Properties

Label 2704.2.a.bd.1.4
Level $2704$
Weight $2$
Character 2704.1
Self dual yes
Analytic conductor $21.592$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2704,2,Mod(1,2704)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2704, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2704.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2704 = 2^{4} \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2704.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(21.5915487066\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: 4.4.13968.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 2x^{3} - 7x^{2} + 8x + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 104)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(3.27743\) of defining polynomial
Character \(\chi\) \(=\) 2704.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+3.27743 q^{3} -2.61023 q^{5} +1.12182 q^{7} +7.74153 q^{9} +1.12182 q^{11} -8.55485 q^{15} +5.55485 q^{17} -1.67667 q^{19} +3.67667 q^{21} -3.27743 q^{23} +1.81333 q^{25} +15.5400 q^{27} -0.334385 q^{29} -0.129717 q^{31} +3.67667 q^{33} -2.92820 q^{35} +4.53054 q^{37} +5.73205 q^{41} +4.49790 q^{43} -20.2072 q^{45} +10.7985 q^{47} -5.74153 q^{49} +18.2056 q^{51} +4.14771 q^{53} -2.92820 q^{55} -5.49516 q^{57} +0.634552 q^{59} +4.70773 q^{61} +8.68457 q^{63} +14.3612 q^{67} -10.7415 q^{69} -8.60487 q^{71} -9.94462 q^{73} +5.94304 q^{75} +1.25847 q^{77} -13.5970 q^{79} +27.7067 q^{81} +5.75637 q^{83} -14.4995 q^{85} -1.09592 q^{87} -14.3454 q^{89} -0.425137 q^{93} +4.37650 q^{95} -9.00790 q^{97} +8.68457 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 2 q^{3} - 4 q^{5} + 4 q^{7} + 6 q^{9} + 4 q^{11} - 12 q^{15} + 16 q^{19} - 8 q^{21} - 2 q^{23} + 10 q^{25} + 14 q^{27} + 8 q^{29} + 4 q^{31} - 8 q^{33} + 16 q^{35} - 12 q^{37} + 16 q^{41} - 6 q^{43}+ \cdots + 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 3.27743 1.89222 0.946112 0.323840i \(-0.104974\pi\)
0.946112 + 0.323840i \(0.104974\pi\)
\(4\) 0 0
\(5\) −2.61023 −1.16733 −0.583666 0.811994i \(-0.698382\pi\)
−0.583666 + 0.811994i \(0.698382\pi\)
\(6\) 0 0
\(7\) 1.12182 0.424007 0.212003 0.977269i \(-0.432001\pi\)
0.212003 + 0.977269i \(0.432001\pi\)
\(8\) 0 0
\(9\) 7.74153 2.58051
\(10\) 0 0
\(11\) 1.12182 0.338240 0.169120 0.985595i \(-0.445907\pi\)
0.169120 + 0.985595i \(0.445907\pi\)
\(12\) 0 0
\(13\) 0 0
\(14\) 0 0
\(15\) −8.55485 −2.20885
\(16\) 0 0
\(17\) 5.55485 1.34725 0.673625 0.739073i \(-0.264736\pi\)
0.673625 + 0.739073i \(0.264736\pi\)
\(18\) 0 0
\(19\) −1.67667 −0.384655 −0.192327 0.981331i \(-0.561604\pi\)
−0.192327 + 0.981331i \(0.561604\pi\)
\(20\) 0 0
\(21\) 3.67667 0.802315
\(22\) 0 0
\(23\) −3.27743 −0.683391 −0.341695 0.939811i \(-0.611001\pi\)
−0.341695 + 0.939811i \(0.611001\pi\)
\(24\) 0 0
\(25\) 1.81333 0.362665
\(26\) 0 0
\(27\) 15.5400 2.99068
\(28\) 0 0
\(29\) −0.334385 −0.0620937 −0.0310468 0.999518i \(-0.509884\pi\)
−0.0310468 + 0.999518i \(0.509884\pi\)
\(30\) 0 0
\(31\) −0.129717 −0.0232978 −0.0116489 0.999932i \(-0.503708\pi\)
−0.0116489 + 0.999932i \(0.503708\pi\)
\(32\) 0 0
\(33\) 3.67667 0.640026
\(34\) 0 0
\(35\) −2.92820 −0.494957
\(36\) 0 0
\(37\) 4.53054 0.744816 0.372408 0.928069i \(-0.378532\pi\)
0.372408 + 0.928069i \(0.378532\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 5.73205 0.895196 0.447598 0.894235i \(-0.352280\pi\)
0.447598 + 0.894235i \(0.352280\pi\)
\(42\) 0 0
\(43\) 4.49790 0.685923 0.342961 0.939349i \(-0.388570\pi\)
0.342961 + 0.939349i \(0.388570\pi\)
\(44\) 0 0
\(45\) −20.2072 −3.01231
\(46\) 0 0
\(47\) 10.7985 1.57512 0.787561 0.616237i \(-0.211344\pi\)
0.787561 + 0.616237i \(0.211344\pi\)
\(48\) 0 0
\(49\) −5.74153 −0.820218
\(50\) 0 0
\(51\) 18.2056 2.54930
\(52\) 0 0
\(53\) 4.14771 0.569732 0.284866 0.958567i \(-0.408051\pi\)
0.284866 + 0.958567i \(0.408051\pi\)
\(54\) 0 0
\(55\) −2.92820 −0.394839
\(56\) 0 0
\(57\) −5.49516 −0.727852
\(58\) 0 0
\(59\) 0.634552 0.0826116 0.0413058 0.999147i \(-0.486848\pi\)
0.0413058 + 0.999147i \(0.486848\pi\)
\(60\) 0 0
\(61\) 4.70773 0.602764 0.301382 0.953504i \(-0.402552\pi\)
0.301382 + 0.953504i \(0.402552\pi\)
\(62\) 0 0
\(63\) 8.68457 1.09415
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 14.3612 1.75450 0.877252 0.480029i \(-0.159374\pi\)
0.877252 + 0.480029i \(0.159374\pi\)
\(68\) 0 0
\(69\) −10.7415 −1.29313
