Properties

Label 936.2.bi.b.361.3
Level $936$
Weight $2$
Character 936.361
Analytic conductor $7.474$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [936,2,Mod(361,936)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(936, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 5]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("936.361");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 936 = 2^{3} \cdot 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 936.bi (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.47399762919\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{6})\)
Coefficient field: 8.0.195105024.2
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 4x^{7} + 5x^{6} + 4x^{5} - 20x^{4} + 12x^{3} + 45x^{2} - 108x + 81 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: no (minimal twist has level 104)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 361.3
Root \(0.560908 + 1.63871i\) of defining polynomial
Character \(\chi\) \(=\) 936.361
Dual form 936.2.bi.b.433.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.61023i q^{5} +(-0.971521 - 0.560908i) q^{7} +(-0.971521 + 0.560908i) q^{11} +(-3.53796 - 0.694883i) q^{13} +(-2.77743 + 4.81064i) q^{17} +(-1.45204 - 0.838335i) q^{19} +(-1.63871 - 2.83834i) q^{23} -1.81333 q^{25} +(-0.167192 - 0.289586i) q^{29} +0.129717i q^{31} +(1.46410 - 2.53590i) q^{35} +(-3.92356 + 2.26527i) q^{37} +(-4.96410 + 2.86603i) q^{41} +(-2.24895 + 3.89529i) q^{43} -10.7985i q^{47} +(-2.87076 - 4.97231i) q^{49} -4.14771 q^{53} +(-1.46410 - 2.53590i) q^{55} +(0.549538 + 0.317276i) q^{59} +(-2.35387 + 4.07702i) q^{61} +(1.81381 - 9.23490i) q^{65} +(-12.4372 + 7.18062i) q^{67} +(7.45204 + 4.30244i) q^{71} +9.94462i q^{73} +1.25847 q^{77} +13.5970 q^{79} +5.75637i q^{83} +(-12.5569 - 7.24974i) q^{85} +(-12.4235 + 7.17272i) q^{89} +(3.04743 + 2.65956i) q^{91} +(2.18825 - 3.79016i) q^{95} +(7.80107 + 4.50395i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 6 q^{7} - 6 q^{11} + 6 q^{13} - 6 q^{19} - 2 q^{23} - 20 q^{25} + 8 q^{29} - 16 q^{35} - 24 q^{37} - 12 q^{41} + 6 q^{43} + 2 q^{49} - 20 q^{53} + 16 q^{55} - 18 q^{59} - 4 q^{61} - 14 q^{65} - 42 q^{67}+ \cdots + 30 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/936\mathbb{Z}\right)^\times\).

\(n\) \(145\) \(209\) \(469\) \(703\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 2.61023i 1.16733i 0.811994 + 0.583666i \(0.198382\pi\)
−0.811994 + 0.583666i \(0.801618\pi\)
\(6\) 0 0
\(7\) −0.971521 0.560908i −0.367200 0.212003i 0.305034 0.952341i \(-0.401332\pi\)
−0.672235 + 0.740338i \(0.734665\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −0.971521 + 0.560908i −0.292925 + 0.169120i −0.639260 0.768991i \(-0.720759\pi\)
0.346335 + 0.938111i \(0.387426\pi\)
\(12\) 0 0
\(13\) −3.53796 0.694883i −0.981253 0.192726i
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −2.77743 + 4.81064i −0.673625 + 1.16675i 0.303244 + 0.952913i \(0.401930\pi\)
−0.976869 + 0.213840i \(0.931403\pi\)
\(18\) 0 0
\(19\) −1.45204 0.838335i −0.333121 0.192327i 0.324105 0.946021i \(-0.394937\pi\)
−0.657226 + 0.753694i \(0.728270\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −1.63871 2.83834i −0.341695 0.591834i 0.643052 0.765822i \(-0.277668\pi\)
−0.984748 + 0.173988i \(0.944334\pi\)
\(24\) 0 0
\(25\) −1.81333 −0.362665
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −0.167192 0.289586i −0.0310468 0.0537747i 0.850084 0.526646i \(-0.176551\pi\)
−0.881131 + 0.472872i \(0.843217\pi\)
\(30\) 0 0
\(31\) 0.129717i 0.0232978i 0.999932 + 0.0116489i \(0.00370805\pi\)
−0.999932 + 0.0116489i \(0.996292\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 1.46410 2.53590i 0.247478 0.428645i
\(36\) 0 0
\(37\) −3.92356 + 2.26527i −0.645029 + 0.372408i −0.786549 0.617528i \(-0.788134\pi\)
0.141520 + 0.989935i \(0.454801\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −4.96410 + 2.86603i −0.775262 + 0.447598i −0.834749 0.550631i \(-0.814387\pi\)
0.0594862 + 0.998229i \(0.481054\pi\)
\(42\) 0 0
\(43\) −2.24895 + 3.89529i −0.342961 + 0.594027i −0.984981 0.172661i \(-0.944763\pi\)
0.642020 + 0.766688i \(0.278097\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 10.7985i 1.57512i −0.616237 0.787561i \(-0.711344\pi\)
0.616237 0.787561i \(-0.288656\pi\)
\(48\) 0 0
\(49\) −2.87076 4.97231i −0.410109 0.710330i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −4.14771 −0.569732 −0.284866 0.958567i \(-0.591949\pi\)
−0.284866 + 0.958567i \(0.591949\pi\)
\(54\) 0 0
\(55\) −1.46410 2.53590i −0.197419 0.341940i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 0.549538 + 0.317276i 0.0715438 + 0.0413058i 0.535345 0.844633i \(-0.320182\pi\)
−0.463801 + 0.885939i \(0.653515\pi\)
\(60\) 0 0
\(61\) −2.35387 + 4.07702i −0.301382 + 0.522009i −0.976449 0.215748i \(-0.930781\pi\)
0.675067 + 0.737756i \(0.264115\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 1.81381 9.23490i 0.224975 1.14545i
