\)
−0.540103 + 0.841599i \(0.681615\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 13.2017 0.430362 0.215181 0.976574i \(-0.430966\pi\)
0.215181 + 0.976574i \(0.430966\pi\)
\(942\) 0 0
\(943\) −23.1479 −0.753801
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −0.687342 −0.0223356 −0.0111678 0.999938i \(-0.503555\pi\)
−0.0111678 + 0.999938i \(0.503555\pi\)
\(948\) 0 0
\(949\) 46.5345 1.51057
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 32.7882 1.06211 0.531057 0.847336i \(-0.321795\pi\)
0.531057 + 0.847336i \(0.321795\pi\)
\(954\) 0 0
\(955\) −15.6521 −0.506490
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −10.5311 −0.340067
\(960\) 0 0
\(961\) −27.6992 −0.893523
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 13.4504 0.432985
\(966\) 0 0
\(967\) 5.77139 0.185595 0.0927977 0.995685i \(-0.470419\pi\)
0.0927977 + 0.995685i \(0.470419\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −41.1210 −1.31964 −0.659818 0.751426i \(-0.729367\pi\)
−0.659818 + 0.751426i \(0.729367\pi\)
\(972\) 0 0
\(973\) −16.4033 −0.525866
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 13.1546 0.420851 0.210426 0.977610i \(-0.432515\pi\)
0.210426 + 0.977610i \(0.432515\pi\)
\(978\) 0 0
\(979\) −11.4504 −0.365957
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 18.1378 0.578505 0.289253 0.957253i \(-0.406593\pi\)
0.289253 + 0.957253i \(0.406593\pi\)
\(984\) 0 0
\(985\) 1.79834 0.0572998
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −12.2201 −0.388578
\(990\) 0 0
\(991\) −11.4320 −0.363148 −0.181574 0.983377i \(-0.558119\pi\)
−0.181574 + 0.983377i \(0.558119\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 22.2201 0.704426
\(996\) 0 0
\(997\) −8.53110 −0.270183 −0.135091 0.990833i \(-0.543133\pi\)
−0.135091 + 0.990833i \(0.543133\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 6480.2.a.bw.1.1 3
3.2 odd 2 6480.2.a.bt.1.1 3
4.3 odd 2 1620.2.a.j.1.3 3
9.2 odd 6 720.2.q.k.481.1 6
9.4 even 3 2160.2.q.i.721.3 6
9.5 odd 6 720.2.q.k.241.1 6
9.7 even 3 2160.2.q.i.1441.3 6
12.11 even 2 1620.2.a.i.1.3 3
20.3 even 4 8100.2.d.o.649.1 6
20.7 even 4 8100.2.d.o.649.6 6
20.19 odd 2 8100.2.a.u.1.1 3
36.7 odd 6 540.2.i.b.361.1 6
36.11 even 6 180.2.i.b.121.3 yes 6
36.23 even 6 180.2.i.b.61.3 6
36.31 odd 6 540.2.i.b.181.1 6
60.23 odd 4 8100.2.d.p.649.1 6
60.47 odd 4 8100.2.d.p.649.6 6
60.59 even 2 8100.2.a.v.1.1 3
180.7 even 12 2700.2.s.c.1549.6 12
180.23 odd 12 900.2.s.c.349.2 12
180.43 even 12 2700.2.s.c.1549.1 12
180.47 odd 12 900.2.s.c.49.2 12
180.59 even 6 900.2.i.c.601.1 6
180.67 even 12 2700.2.s.c.2449.1 12
180.79 odd 6 2700.2.i.c.901.3 6
180.83 odd 12 900.2.s.c.49.5 12
180.103 even 12 2700.2.s.c.2449.6 12
180.119 even 6 900.2.i.c.301.1 6
180.139 odd 6 2700.2.i.c.1801.3 6
180.167 odd 12 900.2.s.c.349.5 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
180.2.i.b.61.3 6 36.23 even 6
180.2.i.b.121.3 yes 6 36.11 even 6
540.2.i.b.181.1 6 36.31 odd 6
540.2.i.b.361.1 6 36.7 odd 6
720.2.q.k.241.1 6 9.5 odd 6
720.2.q.k.481.1 6 9.2 odd 6
900.2.i.c.301.1 6 180.119 even 6
900.2.i.c.601.1 6 180.59 even 6
900.2.s.c.49.2 12 180.47 odd 12
900.2.s.c.49.5 12 180.83 odd 12
900.2.s.c.349.2 12 180.23 odd 12
900.2.s.c.349.5 12 180.167 odd 12
1620.2.a.i.1.3 3 12.11 even 2
1620.2.a.j.1.3 3 4.3 odd 2
2160.2.q.i.721.3 6 9.4 even 3
2160.2.q.i.1441.3 6 9.7 even 3
2700.2.i.c.901.3 6 180.79 odd 6
2700.2.i.c.1801.3 6 180.139 odd 6
2700.2.s.c.1549.1 12 180.43 even 12
2700.2.s.c.1549.6 12 180.7 even 12
2700.2.s.c.2449.1 12 180.67 even 12
2700.2.s.c.2449.6 12 180.103 even 12
6480.2.a.bt.1.1 3 3.2 odd 2
6480.2.a.bw.1.1 3 1.1 even 1 trivial
8100.2.a.u.1.1 3 20.19 odd 2
8100.2.a.v.1.1 3 60.59 even 2
8100.2.d.o.649.1 6 20.3 even 4
8100.2.d.o.649.6 6 20.7 even 4
8100.2.d.p.649.1 6 60.23 odd 4
8100.2.d.p.649.6 6 60.47 odd 4