\(70\) 0 0
\(71\) −8.60487 −1.02121 −0.510605 0.859815i \(-0.670579\pi\)
−0.510605 + 0.859815i \(0.670579\pi\)
\(72\) 0 0
\(73\) −9.94462 −1.16393 −0.581965 0.813214i \(-0.697716\pi\)
−0.581965 + 0.813214i \(0.697716\pi\)
\(74\) 0 0
\(75\) 5.94304 0.686243
\(76\) 0 0
\(77\) 1.25847 0.143416
\(78\) 0 0
\(79\) −13.5970 −1.52978 −0.764889 0.644162i \(-0.777206\pi\)
−0.764889 + 0.644162i \(0.777206\pi\)
\(80\) 0 0
\(81\) 27.7067 3.07852
\(82\) 0 0
\(83\) 5.75637 0.631843 0.315922 0.948785i \(-0.397686\pi\)
0.315922 + 0.948785i \(0.397686\pi\)
\(84\) 0 0
\(85\) −14.4995 −1.57269
\(86\) 0 0
\(87\) −1.09592 −0.117495
\(88\) 0 0
\(89\) −14.3454 −1.52061 −0.760307 0.649564i \(-0.774951\pi\)
−0.760307 + 0.649564i \(0.774951\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) −0.425137 −0.0440847
\(94\) 0 0
\(95\) 4.37650 0.449020
\(96\) 0 0
\(97\) −9.00790 −0.914614 −0.457307 0.889309i \(-0.651186\pi\)
−0.457307 + 0.889309i \(0.651186\pi\)
\(98\) 0 0
\(99\) 8.68457 0.872832
\(100\) 0 0
\(101\) −2.88924 −0.287490 −0.143745 0.989615i \(-0.545915\pi\)
−0.143745 + 0.989615i \(0.545915\pi\)
\(102\) 0 0
\(103\) 5.22047 0.514388 0.257194 0.966360i \(-0.417202\pi\)
0.257194 + 0.966360i \(0.417202\pi\)
\(104\) 0 0
\(105\) −9.59697 −0.936569
\(106\) 0 0
\(107\) −5.83228 −0.563828 −0.281914 0.959440i \(-0.590969\pi\)
−0.281914 + 0.959440i \(0.590969\pi\)
\(108\) 0 0
\(109\) −2.92820 −0.280471 −0.140236 0.990118i \(-0.544786\pi\)
−0.140236 + 0.990118i \(0.544786\pi\)
\(110\) 0 0
\(111\) 14.8485 1.40936
\(112\) 0 0
\(113\) 4.88608 0.459644 0.229822 0.973233i \(-0.426186\pi\)
0.229822 + 0.973233i \(0.426186\pi\)
\(114\) 0 0
\(115\) 8.55485 0.797744
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 6.23152 0.571243
\(120\) 0 0
\(121\) −9.74153 −0.885594
\(122\) 0 0
\(123\) 18.7864 1.69391
\(124\) 0 0
\(125\) 8.31797 0.743982
\(126\) 0 0
\(127\) 10.3195 0.915712 0.457856 0.889026i \(-0.348618\pi\)
0.457856 + 0.889026i \(0.348618\pi\)
\(128\) 0 0
\(129\) 14.7415 1.29792
\(130\) 0 0
\(131\) 0.110761 0.00967723 0.00483861 0.999988i \(-0.498460\pi\)
0.00483861 + 0.999988i \(0.498460\pi\)
\(132\) 0 0
\(133\) −1.88092 −0.163096
\(134\) 0 0
\(135\) −40.5631 −3.49111
\(136\) 0 0
\(137\) 6.95252 0.593994 0.296997 0.954878i \(-0.404015\pi\)
0.296997 + 0.954878i \(0.404015\pi\)
\(138\) 0 0
\(139\) 10.4303 0.884687 0.442344 0.896846i \(-0.354147\pi\)
0.442344 + 0.896846i \(0.354147\pi\)
\(140\) 0 0
\(141\) 35.3913 2.98048
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 0.872823 0.0724840
\(146\) 0 0
\(147\) −18.8174 −1.55204
\(148\) 0 0
\(149\) 9.60233 0.786654 0.393327 0.919399i \(-0.371324\pi\)
0.393327 + 0.919399i \(0.371324\pi\)
\(150\) 0 0
\(151\) −13.7267 −1.11706 −0.558531 0.829484i \(-0.688635\pi\)
−0.558531 + 0.829484i \(0.688635\pi\)
\(152\) 0 0
\(153\) 43.0031 3.47659
\(154\) 0 0
\(155\) 0.338591 0.0271963
\(156\) 0 0
\(157\) 8.96200 0.715245 0.357623 0.933866i \(-0.383587\pi\)
0.357623 + 0.933866i \(0.383587\pi\)
\(158\) 0 0
\(159\) 13.5938 1.07806
\(160\) 0 0
\(161\) −3.67667 −0.289762
\(162\) 0 0
\(163\) 2.19361 0.171817 0.0859085 0.996303i \(-0.472621\pi\)
0.0859085 + 0.996303i \(0.472621\pi\)
\(164\) 0 0
\(165\) −9.59697 −0.747123
\(166\) 0 0
\(167\) 14.9782 1.15905 0.579525 0.814955i \(-0.303238\pi\)
0.579525 + 0.814955i \(0.303238\pi\)
\(168\) 0 0
\(169\) 0 0
\(170\) 0 0
\(171\) −12.9800 −0.992605
\(172\) 0 0
\(173\) −3.99483 −0.303721 −0.151861 0.988402i \(-0.548527\pi\)
−0.151861 + 0.988402i \(0.548527\pi\)
\(174\) 0 0
\(175\) 2.03422 0.153772
\(176\) 0 0
\(177\) 2.07970 0.156320
\(178\) 0 0
\(179\) 8.61181 0.643677 0.321839 0.946795i \(-0.395699\pi\)
0.321839 + 0.946795i \(0.395699\pi\)
\(180\) 0 0
\(181\) −15.6308 −1.16183 −0.580913 0.813966i \(-0.697304\pi\)
−0.580913 + 0.813966i \(0.697304\pi\)
\(182\) 0 0
\(183\) 15.4293 1.14056
\(184\) 0 0
\(185\) −11.8258 −0.869448
\(186\) 0 0
\(187\) 6.23152 0.455694
\(188\) 0 0
\(189\) 17.4330 1.26807
\(190\) 0 0
\(191\) −27.0559 −1.95770 −0.978848 0.204587i \(-0.934415\pi\)
−0.978848 + 0.204587i \(0.934415\pi\)
\(192\) 0 0
\(193\) −23.9515 −1.72406 −0.862032 0.506854i \(-0.830808\pi\)
−0.862032 + 0.506854i \(0.830808\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 10.3454 0.737082 0.368541 0.929611i \(-0.379857\pi\)
0.368541 + 0.929611i \(0.379857\pi\)
\(198\) 0 0