\(66\) 0 0
\(67\) −12.4372 + 7.18062i −1.51945 + 0.877252i −0.519708 + 0.854344i \(0.673959\pi\)
−0.999738 + 0.0229086i \(0.992707\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 7.45204 + 4.30244i 0.884394 + 0.510605i 0.872105 0.489319i \(-0.162755\pi\)
0.0122896 + 0.999924i \(0.496088\pi\)
\(72\) 0 0
\(73\) 9.94462i 1.16393i 0.813214 + 0.581965i \(0.197716\pi\)
−0.813214 + 0.581965i \(0.802284\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 1.25847 0.143416
\(78\) 0 0
\(79\) 13.5970 1.52978 0.764889 0.644162i \(-0.222794\pi\)
0.764889 + 0.644162i \(0.222794\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 5.75637i 0.631843i 0.948785 + 0.315922i \(0.102314\pi\)
−0.948785 + 0.315922i \(0.897686\pi\)
\(84\) 0 0
\(85\) −12.5569 7.24974i −1.36199 0.786344i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −12.4235 + 7.17272i −1.31689 + 0.760307i −0.983227 0.182386i \(-0.941618\pi\)
−0.333663 + 0.942692i \(0.608285\pi\)
\(90\) 0 0
\(91\) 3.04743 + 2.65956i 0.319458 + 0.278798i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 2.18825 3.79016i 0.224510 0.388863i
\(96\) 0 0
\(97\) 7.80107 + 4.50395i 0.792079 + 0.457307i 0.840694 0.541511i \(-0.182147\pi\)
−0.0486151 + 0.998818i \(0.515481\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 1.44462 + 2.50215i 0.143745 + 0.248974i 0.928904 0.370321i \(-0.120752\pi\)
−0.785159 + 0.619294i \(0.787419\pi\)
\(102\) 0 0
\(103\) 5.22047 0.514388 0.257194 0.966360i \(-0.417202\pi\)
0.257194 + 0.966360i \(0.417202\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 2.91614 + 5.05090i 0.281914 + 0.488289i 0.971856 0.235575i \(-0.0756974\pi\)
−0.689942 + 0.723865i \(0.742364\pi\)
\(108\) 0 0
\(109\) 2.92820i 0.280471i −0.990118 0.140236i \(-0.955214\pi\)
0.990118 0.140236i \(-0.0447860\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 2.44304 4.23147i 0.229822 0.398064i −0.727933 0.685648i \(-0.759519\pi\)
0.957755 + 0.287585i \(0.0928522\pi\)
\(114\) 0 0
\(115\) 7.40872 4.27743i 0.690867 0.398872i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 5.39666 3.11576i 0.494711 0.285621i
\(120\) 0 0
\(121\) −4.87076 + 8.43641i −0.442797 + 0.766946i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 8.31797i 0.743982i
\(126\) 0 0
\(127\) −5.15977 8.93699i −0.457856 0.793030i 0.540992 0.841028i \(-0.318049\pi\)
−0.998847 + 0.0479985i \(0.984716\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 0.110761 0.00967723 0.00483861 0.999988i \(-0.498460\pi\)
0.00483861 + 0.999988i \(0.498460\pi\)
\(132\) 0 0
\(133\) 0.940458 + 1.62892i 0.0815480 + 0.141245i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −6.02106 3.47626i −0.514414 0.296997i 0.220232 0.975447i \(-0.429318\pi\)
−0.734646 + 0.678451i \(0.762652\pi\)
\(138\) 0 0
\(139\) 5.21515 9.03291i 0.442344 0.766161i −0.555519 0.831504i \(-0.687481\pi\)
0.997863 + 0.0653421i \(0.0208139\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 3.82697 1.30938i 0.320027 0.109495i
\(144\) 0 0
\(145\) 0.755887 0.436411i 0.0627730 0.0362420i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 8.31587 + 4.80117i 0.681262 + 0.393327i 0.800330 0.599559i \(-0.204657\pi\)
−0.119068 + 0.992886i \(0.537991\pi\)
\(150\) 0 0
\(151\) 13.7267i 1.11706i −0.829484 0.558531i \(-0.811365\pi\)
0.829484 0.558531i \(-0.188635\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −0.338591 −0.0271963
\(156\) 0 0
\(157\) 8.96200 0.715245 0.357623 0.933866i \(-0.383587\pi\)
0.357623 + 0.933866i \(0.383587\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 3.67667i 0.289762i
\(162\) 0 0
\(163\) −1.89972 1.09681i −0.148798 0.0859085i 0.423753 0.905778i \(-0.360713\pi\)
−0.572550 + 0.819869i \(0.694046\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −12.9715 + 7.48911i −1.00377 + 0.579525i −0.909361 0.416009i \(-0.863428\pi\)
−0.0944059 + 0.995534i \(0.530095\pi\)
\(168\) 0 0
\(169\) 12.0343 + 4.91693i 0.925714 + 0.378225i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 1.99742 3.45963i 0.151861 0.263030i −0.780051 0.625716i \(-0.784807\pi\)
0.931912 + 0.362686i \(0.118140\pi\)
\(174\) 0 0
\(175\) 1.76168 + 1.01711i 0.133171 + 0.0768862i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 4.30591 + 7.45805i 0.321839 + 0.557441i 0.980867 0.194677i \(-0.0623658\pi\)
−0.659029 + 0.752118i \(0.729033\pi\)
\(180\) 0 0
\(181\) 15.6308 1.16183 0.580913 0.813966i \(-0.302696\pi\)
0.580913 + 0.813966i \(0.302696\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −5.91288 10.2414i −0.434724 0.752964i
\(186\) 0 0
\(187\) 6.23152i 0.455694i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 13.5280 23.4311i 0.978848 1.69541i 0.312246 0.950001i \(-0.398919\pi\)
0.666602 0.745414i \(-0.267748\pi\)
\(192\) 0 0
\(193\) 20.7426 11.9757i 1.49308 0.862032i 0.493115 0.869964i \(-0.335858\pi\)
0.999969 + 0.00793192i \(0.00252484\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −8.95941 + 5.17272i −0.638332 + 0.368541i −0.783972 0.620797i \(-0.786809\pi\)
0.145640 + 0.989338i \(0.453476\pi\)
\(198\) 0 0
\(199\) 6.78642 11.7544i 0.481077 0.833250i −0.518687 0.854964i \(-0.673579\pi\)
0.999764 + 0.0217145i \(0.00691247\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 0.375118i 0.0263281i
\(204\) 0 0
\(205\) −7.48100 12.9575i −0.522496 0.904989i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 1.88092 0.130106
\(210\) 0 0
\(211\) 0.973098 + 1.68546i 0.0669909 + 0.116032i 0.897575 0.440861i \(-0.145327\pi\)
−0.830585 + 0.556893i \(0.811994\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −10.1676 5.87028i −0.693427 0.400350i
\(216\) 0 0
\(217\) 0.0727592 0.126023i 0.00493922 0.00855498i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 13.1693 15.0899i 0.885860 1.01505i
\(222\) 0 0
\(223\) −20.7156 + 11.9602i −1.38722 + 0.800911i −0.993001 0.118106i \(-0.962318\pi\)
−0.394218 + 0.919017i \(0.628984\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 15.3084 + 8.83834i 1.01606 + 0.586621i 0.912959 0.408050i \(-0.133791\pi\)
0.103098 + 0.994671i \(0.467125\pi\)
\(228\) 0 0
\(229\) 10.9282i 0.722156i 0.932536 + 0.361078i \(0.117591\pi\)
−0.932536 + 0.361078i \(0.882409\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 11.5970 0.759743 0.379871 0.925039i \(-0.375968\pi\)
0.379871 + 0.925039i \(0.375968\pi\)
\(234\) 0 0
\(235\) 28.1866 1.83869
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 18.0221i 1.16575i 0.812561 + 0.582877i \(0.198073\pi\)
−0.812561 + 0.582877i \(0.801927\pi\)
\(240\) 0 0
\(241\) −0.709837 0.409825i −0.0457246 0.0263991i 0.476963 0.878923i \(-0.341737\pi\)
−0.522688 + 0.852524i \(0.675071\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 12.9789 7.49337i 0.829191 0.478734i
\(246\) 0 0
\(247\) 4.55471 + 3.97499i 0.289809 + 0.252923i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −7.17873 + 12.4339i −0.453117 + 0.784822i −0.998578 0.0533143i \(-0.983021\pi\)
0.545460 + 0.838137i \(0.316355\pi\)
\(252\) 0 0
\(253\) 3.18409 + 1.83834i 0.200182 + 0.115575i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 10.2985 + 17.8375i 0.642402 + 1.11267i 0.984895 + 0.173152i \(0.0553953\pi\)
−0.342493 + 0.939520i \(0.611271\pi\)
\(258\) 0 0
\(259\) 5.08243 0.315807
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −14.5115 25.1347i −0.894820 1.54987i −0.834028 0.551723i \(-0.813971\pi\)
−0.0607920 0.998150i \(-0.519363\pi\)
\(264\) 0 0
\(265\) 10.8265i 0.665066i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −4.31381 + 7.47173i −0.263017 + 0.455560i −0.967042 0.254616i \(-0.918051\pi\)
0.704025 + 0.710175i \(0.251384\pi\)
\(270\) 0 0
\(271\) −13.8459 + 7.99395i −0.841080 + 0.485598i −0.857631 0.514265i \(-0.828065\pi\)
0.0165513 + 0.999863i \(0.494731\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 1.76168 1.01711i 0.106234 0.0613340i
\(276\) 0 0
\(277\) −14.3728 + 24.8945i −0.863579 + 1.49576i 0.00487180 + 0.999988i \(0.498449\pi\)
−0.868451 + 0.495775i \(0.834884\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 5.83386i 0.348019i −0.984744 0.174009i \(-0.944328\pi\)
0.984744 0.174009i \(-0.0556723\pi\)
\(282\) 0 0
\(283\) 13.8459 + 23.9818i 0.823055 + 1.42557i 0.903397 + 0.428805i \(0.141065\pi\)
−0.0803425 + 0.996767i \(0.525601\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 6.43031 0.379569
\(288\) 0 0
\(289\) −6.92820 12.0000i −0.407541 0.705882i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 13.7980 + 7.96626i 0.806085 + 0.465394i 0.845595 0.533826i \(-0.179246\pi\)
−0.0395092 + 0.999219i \(0.512579\pi\)
\(294\) 0 0
\(295\) −0.828165 + 1.43442i −0.0482176 + 0.0835154i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 3.82539 + 11.1806i 0.221228 + 0.646592i
\(300\) 0 0
\(301\) 4.36980 2.52291i 0.251871 0.145418i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −10.6420 6.14415i −0.609358 0.351813i
\(306\) 0 0
\(307\) 20.3955i 1.16403i 0.813178 + 0.582015i \(0.197736\pi\)
−0.813178 + 0.582015i \(0.802264\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −12.9989 −0.737103 −0.368551 0.929607i \(-0.620146\pi\)
−0.368551 + 0.929607i \(0.620146\pi\)
\(312\) 0 0
\(313\) −9.51274 −0.537692 −0.268846 0.963183i \(-0.586642\pi\)
−0.268846 + 0.963183i \(0.586642\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 19.1354i 1.07475i −0.843343 0.537376i \(-0.819416\pi\)
0.843343 0.537376i \(-0.180584\pi\)
\(318\) 0 0
\(319\) 0.324862 + 0.187559i 0.0181888 + 0.0105013i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 8.06587 4.65683i 0.448797 0.259113i
\(324\) 0 0
\(325\) 6.41547 + 1.26005i 0.355866 + 0.0698949i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −6.05696 + 10.4910i −0.333931 + 0.578385i
\(330\) 0 0
\(331\) −9.78896 5.65166i −0.538050 0.310643i 0.206238 0.978502i \(-0.433878\pi\)
−0.744288 + 0.667858i \(0.767211\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −18.7431 32.4640i −1.02405 1.77370i