\(199\) −13.5728 −0.962154 −0.481077 0.876678i \(-0.659754\pi\)
−0.481077 + 0.876678i \(0.659754\pi\)
\(200\) 0 0
\(201\) 47.0679 3.31992
\(202\) 0 0
\(203\) −0.375118 −0.0263281
\(204\) 0 0
\(205\) −14.9620 −1.04499
\(206\) 0 0
\(207\) −25.3723 −1.76350
\(208\) 0 0
\(209\) −1.88092 −0.130106
\(210\) 0 0
\(211\) 1.94620 0.133982 0.0669909 0.997754i \(-0.478660\pi\)
0.0669909 + 0.997754i \(0.478660\pi\)
\(212\) 0 0
\(213\) −28.2018 −1.93236
\(214\) 0 0
\(215\) −11.7406 −0.800700
\(216\) 0 0
\(217\) −0.145518 −0.00987843
\(218\) 0 0
\(219\) −32.5928 −2.20242
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 23.9203 1.60182 0.800911 0.598783i \(-0.204349\pi\)
0.800911 + 0.598783i \(0.204349\pi\)
\(224\) 0 0
\(225\) 14.0379 0.935861
\(226\) 0 0
\(227\) −17.6767 −1.17324 −0.586621 0.809862i \(-0.699542\pi\)
−0.586621 + 0.809862i \(0.699542\pi\)
\(228\) 0 0
\(229\) −10.9282 −0.722156 −0.361078 0.932536i \(-0.617591\pi\)
−0.361078 + 0.932536i \(0.617591\pi\)
\(230\) 0 0
\(231\) 4.12455 0.271375
\(232\) 0 0
\(233\) 11.5970 0.759743 0.379871 0.925039i \(-0.375968\pi\)
0.379871 + 0.925039i \(0.375968\pi\)
\(234\) 0 0
\(235\) −28.1866 −1.83869
\(236\) 0 0
\(237\) −44.5631 −2.89468
\(238\) 0 0
\(239\) 18.0221 1.16575 0.582877 0.812561i \(-0.301927\pi\)
0.582877 + 0.812561i \(0.301927\pi\)
\(240\) 0 0
\(241\) −0.819649 −0.0527982 −0.0263991 0.999651i \(-0.508404\pi\)
−0.0263991 + 0.999651i \(0.508404\pi\)
\(242\) 0 0
\(243\) 44.1866 2.83457
\(244\) 0 0
\(245\) 14.9867 0.957468
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 18.8661 1.19559
\(250\) 0 0
\(251\) −14.3575 −0.906235 −0.453117 0.891451i \(-0.649688\pi\)
−0.453117 + 0.891451i \(0.649688\pi\)
\(252\) 0 0
\(253\) −3.67667 −0.231150
\(254\) 0 0
\(255\) −47.5210 −2.97588
\(256\) 0 0
\(257\) −20.5970 −1.28480 −0.642402 0.766368i \(-0.722062\pi\)
−0.642402 + 0.766368i \(0.722062\pi\)
\(258\) 0 0
\(259\) 5.08243 0.315807
\(260\) 0 0
\(261\) −2.58865 −0.160233
\(262\) 0 0
\(263\) 29.0231 1.78964 0.894820 0.446428i \(-0.147304\pi\)
0.894820 + 0.446428i \(0.147304\pi\)
\(264\) 0 0
\(265\) −10.8265 −0.665066
\(266\) 0 0
\(267\) −47.0161 −2.87734
\(268\) 0 0
\(269\) −8.62761 −0.526035 −0.263017 0.964791i \(-0.584718\pi\)
−0.263017 + 0.964791i \(0.584718\pi\)
\(270\) 0 0
\(271\) −15.9879 −0.971195 −0.485598 0.874182i \(-0.661398\pi\)
−0.485598 + 0.874182i \(0.661398\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 2.03422 0.122668
\(276\) 0 0
\(277\) −28.7456 −1.72716 −0.863579 0.504213i \(-0.831783\pi\)
−0.863579 + 0.504213i \(0.831783\pi\)
\(278\) 0 0
\(279\) −1.00421 −0.0601203
\(280\) 0 0
\(281\) −5.83386 −0.348019 −0.174009 0.984744i \(-0.555672\pi\)
−0.174009 + 0.984744i \(0.555672\pi\)
\(282\) 0 0
\(283\) −27.6918 −1.64611 −0.823055 0.567962i \(-0.807732\pi\)
−0.823055 + 0.567962i \(0.807732\pi\)
\(284\) 0 0
\(285\) 14.3437 0.849646
\(286\) 0 0
\(287\) 6.43031 0.379569
\(288\) 0 0
\(289\) 13.8564 0.815083
\(290\) 0 0
\(291\) −29.5227 −1.73065
\(292\) 0 0
\(293\) −15.9325 −0.930787 −0.465394 0.885104i \(-0.654087\pi\)
−0.465394 + 0.885104i \(0.654087\pi\)
\(294\) 0 0
\(295\) −1.65633 −0.0964352
\(296\) 0 0
\(297\) 17.4330 1.01157
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 5.04581 0.290836
\(302\) 0 0
\(303\) −9.46927 −0.543995
\(304\) 0 0
\(305\) −12.2883 −0.703625
\(306\) 0 0
\(307\) 20.3955 1.16403 0.582015 0.813178i \(-0.302264\pi\)
0.582015 + 0.813178i \(0.302264\pi\)
\(308\) 0 0
\(309\) 17.1097 0.973337
\(310\) 0 0
\(311\) 12.9989 0.737103 0.368551 0.929607i \(-0.379854\pi\)
0.368551 + 0.929607i \(0.379854\pi\)
\(312\) 0 0
\(313\) −9.51274 −0.537692 −0.268846 0.963183i \(-0.586642\pi\)
−0.268846 + 0.963183i \(0.586642\pi\)
\(314\) 0 0
\(315\) −22.6688 −1.27724
\(316\) 0 0
\(317\) 19.1354 1.07475 0.537376 0.843343i \(-0.319416\pi\)
0.537376 + 0.843343i \(0.319416\pi\)
\(318\) 0 0
\(319\) −0.375118 −0.0210026
\(320\) 0 0
\(321\) −19.1149 −1.06689
\(322\) 0 0
\(323\) −9.31366 −0.518226
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) −9.59697 −0.530714
\(328\) 0 0
\(329\) 12.1139 0.667862
\(330\) 0 0
\(331\) −11.3033 −0.621287 −0.310643 0.950527i \(-0.600544\pi\)
−0.310643 + 0.950527i \(0.600544\pi\)
\(332\) 0 0
\(333\) 35.0733 1.92200
\(334\) 0 0
\(335\) −37.4862 −2.04809
\(336\) 0 0
\(337\) 5.14035 0.280013 0.140006 0.990151i \(-0.455288\pi\)
0.140006 + 0.990151i \(0.455288\pi\)
\(338\) 0 0
\(339\) 16.0138 0.869750
\(340\) 0 0
\(341\) −0.145518 −0.00788026
\(342\) 0 0
\(343\) −14.2937 −0.771785
\(344\) 0 0
\(345\) 28.0379 1.50951
\(346\) 0 0
\(347\) 8.72257 0.468252 0.234126 0.972206i \(-0.424777\pi\)
0.234126 + 0.972206i \(0.424777\pi\)
\(348\) 0 0
\(349\) −27.0921 −1.45021 −0.725104 0.688639i \(-0.758209\pi\)
−0.725104 + 0.688639i \(0.758209\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −23.0391 −1.22625 −0.613123 0.789988i \(-0.710087\pi\)
−0.613123 + 0.789988i \(0.710087\pi\)
\(354\) 0 0
\(355\) 22.4607 1.19209
\(356\) 0 0
\(357\) 20.4234 1.08092
\(358\) 0 0
\(359\) −1.13392 −0.0598462 −0.0299231 0.999552i \(-0.509526\pi\)
−0.0299231 + 0.999552i \(0.509526\pi\)
\(360\) 0 0
\(361\) −16.1888 −0.852041
\(362\) 0 0
\(363\) −31.9272 −1.67574
\(364\) 0 0
\(365\) 25.9578 1.35869
\(366\) 0 0
\(367\) −28.7984 −1.50326 −0.751632 0.659583i \(-0.770733\pi\)
−0.751632 + 0.659583i \(0.770733\pi\)
\(368\) 0 0
\(369\) 44.3748 2.31006
\(370\) 0 0
\(371\) 4.65297 0.241570
\(372\) 0 0
\(373\) −23.7878 −1.23168 −0.615842 0.787870i \(-0.711184\pi\)
−0.615842 + 0.787870i \(0.711184\pi\)
\(374\) 0 0
\(375\) 27.2615 1.40778
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 14.9458 0.767713 0.383856 0.923393i \(-0.374596\pi\)
0.383856 + 0.923393i \(0.374596\pi\)
\(380\) 0 0
\(381\) 33.8216 1.73273
\(382\) 0 0
\(383\) −4.53728 −0.231844 −0.115922 0.993258i \(-0.536982\pi\)
−0.115922 + 0.993258i \(0.536982\pi\)
\(384\) 0 0
\(385\) −3.28491 −0.167414
\(386\) 0 0
\(387\) 34.8206 1.77003
\(388\) 0 0
\(389\) 9.51685 0.482524 0.241262 0.970460i \(-0.422439\pi\)
0.241262 + 0.970460i \(0.422439\pi\)
\(390\) 0 0
\(391\) −18.2056 −0.920698
\(392\) 0 0
\(393\) 0.363011 0.0183115
\(394\) 0 0
\(395\) 35.4913 1.78576
\(396\) 0 0
\(397\) −34.4455 −1.72877 −0.864385 0.502831i \(-0.832292\pi\)
−0.864385 + 0.502831i \(0.832292\pi\)
\(398\) 0 0
\(399\) −6.16456 −0.308614
\(400\) 0 0
\(401\) 14.1572 0.706976 0.353488 0.935439i \(-0.384995\pi\)
0.353488 + 0.935439i \(0.384995\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) −72.3209 −3.59366
\(406\) 0 0
\(407\) 5.08243 0.251927
\(408\) 0 0
\(409\) 0.345877 0.0171025 0.00855127 0.999963i \(-0.497278\pi\)
0.00855127 + 0.999963i \(0.497278\pi\)
\(410\) 0 0
\(411\) 22.7864 1.12397
\(412\) 0 0
\(413\) 0.711850 0.0350279
\(414\) 0 0
\(415\) −15.0255 −0.737571
\(416\) 0 0
\(417\) 34.1846 1.67403
\(418\) 0 0
\(419\) 13.9778 0.682860 0.341430 0.939907i \(-0.389089\pi\)
0.341430 + 0.939907i \(0.389089\pi\)
\(420\) 0 0
\(421\) 22.1609 1.08006 0.540028 0.841647i \(-0.318414\pi\)
0.540028 + 0.841647i \(0.318414\pi\)
\(422\) 0 0
\(423\) 83.5968 4.06462
\(424\) 0 0
\(425\) 10.0728 0.488601
\(426\) 0 0
\(427\) 5.28121 0.255576
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −25.6470 −1.23537 −0.617686 0.786425i \(-0.711930\pi\)
−0.617686 + 0.786425i \(0.711930\pi\)
\(432\) 0 0
\(433\) −10.1560 −0.488068 −0.244034 0.969767i \(-0.578471\pi\)
−0.244034 + 0.969767i \(0.578471\pi\)
\(434\) 0 0
\(435\) 2.86061 0.137156
\(436\) 0 0
\(437\) 5.49516 0.262869
\(438\) 0 0
\(439\) 21.3964 1.02120 0.510598 0.859820i \(-0.329424\pi\)
0.510598 + 0.859820i \(0.329424\pi\)
\(440\) 0 0
\(441\) −44.4482 −2.11658
\(442\) 0 0
\(443\) −10.6688 −0.506889 −0.253444 0.967350i \(-0.581563\pi\)
−0.253444 + 0.967350i \(0.581563\pi\)
\(444\) 0 0
\(445\) 37.4450 1.77506
\(446\) 0 0
\(447\) 31.4710 1.48852
\(448\) 0 0
\(449\) −9.95821 −0.469957 −0.234979 0.972001i \(-0.575502\pi\)
−0.234979 + 0.972001i \(0.575502\pi\)
\(450\) 0 0
\(451\) 6.43031 0.302791
\(452\) 0 0
\(453\) −44.9882 −2.11373
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −26.7931 −1.25333 −0.626665 0.779289i \(-0.715580\pi\)
−0.626665 + 0.779289i \(0.715580\pi\)
\(458\) 0 0
\(459\) 86.3225 4.02919
\(460\) 0 0
\(461\) −32.0326 −1.49190 −0.745952 0.665999i \(-0.768005\pi\)
−0.745952 + 0.665999i \(0.768005\pi\)
\(462\) 0 0
\(463\) 21.7564 1.01110 0.505552 0.862796i \(-0.331289\pi\)
0.505552 + 0.862796i \(0.331289\pi\)
\(464\) 0 0
\(465\) 1.10971 0.0514615
\(466\) 0 0
\(467\) 33.7322 1.56094 0.780469 0.625195i \(-0.214980\pi\)
0.780469 + 0.625195i \(0.214980\pi\)
\(468\) 0 0
\(469\) 16.1107 0.743922
\(470\) 0 0
\(471\) 29.3723 1.35340
\(472\) 0 0
\(473\) 5.04581 0.232007
\(474\) 0 0
\(475\) −3.04035 −0.139501
\(476\) 0 0
\(477\) 32.1096 1.47020