\(336\) 0 0
\(337\) −5.14035 −0.280013 −0.140006 0.990151i \(-0.544712\pi\)
−0.140006 + 0.990151i \(0.544712\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −0.0727592 0.126023i −0.00394013 0.00682451i
\(342\) 0 0
\(343\) 14.2937i 0.771785i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −4.36129 + 7.55397i −0.234126 + 0.405518i −0.959018 0.283344i \(-0.908556\pi\)
0.724892 + 0.688862i \(0.241890\pi\)
\(348\) 0 0
\(349\) 23.4625 13.5461i 1.25592 0.725104i 0.283639 0.958931i \(-0.408458\pi\)
0.972278 + 0.233827i \(0.0751248\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 19.9524 11.5195i 1.06196 0.613123i 0.135986 0.990711i \(-0.456580\pi\)
0.925974 + 0.377588i \(0.123246\pi\)
\(354\) 0 0
\(355\) −11.2304 + 19.4516i −0.596046 + 1.03238i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 1.13392i 0.0598462i 0.999552 + 0.0299231i \(0.00952624\pi\)
−0.999552 + 0.0299231i \(0.990474\pi\)
\(360\) 0 0
\(361\) −8.09439 14.0199i −0.426020 0.737889i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −25.9578 −1.35869
\(366\) 0 0
\(367\) −14.3992 24.9401i −0.751632 1.30186i −0.947031 0.321141i \(-0.895934\pi\)
0.195399 0.980724i \(-0.437400\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 4.02959 + 2.32648i 0.209206 + 0.120785i
\(372\) 0 0
\(373\) 11.8939 20.6008i 0.615842 1.06667i −0.374394 0.927270i \(-0.622149\pi\)
0.990236 0.139400i \(-0.0445173\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 0.390291 + 1.14072i 0.0201010 + 0.0587501i
\(378\) 0 0
\(379\) −12.9434 + 7.47289i −0.664859 + 0.383856i −0.794126 0.607753i \(-0.792071\pi\)
0.129267 + 0.991610i \(0.458738\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 3.92940 + 2.26864i 0.200783 + 0.115922i 0.597021 0.802226i \(-0.296351\pi\)
−0.396238 + 0.918148i \(0.629684\pi\)
\(384\) 0 0
\(385\) 3.28491i 0.167414i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 9.51685 0.482524 0.241262 0.970460i \(-0.422439\pi\)
0.241262 + 0.970460i \(0.422439\pi\)
\(390\) 0 0
\(391\) 18.2056 0.920698
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 35.4913i 1.78576i
\(396\) 0 0
\(397\) −29.8307 17.2227i −1.49716 0.864385i −0.497163 0.867657i \(-0.665625\pi\)
−0.999995 + 0.00327253i \(0.998958\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 12.2605 7.07859i 0.612259 0.353488i −0.161590 0.986858i \(-0.551662\pi\)
0.773849 + 0.633370i \(0.218329\pi\)
\(402\) 0 0
\(403\) 0.0901380 0.458933i 0.00449009 0.0228611i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 2.54121 4.40151i 0.125963 0.218175i
\(408\) 0 0
\(409\) −0.299539 0.172939i −0.0148112 0.00855127i 0.492576 0.870269i \(-0.336055\pi\)
−0.507387 + 0.861718i \(0.669389\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −0.355925 0.616481i −0.0175139 0.0303350i
\(414\) 0 0
\(415\) −15.0255 −0.737571
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −6.98890 12.1051i −0.341430 0.591374i 0.643268 0.765641i \(-0.277578\pi\)
−0.984699 + 0.174266i \(0.944245\pi\)
\(420\) 0 0
\(421\) 22.1609i 1.08006i 0.841647 + 0.540028i \(0.181586\pi\)
−0.841647 + 0.540028i \(0.818414\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 5.03638 8.72327i 0.244300 0.423141i
\(426\) 0 0
\(427\) 4.57366 2.64061i 0.221335 0.127788i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −22.2109 + 12.8235i −1.06986 + 0.617686i −0.928144 0.372221i \(-0.878596\pi\)
−0.141719 + 0.989907i \(0.545263\pi\)
\(432\) 0 0
\(433\) −5.07802 + 8.79538i −0.244034 + 0.422679i −0.961860 0.273544i \(-0.911804\pi\)
0.717826 + 0.696223i \(0.245137\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 5.49516i 0.262869i
\(438\) 0 0
\(439\) −10.6982 18.5298i −0.510598 0.884381i −0.999925 0.0122808i \(-0.996091\pi\)
0.489327 0.872100i \(-0.337243\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −10.6688 −0.506889 −0.253444 0.967350i \(-0.581563\pi\)
−0.253444 + 0.967350i \(0.581563\pi\)
\(444\) 0 0
\(445\) −18.7225 32.4283i −0.887531 1.53725i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 8.62407 + 4.97911i 0.406995 + 0.234979i 0.689498 0.724288i \(-0.257831\pi\)
−0.282503 + 0.959266i \(0.591165\pi\)
\(450\) 0 0
\(451\) 3.21515 5.56881i 0.151396 0.262225i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −6.94208 + 7.95452i −0.325450 + 0.372914i
\(456\) 0 0
\(457\) −23.2035 + 13.3966i −1.08542 + 0.626665i −0.932352 0.361552i \(-0.882247\pi\)
−0.153063 + 0.988216i \(0.548914\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −27.7410 16.0163i −1.29203 0.745952i −0.313014 0.949749i \(-0.601339\pi\)
−0.979013 + 0.203796i \(0.934672\pi\)
\(462\) 0 0
\(463\) 21.7564i 1.01110i 0.862796 + 0.505552i \(0.168711\pi\)
−0.862796 + 0.505552i \(0.831289\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −33.7322 −1.56094 −0.780469 0.625195i \(-0.785020\pi\)
−0.780469 + 0.625195i \(0.785020\pi\)
\(468\) 0 0
\(469\) 16.1107 0.743922