\(478\) 0 0
\(479\) −10.5891 −0.483827 −0.241914 0.970298i \(-0.577775\pi\)
−0.241914 + 0.970298i \(0.577775\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) −12.0500 −0.548295
\(484\) 0 0
\(485\) 23.5127 1.06766
\(486\) 0 0
\(487\) −22.0100 −0.997368 −0.498684 0.866784i \(-0.666183\pi\)
−0.498684 + 0.866784i \(0.666183\pi\)
\(488\) 0 0
\(489\) 7.18941 0.325116
\(490\) 0 0
\(491\) 16.5145 0.745291 0.372645 0.927974i \(-0.378451\pi\)
0.372645 + 0.927974i \(0.378451\pi\)
\(492\) 0 0
\(493\) −1.85746 −0.0836557
\(494\) 0 0
\(495\) −22.6688 −1.01889
\(496\) 0 0
\(497\) −9.65309 −0.433000
\(498\) 0 0
\(499\) −11.1236 −0.497960 −0.248980 0.968509i \(-0.580095\pi\)
−0.248980 + 0.968509i \(0.580095\pi\)
\(500\) 0 0
\(501\) 49.0900 2.19318
\(502\) 0 0
\(503\) 29.2722 1.30518 0.652591 0.757711i \(-0.273682\pi\)
0.652591 + 0.757711i \(0.273682\pi\)
\(504\) 0 0
\(505\) 7.54159 0.335596
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 28.2406 1.25174 0.625871 0.779927i \(-0.284744\pi\)
0.625871 + 0.779927i \(0.284744\pi\)
\(510\) 0 0
\(511\) −11.1560 −0.493514
\(512\) 0 0
\(513\) −26.0555 −1.15038
\(514\) 0 0
\(515\) −13.6267 −0.600462
\(516\) 0 0
\(517\) 12.1139 0.532769
\(518\) 0 0
\(519\) −13.0928 −0.574709
\(520\) 0 0
\(521\) −18.6401 −0.816636 −0.408318 0.912840i \(-0.633884\pi\)
−0.408318 + 0.912840i \(0.633884\pi\)
\(522\) 0 0
\(523\) −35.3122 −1.54409 −0.772047 0.635565i \(-0.780767\pi\)
−0.772047 + 0.635565i \(0.780767\pi\)
\(524\) 0 0
\(525\) 6.66700 0.290972
\(526\) 0 0
\(527\) −0.720558 −0.0313880
\(528\) 0 0
\(529\) −12.2585 −0.532977
\(530\) 0 0
\(531\) 4.91240 0.213180
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 15.2236 0.658175
\(536\) 0 0
\(537\) 28.2246 1.21798
\(538\) 0 0
\(539\) −6.44094 −0.277431
\(540\) 0 0
\(541\) −45.2196 −1.94414 −0.972072 0.234682i \(-0.924595\pi\)
−0.972072 + 0.234682i \(0.924595\pi\)
\(542\) 0 0
\(543\) −51.2287 −2.19843
\(544\) 0 0
\(545\) 7.64330 0.327403
\(546\) 0 0
\(547\) 37.8808 1.61967 0.809834 0.586660i \(-0.199557\pi\)
0.809834 + 0.586660i \(0.199557\pi\)
\(548\) 0 0
\(549\) 36.4451 1.55544
\(550\) 0 0
\(551\) 0.560653 0.0238846
\(552\) 0 0
\(553\) −15.2533 −0.648636
\(554\) 0 0
\(555\) −38.7581 −1.64519
\(556\) 0 0
\(557\) 20.6413 0.874600 0.437300 0.899316i \(-0.355935\pi\)
0.437300 + 0.899316i \(0.355935\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 20.4234 0.862275
\(562\) 0 0
\(563\) 20.4600 0.862286 0.431143 0.902284i \(-0.358111\pi\)
0.431143 + 0.902284i \(0.358111\pi\)
\(564\) 0 0
\(565\) −12.7538 −0.536558
\(566\) 0 0
\(567\) 31.0818 1.30531
\(568\) 0 0
\(569\) −21.1361 −0.886073 −0.443037 0.896504i \(-0.646099\pi\)
−0.443037 + 0.896504i \(0.646099\pi\)
\(570\) 0 0
\(571\) −13.9221 −0.582621 −0.291310 0.956629i \(-0.594091\pi\)
−0.291310 + 0.956629i \(0.594091\pi\)
\(572\) 0 0
\(573\) −88.6738 −3.70440
\(574\) 0 0
\(575\) −5.94304 −0.247842
\(576\) 0 0
\(577\) 26.2420 1.09247 0.546234 0.837633i \(-0.316061\pi\)
0.546234 + 0.837633i \(0.316061\pi\)
\(578\) 0 0
\(579\) −78.4992 −3.26232
\(580\) 0 0
\(581\) 6.45759 0.267906
\(582\) 0 0
\(583\) 4.65297 0.192706
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −24.6725 −1.01834 −0.509171 0.860666i \(-0.670048\pi\)
−0.509171 + 0.860666i \(0.670048\pi\)
\(588\) 0 0
\(589\) 0.217492 0.00896162
\(590\) 0 0
\(591\) 33.9064 1.39472
\(592\) 0 0
\(593\) 40.3506 1.65700 0.828501 0.559988i \(-0.189194\pi\)
0.828501 + 0.559988i \(0.189194\pi\)
\(594\) 0 0
\(595\) −16.2657 −0.666830
\(596\) 0 0
\(597\) −44.4840 −1.82061
\(598\) 0 0
\(599\) 4.96104 0.202702 0.101351 0.994851i \(-0.467683\pi\)
0.101351 + 0.994851i \(0.467683\pi\)
\(600\) 0 0
\(601\) −15.4769 −0.631317 −0.315658 0.948873i \(-0.602225\pi\)
−0.315658 + 0.948873i \(0.602225\pi\)
\(602\) 0 0
\(603\) 111.178 4.52752
\(604\) 0 0
\(605\) 25.4277 1.03378
\(606\) 0 0
\(607\) −22.4335 −0.910546 −0.455273 0.890352i \(-0.650458\pi\)
−0.455273 + 0.890352i \(0.650458\pi\)
\(608\) 0 0
\(609\) −1.22942 −0.0498187
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 16.5855 0.669881 0.334941 0.942239i \(-0.391284\pi\)
0.334941 + 0.942239i \(0.391284\pi\)
\(614\) 0 0
\(615\) −49.0369 −1.97736
\(616\) 0 0
\(617\) −33.0368 −1.33001 −0.665005 0.746839i \(-0.731571\pi\)
−0.665005 + 0.746839i \(0.731571\pi\)
\(618\) 0 0
\(619\) −35.3913 −1.42249 −0.711247 0.702942i \(-0.751869\pi\)
−0.711247 + 0.702942i \(0.751869\pi\)
\(620\) 0 0
\(621\) −50.9313 −2.04380
\(622\) 0 0
\(623\) −16.0929 −0.644750
\(624\) 0 0
\(625\) −30.7785 −1.23114
\(626\) 0 0
\(627\) −6.16456 −0.246189
\(628\) 0 0
\(629\) 25.1665 1.00345
\(630\) 0 0
\(631\) 6.45305 0.256892 0.128446 0.991717i \(-0.459001\pi\)
0.128446 + 0.991717i \(0.459001\pi\)
\(632\) 0 0
\(633\) 6.37852 0.253523
\(634\) 0 0
\(635\) −26.9364 −1.06894
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) −66.6149 −2.63524
\(640\) 0 0
\(641\) −21.7743 −0.860032 −0.430016 0.902821i \(-0.641492\pi\)
−0.430016 + 0.902821i \(0.641492\pi\)
\(642\) 0 0
\(643\) 40.2473 1.58720 0.793600 0.608440i \(-0.208204\pi\)
0.793600 + 0.608440i \(0.208204\pi\)
\(644\) 0 0
\(645\) −38.4789 −1.51510
\(646\) 0 0
\(647\) −37.6211 −1.47904 −0.739519 0.673136i \(-0.764947\pi\)
−0.739519 + 0.673136i \(0.764947\pi\)
\(648\) 0 0
\(649\) 0.711850 0.0279426
\(650\) 0 0
\(651\) −0.476926 −0.0186922
\(652\) 0 0
\(653\) −30.7119 −1.20185 −0.600924 0.799306i \(-0.705200\pi\)
−0.600924 + 0.799306i \(0.705200\pi\)
\(654\) 0 0
\(655\) −0.289112 −0.0112965
\(656\) 0 0
\(657\) −76.9866 −3.00353
\(658\) 0 0
\(659\) −13.7698 −0.536394 −0.268197 0.963364i \(-0.586428\pi\)
−0.268197 + 0.963364i \(0.586428\pi\)
\(660\) 0 0
\(661\) 10.2248 0.397698 0.198849 0.980030i \(-0.436280\pi\)
0.198849 + 0.980030i \(0.436280\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 4.90963 0.190387
\(666\) 0 0
\(667\) 1.09592 0.0424343
\(668\) 0 0
\(669\) 78.3970 3.03101
\(670\) 0 0
\(671\) 5.28121 0.203879
\(672\) 0 0
\(673\) 4.26154 0.164270 0.0821351 0.996621i \(-0.473826\pi\)
0.0821351 + 0.996621i \(0.473826\pi\)
\(674\) 0 0
\(675\) 28.1791 1.08461
\(676\) 0 0
\(677\) −4.47885 −0.172136 −0.0860681 0.996289i \(-0.527430\pi\)
−0.0860681 + 0.996289i \(0.527430\pi\)
\(678\) 0 0
\(679\) −10.1052 −0.387802
\(680\) 0 0
\(681\) −57.9340 −2.22004
\(682\) 0 0
\(683\) −20.0934 −0.768852 −0.384426 0.923156i \(-0.625601\pi\)
−0.384426 + 0.923156i \(0.625601\pi\)
\(684\) 0 0
\(685\) −18.1477 −0.693388
\(686\) 0 0
\(687\) −35.8164 −1.36648
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) 37.7091 1.43452 0.717261 0.696804i \(-0.245395\pi\)
0.717261 + 0.696804i \(0.245395\pi\)
\(692\) 0 0
\(693\) 9.74249 0.370087
\(694\) 0 0
\(695\) −27.2255 −1.03272
\(696\) 0 0
\(697\) 31.8407 1.20605
\(698\) 0 0
\(699\) 38.0082 1.43760
\(700\) 0 0
\(701\) 17.2849 0.652842 0.326421 0.945225i \(-0.394157\pi\)
0.326421 + 0.945225i \(0.394157\pi\)
\(702\) 0 0
\(703\) −7.59622 −0.286497
\(704\) 0 0
\(705\) −92.3795 −3.47921
\(706\) 0 0
\(707\) −3.24119 −0.121898
\(708\) 0 0
\(709\) 18.1761 0.682619 0.341310 0.939951i \(-0.389130\pi\)
0.341310 + 0.939951i \(0.389130\pi\)
\(710\) 0 0
\(711\) −105.261 −3.94761
\(712\) 0 0
\(713\) 0.425137 0.0159215
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 59.0662 2.20587
\(718\) 0 0
\(719\) 19.9134 0.742643 0.371322 0.928504i \(-0.378905\pi\)
0.371322 + 0.928504i \(0.378905\pi\)
\(720\) 0 0
\(721\) 5.85641 0.218104
\(722\) 0 0
\(723\) −2.68634 −0.0999061
\(724\) 0 0
\(725\) −0.606348 −0.0225192
\(726\) 0 0
\(727\) 38.7446 1.43696 0.718479 0.695549i \(-0.244839\pi\)
0.718479 + 0.695549i \(0.244839\pi\)
\(728\) 0 0
\(729\) 61.6983 2.28512
\(730\) 0 0
\(731\) 24.9852 0.924110
\(732\) 0 0
\(733\) −3.19477 −0.118001 −0.0590007 0.998258i \(-0.518791\pi\)
−0.0590007 + 0.998258i \(0.518791\pi\)
\(734\) 0 0
\(735\) 49.1179 1.81174
\(736\) 0 0
\(737\) 16.1107 0.593444
\(738\) 0 0
\(739\) 40.6725 1.49616 0.748080 0.663608i \(-0.230976\pi\)
0.748080 + 0.663608i \(0.230976\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 13.9100 0.510307 0.255154 0.966901i \(-0.417874\pi\)
0.255154 + 0.966901i \(0.417874\pi\)
\(744\) 0 0
\(745\) −25.0643 −0.918287
\(746\) 0 0
\(747\) 44.5631 1.63048
\(748\) 0 0
\(749\) −6.54275 −0.239067
\(750\) 0 0
\(751\) 17.5863 0.641735 0.320867 0.947124i \(-0.396026\pi\)
0.320867 + 0.947124i \(0.396026\pi\)
\(752\) 0 0
\(753\) −47.0555 −1.71480
\(754\) 0 0
\(755\) 35.8299 1.30398
\(756\) 0 0
\(757\) 22.1107 0.803626 0.401813 0.915722i \(-0.368380\pi\)
0.401813 + 0.915722i \(0.368380\pi\)
\(758\) 0 0
\(759\) −12.0500 −0.437388
\(760\) 0 0
\(761\) 24.3370 0.882217 0.441108 0.897454i \(-0.354585\pi\)
0.441108 + 0.897454i \(0.354585\pi\)
\(762\) 0 0
\(763\) −3.28491 −0.118922
\(764\) 0 0