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 5.04581i 0.232007i
\(474\) 0 0
\(475\) 2.63302 + 1.52017i 0.120811 + 0.0697504i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 9.17041 5.29454i 0.419007 0.241914i −0.275646 0.961259i \(-0.588892\pi\)
0.694652 + 0.719346i \(0.255558\pi\)
\(480\) 0 0
\(481\) 15.4555 5.28801i 0.704709 0.241112i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −11.7564 + 20.3626i −0.533829 + 0.924619i
\(486\) 0 0
\(487\) −19.0612 11.0050i −0.863746 0.498684i 0.00151867 0.999999i \(-0.499517\pi\)
−0.865265 + 0.501315i \(0.832850\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 8.25727 + 14.3020i 0.372645 + 0.645441i 0.989972 0.141266i \(-0.0451174\pi\)
−0.617326 + 0.786707i \(0.711784\pi\)
\(492\) 0 0
\(493\) 1.85746 0.0836557
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −4.82654 8.35982i −0.216500 0.374989i
\(498\) 0 0
\(499\) 11.1236i 0.497960i 0.968509 + 0.248980i \(0.0800954\pi\)
−0.968509 + 0.248980i \(0.919905\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −14.6361 + 25.3504i −0.652591 + 1.13032i 0.329901 + 0.944015i \(0.392985\pi\)
−0.982492 + 0.186305i \(0.940349\pi\)
\(504\) 0 0
\(505\) −6.53121 + 3.77080i −0.290635 + 0.167798i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −24.4571 + 14.1203i −1.08404 + 0.625871i −0.931983 0.362501i \(-0.881923\pi\)
−0.152057 + 0.988372i \(0.548590\pi\)
\(510\) 0 0
\(511\) 5.57802 9.66141i 0.246757 0.427396i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 13.6267i 0.600462i
\(516\) 0 0
\(517\) 6.05696 + 10.4910i 0.266385 + 0.461392i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 18.6401 0.816636 0.408318 0.912840i \(-0.366116\pi\)
0.408318 + 0.912840i \(0.366116\pi\)
\(522\) 0 0
\(523\) −17.6561 30.5812i −0.772047 1.33722i −0.936439 0.350830i \(-0.885900\pi\)
0.164392 0.986395i \(-0.447434\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −0.624022 0.360279i −0.0271828 0.0156940i
\(528\) 0 0
\(529\) 6.12924 10.6161i 0.266489 0.461572i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 19.5543 6.69041i 0.846992 0.289794i
\(534\) 0 0
\(535\) −13.1840 + 7.61181i −0.569996 + 0.329087i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 5.57802 + 3.22047i 0.240262 + 0.138715i
\(540\) 0 0
\(541\) 45.2196i 1.94414i 0.234682 + 0.972072i \(0.424595\pi\)
−0.234682 + 0.972072i \(0.575405\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 7.64330 0.327403
\(546\) 0 0
\(547\) −37.8808 −1.61967 −0.809834 0.586660i \(-0.800443\pi\)
−0.809834 + 0.586660i \(0.800443\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 0.560653i 0.0238846i
\(552\) 0 0
\(553\) −13.2097 7.62665i −0.561736 0.324318i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 17.8759 10.3206i 0.757426 0.437300i −0.0709450 0.997480i \(-0.522601\pi\)
0.828371 + 0.560180i \(0.189268\pi\)
\(558\) 0 0
\(559\) 10.6635 12.2186i 0.451016 0.516793i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 10.2300 17.7189i 0.431143 0.746761i −0.565829 0.824522i \(-0.691444\pi\)
0.996972 + 0.0777613i \(0.0247772\pi\)
\(564\) 0 0
\(565\) 11.0451 + 6.37691i 0.464673 + 0.268279i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 10.5681 + 18.3044i 0.443037 + 0.767362i 0.997913 0.0645708i \(-0.0205678\pi\)
−0.554877 + 0.831933i \(0.687235\pi\)
\(570\) 0 0
\(571\) −13.9221 −0.582621 −0.291310 0.956629i \(-0.594091\pi\)
−0.291310 + 0.956629i \(0.594091\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 2.97152 + 5.14683i 0.123921 + 0.214637i
\(576\) 0 0
\(577\) 26.2420i 1.09247i 0.837633 + 0.546234i \(0.183939\pi\)
−0.837633 + 0.546234i \(0.816061\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 3.22879 5.59243i 0.133953 0.232013i
\(582\) 0 0
\(583\) 4.02959 2.32648i 0.166889 0.0963531i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −21.3670 + 12.3362i −0.881910 + 0.509171i −0.871288 0.490773i \(-0.836715\pi\)
−0.0106221 + 0.999944i \(0.503381\pi\)
\(588\) 0 0
\(589\) 0.108746 0.188354i 0.00448081 0.00776099i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 40.3506i 1.65700i 0.559988 + 0.828501i \(0.310806\pi\)
−0.559988 + 0.828501i \(0.689194\pi\)
\(594\) 0 0
\(595\) 8.13287 + 14.0865i 0.333415 + 0.577492i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 4.96104 0.202702 0.101351 0.994851i \(-0.467683\pi\)
0.101351 + 0.994851i \(0.467683\pi\)
\(600\) 0 0
\(601\) 7.73846 + 13.4034i 0.315658 + 0.546737i 0.979577 0.201068i \(-0.0644413\pi\)
−0.663919 + 0.747805i \(0.731108\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −22.0210 12.7138i −0.895282 0.516891i
\(606\) 0 0
\(607\) −11.2167 + 19.4279i −0.455273 + 0.788556i −0.998704 0.0508979i \(-0.983792\pi\)
0.543431 + 0.839454i \(0.317125\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −7.50368 + 38.2046i −0.303566 + 1.54559i
\(612\) 0 0
\(613\) 14.3634 8.29274i 0.580134 0.334941i −0.181053 0.983473i \(-0.557950\pi\)