\(765\) −112.248 −4.05834
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) 7.09214 0.255749 0.127875 0.991790i \(-0.459185\pi\)
0.127875 + 0.991790i \(0.459185\pi\)
\(770\) 0 0
\(771\) −67.5051 −2.43114
\(772\) 0 0
\(773\) −0.969989 −0.0348881 −0.0174440 0.999848i \(-0.505553\pi\)
−0.0174440 + 0.999848i \(0.505553\pi\)
\(774\) 0 0
\(775\) −0.235219 −0.00844931
\(776\) 0 0
\(777\) 16.6573 0.597577
\(778\) 0 0
\(779\) −9.61076 −0.344341
\(780\) 0 0
\(781\) −9.65309 −0.345415
\(782\) 0 0
\(783\) −5.19634 −0.185702
\(784\) 0 0
\(785\) −23.3929 −0.834929
\(786\) 0 0
\(787\) 0.0417857 0.00148950 0.000744750 1.00000i \(-0.499763\pi\)
0.000744750 1.00000i \(0.499763\pi\)
\(788\) 0 0
\(789\) 95.1210 3.38640
\(790\) 0 0
\(791\) 5.48129 0.194892
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) −35.4831 −1.25845
\(796\) 0 0
\(797\) 39.3343 1.39329 0.696646 0.717415i \(-0.254675\pi\)
0.696646 + 0.717415i \(0.254675\pi\)
\(798\) 0 0
\(799\) 59.9840 2.12208
\(800\) 0 0
\(801\) −111.056 −3.92396
\(802\) 0 0
\(803\) −11.1560 −0.393688
\(804\) 0 0
\(805\) 9.59697 0.338249
\(806\) 0 0
\(807\) −28.2764 −0.995376
\(808\) 0 0
\(809\) −0.808156 −0.0284133 −0.0142066 0.999899i \(-0.504522\pi\)
−0.0142066 + 0.999899i \(0.504522\pi\)
\(810\) 0 0
\(811\) −24.3955 −0.856640 −0.428320 0.903627i \(-0.640894\pi\)
−0.428320 + 0.903627i \(0.640894\pi\)
\(812\) 0 0
\(813\) −52.3992 −1.83772
\(814\) 0 0
\(815\) −5.72584 −0.200568
\(816\) 0 0
\(817\) −7.54149 −0.263843
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −17.3674 −0.606125 −0.303063 0.952971i \(-0.598009\pi\)
−0.303063 + 0.952971i \(0.598009\pi\)
\(822\) 0 0
\(823\) −5.67730 −0.197898 −0.0989491 0.995092i \(-0.531548\pi\)
−0.0989491 + 0.995092i \(0.531548\pi\)
\(824\) 0 0
\(825\) 6.66700 0.232115
\(826\) 0 0
\(827\) −14.5094 −0.504540 −0.252270 0.967657i \(-0.581177\pi\)
−0.252270 + 0.967657i \(0.581177\pi\)
\(828\) 0 0
\(829\) 47.5033 1.64986 0.824928 0.565237i \(-0.191215\pi\)
0.824928 + 0.565237i \(0.191215\pi\)
\(830\) 0 0
\(831\) −94.2118 −3.26817
\(832\) 0 0
\(833\) −31.8934 −1.10504
\(834\) 0 0
\(835\) −39.0967 −1.35300
\(836\) 0 0
\(837\) −2.01580 −0.0696763
\(838\) 0 0
\(839\) −2.05759 −0.0710358 −0.0355179 0.999369i \(-0.511308\pi\)
−0.0355179 + 0.999369i \(0.511308\pi\)
\(840\) 0 0
\(841\) −28.8882 −0.996144
\(842\) 0 0
\(843\) −19.1200 −0.658529
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) −10.9282 −0.375498
\(848\) 0 0
\(849\) −90.7580 −3.11481
\(850\) 0 0
\(851\) −14.8485 −0.509000
\(852\) 0 0
\(853\) 4.10363 0.140506 0.0702528 0.997529i \(-0.477619\pi\)
0.0702528 + 0.997529i \(0.477619\pi\)
\(854\) 0 0
\(855\) 33.8808 1.15870
\(856\) 0 0
\(857\) −35.9776 −1.22897 −0.614486 0.788928i \(-0.710636\pi\)
−0.614486 + 0.788928i \(0.710636\pi\)
\(858\) 0 0
\(859\) −12.7711 −0.435745 −0.217872 0.975977i \(-0.569912\pi\)
−0.217872 + 0.975977i \(0.569912\pi\)
\(860\) 0 0
\(861\) 21.0749 0.718229
\(862\) 0 0
\(863\) −34.2815 −1.16696 −0.583479 0.812128i \(-0.698309\pi\)
−0.583479 + 0.812128i \(0.698309\pi\)
\(864\) 0 0
\(865\) 10.4274 0.354544
\(866\) 0 0
\(867\) 45.4134 1.54232
\(868\) 0 0
\(869\) −15.2533 −0.517433
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) −69.7349 −2.36017
\(874\) 0 0
\(875\) 9.33123 0.315453
\(876\) 0 0
\(877\) 45.5674 1.53870 0.769351 0.638827i \(-0.220580\pi\)
0.769351 + 0.638827i \(0.220580\pi\)
\(878\) 0 0
\(879\) −52.2176 −1.76126
\(880\) 0 0
\(881\) −13.7660 −0.463790 −0.231895 0.972741i \(-0.574493\pi\)
−0.231895 + 0.972741i \(0.574493\pi\)
\(882\) 0 0
\(883\) −1.44199 −0.0485269 −0.0242634 0.999706i \(-0.507724\pi\)
−0.0242634 + 0.999706i \(0.507724\pi\)
\(884\) 0 0
\(885\) −5.42850 −0.182477
\(886\) 0 0
\(887\) −26.5718 −0.892194 −0.446097 0.894985i \(-0.647186\pi\)
−0.446097 + 0.894985i \(0.647186\pi\)
\(888\) 0 0
\(889\) 11.5766 0.388268
\(890\) 0 0
\(891\) 31.0818 1.04128
\(892\) 0 0
\(893\) −18.1055 −0.605878
\(894\) 0 0
\(895\) −22.4789 −0.751385
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 0.0433753 0.00144665
\(900\) 0 0
\(901\) 23.0399 0.767571
\(902\) 0 0
\(903\) 16.5373 0.550326
\(904\) 0 0
\(905\) 40.8000 1.35624
\(906\) 0 0
\(907\) 10.0782 0.334642 0.167321 0.985902i \(-0.446488\pi\)
0.167321 + 0.985902i \(0.446488\pi\)
\(908\) 0 0
\(909\) −22.3671 −0.741871
\(910\) 0 0
\(911\) 44.5252 1.47518 0.737592 0.675246i \(-0.235963\pi\)