0.761187 + 0.648533i \(0.224617\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −28.6107 16.5184i −1.15182 0.665005i −0.202492 0.979284i \(-0.564904\pi\)
−0.949331 + 0.314279i \(0.898237\pi\)
\(618\) 0 0
\(619\) 35.3913i 1.42249i −0.702942 0.711247i \(-0.748131\pi\)
0.702942 0.711247i \(-0.251869\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 16.0929 0.644750
\(624\) 0 0
\(625\) −30.7785 −1.23114
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 25.1665i 1.00345i
\(630\) 0 0
\(631\) −5.58850 3.22652i −0.222475 0.128446i 0.384621 0.923075i \(-0.374332\pi\)
−0.607096 + 0.794629i \(0.707666\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 23.3276 13.4682i 0.925729 0.534470i
\(636\) 0 0
\(637\) 6.70147 + 19.5867i 0.265522 + 0.776052i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 10.8871 18.8571i 0.430016 0.744810i −0.566858 0.823815i \(-0.691841\pi\)
0.996874 + 0.0790058i \(0.0251746\pi\)
\(642\) 0 0
\(643\) 34.8552 + 20.1237i 1.37456 + 0.793600i 0.991498 0.130125i \(-0.0415378\pi\)
0.383058 + 0.923724i \(0.374871\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −18.8105 32.5808i −0.739519 1.28088i −0.952712 0.303874i \(-0.901720\pi\)
0.213193 0.977010i \(-0.431614\pi\)
\(648\) 0 0
\(649\) −0.711850 −0.0279426
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −15.3559 26.5972i −0.600924 1.04083i −0.992681 0.120762i \(-0.961466\pi\)
0.391758 0.920068i \(-0.371867\pi\)
\(654\) 0 0
\(655\) 0.289112i 0.0112965i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 6.88489 11.9250i 0.268197 0.464531i −0.700199 0.713947i \(-0.746906\pi\)
0.968396 + 0.249417i \(0.0802388\pi\)
\(660\) 0 0
\(661\) −8.85492 + 5.11239i −0.344416 + 0.198849i −0.662223 0.749307i \(-0.730387\pi\)
0.317807 + 0.948155i \(0.397054\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −4.25187 + 2.45482i −0.164880 + 0.0951937i
\(666\) 0 0
\(667\) −0.547961 + 0.949096i −0.0212171 + 0.0367491i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 5.28121i 0.203879i
\(672\) 0 0
\(673\) 2.13077 + 3.69060i 0.0821351 + 0.142262i 0.904167 0.427180i \(-0.140493\pi\)
−0.822032 + 0.569442i \(0.807159\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 4.47885 0.172136 0.0860681 0.996289i \(-0.472570\pi\)
0.0860681 + 0.996289i \(0.472570\pi\)
\(678\) 0 0
\(679\) −5.05260 8.75137i −0.193901 0.335847i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −17.4014 10.0467i −0.665846 0.384426i 0.128655 0.991689i \(-0.458934\pi\)
−0.794501 + 0.607263i \(0.792267\pi\)
\(684\) 0 0
\(685\) 9.07386 15.7164i 0.346694 0.600492i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 14.6744 + 2.88217i 0.559051 + 0.109802i
\(690\) 0 0
\(691\) −32.6571 + 18.8546i −1.24233 + 0.717261i −0.969569 0.244820i \(-0.921271\pi\)
−0.272764 + 0.962081i \(0.587938\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 23.5780 + 13.6128i 0.894365 + 0.516362i
\(696\) 0 0
\(697\) 31.8407i 1.20605i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 17.2849 0.652842 0.326421 0.945225i \(-0.394157\pi\)
0.326421 + 0.945225i \(0.394157\pi\)
\(702\) 0 0
\(703\) 7.59622 0.286497
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 3.24119i 0.121898i
\(708\) 0 0
\(709\) 15.7410 + 9.08807i 0.591166 + 0.341310i 0.765558 0.643366i \(-0.222463\pi\)
−0.174393 + 0.984676i \(0.555796\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 0.368180 0.212569i 0.0137884 0.00796076i
\(714\) 0 0
\(715\) 3.41778 + 9.98928i 0.127818 + 0.373578i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 9.95668 17.2455i 0.371322 0.643148i −0.618448 0.785826i \(-0.712238\pi\)
0.989769 + 0.142678i \(0.0455714\pi\)
\(720\) 0 0
\(721\) −5.07180 2.92820i −0.188884 0.109052i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 0.303174 + 0.525113i 0.0112596 + 0.0195022i
\(726\) 0 0
\(727\) 38.7446 1.43696 0.718479 0.695549i \(-0.244839\pi\)
0.718479 + 0.695549i \(0.244839\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −12.4926 21.6378i −0.462055 0.800302i
\(732\) 0 0
\(733\) 3.19477i 0.118001i −0.998258 0.0590007i \(-0.981209\pi\)
0.998258 0.0590007i \(-0.0187914\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 8.05534 13.9523i 0.296722 0.513938i
\(738\) 0 0
\(739\) 35.2234 20.3362i 1.29571 0.748080i 0.316053 0.948742i \(-0.397642\pi\)
0.979661 + 0.200661i \(0.0643091\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 12.0464 6.95498i 0.441939 0.255154i −0.262481 0.964937i \(-0.584541\pi\)
0.704420 + 0.709784i \(0.251207\pi\)
\(744\) 0 0
\(745\) −12.5322 + 21.7064i −0.459143 + 0.795260i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 6.54275i 0.239067i
\(750\) 0 0
\(751\) −8.79317 15.2302i −0.320867 0.555759i 0.659800 0.751441i \(-0.270641\pi\)
−0.980667 + 0.195683i \(0.937308\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 35.8299 1.30398
\(756\) 0 0
\(757\) −11.0553 19.1484i −0.401813 0.695961i 0.592132 0.805841i \(-0.298286\pi\)