0.737592 + 0.675246i \(0.235963\pi\)
\(912\) 0 0
\(913\) 6.45759 0.213715
\(914\) 0 0
\(915\) −40.2740 −1.33142
\(916\) 0 0
\(917\) 0.124253 0.00410321
\(918\) 0 0
\(919\) 33.5181 1.10566 0.552830 0.833294i \(-0.313548\pi\)
0.552830 + 0.833294i \(0.313548\pi\)
\(920\) 0 0
\(921\) 66.8446 2.20261
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 8.21534 0.270119
\(926\) 0 0
\(927\) 40.4144 1.32738
\(928\) 0 0
\(929\) −17.4449 −0.572347 −0.286174 0.958178i \(-0.592383\pi\)
−0.286174 + 0.958178i \(0.592383\pi\)
\(930\) 0 0
\(931\) 9.62665 0.315501
\(932\) 0 0
\(933\) 42.6031 1.39476
\(934\) 0 0
\(935\) −16.2657 −0.531947
\(936\) 0 0
\(937\) 17.0052 0.555535 0.277767 0.960648i \(-0.410406\pi\)
0.277767 + 0.960648i \(0.410406\pi\)
\(938\) 0 0
\(939\) −31.1773 −1.01743
\(940\) 0 0
\(941\) −15.7406 −0.513128 −0.256564 0.966527i \(-0.582590\pi\)
−0.256564 + 0.966527i \(0.582590\pi\)
\(942\) 0 0
\(943\) −18.7864 −0.611769
\(944\) 0 0
\(945\) −45.5043 −1.48026
\(946\) 0 0
\(947\) −32.5744 −1.05852 −0.529262 0.848458i \(-0.677531\pi\)
−0.529262 + 0.848458i \(0.677531\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 62.7149 2.03367
\(952\) 0 0
\(953\) 31.2307 1.01166 0.505831 0.862633i \(-0.331186\pi\)
0.505831 + 0.862633i \(0.331186\pi\)
\(954\) 0 0
\(955\) 70.6223 2.28528
\(956\) 0 0
\(957\) −1.22942 −0.0397416
\(958\) 0 0
\(959\) 7.79945 0.251857
\(960\) 0 0
\(961\) −30.9832 −0.999457
\(962\) 0 0
\(963\) −45.1508 −1.45496
\(964\) 0 0
\(965\) 62.5190 2.01256
\(966\) 0 0
\(967\) −37.8998 −1.21877 −0.609387 0.792873i \(-0.708585\pi\)
−0.609387 + 0.792873i \(0.708585\pi\)
\(968\) 0 0
\(969\) −30.5248 −0.980599
\(970\) 0 0
\(971\) 27.3257 0.876923 0.438461 0.898750i \(-0.355524\pi\)
0.438461 + 0.898750i \(0.355524\pi\)
\(972\) 0 0
\(973\) 11.7009 0.375113
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 29.8016 0.953437 0.476718 0.879056i \(-0.341826\pi\)
0.476718 + 0.879056i \(0.341826\pi\)
\(978\) 0 0
\(979\) −16.0929 −0.514333
\(980\) 0 0
\(981\) −22.6688 −0.723758
\(982\) 0 0
\(983\) 16.0704 0.512565 0.256282 0.966602i \(-0.417502\pi\)
0.256282 + 0.966602i \(0.417502\pi\)
\(984\) 0 0
\(985\) −27.0040 −0.860420
\(986\) 0 0
\(987\) 39.7025 1.26374
\(988\) 0 0
\(989\) −14.7415 −0.468753
\(990\) 0 0
\(991\) −31.9544 −1.01507 −0.507533 0.861632i \(-0.669442\pi\)
−0.507533 + 0.861632i \(0.669442\pi\)
\(992\) 0 0
\(993\) −37.0458 −1.17561
\(994\) 0 0
\(995\) 35.4283 1.12315
\(996\) 0 0
\(997\) −8.79197 −0.278445 −0.139222 0.990261i \(-0.544460\pi\)
−0.139222 + 0.990261i \(0.544460\pi\)
\(998\) 0 0
\(999\) 70.4046 2.22750
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2704.2.a.bd.1.4 4
4.3 odd 2 1352.2.a.k.1.1 4
13.2 odd 12 208.2.w.c.17.1 8
13.5 odd 4 2704.2.f.q.337.8 8
13.7 odd 12 208.2.w.c.49.1 8
13.8 odd 4 2704.2.f.q.337.7 8
13.12 even 2 2704.2.a.be.1.4 4
39.2 even 12 1872.2.by.n.433.2 8
39.20 even 12 1872.2.by.n.1297.3 8
52.3 odd 6 1352.2.i.k.529.4 8
52.7 even 12 104.2.o.a.49.4 yes 8
52.11 even 12 1352.2.o.f.1161.4 8
52.15 even 12 104.2.o.a.17.4 8
52.19 even 12 1352.2.o.f.361.4 8
52.23 odd 6 1352.2.i.l.529.4 8
52.31 even 4 1352.2.f.f.337.2 8
52.35 odd 6 1352.2.i.k.1329.4 8
52.43 odd 6 1352.2.i.l.1329.4 8
52.47 even 4 1352.2.f.f.337.1 8
52.51 odd 2 1352.2.a.l.1.1 4
104.59 even 12 832.2.w.g.257.1 8
104.67 even 12 832.2.w.g.641.1 8
104.85 odd 12 832.2.w.i.257.4 8
104.93 odd 12 832.2.w.i.641.4 8
156.59 odd 12 936.2.bi.b.361.3 8
156.119 odd 12 936.2.bi.b.433.2 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
104.2.o.a.17.4 8 52.15 even 12
104.2.o.a.49.4 yes 8 52.7 even 12
208.2.w.c.17.1 8 13.2 odd 12
208.2.w.c.49.1 8 13.7 odd 12
832.2.w.g.257.1 8 104.59 even 12
832.2.w.g.641.1 8 104.67 even 12
832.2.w.i.257.4 8 104.85 odd 12
832.2.w.i.641.4 8 104.93 odd 12
936.2.bi.b.361.3 8 156.59 odd 12
936.2.bi.b.433.2 8 156.119 odd 12
1352.2.a.k.1.1 4 4.3 odd 2
1352.2.a.l.1.1 4 52.51 odd 2
1352.2.f.f.337.1 8 52.47 even 4
1352.2.f.f.337.2 8 52.31 even 4
1352.2.i.k.529.4 8 52.3 odd 6
1352.2.i.k.1329.4 8 52.35 odd 6
1352.2.i.l.529.4 8 52.23 odd 6
1352.2.i.l.1329.4 8 52.43 odd 6
1352.2.o.f.361.4 8 52.19 even 12
1352.2.o.f.1161.4 8 52.11 even 12
1872.2.by.n.433.2 8 39.2 even 12
1872.2.by.n.1297.3 8 39.20 even 12
2704.2.a.bd.1.4 4 1.1 even 1 trivial
2704.2.a.be.1.4 4 13.12 even 2
2704.2.f.q.337.7 8 13.8 odd 4
2704.2.f.q.337.8 8 13.5 odd 4