−0.993945 + 0.109881i \(0.964953\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −21.0765 12.1685i −0.764022 0.441108i 0.0667160 0.997772i \(-0.478748\pi\)
−0.830738 + 0.556664i \(0.812081\pi\)
\(762\) 0 0
\(763\) −1.64245 + 2.84481i −0.0594608 + 0.102989i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −1.72377 1.50437i −0.0622418 0.0543198i
\(768\) 0 0
\(769\) 6.14197 3.54607i 0.221485 0.127875i −0.385153 0.922853i \(-0.625851\pi\)
0.606638 + 0.794978i \(0.292518\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −0.840035 0.484994i −0.0302140 0.0174440i 0.484817 0.874616i \(-0.338886\pi\)
−0.515031 + 0.857172i \(0.672220\pi\)
\(774\) 0 0
\(775\) 0.235219i 0.00844931i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 9.61076 0.344341
\(780\) 0 0
\(781\) −9.65309 −0.345415
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 23.3929i 0.834929i
\(786\) 0 0
\(787\) −0.0361875 0.0208929i −0.00128994 0.000744750i 0.499355 0.866398i \(-0.333570\pi\)
−0.500645 + 0.865653i \(0.666904\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −4.74693 + 2.74064i −0.168782 + 0.0974461i
\(792\) 0 0
\(793\) 11.1609 12.7886i 0.396336 0.454138i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −19.6671 + 34.0645i −0.696646 + 1.20663i 0.272977 + 0.962021i \(0.411992\pi\)
−0.969623 + 0.244606i \(0.921341\pi\)
\(798\) 0 0
\(799\) 51.9477 + 29.9920i 1.83778 + 1.06104i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −5.57802 9.66141i −0.196844 0.340944i
\(804\) 0 0
\(805\) −9.59697 −0.338249
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −0.404078 0.699884i −0.0142066 0.0246066i 0.858835 0.512253i \(-0.171189\pi\)
−0.873041 + 0.487646i \(0.837856\pi\)
\(810\) 0 0
\(811\) 24.3955i 0.856640i 0.903627 + 0.428320i \(0.140894\pi\)
−0.903627 + 0.428320i \(0.859106\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 2.86292 4.95873i 0.100284 0.173697i
\(816\) 0 0
\(817\) 6.53112 3.77075i 0.228495 0.131922i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 15.0406 8.68369i 0.524920 0.303063i −0.214025 0.976828i \(-0.568657\pi\)
0.738945 + 0.673765i \(0.235324\pi\)
\(822\) 0 0
\(823\) 2.83865 4.91669i 0.0989491 0.171385i −0.812301 0.583239i \(-0.801785\pi\)
0.911250 + 0.411854i \(0.135119\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 14.5094i 0.504540i 0.967657 + 0.252270i \(0.0811772\pi\)
−0.967657 + 0.252270i \(0.918823\pi\)
\(828\) 0 0
\(829\) 23.7516 + 41.1390i 0.824928 + 1.42882i 0.901974 + 0.431790i \(0.142118\pi\)
−0.0770456 + 0.997028i \(0.524549\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 31.8934 1.10504
\(834\) 0 0
\(835\) −19.5483 33.8587i −0.676498 1.17173i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −1.78192 1.02879i −0.0615188 0.0355179i 0.468925 0.883238i \(-0.344641\pi\)
−0.530444 + 0.847720i \(0.677975\pi\)
\(840\) 0 0
\(841\) 14.4441 25.0179i 0.498072 0.862686i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −12.8343 + 31.4123i −0.441515 + 1.08062i
\(846\) 0 0
\(847\) 9.46410 5.46410i 0.325190 0.187749i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 12.8592 + 7.42425i 0.440807 + 0.254500i
\(852\) 0 0
\(853\) 4.10363i 0.140506i −0.997529 0.0702528i \(-0.977619\pi\)
0.997529 0.0702528i \(-0.0223806\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −35.9776 −1.22897 −0.614486 0.788928i \(-0.710636\pi\)
−0.614486 + 0.788928i \(0.710636\pi\)
\(858\) 0 0
\(859\) 12.7711 0.435745 0.217872 0.975977i \(-0.430088\pi\)
0.217872 + 0.975977i \(0.430088\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 34.2815i 1.16696i −0.812128 0.583479i \(-0.801691\pi\)
0.812128 0.583479i \(-0.198309\pi\)
\(864\) 0 0
\(865\) 9.03043 + 5.21372i 0.307044 + 0.177272i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −13.2097 + 7.62665i −0.448110 + 0.258716i
\(870\) 0 0
\(871\) 48.9920 16.7623i 1.66003 0.567970i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 4.66562 8.08108i 0.157727 0.273190i
\(876\) 0 0
\(877\) −39.4625 22.7837i −1.33255 0.769351i −0.346864 0.937915i \(-0.612753\pi\)
−0.985691 + 0.168565i \(0.946087\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 6.88302 + 11.9217i 0.231895 + 0.401654i 0.958366 0.285544i \(-0.0921742\pi\)
−0.726471 + 0.687197i \(0.758841\pi\)
\(882\) 0 0
\(883\) −1.44199 −0.0485269 −0.0242634 0.999706i \(-0.507724\pi\)
−0.0242634 + 0.999706i \(0.507724\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 13.2859 + 23.0118i 0.446097 + 0.772662i 0.998128 0.0611612i \(-0.0194804\pi\)
−0.552031 + 0.833824i \(0.686147\pi\)
\(888\) 0 0
\(889\) 11.5766i 0.388268i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −9.05275 + 15.6798i −0.302939 + 0.524705i
\(894\) 0 0
\(895\) −19.4673 + 11.2394i −0.650719 + 0.375693i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 0.0375641 0.0216877i 0.00125283 0.000723324i
\(900\) 0 0
\(901\) 11.5200 19.9532i 0.383786 0.664736i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 40.8000i 1.35624i
\(906\) 0 0
\(907\) −5.03911 8.72800i −0.167321 0.289808i 0.770156 0.637855i \(-0.220178\pi\)
−0.937477 + 0.348047i \(0.886845\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 44.5252 1.47518 0.737592 0.675246i \(-0.235963\pi\)
0.737592 + 0.675246i \(0.235963\pi\)
\(912\) 0 0
\(913\) −3.22879 5.59243i −0.106857 0.185083i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −0.107607 0.0621267i −0.00355348 0.00205160i
\(918\) 0 0
\(919\) 16.7591 29.0275i 0.552830 0.957530i −0.445239 0.895412i \(-0.646881\pi\)
0.998069 0.0621180i \(-0.0197855\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −23.3753 20.4001i −0.769407 0.671478i
\(924\) 0 0
\(925\) 7.11469 4.10767i 0.233930 0.135059i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −15.1077 8.72243i −0.495667 0.286174i 0.231255 0.972893i \(-0.425717\pi\)
−0.726923 + 0.686719i \(0.759050\pi\)
\(930\) 0 0
\(931\) 9.62665i 0.315501i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 16.2657 0.531947
\(936\) 0 0
\(937\) 17.0052 0.555535 0.277767 0.960648i \(-0.410406\pi\)
0.277767 + 0.960648i \(0.410406\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 15.7406i 0.513128i 0.966527 + 0.256564i \(0.0825904\pi\)
−0.966527 + 0.256564i \(0.917410\pi\)
\(942\) 0 0
\(943\) 16.2695 + 9.39319i 0.529807 + 0.305884i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 28.2102 16.2872i 0.916709 0.529262i 0.0341252 0.999418i \(-0.489136\pi\)
0.882584 + 0.470155i \(0.155802\pi\)
\(948\) 0 0
\(949\) 6.91034 35.1836i 0.224319 1.14211i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −15.6154 + 27.0466i −0.505831 + 0.876125i 0.494146 + 0.869379i \(0.335481\pi\)
−0.999977 + 0.00674630i \(0.997853\pi\)
\(954\) 0 0
\(955\) 61.1607 + 35.3111i 1.97911 + 1.14264i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 3.89972 + 6.75452i 0.125929 + 0.218115i
\(960\) 0 0
\(961\) 30.9832 0.999457
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 31.2595 + 54.1430i 1.00628 + 1.74292i
\(966\) 0 0
\(967\) 37.8998i 1.21877i 0.792873 + 0.609387i \(0.208585\pi\)
−0.792873 + 0.609387i \(0.791415\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −13.6628 + 23.6647i −0.438461 + 0.759437i −0.997571 0.0696563i \(-0.977810\pi\)
0.559110 + 0.829094i \(0.311143\pi\)
\(972\) 0 0
\(973\) −10.1333 + 5.85044i −0.324858 + 0.187557i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −25.8089 + 14.9008i −0.825700 + 0.476718i −0.852378 0.522926i \(-0.824840\pi\)
0.0266779 + 0.999644i \(0.491507\pi\)
\(978\) 0 0
\(979\) 8.04647 13.9369i 0.257166 0.445425i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 16.0704i 0.512565i −0.966602 0.256282i \(-0.917502\pi\)
0.966602 0.256282i \(-0.0824977\pi\)
\(984\) 0 0
\(985\) −13.5020 23.3862i −0.430210 0.745145i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 14.7415 0.468753
\(990\) 0 0
\(991\) −15.9772 27.6733i −0.507533 0.879073i −0.999962 0.00872027i \(-0.997224\pi\)
0.492429 0.870353i \(-0.336109\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 30.6818 + 17.7142i 0.972679 + 0.561577i
\(996\) 0 0
\(997\) 4.39599 7.61407i 0.139222 0.241140i −0.787980 0.615701i \(-0.788873\pi\)
0.927202 + 0.374561i \(0.122206\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 936.2.bi.b.361.3 8
3.2 odd 2 104.2.o.a.49.4 yes 8
4.3 odd 2 1872.2.by.n.1297.3 8
12.11 even 2 208.2.w.c.49.1 8
13.4 even 6 inner 936.2.bi.b.433.2 8
24.5 odd 2 832.2.w.g.257.1 8
24.11 even 2 832.2.w.i.257.4 8
39.2 even 12 1352.2.a.k.1.1 4
39.5 even 4 1352.2.i.k.1329.4 8
39.8 even 4 1352.2.i.l.1329.4 8
39.11 even 12 1352.2.a.l.1.1 4
39.17 odd 6 104.2.o.a.17.4 8
39.20 even 12 1352.2.i.l.529.4 8
39.23 odd 6 1352.2.f.f.337.2 8
39.29 odd 6 1352.2.f.f.337.1 8
39.32 even 12 1352.2.i.k.529.4 8
39.35 odd 6 1352.2.o.f.1161.4 8
39.38 odd 2 1352.2.o.f.361.4 8
52.43 odd 6 1872.2.by.n.433.2 8
156.11 odd 12 2704.2.a.be.1.4 4
156.23 even 6 2704.2.f.q.337.8 8
156.95 even 6 208.2.w.c.17.1 8
156.107 even 6 2704.2.f.q.337.7 8
156.119 odd 12 2704.2.a.bd.1.4 4
312.173 odd 6 832.2.w.g.641.1 8
312.251 even 6 832.2.w.i.641.4 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
104.2.o.a.17.4 8 39.17 odd 6
104.2.o.a.49.4 yes 8 3.2 odd 2
208.2.w.c.17.1 8 156.95 even 6
208.2.w.c.49.1 8 12.11 even 2
832.2.w.g.257.1 8 24.5 odd 2
832.2.w.g.641.1 8 312.173 odd 6
832.2.w.i.257.4 8 24.11 even 2
832.2.w.i.641.4 8 312.251 even 6
936.2.bi.b.361.3 8 1.1 even 1 trivial
936.2.bi.b.433.2 8 13.4 even 6 inner
1352.2.a.k.1.1 4 39.2 even 12
1352.2.a.l.1.1 4 39.11 even 12
1352.2.f.f.337.1 8 39.29 odd 6
1352.2.f.f.337.2 8 39.23 odd 6
1352.2.i.k.529.4 8 39.32 even 12
1352.2.i.k.1329.4 8 39.5 even 4
1352.2.i.l.529.4 8 39.20 even 12
1352.2.i.l.1329.4 8 39.8 even 4
1352.2.o.f.361.4 8 39.38 odd 2
1352.2.o.f.1161.4 8 39.35 odd 6
1872.2.by.n.433.2 8 52.43 odd 6
1872.2.by.n.1297.3 8 4.3 odd 2
2704.2.a.bd.1.4 4 156.119 odd 12
2704.2.a.be.1.4 4 156.11 odd 12
2704.2.f.q.337.7 8 156.107 even 6
2704.2.f.q.337.8 8 156.23 even 6